

INTRODUCTION TO STATISTICAL MECHANICS

GENERAL FRAMEWORK (STATIC SETTING)

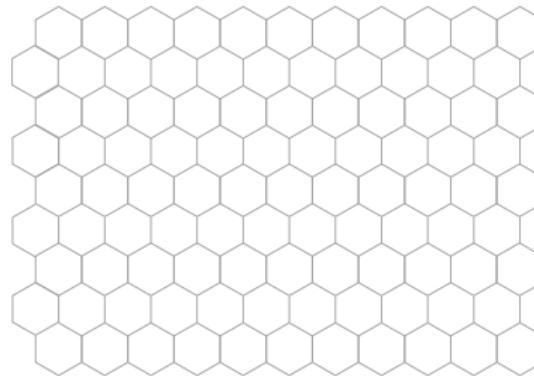
January 23, 2026

STATISTICAL MECHANICS

Understand the large scale behavior of a physics system whose interactions are described on the microscopic level

Start from a **model**, whose general framework is the following.

- ▶ Structure of the physics system is represented by a **graph** $G = (V, E)$, finite.

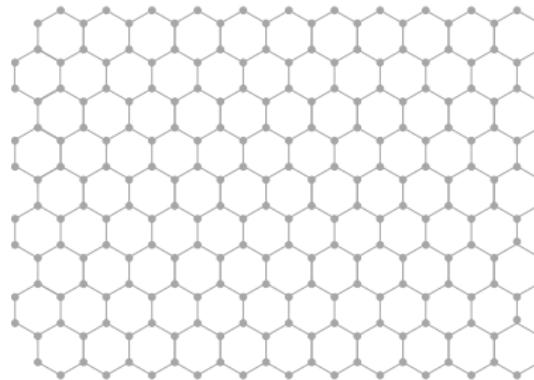


STATISTICAL MECHANICS

Understand the large scale behavior of a physics system whose interactions are described on the microscopic level

Start from a **model**, whose general framework is the following.

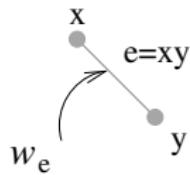
- ▶ Structure of the physics system is represented by a **graph** $G = (V, E)$, finite.



STATISTICAL MECHANICS

- ▶ Set of configurations on the graph G : $\mathcal{C}(G)$,
 - ▶ vertex configurations,
 - ▶ edge configurations.
- ▶ Parameters:
 - ▶ intensity of interactions between microscopic components
 - ▶ external temperature.

⇒ Positive weight function $w = (w_e)_{e \in E}$ on the edges.



STATISTICAL MECHANICS

- ▶ To a configuration C , one assigns an **energy** $\mathcal{E}_w(C)$.
- ▶ **Boltzmann measure** on configurations:

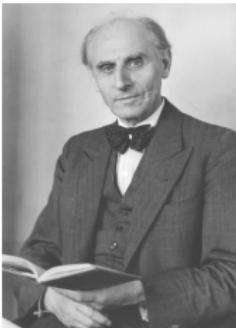
$$\forall C \in \mathcal{C}(G), \quad \mathbb{P}(C) = \frac{e^{-\mathcal{E}_w(C)}}{Z(G, w)},$$

where $Z(G, w) = \sum_{C \in \mathcal{C}(G)} e^{-\mathcal{E}_w(C)}$ is the **partition function**.

*Understand the behavior of configurations
when the graph is large (infinite).*

THE ISING MODEL

Model of ferromagnetism - mixture of two materials



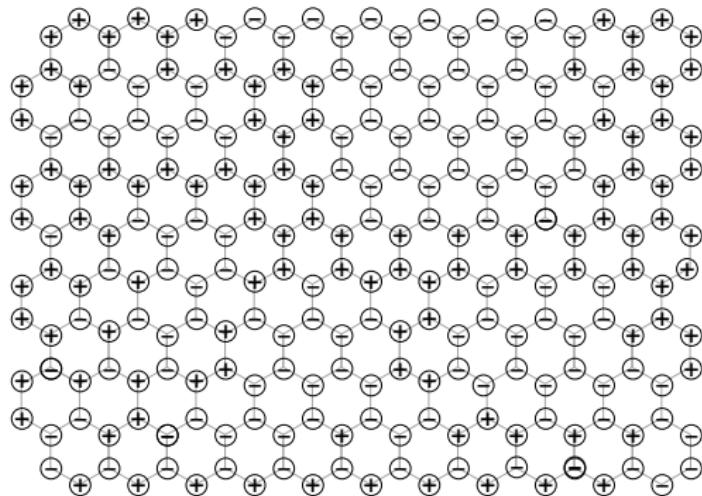
Wilhelm Lenz (1888-1957)

Ernst Ising (1900-1998)

- ▶ Graph $G = (V, E)$.
- ▶ A **spin configuration** σ assigns a spin $\sigma_x \in \{-1, 1\}$ to each vertex x of the graph G .
 $\Rightarrow \mathcal{C}(G) = \{-1, 1\}^V = \text{set of spin configurations.}$

THE ISING MODEL

- ▶ A spin configuration

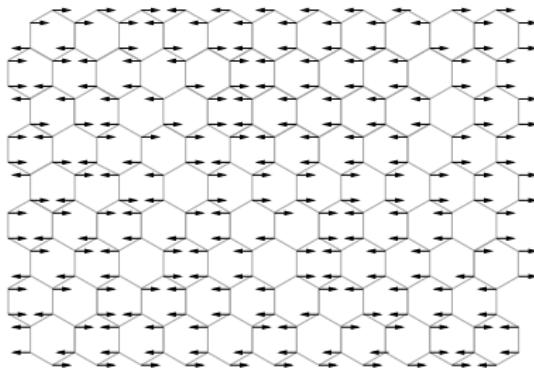


THE ISING MODEL

- ▶ A spin configuration / two interpretations

Magnetic moments:

$+1/\rightarrow, -1/\leftarrow$

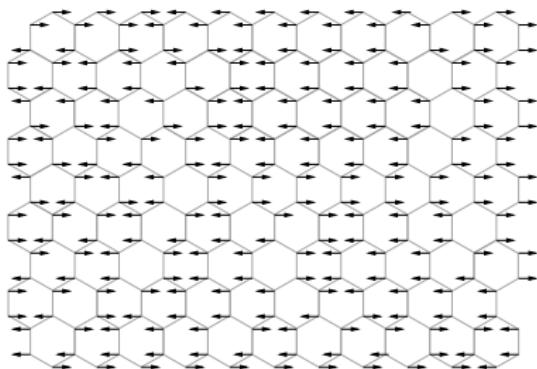


THE ISING MODEL

- ▶ A spin configuration / two interpretations

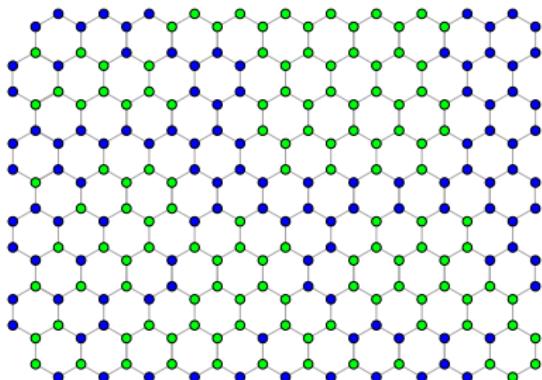
Magnetic moments:

$+1 \rightarrow, -1 \leftarrow$



Mixture of two materials:

$+1/\bullet, -1/\circ$.



THE ISING MODEL

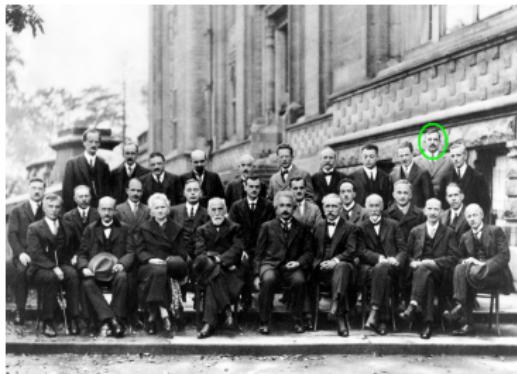
- ▶ Positive weight function: coupling constants $J = (J_e)_{e \in E}$.
- ▶ Energy of a spin configuration: $\mathcal{E}_J(\sigma) = - \sum_{e=xy \in E} J_{xy} \sigma_x \sigma_y$.
- ▶ Ising Boltzmann measure:

$$\forall \sigma \in \{-1, 1\}^V, \quad \mathbb{P}_{\text{Ising}}(\sigma) = \frac{e^{-\mathcal{E}_J(\sigma)}}{Z_{\text{Ising}}(G, J)}.$$

- ▶ Two neighboring spins σ_x, σ_y tend to align.
- ▶ The higher the coupling J_{xy} , the higher this tendency.

THE DIMER MODEL

Adsorption of di-atomic molecules on the surface of a cristal



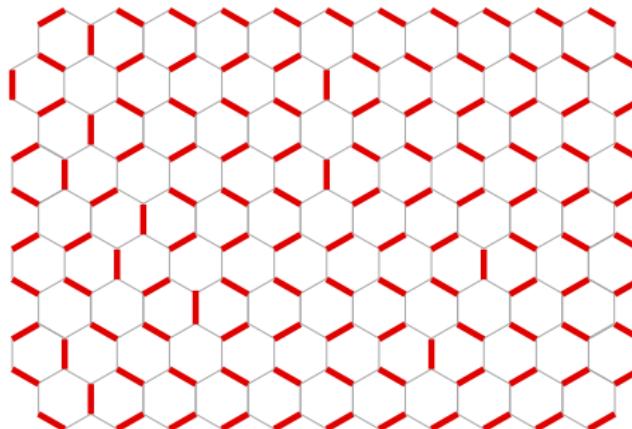
Sir Ralph H. Fowler (1889-1944)
Congrès Solvay 1927.

George S. Rushbrooke (1915-1995)

- ▶ Graph $G = (V, E)$.
- ▶ A **dimer configuration** or **perfect matching**: subset of edges such that each vertex touches exactly one edge of this subset.
 $\Rightarrow \mathcal{C}(G) = \mathcal{M}(G) = \text{set of dimer configurations.}$

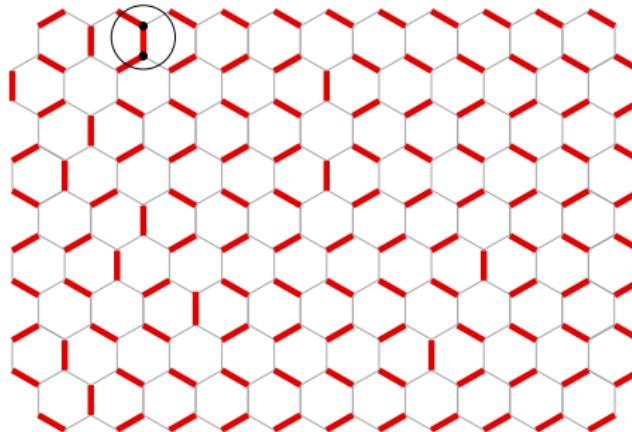
THE DIMER MODEL

- ▶ A dimer configuration.



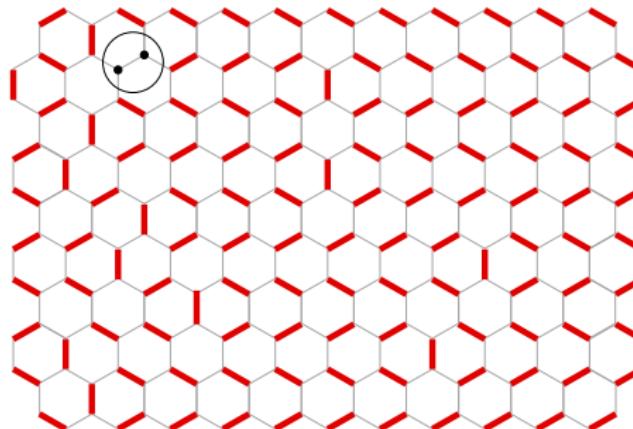
THE DIMER MODEL

- ▶ A dimer configuration.



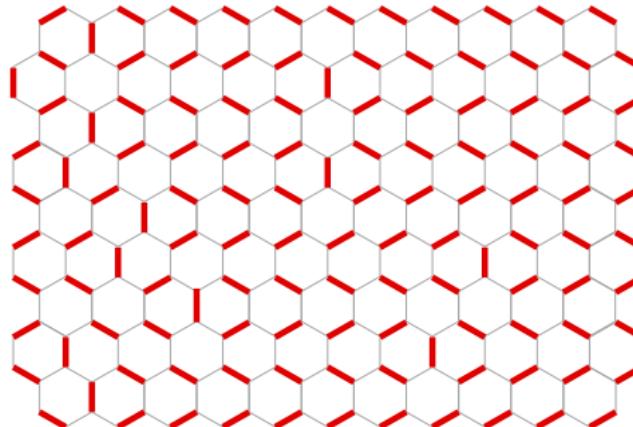
THE DIMER MODEL

- ▶ A dimer configuration.



THE DIMER MODEL

- ▶ A dimer configuration.



- ▶ Positive weight function: $\nu = (\nu_e)_{e \in E}$.
- ▶ Energy of a configuration M : $\mathcal{E}_\nu(M) = -\sum_{e \in M} \log \nu_e$.
- ▶ Dimer Botzmann measure:

$$\forall M \in \mathcal{M}(G), \quad \mathbb{P}_{\text{dimer}}(M) = \frac{\prod_{e \in M} \nu_e}{Z_{\text{dimer}}(G, \nu)}.$$

- ▶ Edges with higher weights are more likely to occur.

SPANNING TREES

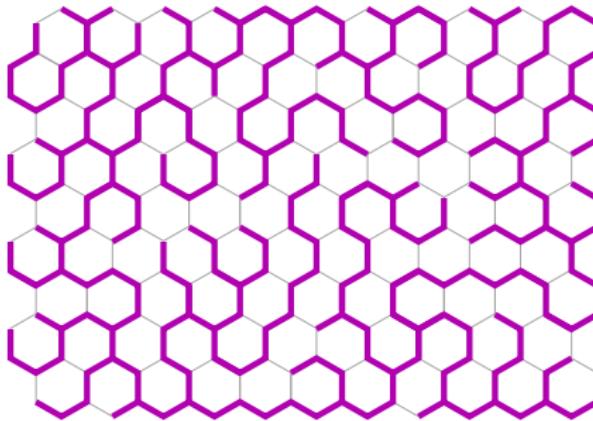
Related to electrical networks

Gustav Kirchhoff (1824-1887)

- ▶ Graph $G = (V, E)$.
- ▶ A **spanning tree**: subset of edges covering all vertices of the graph, connected, with no cycle.
 $\Rightarrow \mathcal{C}(G) = \mathcal{T}(G) = \text{set of spanning trees.}$

SPANNING TREES

- ▶ A spanning tree



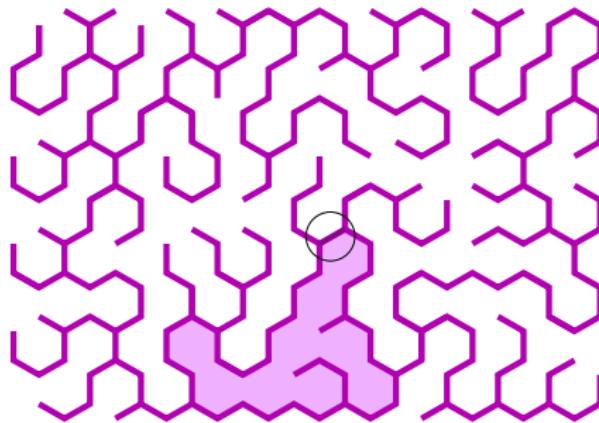
SPANNING TREES

- ▶ A spanning tree



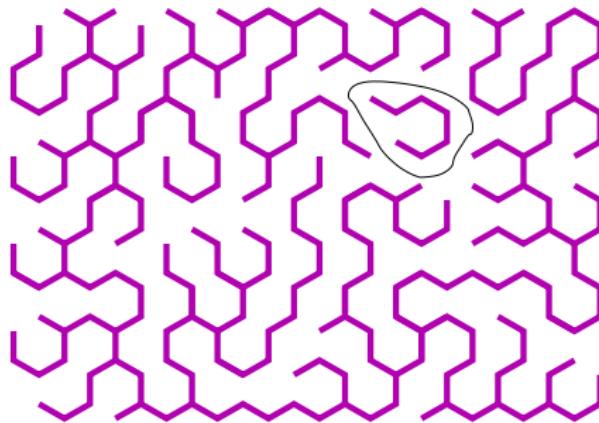
SPANNING TREES

- ▶ A spanning tree



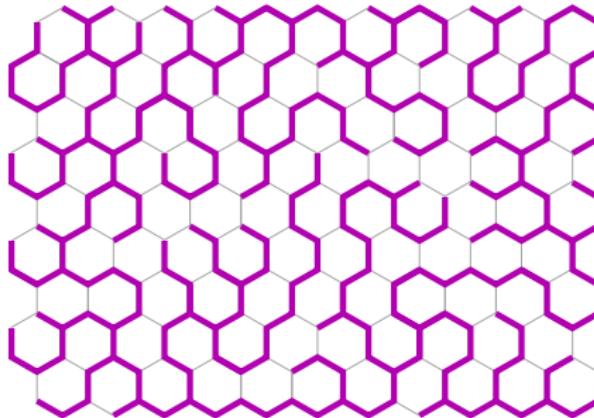
SPANNING TREES

- ▶ A spanning tree



SPANNING TREES

- ▶ A spanning tree



- ▶ Positive weight function: $\rho = (\rho_e)_{e \in E}$.
- ▶ Energy of a tree T : $\mathcal{E}_\rho(T) = - \sum_{e \in T} \log \rho_e$.
- ▶ Tree Boltzmann measure:

$$\forall T \in \mathcal{T}(G), \quad \mathbb{P}_{\text{tree}}(T) = \frac{\prod_{e \in T} \rho_e}{Z_{\text{tree}}(G, \rho)}.$$

- ▶ Edges with higher weights are more likely to occur.

PERCOLATION

Flow of a liquid through a porous material

Simon Broadbent (1928-2002)

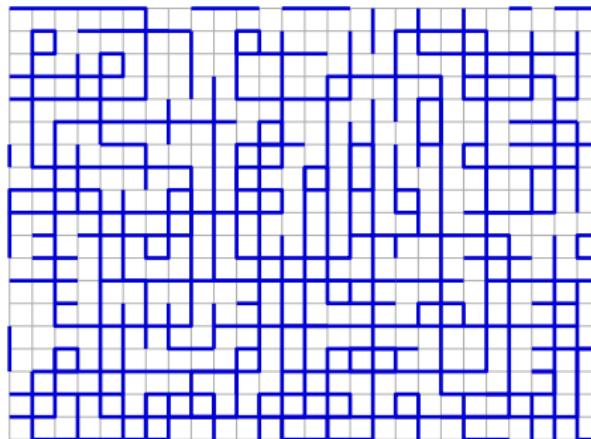
John Hammersley (1920-2004)

- ▶ Graph $G = (V, E)$.
- ▶ Configuration of opened and closed edges: $\forall e \in E, \omega_e \in \{0, 1\}$.

$$\Rightarrow \mathcal{C}(G) = \{0, 1\}^E.$$

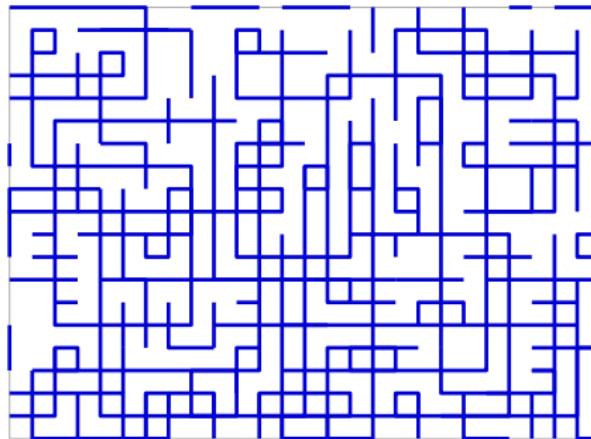
PERCOLATION

- ▶ A percolation configuration



PERCOLATION

- ▶ A percolation configuration



- ▶ Let $p \in [0, 1]$. Each edge is opened/closed with probability p / $1 - p$, independently.
- ▶ **Percolation measure:**

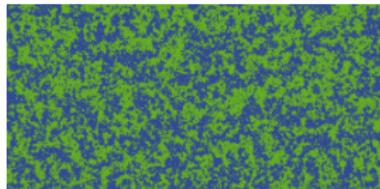
$$\forall \omega \in \{0,1\}^E, \quad \mathbb{P}_{\text{perco}}(\omega) = p^{\sum_{e \in E} \omega_e} (1-p)^{|E| - \sum_{e \in E} \omega_e}.$$

- ▶ The higher p is, the more open edges there are
- ▶ For which values of p do we percolate ?

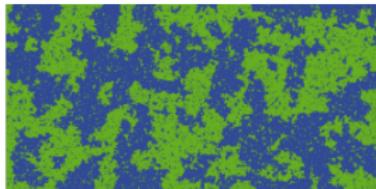
MACROSCOPIC BEHAVIOR

*Let the edge-length tend to 0
Look at a “typical” configuration.*

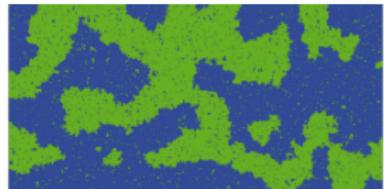
- ▶ Ising model (Illustrations of R. Cerf)



J small



J critical

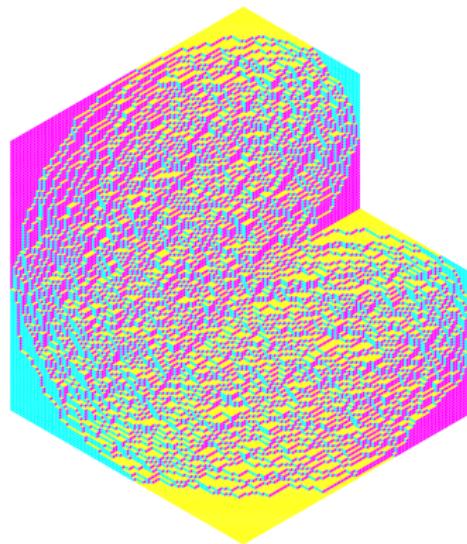


J large

- ▶ On \mathbb{Z}^2 : $J_c \equiv \frac{1}{2} \log(1 + \sqrt{2})$ [Kramers et Wannier]
- ▶ Phase transition: studied through magnetization.

MACROSCOPIC BEHAVIOR

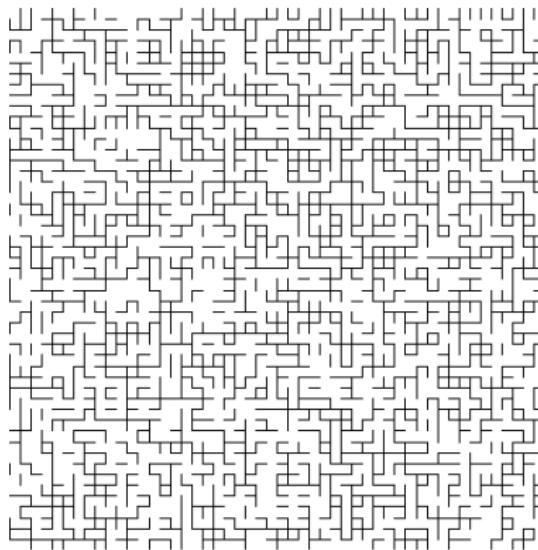
- Dimer model (Illustration of R. Kenyon)



- One sees two phases on the same figure.
- Phase transition studied through decay of correlations.

MACROSCOPIC BEHAVIOR

- ▶ Percolation (Illustration of Erzbischof)



$$p = 0.51$$

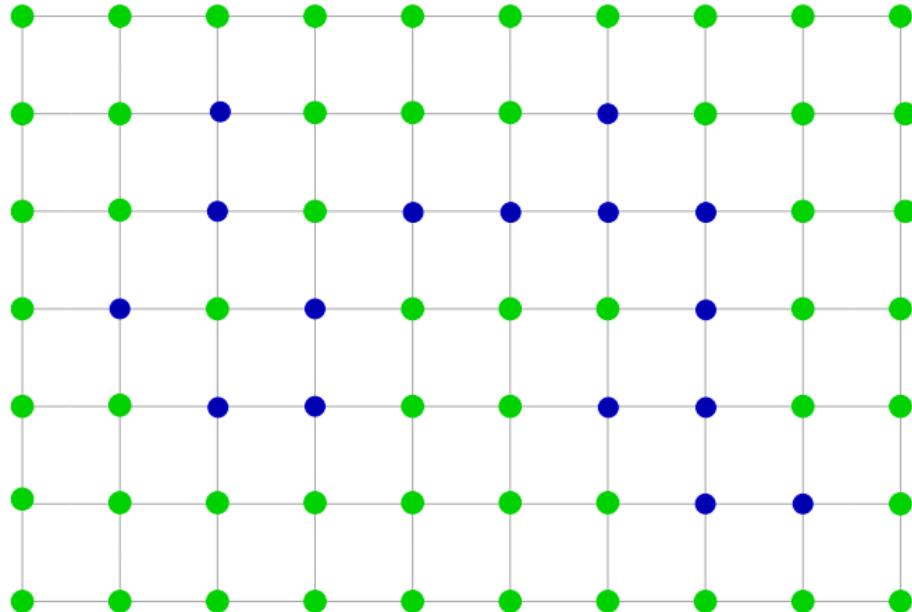
- ▶ On \mathbb{Z}^2 : $p_c = 0.5$ [Kesten]
- ▶ Phase transition: (non) existence of an infinite connected component.

MACROSCOPIC BEHAVIOR

- ▶ Identification of the phase transition.
- ▶ Understand the sub/super critical models.
- ▶ Understand the critical model (at the phase transition):
 - ▶ Universality and conformal invariance.
 - ▶ Conjectures: Nienhuis, Cardy, Duplantier ...
Proofs: Lawler, Schramm, Werner (Fields 2006), D. Chelkak, S. Smirnov (Fields 2010), H. Duminil-Copin (Fields 2022), ...

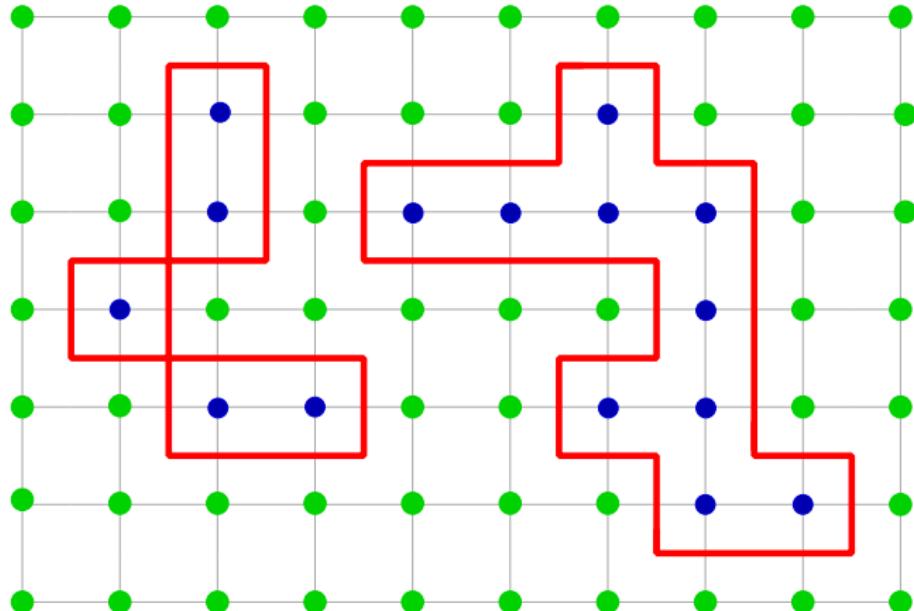
2. RELATIONS BETWEEN MODELS: ISING - DIMERS [FISHER'66]

- ▶ Ising model on G .



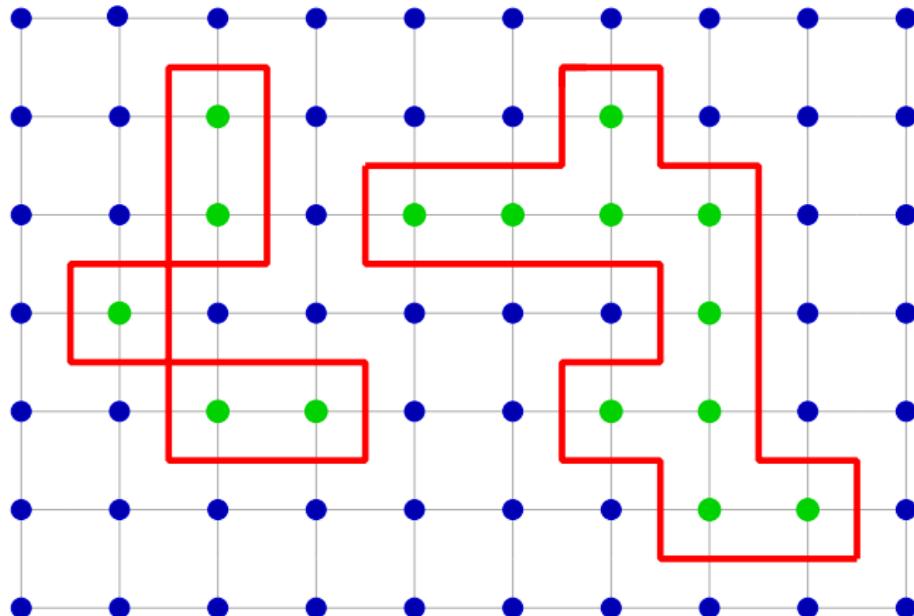
2. RELATIONS BETWEEN MODELS: ISING - DIMERS [FISHER'66]

- ▶ Low temperature expansion [Kramers-Wannier].



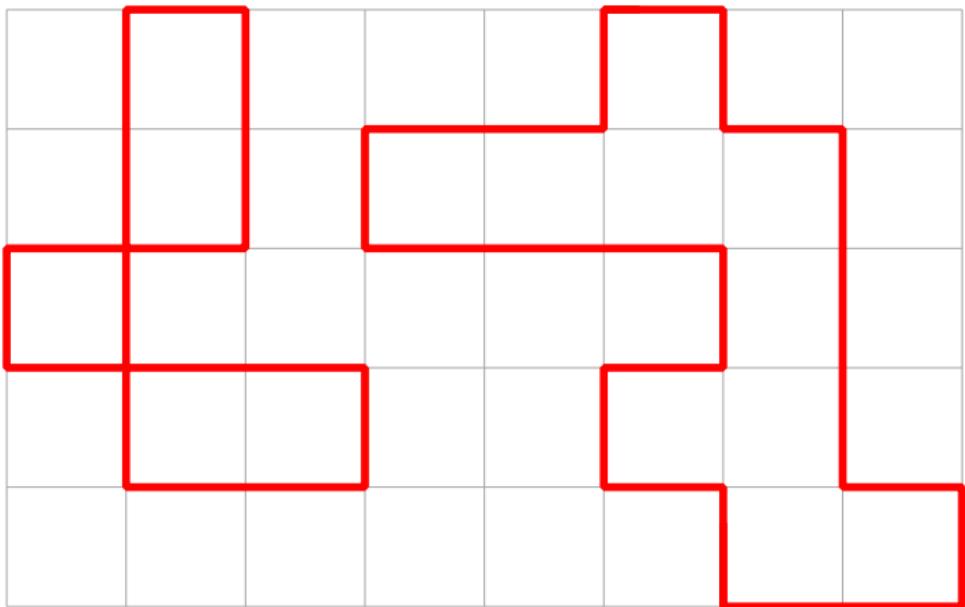
2. RELATIONS BETWEEN MODELS: ISING - DIMERS [FISHER'66]

- Low temperature expansion [Kramers-Wannier].



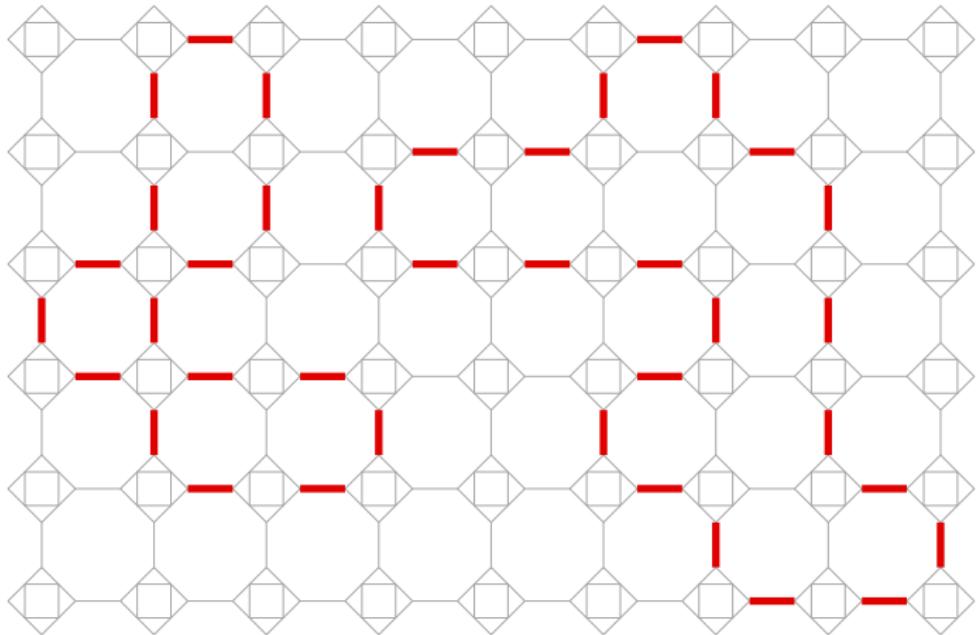
2. RELATIONS BETWEEN MODELS: ISING - DIMERS [FISHER'66]

- ▶ Polygon contour configurations on G^* .



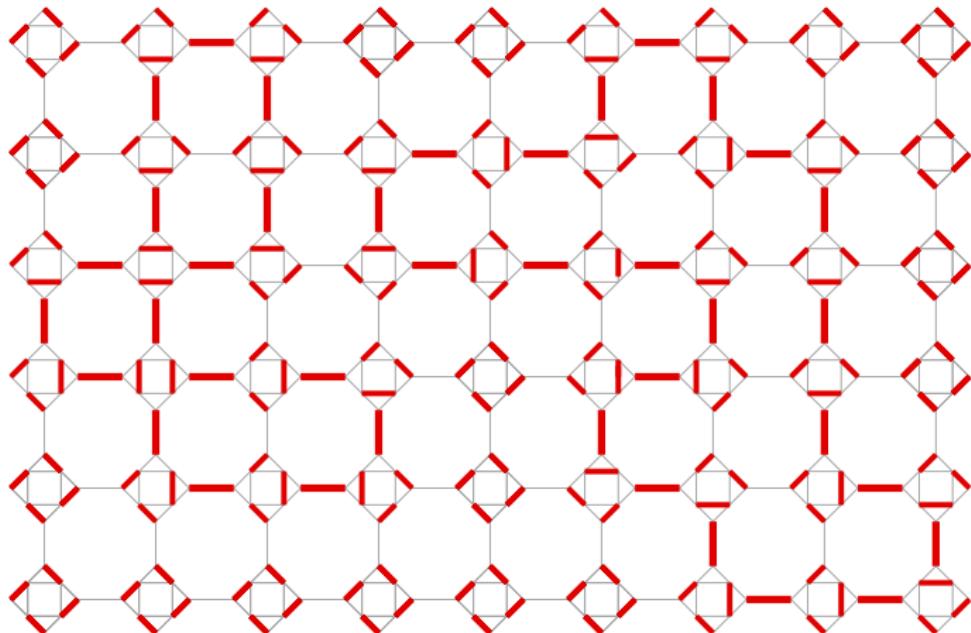
2. RELATIONS BETWEEN MODELS: ISING - DIMERS [FISHER'66]

- ▶ Fisher's correspondence: exactly keep the polygon contour edges.



2. RELATIONS BETWEEN MODELS: ISING - DIMERS [FISHER'66]

- ▶ Fill the decorations: $2^{|V^*|}$ possibilities.



EXACTLY SOLVABLE MODELS

- One of the tools to study the macroscopic behavior is the **partition function**:

$$Z(G, w) = \sum_{C \in \mathcal{C}(G)} e^{-\mathcal{E}_w(C)},$$

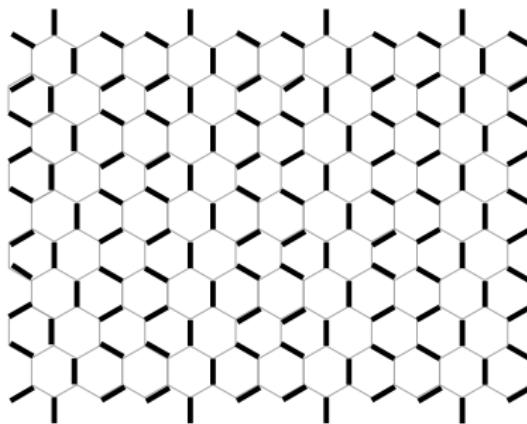
the normalizing constant in the Boltzmann measure.

$$\forall C \in \mathcal{C}(G), \quad \mathbb{P}(C) = \frac{e^{-\mathcal{E}_w(C)}}{Z(G, w)}.$$

- The model is **exactly solvable** if there exists an exact, explicit formula for the partition function
- Three exactly solvable models:
 - Ising-2d: Onsager (1944) - Fisher (1966).
 - Dimers-2d: Kasteleyn, Temperley-Fisher (1961).
 - Spanning trees: Kirchhoff (1848).

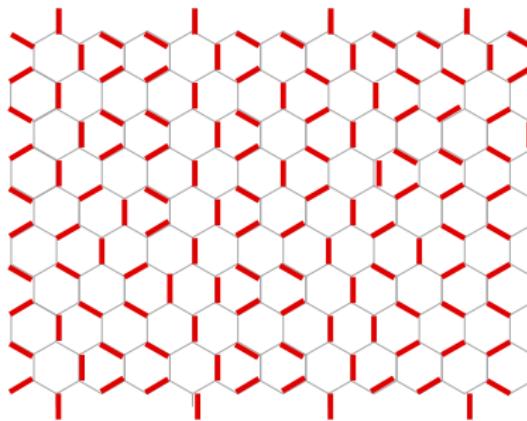
PRELIMINARIES

- ▶ Let M_1, M_2 be two dimer configurations of G , and $M_1 \cup M_2$ be their superposition.



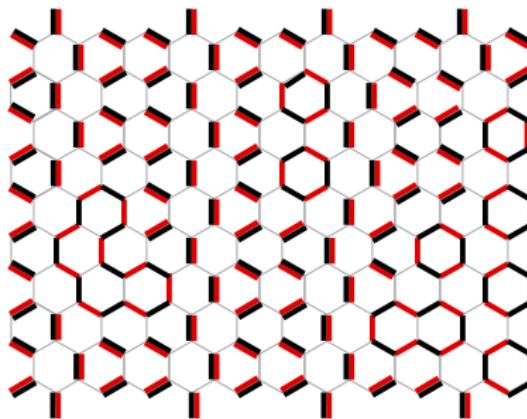
PRELIMINARIES

- Let M_1, M_2 be two dimer configurations of G , and $M_1 \cup M_2$ be their superposition.



PRELIMINARIES

- Let M_1, M_2 be two dimer configurations of G , and $M_1 \cup M_2$ be their superposition.



PRELIMINARIES

- Let M_1, M_2 be two dimer configurations of G , and $M_1 \cup M_2$ be their superposition.

- $M_1 \cup M_2$ is a disjoint union of alternating cycles, where an alternating cycles has edges alternating between M_1 and M_2 . Alternating cycles of length 2 are called doubled edges.