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CHAPTER 1

INTRODUCTION

1.1 STATISTICAL MECHANICS AND 2-DIMENSIONAL MODELS

Statistical mechanics is the application of probability theory, which includes mathematical tools
for dealing with large populations, to the field of mechanics, which is concerned with the motion
of particles or objects when subjected to a force. Statistical mechanics provides a framework for
relating the microscopic properties of individual atoms and molecules to the macroscopic bulk
properties of materials that can be observed in everyday life (source: ‘Wikipedia’).

In other words, statistical mechanics aims at studying large scale properties of physics system,
based on probabilistic models describing microscopic interactions between components of the
system. Statistical mechanics is also known as statistical physics.

It is a priori natural to introduce 3-dimensional graphs in order to accurately model the molecular
structure of a material as for example a piece of iron, a porous material or water. Since the
3-dimensional version of many models turns out to be hardly tractable, much effort has been
put into the study of their 2-dimensional counterpart. The latter have been shown to exhibit
rich, complex and fascinating behaviors. Here are a few examples.

e Percolation. This model describes the flow of a liquid through a porous material. The
system considered is a square grid representing the molecular structure of the material.
Each bond of the grid is either “open” with probability p, or “closed” with probability 1—p,
and bonds are assumed to behave independently from each other. The set of open bonds
in a given configuration represents the part of the material wetted by the liquid, and the
main issue addressed is the existence and properties of infinite clusters of open edges. The
behavior of the system depends on the parameter p: when p = 0, all edges are closed,
there is no infinite cluster and the liquid cannot flow through the material, when p = 1, all
edges are open and there is a unique infinite cluster filling the whole grid. One can show
that there is a specific value of the parameter p, known as critical p, equal to 1/2 for the
square grid, below which the probability of having an infinite cluster of open edges is 0, and
above which the probability of it existing and being unique is 1. One says that the system
undergoes a phase transition at p = 1/2. References [Kes82, Gri99, BR06, W07, Wer(9]
are books or lecture notes giving an overview of percolation theory.

e The Ising model. The system considered is a magnet made of particles restricted to stay on
a grid. Each particle has a spin which points either “up” or “down” (spin +1). Each config-
uration o of spins on the whole grid has an energy (o), which is the sum of an interaction
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Figure 1.1: An infinite cluster of open edges, when p = 5. Courtesy of V. Beffara.

N[

energy between pairs of neighboring spins, and of an interaction energy of spins with an
external magnetic field. The probability of a configuration ¢ is proportional to efﬁg(”),
where k is the Boltzmann constant, and 7" is the external temperature. When there is no
magnetic field and the temperature is close to 0, spins tend to align with their neighbors
and a typical configuration consists of all +1 or all —1. When the temperature is very
high, all configurations have the same probability of occurring and a typical configuration
consists of a mixture of +1 and —1. Again, there is a critical temperature T, at which the
Ising model undergoes a phase transition between the ordered and disordered phase. The
literature on the Ising model is huge, as an introductory reading we would suggest the
book by Baxter [Bax89], the one by McCoy and Wu [MW73], the lecture notes by Velenik
[Vel] and references therein.

Figure 1.2: An Ising configuration, when % =0.9. Courtesy of V. Beffara.

These two examples illustrate some of the principal challenges of 2-dimensional statistical me-
chanics, which are:

e Find the critical parameters of the models.

e Understand the behavior of the model in the sub-critical and super-critical regimes.



e Understand the behavior of the system at criticality. Critical systems exhibit surprising fea-
tures, and are believed to be universal in the scaling limit, i.e. independent of the specific
features of the lattice on which the model is defined. Very precise predictions were estab-
lished by physicists in the last 30-50 years, in particular by Nienhuis, Cardy, Duplantier
and many others. On the mathematics side, a huge step forward was the introduction
of the Schramm-Loewner evolution by Schramm in [Sch00], a process conjectured to de-
scribe the limiting behavior of well chosen observables of critical models. Many of these
conjectures were solved in the following years, in particular by Lawler, Schramm, Werner
[LSW04| and Smirnov [Smil0], Chelkak-Smirnov [CS12|. The importance of these results
was acknowledged with the two Fields medals awarded to Werner (2006) and Smirnov
(2010). Interesting collaborations between the physics and mathematics communities are
emerging, with for example the work of Duplantier and Sheffield [DS11].

The general framework for statistical mechanics is the following. Consider an object G (most
often a graph) representing the physical system, and define all possible configurations of the
system. To every configuration o, assign an energy £(o), then the probability of occurrence of
the configuration o is given by the Boltzmann measure pu:

e—E(0)
(o) = 76

Note that the energy is often multiplied by a parameter representing the inverse external tem-
perature. The denominator Z(G) is the normalizing constant, known as the partition function:

2(6)= Y e ),

When the system is infinite, the above definition does not hold, but we do not want to enter
into these considerations here.

The partition function is one of the key objects of statistical mechanics. Indeed it encodes much
of the macroscopic behavior of the system. Hence, its computation is the first question one
addresses when studying such a model. It turns out that there are very few models where this
computation can be done exactly. Having a closed form for the partition function opens the
way to finding many exact results, and to having a very deep understanding of the macroscopic
behavior of the system.

Two famous examples are the 2-dimensional Ising model, where the computation of the partition
function is due to Onsager [Ons44], and the dimer model where it is due to Kasteleyn [Kas61,
Kas67|, and independently to Temperley and Fisher [TF61|. The dimer model is the main topic
of these lectures and is defined in the next section.

1.2 THE DIMER MODEL

The dimer model was introduced in the physics and chemists communities to represent the
adsorption of di-atomic molecules on the surface of a crystal. It is part of a larger family of
models describing the adsorption of molecules of different sizes on a lattice. It was first mentioned
in a paper by Fowler and Rushbrooke [FR37] in 1937. As mentioned in the previous section, the
first major breakthrough in the study of the dimer model is the computation of the partition
function by Kasteleyn [Kas61, Kas67] and independently by Temperley and Fisher [TF61].

It is interesting to observe that for a long time, the physics and mathematics communities were
unaware of their respective advances. Mathematicians studied related questions as for example
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the enumeration of non-intersecting lattice paths by Mac Mahon [Mac01], the understanding of
geometric and combinatorial properties of tilings of regions of the plane by dominoes or rhombi.
To the best of our knowledge, the latter problem was first introduced in a paper by David
and Tomei [DT89]. A major breakthrough was achieved in the paper [Thu90] Thurston, where
the author interprets rhombus tilings as 2-dimensional interfaces in a 3-dimensional space. An
example of rhombus tiling is given in Figure 1.3.
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Figure 1.3: Rhombus tiling. Courtesy of R. Kenyon.

In the late 90’s and early 00’s, a lot of progresses were made in understanding the model, see the
papers of Kenyon [Ken97, Ken00], Cohn-Kenyon-Propp [CKP01|, Kuperberg [Kup98|, Kenyon-
Propp-Wilson [KPW00]. In 2006 Kenyon-Okounkov-Sheffield [KOS06], followed by Kenyon-
Okounkov [KO06, KO07| wrote breakthrough papers, which give a full understanding of the
model on infinite, periodic, bipartite graphs. Such deep understanding of phenomena is a real
treasure in statistical mechanics.

My goal for these lectures is to present the results of Kasteleyn, Temperley and Fisher, of
Thurston, and of the paper of Kenyon, Okounkov and Sheffield. As you will see, the dimer
model has ramifications to many fields of mathematics: probability, geometry, combinatorics,
analysis, algebraic geometry. I will try to be as thorough as possible, but of course some results
addressing the field of algebraic geometry reach the limit of my knowledge, so that I will only



state them. In other cases, I will try and give ideas of proofs at least.

Inspiration for these notes comes in large parts from the lectures given by R. Kenyon on the
subject [Ken04, Ken|. The main other references are [Kas67, Thu90, KOS06, KO06].
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CHAPTER 2

DEFINITIONS AND FOUNDING RESULTS

2.1 DIMER MODEL AND TILING MODEL

In this section, we define the dimer model and the equivalent tiling model, using the terminology
of statistical mechanics. The system considered is a graph G = (V, E) satisfying the following:
it is planar, simple (no loops and no multiple edges), finite or infinite.

Configurations of the system are perfect matchings of the graph G. A perfect matching is a subset
of edges which covers each vertex exactly once. In the physics literature, perfect matchings are
also referred to as dimer configurations, a dimer being a di-atomic molecule represented by an
edge of the perfect matching. Let us denote by M(G) the set of all dimer configurations of the
graph G.

Figure 2.1 gives an example of a dimer configuration when the graph G is a finite subgraph of
the honeycomb lattice H.

Figure 2.1: Dimer configuration of a subgraph of the honeycomb lattice.

In order to define the equivalent tiling model, we consider a planar embedding of the graph G,
and suppose that it is simply connected, i.e. that it is the one-skeleton of a simply connected
union of faces. From now on, when we speak of a planar graph G, we actually mean a graph
with a particular planar embedding.

The tiling model is defined on the dual graph G* of G. An embedding of the dual graph G* is
obtained by assigning a vertex to every face of G and joining two vertices of G* by an edge if
and only if the corresponding faces of G are adjacent. The dual graph will also be thought of as
an embedded graph. When the graph is finite, we take a slightly different definition of the dual:
we take G to be the dual of G* and remove the vertex corresponding to the outer face, as well
as edges connected to it, see Figure 2.2.

A tile of G* is a polygon consisting of two adjacent inner faces of G* glued together. A tiling
of G* is a covering of the graph G* with tiles, such that there are no holes and no overlaps.
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Figure 2.2 gives an example of a tiling of a finite subgraph of the triangular lattice T, the dual
graph of the honeycomb lattice. Tiles of the triangular lattice are 60°-rhombi, and are also
known as lozenges or calissons.

Figure 2.2: Dual graph of a finite subgraph of the honeycomb lattice (left). Tiling of this
subgraph (right).

Another classical example is the tiling model on the graph Z2, the dual of the graph Z2. Tiles
are made of two adjacent squares, and are known as dominoes.

Dimer configurations of the graph G are in bijection with tilings of the graph G* through the
following correspondence, see also Figure 2.3: dimer edges of perfect matchings connect pairs of
adjacent faces forming tiles of the tiling. It is an easy exercise to prove that this indeed defines
a bijection.

1/ 1\
\| /L
N7

Figure 2.3: Bijection between dimer configurations of the graph G and tilings of the graph G*.

2.2 ENERGY OF CONFIGURATIONS AND BOLTZMANN MEASURE

We let G be a planar, simple graph. In this section, and for the remainder of Chapter 2, we take
G to be finite. Suppose that edges are assigned a positive weight function v, that is every edge
e of G has weight v(e).

The energy of a dimer configuration M of G, is E(M) = — >, logr(e). The weight v(M) of
a dimer configuration M of G, is exponential of minus its energy:
v(M) = e £ = T v(e).
ecM

Note that by the correspondence between dimer configurations and tilings, the function v can
be seen as weighting tiles of G*, v(M) is then the weight of the tiling corresponding to M.

12



Weights of configurations allow to introduce randomness in the model: the Boltzmann measure
 is a probability measure on the set of dimer configurations M(G), defined by:

e €D y(M)

VM EMG), pM) == S,

The term Z(G) is the normalizing constant known as the partition function. It is the weighted
sum of dimer configurations, that is,

MeM(G)

When v = 1, the partition function counts the number of dimer configurations of the graph G,
or equivalently the number of tilings of the graph G*, and the Boltzmann measure is simply the
uniform measure on the set of dimer configurations.

When analyzing a model of statistical mechanics, the first question addressed is that of comput-
ing the free energy, which is minus the exponential growth rate of the partition function, as the
size of the graph increases. The most natural way of attaining this goal, if the model permits,
is to obtain an explicit expression for the partition function. Recall that the dimer model is one
of the rare 2-dimensional models where a closed formula can be obtained. This is the topic of
the next section.

2.3 EXPLICIT COMPUTATIONS

The explicit computation of the partition function is due to Kasteleyn [Kas61, Kas67| and
independently to Temperley and Fisher [TF61]. A proof of this result is provided in Section 2.3.1,
in the case where the underlying graph G is bipartite. This is one of the founding results of the
dimer model, paving the way to obtaining other explicit expressions as for example Kenyon’s
closed formula for the Boltzmann measure [Ken97], see Section 2.3.2. In Section 2.3.3, we provide
an example of computation of the partition function and of the Boltzmann measure.

2.3.1 PARTITION FUNCTION FORMULA

We restrict ourselves to the case where the graph G is bipartite, the proof in the non-bipartite
case is similar in spirit although a little more involved. The simplification in the bipartite case
is due to Percus [Per69].

A graph G = (V, E) is bipartite if the set of vertices V can be split into two subsets WU B, where
W denotes white vertices, B black ones, and vertices in W are only adjacent to vertices in B.
We suppose that |W| = |B| = n, for otherwise there are no perfect matchings of the graph G;
indeed a dimer edge always covers a black and a white vertex.

Label the white vertices wy, ..., w, and the black ones by, ..., b,, and suppose that edges of G are
oriented. The choice of orientation will be specified later in the proof. Then the corresponding
oriented, weighted, adjacency matriz is the n X n matrix K whose lines are indexed by white
vertices, whose columns are indexed by black ones, and whose entry K(w;,b;) is:

V(Wibj) if W; ~ bj, and w; — bj
K(WZ’, b]) = —l/(Wib]’) if w; ~ b]', and w; < b]'
0 if the vertices w; and b; are not adjacent.
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By definition, the determinant of the matrix K is:

det(K) = Z Sgn(J)K(Wl, bo(l)) s K(Wn, bo(n))a
o€Sn

where &, is the set of permutations of n elements. Let us first observe that each non-zero
term in the expansion of det(K’) corresponds to the weight of a dimer configuration, up to sign.
Thus, the determinant of K seems to be the appropriate object for computing the partition
function, the only problem being that not all terms may be counted with the same sign. Note
that reversing the orientation of an edge w;b; changes the sign of K (w;,b;). The remainder of
the proof consists in choosing an orientation of the edges of G allowing to compensate signature
of permutations, so that all terms in the expansion of the determinant of K indeed have the
same sign.

Let M; and Ms be two perfect matchings of G drawn one on top of the other. Define an
alternating cycle to be a cycle of G whose edges alternate between edges of My and M. Then,
an alternating cycle has even length, and if the length is equal to 2, the cycle is a doubled edge,
that is an edge covered by both M; and Ms. The superimposition of M; and Ms is a union of
disjoint alternating cycles, see Figure 2.4. This is because, by definition of a perfect matching,
each vertex is adjacent to exactly one edge of the matching, so that in the superimposition of
two matchings M; and M, each vertex is adjacent to exactly one edge of M; and one edge of
Mo.

[e——Y P}

Figure 2.4: Superimposition of two dimer configurations M; and My of a subgraph G of the
honeycomb lattice H.

One can transform the matching M; into the matching Ma, by replacing edges of M; by those
of Ms in all alternating cycles of length > 4 of the superimposition. Thus, arguing by induction,
it suffices to show that the sign of the contributions of M; and Mj to det(kK) is the same when
My and Ms differ along a single alternating cycle of length > 4. Let us assume that this is the
case, denote the unique cycle by C' and by w;,,b;,,...,w;,,bj, its vertices in clockwise order,
see Figure 2.5.

Let o (resp. 7) be the permutation corresponding to My (resp. Ms). Then by the correspondence
between enumeration of matchings and terms in the expansion of the determinant, we have:

Jr=o(i1) = 7(i2), jo = o(iz) = 7(i3), ..., jx = o(ix) = 7(i1).
If we let ¢ be the permutation cycle ¢ = (i ...71), then we deduce:
7(i¢) = o(ig—1) = o o c(ie). (2.1)
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Figure 2.5: Labeling of the vertices of an example of superimposition cycle of M; and Ms.

In order to check that the contributions of M; and Mj to det(K') have the same sign, it suffices
to check that the sign of the ratio of the contributions is positive. The sign of this ratio, denoted
by Sign(M;/Ma), is:

Sgn(o’) K(Wi17 bU(Zl)) e K(Wzk’ bo'(lk))>
Sgl’l(T) K(Wi17 bT(z1)) R K(Wlk7 bT(lk)) ’

which is the same as the sign of the product of the numerator and the denominator. Now,

SlgD(Ml/Mg) = Slgn <

(01) : =sgn(o)sgn(7) =sgn(oco7) =sgn(ocoooc) by Equation (2.1)
_ (_1)k+1.

(02) F= Sign( [K(Wiu bo(il)) s K(Wikv bo(ik))] [K(Wiu br(h)) s K(Wikv bT(ik))])
= Slgn ([K(W“, bjl) e K(Wzk, bjk)][K(Wip b]k) e K(Wzk, bjk—l)])
= Slgn (K(Wip bjl)K(Wily b]k) e K(Wik, bjk)K(Wik, bjk—l))

Let p be the parity of the number of edges of the cycle C oriented clockwise. The cycle C' is
said to be clockwise odd if p =1, clockwise even if p = 0. Let us show that Sign(M; /M) = +1
if and only if p = 1. To this purpose, we first relate (¢2) and (—1)P.

Partition We := {w;,,...,w;, } as W& U W, where W¢, consists of white vertices with 0 or 2
incoming edges (equivalently 2 or 0 outgoing edges), and W¢, consists of white vertices with one
incoming and one outgoing edge, then |Wg&| 4+ |Wg| = k. If a white vertex belongs to W, it
contributes 1 to (¢2) and 1 to p; if a white vertex belongs to W¢,, it contributes —1 to (¢2) and
0 to p. We thus have:

(02) = (-1l .
= (02) = (—1)F(=1)P.
{ e e = ()= (DD
As a consequence Sign(M;/Ms) = (01)(02) = (—1)2kT1(=1)P, so that Sign(M;/M>) is positive
if and only if p =1, 4.e. if and only if the cycle C' is clockwise odd.

Following Kasteleyn [Kas67|, an orientation of the edges of G such that all cycles obtained as
superimposition of dimer configurations are clockwise odd, is called admissible. Define a contour
cycle to be a cycle bounding an inner face of the graph G. Kasteleyn proves that if the orientation
is such that all contour cycles are clockwise odd, then the orientation is admissible. The proof is
by induction on the number of faces included in the cycle, refer to the paper [Kas67] for details.
An orientation of the edges of G such that all contour cycles are clockwise odd is constructed in
the following way, see for example [CR07]. Consider a spanning tree of the dual graph G*, with a
vertex corresponding to the outer face, taken to be the root of the tree. Choose any orientation
for edges of G not crossed by the spanning tree. Then, start from a leaf of the tree, and orient
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the dual of the edge connecting the leaf to the tree in such a way that the contour cycle of the
corresponding face is clockwise odd. Remove the leaf and the edge from the tree. Iterate until
only the root remains. Since the tree is spanning, all faces are reached by the algorithm, and by
construction all corresponding contour cycles are clockwise odd.

A Kasteleyn-Percus matriz, or simply Kasteleyn matriz, denoted by K, associated to the graph
G is the oriented, weighted adjacency matrix corresponding to an admissible orientation. We
have thus proved the following:

Theorem 1. [Kas67| Let G be a finite, planar bipartite graph with an admissible orientation of
its edges, let v be a positive weight function on the edges, and K be the corresponding Kasteleyn
matriz. Then, the partition function of the graph G is:

Z(G) = | det(K)].

When the graph G is not bipartite, lines and columns of the adjacency matrix are indexed by
all vertices of G (vertices cannot be naturally split into two subsets). By choosing an admissible
orientation of the edges, the partition function can be expressed as the square root of the
determinant of the corresponding Kasteleyn matrix or, since this matrix is skew-symmetric, as
the Pfaffian of this same matrix. For more details, refer to [Kas67].

2.3.2 BOLTZMANN MEASURE FORMULA

When the graph G is bipartite, Kenyon [Ken97] gives an explicit expression for the local statistics
of the Boltzmann measure. Let K be a Kasteleyn matrix associated to G, and let {ey =
wibg,...,er = wgbg} be a subset of edges of G.

Theorem 2. [Ken97| The probability p(e1,...,ex) of edges {e1,...,ex} occurring in a dimer
configuration of G chosen with respect to the Boltzmann measure p is:

k
-1
M(el,...,ek) = ‘ (r{K(WZ,bl)> 1§(%3t§kK (bi,Wj) . (22)
1=
Proof. The weighted sum of dimer configurations containing the edges {ei,...,ex} is (up to

sign) the sum of all terms containing K (wq,by)... K (wg,bg) in the expansion of det(K). By
expanding this determinant along lines (or columns), it is easy to see by induction that this is
equal to:

)

k
(H K (w;, bl-)) det(Kp)
=1

where Kg is the matrix obtained from K by removing the lines corresponding to wy, ..., wy and
the columns corresponding to by,...,bg. Now by Jacobi’s identity, see for example [HJ90]:

det(Kg) = det(K) det ((K_l)E*) ,

where E* is the set of edges not in E. Otherwise stated, (K~ 1)g« is the k x k matrix obtained
from K ! by keeping the lines corresponding to by, ...,b; and the columns corresponding to
Wi, ..., Wg. ThllS,

‘(H?:l K(Wi,bi)> det(KE)‘ k .
:U’(el,...,ek): |det(K)| = ‘(Z]‘_IK(WZ’bZ)> det ((K I)E*) .
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Remark 3. Edges form a determinantal point process with respect to the counting measure,
that is a point process such that the joint probabilities are of the form

pler, ... e) = det(M(ei, j)1<i <),
for some kernel M. In the case of bipartite dimers, M (e;, e;) = K (w;, b;) K ~1(b;,w;), see [Sos07]
for an overview.

2.3.3 EXPLICIT EXAMPLE

Figure 2.6 gives an example of a planar, bipartite graph whose edges are assigned positive weights
and an admissible orientation.

Figure 2.6: A planar, bipartite graph with a positive weight function and an admissible orien-
tation.

The corresponding Kasteleyn matrix is:

(EoRES RN SIS
S
S
(=

and the determinant is equal to
det(K) = 2a3b + 2b%a.

Setting a = b = 1 yields that the number of perfect matchings of this graph is 4. In this case,
the Boltzmann measure is the uniform measure on tilings of this graph.

The inverse Kasteleyn matrix K ! is:

2 11 1
1 2 -3 1 1

,1__
K_4 -2 11 1
-2 1 1 -3

Using the labeling of the vertices of Figure 2.6 and Theorem 2, we compute the probability of
occurrence of some subset of edges:

_ 1
f(wiby) = |K (b1, wy)| = 3

_ 1
pi(wsby) = |[K (b1, w3)| = 1

- K=Y(by,wi) K Y(by,ws) 1 2 1 1
p(wiby, wsbyg) = det( K-l(bgwy) K-'(bsws) )|~ 16 det I e
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You can try and compute other probabilities. In this simple case, it is actually easier to explicitly
find all possible configurations (4 of them), and compute the probabilities. However, the goal of
this example is to show how to use the general formulae.

2.4 GEOMETRIC INTERPRETATION OF LOZENGE TILINGS

By means of the height function, Thurston interprets lozenge tilings of the triangular lattice
as discrete surfaces in a rotated version of Z3 projected onto the plane. He gives a similar
interpretation of domino tilings of the square lattice. This approach can be generalized to dimer
configurations of bipartite graphs using flows. This yields an interpretation of the dimer model
on a bipartite graph as a random interface model in dimensions 2 4+ 1, and offers more insight
into the model. In this section we exhibit Thurston’s construction of the height function on
lozenge tilings. We postpone the definition of the height function on general bipartite graphs
until Section 3.1.

Faces of the triangular lattice T can be colored in black and white, so that black faces (resp.
white ones) are only adjacent to white ones (resp. black ones). This is a consequence of the fact
that its dual graph, the honeycomb lattice, is bipartite. Orient the black faces counterclockwise,
and the white ones clockwise, see Figure 2.7 (left). Consider a finite subgraph X of T which
is tileable by lozenges, and a lozenge tiling 7" of X. Then the height function A’ is an integer
valued function on vertices of X, defined inductively as follows:

e Fix a vertex vg of X, and set h' (vg) = 0.

e For every boundary edge uv of a lozenge, h'(v) — h'(u) = +1 if the edge uv is oriented
from u to v, implying that h?(v) — AT (u) = —1 when the edge uv is oriented from v to u.

The height function is well defined, in the sense that the height change around any oriented
cycle is 0. An example of computation of the height function is given in Figure 2.7 (right).

0
1 1
2
o 2 o 3
1 1 1 4
2 2 2
0 3 3 3
1 1 4 4
2 2 5 2
0 3 3 3
1 4 4 1
2 2 2
3 3

Figure 2.7: Orientation of faces of the triangular lattice (left). Height function corresponding to
a lozenge tiling (right).
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As a consequence, lozenge tilings are interpreted as stepped surfaces in 73 projected onto the
plane, where Z3 is Z3 rotated so that diagonals of the cubes are orthogonal to the plane. The
height function is then simply the “height” of the surface (i.e. third coordinate). This construc-
tion gives a mathematical sense to the intuitive feeling of cubes sticking in or out, which strikes
us when watching a picture of lozenge tilings.

Height functions characterize lozenge tilings as stated by the following lemma.

Lemma 4. Let X be a finite simply connected subgraph of the triangular lattice T, which is
tileable by lozenges. Let h be an integer valued function on the vertices of X, satisfying:

e h(vg) =0, where vq is a fized vertex of X.

e h(v) — h(u) =1 for any boundary edge uv of X oriented from u to v.

e h(v) — h(u) =1 or —2 for any interior edge uv of X oriented from u to v.
Then, there is a bijection between functions h satisfying these two conditions, and tilings of X.

Proof. Let T be a lozenge tiling of X and let uv be an edge of X, oriented from u to v. Then,
the edge uv is either a boundary edge or a diagonal of a lozenge. By definition of the height
function, the height change is 1 in the first case, and —2 in the second.

Conversely, let i be an integer function as in the lemma. Let us construct a tiling 7" whose height
function is h. Consider a black face of X, then there is exactly one edge uv on the boundary of
this face whose height change is —2. To this face, we associate the lozenge which is crossed by
the edge uv. Repeating this procedure for all black faces yields a tiling of X. O

Thurston [Thu90] uses height functions in order to determine whether a subgraph of the trian-
gular lattice can be tiled by lozenges. Refer to the paper for details.
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CHAPTER 3

DIMER MODEL ON INFINITE PERIODIC BIPARTITE GRAPHS

This chapter is devoted to the paper “Dimers and amoebas” [KOS06] by Kenyon, Okounkov and
Sheffield.

Recall that edges of dimer configurations represent di-atomic molecules. Since we are interested
in the macroscopic behavior of the system, our goal is to study the model on very large graphs. It
turns out that it is easier to extract information for the model defined on infinite graphs, rather
than very large ones. Indeed, on very large but finite graphs, Kasteleyn’s computation can be
done, but involves computing the determinant of huge matrices, which is of course very hard in
general, and won’t tell us much about the system. Computing explicitly the local statistics of
the Boltzmann measure becomes hardly tractable since it requires inverting very large matrices.
This motivates the following road map.

e Assume that the graph G = (V,E) is simple, planar, infinite, bipartite, and Z2-periodic.
This means that G is embedded in the plane so that translations act by color-preserving
isomorphism of G, i.e. isomorphisms which map black vertices to black ones and white
vertices to white ones. For later purposes, we consider the underlying lattice Z2 to be
a subgraph of the dual graph G*, and fix a basis {e,, e, }, allowing to record copies of a
vertex v of G as {v+ (k,1) : (k,1) € Z?}. Refer to Figure 3.1 for an example when G is the
square-octagon graph.

Figure 3.1: A piece of the square-octagon graph. The underlying lattice Z? is in light grey, the
two black vectors represent a choice of basis {e,,ey}.
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e Let G, = (V,,, E,) be the quotient of G by the action of nZ?. Then the sequence of graphs
{G, }n>1 is an exhaustion of the infinite graph G by toroidal graphs. The graph G; = G/Z>
is called the fundamental domain, see Figure 3.2. Assume that edges of G; are assigned a
positive weight function v thus defining a periodic weight function on the edges of G.

Figure 3.2: Fundamental domain G; of the square-octagon graph, opposite sides in light grey
are identified. Edges are assigned weight 1.

e The goal of this chapter is to understand the dimer model on G, using the exhaustion
{Gy}n>1, by taking limits as n — oo of appropriate quantities.

Note that it is crucial to take an exhaustion of G by toroidal graphs. Indeed, the latter are
invariant by translations in two directions, a key fact which allows computations to go through
using Fourier techniques. Note also that taking an exhaustion by planar graphs a priori leads
to different results because of the influence of the boundary which cannot be neglected.

Although it might not seem so clear at this stage, the fact that G and {G,, },,>1 are assumed to be
bipartite is also crucial for the results of this chapter, because it allows to relate the dimer model
to well behaved algebraic curves. Having a general theory of the dimer model on non-bipartite
graphs is one of the important open questions of the field.

3.1 HEIGHT FUNCTION

In this section, we describe the construction of the height function on dimer configurations of the
infinite graph G and of the toroidal graphs G,,, n > 1. Since we are working on the dimer model
and not on the tiling model, as in Thurston’s construction, the height function is a function on
faces of G or equivalently, a function on vertices of the dual graph G*.

The definition of the height function relies on flows. Denote by E the set of directed edges of the
graph G, i.e. every edge of E yields two oriented edges of E. A flow w is a real valued function
defined on E, that is every directed edge (u,v) of E is assigned a flow w(u,v).

The divergence of a flow w, denoted by divw, is a real valued function defined on V giving the
difference between total outflow and total inflow at vertices:

VueV, divw(u)= Zw(u,v) - Zw(v, u).

v~u v~u

Since G is bipartite, we split vertices V into white and black ones: V = W U B. Then, every
dimer configuration M of G defines a white-to-black unit flow w? as follows. The flow w™ takes
value 0 on all directed edges arising from edges of E which do not belong to M, and

Ywbe M, wM(w,b)=1, w(b,w)=0.
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Since every vertex of the graph G is incident to exactly one edge of the perfect matching M, the
flow wM has divergence 1 at every white vertex, and -1 at every black one, that is:

Ywe W, divwM(w) = ZwM(W, b) — ZwM(b,w) =1,

b~w b~w
Vb eB, divw(b) = > w"(b,w) = Y w"(w,b) = —1.
w~b w~b

Let My be a fixed periodic reference perfect matching of G, and w™° be the corresponding
flow, called the reference flow. Then, for any other matching M with flow w?, the difference

wM — WMo is a divergence-free flow, that is:

Ywe W, div(wM — wMo)(w) = Z(wM(w, b) — w™Mo(w, b)) — Z(wM(b,w) — wMo(b,w))
b~w b~w

= divwM(w) — divw(w) =1-1=0,
and similarly for black vertices.

We are now ready to define the height function. Let M be a dimer configuration of G, then the
height function h™ is an integer valued function on faces of G defined as follows.

e Fix a face fy of G, and set hM (fy) = 0.

e For any other face fi, consider an edge-path + of the dual graph G*, from fy to f;. Let
(u1,v1),..., (ug,vi) denote edges of G crossing the path -, where for every 4, u; is on the
left of the path v and v; on the right. Then hM (f;) — KM (fy) is the total fluz of W™ — wMo
across 7, that is:

k

WM (F) = B (F0) =D 1w (i, vi) — @™ (viy u5)) = (@M (ug,vi) — 0™ (vi, ).
=1

The height function is well defined if it is independent of the choice of ~, or equivalently if the
height change around every face f* of the dual graph G* is 0. Let u be the vertex of the graph G
corresponding to the face f*, and let vq,..., v be its neighbors. Then, by definition, the height
change around the face f*, in counterclockwise order, is:

k
S wM () — M (v, ) — (@0, v5) — w0 (v, )] = div(w™ — w0 (u) = 0.
i=1
The height function is thus well defined as a consequence of the fact that the flow w™ — wMo is
divergence free, up to the choice of a base face fy and of a reference matching My. An analog of

Lemma 4 gives a bijection between height functions and dimer configurations of G.

Remark 5.

e There is actually an easy way of computing the height function. Recall from Section 2.3
that the superimposition of two dimer configurations M and M consists of doubled edges
and alternating cycles of length > 4 (cycles may extend to infinity when G is infinite). Let
us denote by M — M the oriented superimposition of M and My, with edges of M oriented
from white vertices to black ones, and those of M, from black vertices to white ones, then
M — My consists of doubled edges oriented in both directions and oriented alternating
cycles of length > 4, see for example Figure 3.3. Returning to the definition of the height
function, one notices that the height changes by +1 exactly when crossing a cycle, and the
sign only depends on the orientation of the cycle.
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e By taking a different choice of reference flow, one can recover Thurston’s height function
in the case of lozenge and domino tilings, up to a global multiplicative factor of % in the
first case, and i in the second - the interested reader can try and work out this relation
explicitly.

Let us now consider the toroidal graph G, = G/nZ?. In this case, the height function is not
well defined since there might be some period, or height change, along cycles in the dual graph
winding around the torus horizontally or vertically, see Figure 3.3. More precisely, a perfect
matching M of G,, can be lifted to a perfect matching of the infinite graph G, also denoted M.

Then, the perfect matching M of G, is said to have height change (R, hé\/[) if:

WM (f + (n,0)) = KM (f) + nM
WM (f +(0,n)) = KM (f) + R}

Note that height change is well defined, i.e. does not depend on the choice of face f, because

M

the flow w™ — wMo is divergence-free.

Figure 3.3 gives an example of the reference perfect matching My induced by a periodic reference
matching of G, and of the height change computation of a dimer configuration M of the toroidal
graph Gg of the square-octagon graph. The perfect matching M has height change (0,1).

0 0 0 0 0
O=<i=@ C==0
-1 0 -1
E %, @ E
== o==0 ——M,
0 0 0 0 0
— |\/]

Figure 3.3: A perfect matching M of the toroidal graph G, having height change (0, 1).

Remark 6. Let T2 = {(z,w) € C?: |z| = |w| = 1} denote the two-dimensional unit torus, and
let H1(T?,7Z) = Z? be the first homology group of T? in Z. The graph G, being embedded in
T2, we take as representative of a basis of Hi(T?,Z) the vectors ne, and ne, embedded on the
torus, where recall {e;,e,} were our choice of basis vector for Z?, see Figure 3.1. In the case of
the square-octagon graph and Gy of Figure 3.3, the first basis vector is the light grey horizontal
cycle oriented from left to right, and the second is the light grey vertical cycle oriented from
bottom to top. Then, the homology class of the oriented superimposition M — Mj in this basis
is (1,0), and the height change is (0,1). More generally, if the homology class of M — My is
(a,b), then the height change (h}, hé\/[) is (—b,a). This is because, as mentioned in Remark 5,
the height function changes by +1 exactly when it crosses oriented cycles of M — M, implying
that the height change (R} ,hﬁ” ) can be identified through the intersection pairing with the
homology class of the oriented configuration M — M in Hy(T?,7Z).
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3.2 PARTITION FUNCTION, CHARACTERISTIC POLYNOMIAL, FREE ENERGY

Let us recall the setting: G is a simple, planar, infinite, bipartite Z2-periodic graph, and {G, },>1
is the corresponding toroidal exhaustion. Edges of G are assigned a periodic, positive weight
function v, and {e;, e,} denotes a choice of basis of the underlying lattice Z2.

In this section we present the computation of the partition function for dimer configurations of
the toroidal graph G,,, and the computation of the free energy, which is minus the exponential
growth rate of the partition function of the exhaustion G,. More precisely, Section 3.2.1 is
devoted to Kasteleyn theory on the torus. Then, in Section 3.2.2 we define the characteristic
polynomial, one of the key objects underlying the dimer model on bipartite graphs, yielding a
compact closed formula for the partition function, see Corollary 10. With this expression at
hand, one then derives the explicit formula for the free energy, see Theorem 11.

3.2.1 KASTELEYN MATRIX

In Section 2.3, we proved that the partition function of a finite, simply connected planar graph
is given by the determinant of a Kasteleyn matrix. When the graph is embedded on the torus,
a single determinant is not enough, what is needed is a linear combination of determinants
determined in the following way.

Consider the fundamental domain G; and let Ky be a Kasteleyn matrix of this graph, that is
K is the oriented, weighted, adjacency matrix of Gy for a choice of admissible orientation of
the edges. Note that admissible orientations also exist for graphs embedded in the torus. Let us
now look at the signs of the weighted matchings in the expansion of det(K;). Consider a fixed
reference matching My of G, and let M be any other matching of G;. Then, by the results of
[Kas67, DZMT96, GL99, Tes00, CROT7], the sign of the matching M only depends on the parity
of the vertical and horizontal height change. Moreover, of the four possible parity classes, three
have the same sign in det(K7) and one has opposite sign. By an appropriate choice of admissible
orientation, one can make the (0,0) class have positive sign.

Let 7., 7y be the basis vector e., e, of the underlying lattice 72, embedded on the torus. Since
we have chosen Z? to be a subgraph of the dual graph G*, 7,, 7y are oriented cycles of the dual
graph G7, see Figure 3.4. We refer to v, as a horizontal cycle, and to v, as a vertical one.

%

Y%

Figure 3.4: Fundamental domain G of the square octagon graph with the oriented paths 7,7,
in the dual graph G}. The two copies of 7,, respectively v,, are glued together.

For o, 7 € {0,1}, let KlaT be the Kasteleyn matrix in which the weights of the edges crossing
the horizontal cycle v, are multiplied by (—1)?, and those crossing the vertical cycle Yy are
multiplied by (—1)". Observing that changing the signs along a horizontal dual cycle has the
effect of negating the weight of matchings with odd horizontal height change, and similarly for
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vertical; the following table indicates the sign of the matchings in the expansion of det(K?Y7), as
a function of the horizontal and vertical height change mod 2.

\ [(0,00](1,0)][(0,1) ] (1,1)]

[=

detEO + [ = [ = [ =
det(K{%) || + + — + (3.1)
det(KYY) || + - + +
det(K{Y) || + + + -
From Table 3.1, we deduce
1
2(G1) = 5 (= det(K{°) + det(K1°) + det(K{") + det(Ki1)) . (3.2)

A similar argument holds for the toroidal graph G,, n > 1. The orientation of edges of Gy
defines a periodic orientation of edges of G, and thus an orientation of edges of G,. Let v, ,,
Yy,n be the oriented cycles in the dual graph Gj,, obtained by taking n times the basis vector e,
n times the basis vector e, respectively, embedded on the torus. For o,7 € {0,1}, let K77 be
the matrix K, in which the weights of edges crossing the horizontal cycle ~; , are multiplied by
(—1)?, and those crossing the vertical cycle 7, ,, are multiplied by (—1)7. Then,

Theorem 7. [Kas67, DZM 196, GL99, Tes00, CR07, CROS§]

Z(G,) = % (— det(K°) + det(K,\°) + det(Kp') + det(K,1))

3.2.2 CHARACTERISTIC POLYNOMIAL

Let K be a Kasteleyn matrix of the fundamental domain G;. Given complex numbers z and
w, an altered Kasteleyn matrix K;(z,w) is constructed as follows. Let v, 7, be the oriented
horizontal and vertical cycles of G}. Then, multiply edge-weights of edges crossing v, by z
whenever the white vertex is on the left, and by 2~ whenever the black vertex is on the left.
Similarly, multiply edge-weights of edges crossing the vertical path 7, by w*!, see Figure 3.5.

The characteristic polynomial P(z,w) of the graph Gy is defined as the determinant of the
altered Kasteleyn matrix:
P(z,w) = det(K;(z,w)).

As we will see, the characteristic polynomial contains most of the information on the macroscopic
behavior of the dimer model on the graph G.

The next very useful lemma expresses the characteristic polynomial using height changes of
dimer configurations of G;. Refer to Section 3.1 for definitions and notations concerning height
changes. Let My be a reference dimer configuration of G1, and suppose the admissible orientation
of the edges is chosen such that perfect matchings having (0,0) mod (2,2) height change have +
sign in the expansion of det(K;). We consider the altered Kasteleyn matrix K (z, w) constructed
from K. Let w0 be the reference flow corresponding to the reference dimer configuration Mj,
and let z( denote the total flux of w™o across v, similarly 1 is the total flux of w0 across Vy-
Then, we have:

Lemma 8. [KOS06]

P(z,w) = 270w 3 p(M)h why (<) R (3.3)
MeM(Gy)
where, for every dimer configuration M of M(Gy), (RM, hé\/[) is the height change of M.
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Proof. Let M be a perfect matching of G;. Then, by the choice of Kasteleyn orientation, the
sign of the term corresponding to M in the expansion of det(K1(z,w)) is: + if (h¥, hé\/[) = (0,0)
mod (2,2), and — else. This can be summarized as:

(_1)h£4h£4+h§c”+hﬁ4'

Let us denote by v, ., the weight function on edges of G; obtained from G; by multiplying
edge-weights of edges crossing v, by z*!, and those crossing vy by w*! as above. Then,

Ve (M) = (M) 8 D=2 (Mg (M) =i (M),

where nY®(M) is the number of edges of M crossing 7, which have a white vertex on the left
of vz, and nPY(M) is the number of edges of M crossing 7, which have a black vertex on the

left of .. The definition of n‘l’/"b(M ), ng"" (M) is similar with ~, replaced by ~,.

Returning to the definition of the height change for dimer configurations of the toroidal graph

G,,, we have:
B = (M) — nB¥(M) — n(Mo) + n™ (M),

so that:
n"P (M) — nPv(M) = BM 4+ n"P(Mpy) — n2Y(My) = B + x,

T T

since by definition zq is the total flux of w™° across 7,. Computing hé\/[ in a similar way yields
the lemma. O

Example 3.1. Let us compute the characteristic polynomial of the fundamental domain Gy of
the square-octagon graph, with weights one on the edges. Figure 3.5 (left) describes the labeling
of the vertices, and weights of the altered Kasteleyn matrix. The orientation of the edges is
admissible and is such that perfect matchings having (0,0) height change with respect to the
reference matching My given on the right, have a + sign in the expansion of det(K7).

¥y ¥
Wi bs
b1 1 1 W2
W M
l — 0
G w
T
bs w3
1/Z z Y, Y,

Figure 3.5: Left: labeling of the vertices of G, edge-weights of the altered Kasteleyn matrix,
choice of admissible Kasteleyn orientation. Right: choice of reference perfect matching Mj.

The altered Kasteleyn matrix Kj(z,w) is:

1ol 1
-1 1 0 —w
Kl(z?w) - — 1 1 0 )
o1 1 1
and the characteristic polynomial is:
1 1
P(z,w) =det(Ki(z,w)) =5 —2—— —w— —. (3.4)

z w
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Let us compute the right hand side of Equation (3.3) explicitly. With our choice of reference
matching My of Figure 3.5 (right), the total flux of w™° through 7, and =, is (0,0), so that
z%0w¥ = 1. Since all edges have weight 1, v(M) = 1. Figure 3.6 describes the 9 perfect
matchings of Gy, with their respective height change. As a consequence, the contribution of the
perfect matchings of Gy to the right hand side of (3.3) is 1 for each of the 5 first ones, —w,
respectively, —%, -z, —% for the last four ones. Combining the different contributions yields,
as expected, the characteristic polynomial as computed in Equation (3.4).

or

0 0 0 1 1 1
0 0 0 0 + 3 symmetries with height change
(0,-1), (1,0) and (-1,0)
0 0 0 0 0 0
4 matchings with height change (0,0) matching with height change (0,0) matching with height change (0,1)

Figure 3.6: 9 possible dimer configurations of G; with their height change.

In the specific case when (z,w) € {—1,1}? in K1(2,w), on recovers the four matrices (Kf7)9776{071}.
Using Equation (3.2), we recover that the number of dimer configurations of G; is:

Z(Gy) == (-P(1,1)+ P(-1,1)+ P(1,-1)+ P(—-1,-1)) = 9. (3.5)

DO | —

Characteristic polynomials of larger graphs may be computed recursively as follows. Let K, be
a Kasteleyn matrix of the graph G,, as above, and let v, ,, and +, , be the horizontal and vertical
cycles of G!. For z,w € C, the altered Kasteleyn matrix K, (z,w) is constructed similarly to
Ki(z,w), and the characteristic polynomial of G, is P, (z,w) = det(K,(z,w)).

Theorem 9. [CKP01, KOS06| For every n > 1, and every (z,w) € C2, the characteristic
polynomial P,(z,w) of G, is:

Pn(z,w) = H H P(ai,ﬂj).

at=z ﬁ;’:w

Proof. The proof is a generalization of [CKP01| where the same result is obtained for the graph
G = Z2. We only give the argument when z = w = 1. The proof for general z,w’s follows the
same steps. Note that K, (1,1) = K% = K,,, so that our goal is to show that, for every n > 1:

det(Kn) = [ ] det(Ki(ai. 8)))-

ap=1pr=1
Let W,,, respectively B,,, denote the set of white, respectively black, vertices of G,. The idea is

to use the translation invariance of the graph G, and of the matrix K, to block diagonalize K,,
and to compute its determinant by computing the determinant of the different blocks.
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Let CW» be the set of complex-valued functions on white vertices W,,, and CB» those on black
vertices B,,. Then the matrix K, can be interpreted as a linear operator from CB» to CWr: let
f € CB», then

(an)(w) = Z Kn(w’ b)f(b)

beB,,

Let TB» (resp. TyB") be the horizontal (resp. vertical) translation operator acting on CB»:

¥b € By, (I7"f)(b) = f(b+(1,0), (T;"f)(b) = f(b+(0,1)),

and consider TB» = TyB" o Tf”. The operator TB» being an isometry, it yields an orthonormal

decomposition of CB» consisting of eigenvectors of TB. The eigenvalues of T8 are the products

i27‘rj

: 2nj 2mk
of n-th roots of unity: (a;8);kefo,..n-1}, Where aj = e’ »", B = €' » (as a consequence of

the fact that (TB)" = Id). Let us denote by Vf;%k the eigenspace of the eigenvalue «;fy:
VB — {f € CB : Vb € B, f(b+ (1,1)) = a;B.f(b)}. Then Vf;%k can be rewritten as

a; B

VOZ%k ={feCBr:VbeBy,V(r,y) €{0,....,n — 1}, f(b+ (z,y)) = f(b)aZ B}, where recall
that G; = (W; UBy, E;) is the fundamental domain. For every b € By, define eg{jﬁk € CB» by:

1
Vb € By, V(z,y) € {0,...,n — 1} egjﬁk(b’ + (z,y)) = Eab,b,a;@ﬁg.

M dimensional,

Then, Ey, 5, = {eg]ﬂk : b € By} is a basis of VOZ%k’ the eigenspace VaEi'an is
and E = U{ajﬁk:j,ke{o,___,n_l}}Eajgk is an orthonormal basis of CB». In a similar way, one obtains

an orthonormal decomposition of CW» using TWn» = TWr o T, Z\,N " acting on CWr,

Let us show that K, represented in this basis is block diagonal, with a block of size L for

each of the n? eigenvalues a;f3. For all w € Wy, (z,y) € {0,...,n — 1}2, one has:

V(G1)
2

(Kne,p) (W (z,9) = Y > Kn(w + (2,9),b" + (', y')ed, 5, (0" + (' + /)
b’€B1 (a/,y')€{0,...,n—1}2

1 / / ..
= Z Ky,(w+ (z,y),b+ (x/’yl))ﬁa;: By, by definition of egjﬁk
(x’,y’)G{O,...,nfl}Q
= EKl(%, Br)w,b 5 By, by translation invariance of K,

= Z K (o, Br)w b e‘&v;ﬁk (w+ (x,y)), by definition of e"a";ﬁk.
w/ eWy

As a consequence, (Knegj Bk) € V:;l B> and the matrix K, written in the basis E is block diagonal.

For all w € Wy, b € By, the (w, b)- coefficient of the block corresponding to the eigenvalue ;[
is given by:

b /
(egjﬁk)*K"eajﬁk = Z Ki(aj, Br)w b (evavjﬁk)* €a; 51
w/ eWq
= Ki(oy, Br)w,p, since the basis is orthonormal,

thus proving Theorem 9 in the case where z = w = 1. U
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3.2.3 FREE ENERGY

As a corollary to Theorems 7 and 9, we have an explicit expression for the partition function of
G,, as a function of the characteristic polynomial P.

Corollary 10. When the Kasteleyn orientation is chosen such that the sign table of the funda-
mental domain is given by Table 3.1, then for every n > 1,

( ZOO Z7110 + Zgl + Zrlll) ’

The partition function is growing with the size of the graph. A natural question to ask now is :
“what is this growth rate ?” In order to formulate the question correctly, we need to know about
the order of magnitude of this growth. Intuition tells us that it is going to be exponential in the
area of the graph: Z(G,) ~ ¢”. Thus the right quantity to look at is:

nhngo ? log Z(Gy,).

Minus this quantity is known as the free energy.

Theorem 11. [CKP01, KOS06] Under the assumption that P(z,w) has only a finite number of

zeros on the unit torus T? = {(z,w) € C%: |z| = |w| = 1}, we have:
1 dz dw

Proof. Since ZY counts some dimer configurations of G, with the wrong sign, we have the
following bound:
70 < Z(G,).

Moreover, looking at Table 3.1, we deduce:
—Zy <2 + Iy + 2y
and thus by Theorem 7,

max {297} < Z(G,) < Z°0+ 2% + 7} <3 max {777}
0,7¢{0,1} 0,7¢{0,1}

So that lim,,—seo n—12 log Z(G,,) = limy, 00 # log (maXQJE{O,l}{ZgT}), provided that these limits
exist. By Theorem 9, we have:

2n 1n—1

(2 ZZlogP i 5. (3.6)

§=0 k=0

1 00
) log Z,;” =

The other terms - log Z% can be written in a similar way. These four terms look like Riemann
sums for the 1ntegra1.

1 2 2w o 1 dz dw
= log P(e? ™l dr = ——— | log P ki
(27‘(‘)2/0 /0 0og (6 € ) T (27”)2/ og (Z,U)) > w
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We may nevertheless have a convergence problem. Indeed, terms of the sum (3.6) with arguments
too close to the zeros of P(z,w) may explode. By using the very careful argument of Theorem
7.3. of [CKPO01|, one can check that this will not happen, and so the Riemann sum of the
maximum converges to the integral I.

The proof is concluded by observing that since P(e™®, ™) = P(et, eiT),

1 27 21 ) )
I— W/o /0 log |P(, ¢i7)[d dr.

O

Example. The free energy of the dimer model on the square-octagon graph with uniform

weights is:
1
el
(2mi)? Jpo

Note that it is in general hard to explicitly compute this integral.

3.3 (GIBBS MEASURES

We are now interested in characterizing probability measures on the set of perfect matchings
M(G) of the infinite graph G which are, in some appropriate sense, infinite volume versions of the
Boltzmann measure on M(G,,). Recall that by definition, the probability of a matching chosen
with respect to the Boltzmann measure on M(G,,) is proportional to the product of its edge
weights. This definition does not work when the graph is infinite, and is replaced by the notion
of Gibbs measure, which is a probability measure on M(G) satisfying the DLR ! conditions:
if the perfect matching in an annular region of G is fixed, matchings inside and outside of the
annulus are independent, and the probability of any interior matching is proportional to the
product of its edge-weights.

3.3.1 LiMmiT OF BOLTZMANN MEASURES

A natural way of constructing a Gibbs measure is to take the limit of the Boltzmann measures
on cylinder sets of M(G,,), where a cylinder set consists of all perfect matchings containing a
fixed subset of edges of G,,.

Theorem 2 gives an explicit expression for the Boltzmann measure on cylinder sets when the
graph is planar and finite. In the case of toroidal graphs, a similar but more complicated
expression holds: it is a combination of fours terms similar to those of Equation (2.2), involving
the matrices Kgo, . ,K}LI, and their inverses.

Using the block diagonalization of the matrices K" of the proof of Theorem 9, one can compute
the elements of the inverse explicitly and obtain Riemann sums. The convergence of these
Riemann sums is again complicated by the zeros of P(z,w) on the torus T2, but can be shown
to converge on a subsequence of n’s to the right hand side of Equation (3.7). Using a Theorem of
Sheffield [She05] which shows a priori existence of the limit, one deduces convergence for every
n. Then, by Kolmogorov’s extension theorem, there exists a unique probability measure on
(M(G),0(A)) which coincides with the limit of the Boltzmann measures on cylinder sets, where
o(A) is the smallest sigma-field containing cylinder sets. This limiting measure is of Gibbs type
by construction. We have thus sketched the proof of the following theorem.

'DLR stands for Dobrushin, Lanford and Ruelle
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Theorem 12. [CKP01, KOS06| Let {e; = wiby,...,ex = wgby} be a subset of edges of G. Then
there exists a unique probability measure p on (M(G),o0(A)) such that:

k
,u(el, . ,ek) = (H K(Wi, bz)> det(K_l(bi,Wj)lgi,jSk), (37)
i=1

where K is a Kasteleyn matriz associated to the graph G, and assuming b and w are in a single
fundamental domain:

1 wa(%w)zmwyd_w%

-1 —
K (b,W+ (w,y)) - (27.‘.2‘)2 T2 P(z’w) w oz’

and Quw(z,w) is the (b,w) element of the adjugate matriz (transpose of the cofactor matriz) of
Ki(z,w). It is a polynomial in z,w,z" 1 w™

3.3.2 ERrcopIC GIBBS MEASURES

In the previous section, we have explicitly determined a Gibbs measure on M(G). We now aim
at characterizing all of them. In order to this in a way which is coherent with the model, we
introduce the following notions.

A probability measure on M(G) is translation-invariant, if the measure of a subset of M(G)
is invariant under the translation-isomorphism action. An ergodic Gibbs measure (EGM) is a
Gibbs measure which is translation invariant and ergodic, i.e. translation invariant sets have
measure 0 or 1.

For an ergodic Gibbs measure pu, define the slope (s,t) to be the expected horizontal and vertical
height change in the (1,0) and (0,1) directions, that is s = E,[h(v + (1,0)) — h(v)], and t =
Eu[h(v +(0,1)) = h(v)].

Let us denote by i, the Boltzmann measure on M(G,,). For a fixed (s,t) € R?, let M, +(Gy)
be the set of matchings of G, which have height change (|sn], [tn]). Assuming that M,+(G,)
is non-empty for n sufficiently large, let p,(s,t) denote the conditional measure induced by p,
on M;+(Gy). Then, a characterization of all ergodic Gibbs measures on M(G) is given by the
following theorem of Sheffield.

Theorem 13. [She05] For each (s,t) for which M (G,,) is non-empty for n sufficiently large,
tn(s,t) converges as n — oo to an EGM u(s,t) of slope (s,t). Furthermore u, itself converges
to u(so,to) where (so,to) is the limit of the slopes of p,. Finally, if (so,to) lies in the interior
of the set of (s,t) for which Ms(G,) is non-empty for n sufficiently large, then every EGM
of slope (s,t) is of the form p(s,t) for some (s,t) as above; that is p(s,t) is the unique ergodic
Gibbs measure of slope (s,t).

Proof. The existence is established by taking limits of Boltzmann measures on larger and larger
tori while restricting height change. The uniqueness is much harder, and we won’t discuss it
here. U

3.3.3 NEWTON POLYGON AND AVAILABLE SLOPES

Theorem 13 raises the following question: what is the set of possible slopes for Gibbs measures or
equivalently for limits of conditional Boltzmann measures 7 The answer is given by the Newton
polygon N(P) defined as follows: N(P) is the closed convex hull in R? of the set of integer
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exponents of the monomials of the characteristic polynomial P(z,w), up to contribution of the
reference flow w™o, that is:

N(P) = convex hull{(i,j) € Z?|z"F®0 7% is a monomial in P(z,w)}.

Proposition 14. [KOS06] The Newton polygon is the set of possible slopes of EGMs, that is
there exists an EGM (s, t) if and only if (s,t) € N(P).

Proof. Observing that changing the reference flow merely translates the Newton polygon, we
assume that (xg,yo) = (0,0).

Let us first prove that if (s,¢) € N(P), then there is a Gibbs measure of slope (s, ), or equiva-
lently M +(Gy,) is non-empty for n large enough. For convenience, we will assume that the set
of possible slopes is closed.

By Lemma 8, the absolute value of the coefficient z'w? in P(z,w) is the weighted sum of match-
ings of Gy with height change (i,7), thus there is a matching corresponding to each extremal
point of N(P), i.e. if (s,t) is an extremal point of N(P), then M (G;) # 0. It suffices to show
that if Mg, 4, (Gp,) and My, +,(Gp,) are non-empty for some n; and ng, then Ms;+sy ¢+, (Gpy)
is also non-empty for some m. Indeed, by induction, this allows to prove existenée c7)f ; Gibbs
measure of slope (s,t) for a dense subset of the Newton polygon. The proof is ended by using
the assumption that the set of possible slopes is closed.

Without loss of generality, we can assume that n; = ne, otherwise take the lem of their periods.
Consider two matchings of My, 4, (G;,) and M, +,(Gy,), respectively. The superimposition of the
two matchings being a set of disjoint alternating cycles, one can change from one matching to
the other by rotating along the cycles. If the height changes (|s1n], [tin]), (|s2n], [tan]) of the
two matchings are unequal, some of these cycles have non-zero homology in Hi(T?,Z), so that
rotating along them will change the height change. On the toroidal graph Gg,, consider four
copies of the two matchings and shift half of the non-trivial cycles; this creates a new matching
with height change (|[(s1 4 s2)n], [(t1 +t2)n]) = ([2F22 2n], |93 2n]), thus proving that
M@@(Gm) is non-empty for m = 2n.

Let us now suppose that there exists a Gibbs measure pu(s,t) of slope (s,t) and prove that
(s,t) € N(P). Denote by E; the set of directed edges of the fundamental domain G; = (Vq, E;).
Recalling that the divergence div is a linear function of flows, the set of non-negative, white-to-

black unit flows defines a polytope of RE1.
{weRE 1 Vwb € Ey, w(b,w) =0, 0 < w(w,b) < 1; Yw e Wy, divw(w) = 1, Vb € By, divw(b) = —1}.

The mapping ¢ which assigns to a flow w the total flux across v, and v, is a linear mapping
from the polytope to R?, implying that the image of the polytope under v is the convex hull of
the images of the extremal points of the polytope.

Now, from Section 3.1, we know that every dimer configuration of G; defines a non-negative,
white-to-black unit flow taking values in {0,1} on every directed edge of E;. The converse being
also true, this implies that extremal points of the polytope are given by dimer configurations.
Since the reference flow is such that (zg,yo) = (0,0), the image of a dimer configuration under
1 is its height change. This means that the image of extremal points of the polytope contains
the extremal points of the Newton polygon N(P); the image of the polytope under ¢ is thus
N(P).

The Gibbs measure (s, t) of slope (s,t) defines a non-negative, white-to-black flow w(5?):

Ve=wb e Ey, w"®)(w,b) = u(s, t)(e), w>)(b,w) = 0.
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Since p(s,t) is a probability measure, the flow wH(s:Y) has divergence 1 at every white vertex and
-1 at every black vertex. It thus belongs to the polytope and its image under ) belongs to N (P).
The proof is concluded by observing that the image of u(s,t) under 1 is the slope (s,t). O

Example 3.2. Figure 3.7 shows the Newton polygon of the dimer model on the square-octagon

graph with weights 1 on the edges. Marked points represent monomials of the characteristic

polynomial P(z,w) =5—z—1 —w—1.

(=Y

Figure 3.7: Newton polygon of the dimer model on the square-octagon graph with uniform
weights.

3.3.4 SURFACE TENSION

For every (s,t) € N(P), let Zs+(Gy,) be the partition function of M, +(Gy,), that is:

Zs,t(Gn) = Z I/(M)

MEMs,t(Gn)

Then, by definition, the free energy of the measure p(s,t) is:

. 1
o(s,t) = —nILH;O = log Zs +(Gr,).
The function ¢ : N(P) — R is known as the surface tension. Sheffield [She05] proves that it is
strictly convex.

As a consequence of this definition and of Theorem 13, one deduces that the measure u(sg,to)
of Theorem 13 is the one which has minimal free energy. Moreover, since the surface tension is
strictly convex, the surface tension minimizing slope is unique and equal to (sg, o).

3.3.5 CONSTRUCTING GIBBS MEASURES

Theorem 12 of Section 3.3.1 proves an explicit expression for the Gibbs measure u(sg, o) of slope
(s0,t0). Our goal now is to obtain an explicit expression for the Gibbs measures p(s,t) with all
possible slopes (s,t).

Recall that by Theorem 13, the Gibbs measure p(s,t) is the limit of the conditional Boltzmann
measures fi,(s,t) on Mg(G,). The problem is that conditional measures are hard objects
to work with in order to obtain explicit expressions. But we know how to handle the full
Boltzmann measure, which converges to the Gibbs measure of slope (so,%tp). So the idea to
avoid handling conditional measures is to modify the weight function on the edges of G,, in such
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a way that matchings with another slope than (sg,%y) get favored. Hence, we are looking for a
weight function which satisfies the following: the new weight of a matching is equal to the old
weight multiplied by a quantity which depends only on its height change. This can be done by
introducing magnetic field coordinates as follows.

Recall that v, n, 7y,n are oriented horizontal and vertical cycles in the dual graph G;, obtained
by taking n times the basis vector e, of the underlying lattice Z2, n times the basis vector ey
respectively, embedded on the torus. Then, on G, there are n horizontal copies of the cycle v, ,
and n vertical copies of the cycle v,,. Let (B, By) be two real numbers known as magnetic
field coordinates. Multiply all edges crossing the n copies of the horizontal cycle 7, , by etBe
depending on whether the white vertex is on the left or on the right. In a similar way, edges
crossing the n copies of the vertical cycle v, ,, are multiplied by etBy. This defines a magnetic
altered weight function, denoted by v(p, p,) satistying our requirement. Indeed, let Mo be the
periodic reference matching of G,,, and denote by x{, y{ the total flux of wMo through Yee, s Yy
Then, arguing in a way similar to the proof of Lemma 8, one can express the magnetic altered
weight function v(p, p ) as the weight function v, multiplied by a quantity which only depends
on the height change:

VM € M(G), v, p,) (M) = v(M)e" P en By (), (38)

Let Pp,,B,) (z,w) be the characteristic polynomial of the graph G; corresponding to the magnetic
altered weight function. The key fact is that P(p, By)(z,w) can easily be expressed using the
characteristic polynomial P(z,w) of the graph Gi: expressing P, p,)(2,w) using Lemma 8 and
replacing v(p, p,)(M) by the right hand side of (3.8) in the case where n =1, yields:

Pip, B, (z,w) = P(e’ 2, ePruw).
Let Z(p,,B,)(Gn) be the partition function and ung’By) be the Boltzmann measure of the graph

Gy, with the magnetic altered weight function. Denote by g, p,) the Gibbs measure obtained

as weak limit of the Boltzmann measures M%B”’By). Then, as a direct corollary of Theorems 11

and 12, we have:

Corollary 15. [KOS06]
Under the assumption that P(eB+z, ePvw) has only a finite number of zeros on the unit torus T?:

. 1 1 dz dw
lim —log Z(p, ,)(Gn) = —-— /11‘2 log ‘P(eBzz,eBywﬂ ——.

n—oo N (27T’L) zZ w
Corollary 16. [KOS06]
Let {e; = wiby,...,ex = wgbg} be a subset of edges of G. Then there exists a unique probability
measure {1, B,y on (M(G),o(A)) such that:

i=1

k
I(By,By) (€1, -, k) = (H KB,,B,) (Wi, bi)) det(K(_Blz,By)(biaWj)lgi,jgk)7 (3.9)

where K(p, p,) 15 a Kasteleyn matriz associated to the graph G, and assuming b and w are in a
single fundamental domain:

1 Qpw (ePr 2, eBuw) Y —pdwdz

(273)2 Jp2 P(eBrz, ePvw) w oz’

K(_Blz,By)(b7W + (.%', y)) -
and Qpw(z,w) is the (b,w) element of the adjugate matriz of K1(z,w) of the original graph.
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So, it is quite remarkable that the results obtained for the weight function v also yield the results
for the magnetic altered weight function v(p_ p, ).

Note that we have not yet related the magnetic field coordinates to the slope of the Gibbs
measure fi(g, ,)- Lhis is postponed until Section 3.4.2.

3.4 PHASES OF THE MODEL

In this section, we describe one of the most beautiful results on the bipartite dimer model
obtained by Kenyon, Okounkov and Sheffield [KOS06], namely the full description of the phase
diagram of the dimer model. It involves magnetic field coordinates and an object from algebraic
geometry called “Harnack curves”.

A way to characterize phases is by the rate of decay of edge-edge correlations. In the dimer
model, this amounts to studying asymptotics of K(_le,By). Indeed, let e = wiby and ey = wobo
be two edges of G, which are thought of as being far away from each other. Let I. be the random
variable which is 1 if the edge e is present in a dimer configuration, and 0 else. Then, using the

explicit expression for the Gibbs measure g, g, yields:

Cov(le,, ley) = p(B,,B,)(e1,€2) — 1(B,,B,)(€1)1(B,,B,) (€2),
= K(B,,B,)(W1,b1)K(p, B,) (W2, b2)K(_leyBy)(b2,W1)K(_]31173y)(b1,W2)-

The asymptotic behavior of K(_Blz By)(b, w+(z,9)) (as 22 +y? gets large) depends on the zeros of

the denominator on the unit torus, 4.e. on the zeros of P(eBzz, ePrw) on the unit torus. Hence,
the goal is to study the set: {(z,w) € T? : P(ePz,ePrw) = 0}, or equivalently, the set:

{(z,w) € C* : |z| = P, Jw| = €Bv, P(z,w) = 0}.

This is the subject of the next section.

3.4.1 AMOEBAS, HARNACK CURVES AND RONKIN FUNCTION

The amoeba of a polynomial P € C[z,w]| in two complex variables, denoted by A(P), is defined
as the image of the curve P(z,w) = 0 in C? under the map:

(z,w) = (log 2|, log [w]).

When P is the characteristic polynomial of a dimer model, the curve P(z,w) = 0 is known as
the spectral curve of the dimer model. Note that a point (z,y) € R? is in the amoeba A(P), if
and only if |z| = €%, |w| = €Y, and P(z,w) = 0. Otherwise stated, a point (z,y) € R? is in the
amoeba if and only if the polynomial P(e”z, eYw) has at least one zero on the unit torus.

The theory of amoebas is a fresh and beautiful field of research. The paper “What is ... an
amoeba?” in the notices of the AMS, by Oleg Viro gives a very nice overview of the results
obtained over a period of 8 years by [FPT00, GKZ94, Mik00, MRO1]|. It provides a precise
geometric picture of the object, which heavily depends on the Newton polygon N(P) of Sec-
tion 3.3.3. Loosely stated, an amoeba satisfies the following, see also Figure 3.8.

e An amoeba reaches infinity by several tentacles. Each tentacle accommodates a ray and
narrows exponentially fast towards it, so that there is only one ray in each tentacle.
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e Each ray is orthogonal to a side of the Newton polygon N(P), and directed towards an
outward normal of the side.

e For each side of N(P), there is at least one tentacle associated to it. The maximal number
of tentacles corresponding to a side of N(P) is the number of pieces it is divided in by
integer lattice points.

e The amoeba’s complement R? \ A(P) consists of components between the tentacles, and
bounded components. Each bounded component corresponds to a different integer lattice
point of N(P), and the maximal number of bounded components is the total number of
interior integer lattice points of N(P).

e Each connected component of the amoeba’s complement R? \ A(P) is convex.

e Planar amoebas are not bounded, but

Area(A(P)) < mArea(N(P)).

ray

log|z|

Figure 3.8: Newton polygon (left) and amoeba (right, shaded) of the characteristic polynomial

P(z,w) =5—2z—1 —w— 1 of the uniform dimer model on the square-octagon graph.

One of the main tools used to study the amoeba of a polynomial P is the Ronkin function R of
this polynomial defined by:

1 dz dw
2 _ T
Vo) €RL Rle.y) = g [ el Pz )| T

zZ w

It has the following properties:

e The Ronkin function is convex

e [t is linear on each component of the amoeba complement, and the gradient is the corre-
sponding integer point of N(P).
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Complex curves P(z,w) = 0 whose amoeba area is maximal, i.e. equal to 72 Area(N (P)), are
called mazimal. Curves with this property are very special: they have real coefficients and
their amoeba has the maximal number of components. Such curves were already introduced by
Harnack in 1876, and are known as Harnack curves. There is an alternative characterization of
Harnack curves given in [MRO1], which is more useful here: a real curve P(z,w) = 0 is Harnack
if and only if the map from the curve to its amoeba is at most 2-to-1. It will be 2-to-1, with a
finite number of possible exceptions where it may be 1-to-1 (the boundary of the amoeba, and
when bounded components shrink to a point).

One of the most fruitful theorem of the paper [KOSO06]| is the following.

Theorem 17. [KOS06, KO06| The spectral curve of a dimer model is a Harnack curve. Con-
versely, every Harnack curve arises as the spectral curve of some periodic bipartite weighted
dimer model.

For the proof of this theorem, we refer to [KOS06, KOO06].

3.4.2 SURFACE TENSION REVISITED
In this section, we relate the magnetic field coordinates to the slope of the measure yp, B,)-

This is done by expressing the surface tension as a function of the Ronkin function.

Let us assume that the reference flow w™© of the fundamental domain G; flows by 0 through
the paths v, vy, i.e. g = yo = 0.

Theorem 18. [KOS06]| The surface tension is the Legendre transform of the Ronkin function
of the characteristic polynomial, i.e.

o(s,t) = max{—R(z,y) + sx + ty}.
x?y

Proof. (Sketch) Let us sketch the proof that the Ronkin function is the Legendre transform
of the surface tension. Since the surface tension is strictly convex [She05], then the Legendre
transform is involutive, and Theorem 18 is obtained.

By Corollary 15, we know that:
.1
R(By, By) = lim —log Z(p, 5,)(Gn).
Moreover, by definition:

Z(B,,B,)(Gn) = Z v(M)eBehaenBuhy - This sum can be decomposed as:
MEM(Gn)

Z(B,,8,)(Gn) = / > v(M)e"Peha e Bulu ds d
N(P) {MeM(Gp):ha=|ns|,hy=|nt]}

_ / / B B0 3 v(M) )ds dt

N(P) {MeM(Gn):he=|ns],hy=|nt]}

= // e’ (Bas+Byt)+0(n) o—n?o(s,)+0(n) g ¢ dt, by definition of o(s,t)
N(P)

_ // 2 (Bust Byt—o(s.)+o(1)) gg gt
N(P)
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An upper bound is obtained by writing:

// en2(B”8+Byt_0(S’t)+o(1))ds dt < e’n,2[maX{(s’t)eN(P)}(Bms-f—Byt—U(S,t))-f—O(l)] ’N(P)‘

N(P)
A lower bound is obtained by performing Taylor expansion of ¢(s,t) := Bys + Byt — o(s,t)
around its maximum and using the fact that the surface tension is strictly convex.

Taking # log yields that the Ronkin function is the Legendre transform of the surface tension:

R(Bg,By) = (s,tI)Ig}\?((P){BIS + Byt —o(s,t)}.

O

Corollary 19. The slope of the measure wp, g, is the gradient of the Ronkin function at the
point (B, By).

3.4.3 PHASES OF THE DIMER MODEL

In the introductory part of Section 3.4, we mentioned that a way to characterize phases of a
given model is to use the rate of decay of edge-edge correlations and that, in the case of the
dimer model, it required a characterization of the zeros of P(eP+z, ePvw) on the unit torus. This
information is now available and one can give a precise description of the phase diagram of the
dimer model.

Actually, Kenyon, Okounkov and Sheffield use height function fluctuations to define the different
phases, but show that this is equivalent to classifying phases using rate of decay of correlations.
Here are their definitions:

e An EGM pis called a frozen phase if there exists distinct faces f, f* of G for which h(f)—h(f")
is deterministic.

e An EGM yp is called a gaseous or smooth phase, if the height fluctuations have bounded
variance.

e An EGM yp is called a liquid or rough phase, if the p-variance of the height difference is
unbounded.

Now comes the theorem characterizing phases.

Theorem 20. [KOS06] The measure ju(p, p,) is:

o frozen when (B, By) is in the closure of an unbounded connected component of the amoeba’s
complement R? \ A(P),

e liquid when (By, By) is in the interior of the amoeba A(P),

o gaseous when (B, By) is in the closure of a bounded connected component of the amoeba’s
complement R? \ A(P).

Figure 3.9 represents the amoeba of the dimer model on the square-octagon graph with uniform
weights, and the corresponding phases of the model.

We only give a few ideas on the proof of this theorem.
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frozen

Figure 3.9: Phase diagram of the uniform dimer model on the square-octagon graph.

e Suppose that (B, By) is in the closure of an unbounded component of the amoeba’s
complement and recall (Corollary 19) that the slope of the measure y g, B,) is the gradient
of the Ronkin function at the point (B, By). The slope is thus an integer point on the
boundary of N(P). Using the max-flow min cut theorem used by Thurston [Thu90]| to
give a criterion of existence of dimer configurations, one deduces that: if the slope is a
non-extremal boundary point of N(P), then there is an edge-path in the dual graph G7,
whose direction is orthogonal to the side of the Newton polygon, and such that dual edges
crossing copies of this path appear with probability 1 or 0; if the slope is an extremal
point of N(P), there are two non-parallel edge-paths in the dual G}, whose directions are
orthogonal to the two side of the Newton polygon meeting at the extremal point, and such
that dual edges crossing copies of these paths appear with probability 1 or 0. Otherwise
stated, in the tiling representation of the dimer model, there are paths in the dual graph

] generating a lattice of G*, consisting of frozen paths for all tilings of G* chosen with
respect to the measure (g, p,)- Tilings in connected components of the complement of
this lattice are independent.

The height difference of faces f,f’ which belong to the lattice of frozen paths is constant,
i.e. h(f) — h(f') is deterministic and the measure y(p, p,) is in the frozen phase.

In the other two cases, the proof consists of explicit asymptotic expansions of
-1
K3k (0. + (2:)

w(eBx z,eByw)

which is the (x,y)-Fourier coefficient of Q]_?,(EBIZ By Seen as a function of (z,w) € T?.

e When (B,, By) is in the interior of the amoeba, then P(eB=2, ePvw) has 1 or 2 zeros on the
unit torus, and KOS show that the only contribution to the (x, y)-Fourier coefficient comes
from a neighborhood of the pole(s). They extract the exact asymptotics by doing Taylor
approximations and contour integration, and show that K (_Blb By)(b,w + (z,y)) decreases
linearly, implying that the edge covariances decreases quadratically. The authors then
prove that the height difference between two faces f,f’ grows universally like % times the

logarithm of the distance from f to f’. The measure M(B,,B,) 18 thus a liquid phase.

40



e When (B, By) belongs to the complement of the amoeba, then P(ePz,ePrw) has no
d wa(eBmzveByw)

P(eBez,eByw)
decrease exponentially fast. When, (B, By) is in an unbounded component, then using
the above specific argument of the frozen phase, the authors show that some Fourier
coefficients are 0. When (B, B,) is in a bounded component, then the Fourier coefficient
decreases exponentially fast, and the height fluctuations have bounded variance. The

measure /g, B,) 1S thus a gaseous phase.

zero on the unit torus, an is analytic, implying that its Fourier coefficients

3.5 FLUCTUATIONS OF THE HEIGHT FUNCTION

In this section we address the question of the fluctuations of the height function around its
mean. We restrict ourselves to the case of the uniform dimer model on the infinite honeycomb
lattice H, with no magnetic field. The goal is to prove that the limiting fluctuations of the height
function are described by a Gaussian free field of the plane, a behavior which is characteristic
of the liquid phase.

Results presented here, and extensions can be found in [Ken00, Ken01, Ken08, dT07].

3.5.1 TUNIFORM DIMER MODEL ON THE HONEYCOMB LATTICE

Let us specify the results obtained in the previous sections to the case where H is the honeycomb
lattice, edges are assigned weights 1, and there is no magnetic field. The choice of fundamental
domain is given in Figure 3.10.

Yy 1w

Z
Yx

Figure 3.10: Choice of fundamental domain of the honeycomb lattice

The characteristic polynomial is:
1
Pz,w) =142+ —.
w

The Gibbs measure ;1 obtained as weak limit of the Boltzmann measures y, on M(G,) (with
no magnetic field) has the following expression on cylinder sets:

,u(el, o ,ek) = det (K_l(bi, Wj)lgi,jgk) , (3.10)

where

1 1 dzd
K_l(boo,Wz y) — - / T Zyw—x_z_w’
’ ’ (2mi)? Jp2 14+ 2+ < z w

and w, , represents the white vertex of the (x,y) copy of the fundamental domain, and similarly
for by .
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When there is no magnetic field, theQCharchteristic polynomial has two conjugate simple zeros
on the unit torus T: (z9,wg) = (¢'3,€'3 ), and (Zg,Wo). The uniform dimer model on the

honeycomb lattice is thus in the liquid phase.

In Section 2.4, we defined Thurston’s height function on lozenge tilings of the triangular lattice
T, which was a function on vertices of T. Equivalently, it is a function on dimer configurations
of the honeycomb lattice H, defined on faces of H. For convenience, from now on, we consider
% of Thurston’s height function.

The following lemma gives an expression of the height function using indicator functions of
edges. We will use this in the proof of the convergence of the height function. Let u,v be two
faces of H, and let v be an edge-path in the dual graph from u to v. Denote by ey,..., e, the
dual edges of edges of v which have a black vertex on the left, and by fy, ..., f, those which have
a white vertex on the left. Then,

Lemma 21.
m

hv) — ) =Y <—]Iei 4 é) +§; <Hfj - é) .

i=1

Proof. Let e; be the dual edge of an edge u;v; of v, which has a black vertex on the left of
~. Then, returning to the orientation of the edges of the triangular lattice introduced in the
construction of Thurston’s height function, see Section 2.4, we know that the edge u;v; is oriented
from u; to v;. Thus by definition, we have:

h(vi) — hu;) = {% if the edge e; is not in the dimer configuration

—% if the edge e; is in the dimer configuration.

This can be summarized as: h(v;) — h(u;) = —Ie, + 1.

A similar argument holds for edges which have a white vertex on the left. Summing over all
edges in the path v yields the result. O

3.5.2 (GAUSSIAN FREE FIELD OF THE PLANE

We now define the Gaussian free field of the plane, which is, as we will see, the limiting object
of the height function.

The Green’s function of the plane, denoted by g satisfies Ayg(x,y) = 0,(y), where 0, is the
Dirac distribution at x. Up to an additive constant, g is given by

1
g(z,y) = —%log\x -yl

Let %(RQ) be the set of C* function of R? with compact support and zero mean, and define
the following continuous, bilinear form:

G: CRHERYH)xCHER?) — R
(¢1,92) = G, p2) =/R2 AQQ(w,y)wl(w)¢2(y)dwdy-

Introducing f;(z) = v2 [ 9(z,y)¢i(2z)dz, i € {1,2}, and using Green’s formula, one shows that:
1
Glorv) =5 [ V(@) Vi
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implying that the bilinear form G is positive definite. The quantity G(¢1,¢1) is known as the
Dirichlet energy of f1.

A random generalized function F assigns to every test function ¢ in 37%(]1%2), a real random
variable F'o. It is assumed to be linear and continuous, where continuity means that convergence
of the functions ¢,, (1 < j < k) to ¢;, implies convergence in law of the random vector
(F'onyy- .., Fop, ) to (Fer,...,Fer). A random generalized function is said to be Gaussian if for
every linearly independent functions ¢1,..., ¢k € g,%(RQ), the random vector (Fo1, ..., Fox)
is Gaussian.

Theorem 22. [Bocb5| If B : g,%(RQ) X %(RQ) — R is a bilinear, continuous, positive definite
form, then there exists a Gaussian random generalized function F, whose covariance function is
given by:

E[F o1 Fps] = B(gp1, ¢2)-

By definition a Gaussian free field of the plane GFF is a Gaussian random generalized function
whose covariance function is the bilinear form G defined above, i.e.

BIGFF(p1)GFF(ea)] = —5- | [ logle —slir (@)patu)dudy.

There are other ways of defining the Gaussian free field, see for example [GJ81] and [She07].

3.5.3 CONVERGENCE OF THE HEIGHT FUNCTION TO A (GAUSSIAN FREE FIELD

Let H® be the graph H whose edge-lengths have been multiplied by &, and consider the un-
normalized height function h on faces of H®. Define,

He: CRH(R?*) — R
p = Hip=c> Y pv)h(v).
veF (H#)

Theorem 23. The random generalized function H® converges weakly in law to ﬁ times a
Gaussian free field, i.e. for every p1,...,op € g%(RQ), (Hép1,...,Hpy) converges in law (as
e—0) to %(GFF@M ..., GFFyy), where GFF is a Gaussian free field.
Since the vector (GFF¢y,...,GFFpy) is Gaussian, to prove convergence of (H y1,..., H py)
to (GFF¢y,...,GFFyy), it suffices to prove convergence of the moments of (HS¢1,..., H pg)
to those of (GFFypy,...,GFFyy); that is we need to show that for every k-tuple of positive
integers (myq,...,mg), we have:

lin%)IE[(Hegpl)ml o (H¢r)™ | = E[(GFFp1)™ ... (GFFg )™ ]. (3.11)

E—r
We now state the key proposition used to prove convergence of the moments. Let uq,...ug,
V1,...,Vy be distinct points of R%, and let 7y ..., be pairwise disjoint paths such that 7 runs

from u; to v;. Let u5,v; be faces of H® lying within O(e) of u; and v, respectively. Then,

Proposition 24.
lm E{(A(vi) = A(u1)) .. (A(v) = h(uR))] =

0 when k 1s odd

k
1\ 5 .
<;> > 9(Uo(1): Vo(1)s Uo(2): Vo)) - - - 9(Ua(em1)s Vo(o—1)s Uo(h)s Vo)) when k is even
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where g(u,v,u’ V') = g(v,V') + g(u,u’) — g(v,u’) — g(u,V'), g is the Green’s function of the plane,
and the sum is over all (k — 1)!! pairings of {1,...,k}.

Proof. We prove this proposition in a particular case. The proof of the general case is similar,
although notationally much more cumbersome. Let us assume that k& = 2, and suppose that
ug, Vi, Uz, v are such that we can choose uf,v{,u5,v5 as in Figure 3.11. Let 7 and ~5 be the
paths joining uf,vi and uj, v respectively as in Figure 3.11.

Figure 3.11: Choice of uf, u5,v{,v5

Denote by e; = wiby,..., ey = wyby, the dual edges of the edges of the path ~f, and by
fi =wibl, ..., f, =w,b/ the dual edges of the edges of 5. Then, by Lemma 21,

n-n’

E [(h(v§) — h(uf))(h(v5) — h(u5))] = E i (—Hei * %) Z (Hff - é)

i=1 j=1
o 1 1 1
=3 > —len ) + zplen) + ulf;) — 5
— < 3 3 9
=1 j=1
m n 1 . 1
= Z <—M(e,~,fj) + §> , (since p(e) = 3 for every edge e),
i=1 j=1
== > K (b, W) K (b, wi), (since K (wj, b;) = K (w),bf) =1),
i=1 j=1

Using asymptotic formulae for K~'(b;,w}), K~'(b},w;) (see either [KOS06] or [Ken02]), one

obtains:

1 e2dz'dz; e2dzdz;
_Kil(bi’wg')Kil(b;'aWi) = - ( . -

= + cross terms + o(),
(2m)? (Z; — 2)? (Z; — Z_Z')2> 0

where 2} and 2; are points approximating w}, b’ and w;, b;, respectively. One can show that the
sum over the paths ~§, 75 of the cross terms is O(e), so that summing over all edges in the paths
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yields:

lim 5 [((v5) ~ M) ((5) — b)) = —2Fe [ [ i

b (v —ve)(ur —uy)
272 (vi —uz)(up —va)

1
— _g(Ulth UQ,VQ).
W

O

Once Proposition 24 is available, one then introduces test functions and prove convergence of
all moments of (3.11). This implies handling moments of height differences involving vertices
which are close. The asymptotic formula for the inverse Kasteleyn matrix does not hold in this
case, and one has to do careful bounds to see that everything still works.

Skokokosk skosk sk sk sk sk skoskoskoskoskokokoskokoskoskoskoskoskoskosk skkokkokok

We have reached the end of these lecture notes covering the foundations of the dimer model
and the paper “Dimers and amoeba” of Kenyon, Okounkov and Sheffield [KOS06], giving a full
description of the phase diagram of the dimer model on periodic, bipartite graphs. Although
these are spectacular results, there are others, such as the specific behavior of the dimer model
defined on isoradial graphs [Ken02, KOO06], the understanding of limit shapes [CKP01, KOO07],
the application of dimer techniques to study the Ising model [BAT10b, BdT10a]. We do hope
that these notes will encourage the reader to learn more on this very rich model of statistical
mechanics.
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