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Chapter 1

Introdution

1.1 Statistial mehanis and 2-dimensional models

Statistial mehanis is the appliation of probability theory, whih inludes mathematial tools

for dealing with large populations, to the �eld of mehanis, whih is onerned with the motion

of partiles or objets when subjeted to a fore. Statistial mehanis provides a framework for

relating the mirosopi properties of individual atoms and moleules to the marosopi bulk

properties of materials that an be observed in everyday life (soure: `Wikipedia').

In other words, statistial mehanis aims at studying large sale properties of physis system,

based on probabilisti models desribing mirosopi interations between omponents of the

system. Statistial mehanis is also known as statistial physis.

It is a priori natural to introdue 3-dimensional graphs in order to aurately model the moleular

struture of a material as for example a piee of iron, a porous material or water. Sine the

3-dimensional version of many models turns out to be hardly tratable, muh e�ort has been

put into the study of their 2-dimensional ounterpart. The latter have been shown to exhibit

rih, omplex and fasinating behaviors. Here are a few examples.

• Perolation. This model desribes the �ow of a liquid through a porous material. The

system onsidered is a square grid representing the moleular struture of the material.

Eah bond of the grid is either �open� with probability p, or �losed� with probability 1−p,
and bonds are assumed to behave independently from eah other. The set of open bonds

in a given on�guration represents the part of the material wetted by the liquid, and the

main issue addressed is the existene and properties of in�nite lusters of open edges. The

behavior of the system depends on the parameter p: when p = 0, all edges are losed,

there is no in�nite luster and the liquid annot �ow through the material; when p = 1, all
edges are open and there is a unique in�nite luster �lling the whole grid. One an show

that there is a spei� value of the parameter p, known as ritial p, equal to 1/2 for the

square grid, below whih the probability of having an in�nite luster of open edges is 0, and

above whih the probability of it existing and being unique is 1. One says that the system
undergoes a phase transition at p = 1/2. Referenes [Kes82, Gri99, BR06, W+

07, Wer09℄

are books or leture notes giving an overview of perolation theory.

• The Ising model. The system onsidered is a magnet made of partiles restrited to stay on

a grid. Eah partile has a spin whih points either �up� or �down� (spin ±1). Eah on�g-

uration σ of spins on the whole grid has an energy E(σ), whih is the sum of an interation
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Figure 1.1: An in�nite luster of open edges, when p = 1
2 . Courtesy of V. Be�ara.

energy between pairs of neighboring spins, and of an interation energy of spins with an

external magneti �eld. The probability of a on�guration σ is proportional to e−
1
kT

E(σ)
,

where k is the Boltzmann onstant, and T is the external temperature. When there is no

magneti �eld and the temperature is lose to 0, spins tend to align with their neighbors

and a typial on�guration onsists of all +1 or all −1. When the temperature is very

high, all on�gurations have the same probability of ourring and a typial on�guration

onsists of a mixture of +1 and −1. Again, there is a ritial temperature Tc at whih the

Ising model undergoes a phase transition between the ordered and disordered phase. The

literature on the Ising model is huge, as an introdutory reading we would suggest the

book by Baxter [Bax89℄, the one by MCoy and Wu [MW73℄, the leture notes by Velenik

[Vel℄ and referenes therein.

Figure 1.2: An Ising on�guration, when

1
T
= 0.9. Courtesy of V. Be�ara.

These two examples illustrate some of the prinipal hallenges of 2-dimensional statistial me-

hanis, whih are:

• Find the ritial parameters of the models.

• Understand the behavior of the model in the sub-ritial and super-ritial regimes.
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• Understand the behavior of the system at ritiality. Critial systems exhibit surprising fea-

tures, and are believed to be universal in the saling limit, i.e. independent of the spei�

features of the lattie on whih the model is de�ned. Very preise preditions were estab-

lished by physiists in the last 30-50 years, in partiular by Nienhuis, Cardy, Duplantier

and many others. On the mathematis side, a huge step forward was the introdution

of the Shramm-Loewner evolution by Shramm in [Sh00℄, a proess onjetured to de-

sribe the limiting behavior of well hosen observables of ritial models. Many of these

onjetures were solved in the following years, in partiular by Lawler, Shramm, Werner

[LSW04℄ and Smirnov [Smi10℄, Chelkak-Smirnov [CS12℄. The importane of these results

was aknowledged with the two Fields medals awarded to Werner (2006) and Smirnov

(2010). Interesting ollaborations between the physis and mathematis ommunities are

emerging, with for example the work of Duplantier and She�eld [DS11℄.

The general framework for statistial mehanis is the following. Consider an objet G (most

often a graph) representing the physial system, and de�ne all possible on�gurations of the

system. To every on�guration σ, assign an energy E(σ), then the probability of ourrene of

the on�guration σ is given by the Boltzmann measure µ:

µ(σ) =
e−E(σ)

Z(G)
.

Note that the energy is often multiplied by a parameter representing the inverse external tem-

perature. The denominator Z(G) is the normalizing onstant, known as the partition funtion:

Z(G) =
∑

σ

e−E(σ).

When the system is in�nite, the above de�nition does not hold, but we do not want to enter

into these onsiderations here.

The partition funtion is one of the key objets of statistial mehanis. Indeed it enodes muh

of the marosopi behavior of the system. Hene, its omputation is the �rst question one

addresses when studying suh a model. It turns out that there are very few models where this

omputation an be done exatly. Having a losed form for the partition funtion opens the

way to �nding many exat results, and to having a very deep understanding of the marosopi

behavior of the system.

Two famous examples are the 2-dimensional Ising model, where the omputation of the partition

funtion is due to Onsager [Ons44℄, and the dimer model where it is due to Kasteleyn [Kas61,

Kas67℄, and independently to Temperley and Fisher [TF61℄. The dimer model is the main topi

of these letures and is de�ned in the next setion.

1.2 The dimer model

The dimer model was introdued in the physis and hemists ommunities to represent the

adsorption of di-atomi moleules on the surfae of a rystal. It is part of a larger family of

models desribing the adsorption of moleules of di�erent sizes on a lattie. It was �rst mentioned

in a paper by Fowler and Rushbrooke [FR37℄ in 1937. As mentioned in the previous setion, the

�rst major breakthrough in the study of the dimer model is the omputation of the partition

funtion by Kasteleyn [Kas61, Kas67℄ and independently by Temperley and Fisher [TF61℄.

It is interesting to observe that for a long time, the physis and mathematis ommunities were

unaware of their respetive advanes. Mathematiians studied related questions as for example
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the enumeration of non-interseting lattie paths by Ma Mahon [Ma01℄, the understanding of

geometri and ombinatorial properties of tilings of regions of the plane by dominoes or rhombi.

To the best of our knowledge, the latter problem was �rst introdued in a paper by David

and Tomei [DT89℄. A major breakthrough was ahieved in the paper [Thu90℄ Thurston, where

the author interprets rhombus tilings as 2-dimensional interfaes in a 3-dimensional spae. An

example of rhombus tiling is given in Figure 1.3.

Figure 1.3: Rhombus tiling. Courtesy of R. Kenyon.

In the late 90's and early 00's, a lot of progresses were made in understanding the model, see the

papers of Kenyon [Ken97, Ken00℄, Cohn-Kenyon-Propp [CKP01℄, Kuperberg [Kup98℄, Kenyon-

Propp-Wilson [KPW00℄. In 2006 Kenyon-Okounkov-She�eld [KOS06℄, followed by Kenyon-

Okounkov [KO06, KO07℄ wrote breakthrough papers, whih give a full understanding of the

model on in�nite, periodi, bipartite graphs. Suh deep understanding of phenomena is a real

treasure in statistial mehanis.

My goal for these letures is to present the results of Kasteleyn, Temperley and Fisher, of

Thurston, and of the paper of Kenyon, Okounkov and She�eld. As you will see, the dimer

model has rami�ations to many �elds of mathematis: probability, geometry, ombinatoris,

analysis, algebrai geometry. I will try to be as thorough as possible, but of ourse some results

addressing the �eld of algebrai geometry reah the limit of my knowledge, so that I will only
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state them. In other ases, I will try and give ideas of proofs at least.

Inspiration for these notes omes in large parts from the letures given by R. Kenyon on the

subjet [Ken04, Ken℄. The main other referenes are [Kas67, Thu90, KOS06, KO06℄.
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Chapter 2

Definitions and founding results

2.1 Dimer model and tiling model

In this setion, we de�ne the dimer model and the equivalent tiling model, using the terminology

of statistial mehanis. The system onsidered is a graph G = (V,E) satisfying the following:

it is planar, simple (no loops and no multiple edges), �nite or in�nite.

Con�gurations of the system are perfet mathings of the graph G. A perfet mathing is a subset

of edges whih overs eah vertex exatly one. In the physis literature, perfet mathings are

also referred to as dimer on�gurations, a dimer being a di-atomi moleule represented by an

edge of the perfet mathing. Let us denote byM(G) the set of all dimer on�gurations of the

graph G.

Figure 2.1 gives an example of a dimer on�guration when the graph G is a �nite subgraph of

the honeyomb lattie H.

Figure 2.1: Dimer on�guration of a subgraph of the honeyomb lattie.

In order to de�ne the equivalent tiling model, we onsider a planar embedding of the graph G,

and suppose that it is simply onneted, i.e. that it is the one-skeleton of a simply onneted

union of faes. From now on, when we speak of a planar graph G, we atually mean a graph

with a partiular planar embedding.

The tiling model is de�ned on the dual graph G
∗
of G. An embedding of the dual graph G

∗
is

obtained by assigning a vertex to every fae of G and joining two verties of G
∗
by an edge if

and only if the orresponding faes of G are adjaent. The dual graph will also be thought of as

an embedded graph. When the graph is �nite, we take a slightly di�erent de�nition of the dual:

we take G to be the dual of G
∗
and remove the vertex orresponding to the outer fae, as well

as edges onneted to it, see Figure 2.2.

A tile of G
∗
is a polygon onsisting of two adjaent inner faes of G

∗
glued together. A tiling

of G
∗
is a overing of the graph G

∗
with tiles, suh that there are no holes and no overlaps.
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Figure 2.2 gives an example of a tiling of a �nite subgraph of the triangular lattie T, the dual

graph of the honeyomb lattie. Tiles of the triangular lattie are 60◦-rhombi, and are also

known as lozenges or alissons.

Figure 2.2: Dual graph of a �nite subgraph of the honeyomb lattie (left). Tiling of this

subgraph (right).

Another lassial example is the tiling model on the graph Z
2
, the dual of the graph Z

2
. Tiles

are made of two adjaent squares, and are known as dominoes.

Dimer on�gurations of the graph G are in bijetion with tilings of the graph G
∗
through the

following orrespondene, see also Figure 2.3: dimer edges of perfet mathings onnet pairs of

adjaent faes forming tiles of the tiling. It is an easy exerise to prove that this indeed de�nes

a bijetion.

Figure 2.3: Bijetion between dimer on�gurations of the graph G and tilings of the graph G
∗
.

2.2 Energy of onfigurations and Boltzmann measure

We let G be a planar, simple graph. In this setion, and for the remainder of Chapter 2, we take

G to be �nite. Suppose that edges are assigned a positive weight funtion ν, that is every edge

e of G has weight ν(e).

The energy of a dimer on�guration M of G, is E(M) = −∑
e∈M log ν(e). The weight ν(M) of

a dimer on�guration M of G, is exponential of minus its energy:

ν(M) = e−E(M) =
∏

e∈M
ν(e).

Note that by the orrespondene between dimer on�gurations and tilings, the funtion ν an

be seen as weighting tiles of G
∗
, ν(M) is then the weight of the tiling orresponding to M .
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Weights of on�gurations allow to introdue randomness in the model: the Boltzmann measure

µ is a probability measure on the set of dimer on�gurationsM(G), de�ned by:

∀M ∈ M(G), µ(M) =
e−E(M)

Z(G)
=
ν(M)

Z(G)
.

The term Z(G) is the normalizing onstant known as the partition funtion. It is the weighted

sum of dimer on�gurations, that is,

Z(G) =
∑

M∈M(G)

ν(M).

When ν ≡ 1, the partition funtion ounts the number of dimer on�gurations of the graph G,

or equivalently the number of tilings of the graph G
∗
, and the Boltzmann measure is simply the

uniform measure on the set of dimer on�gurations.

When analyzing a model of statistial mehanis, the �rst question addressed is that of omput-

ing the free energy, whih is minus the exponential growth rate of the partition funtion, as the

size of the graph inreases. The most natural way of attaining this goal, if the model permits,

is to obtain an expliit expression for the partition funtion. Reall that the dimer model is one

of the rare 2-dimensional models where a losed formula an be obtained. This is the topi of

the next setion.

2.3 Expliit omputations

The expliit omputation of the partition funtion is due to Kasteleyn [Kas61, Kas67℄ and

independently to Temperley and Fisher [TF61℄. A proof of this result is provided in Setion 2.3.1,

in the ase where the underlying graph G is bipartite. This is one of the founding results of the

dimer model, paving the way to obtaining other expliit expressions as for example Kenyon's

losed formula for the Boltzmann measure [Ken97℄, see Setion 2.3.2. In Setion 2.3.3, we provide

an example of omputation of the partition funtion and of the Boltzmann measure.

2.3.1 Partition funtion formula

We restrit ourselves to the ase where the graph G is bipartite, the proof in the non-bipartite

ase is similar in spirit although a little more involved. The simpli�ation in the bipartite ase

is due to Perus [Per69℄.

A graph G = (V,E) is bipartite if the set of verties V an be split into two subsets W∪B, where
W denotes white verties, B blak ones, and verties in W are only adjaent to verties in B.

We suppose that |W| = |B| = n, for otherwise there are no perfet mathings of the graph G;

indeed a dimer edge always overs a blak and a white vertex.

Label the white verties w1, . . . ,wn and the blak ones b1, . . . , bn, and suppose that edges of G are

oriented. The hoie of orientation will be spei�ed later in the proof. Then the orresponding

oriented, weighted, adjaeny matrix is the n × n matrix K whose lines are indexed by white

verties, whose olumns are indexed by blak ones, and whose entry K(wi, bj) is:

K(wi, bj) =





ν(wibj) if wi ∼ bj , and wi → bj

−ν(wibj) if wi ∼ bj , and wi ← bj

0 if the verties wi and bj are not adjaent.

13



By de�nition, the determinant of the matrix K is:

det(K) =
∑

σ∈Sn

sgn(σ)K(w1, bσ(1)) . . . K(wn, bσ(n)),

where Sn is the set of permutations of n elements. Let us �rst observe that eah non-zero

term in the expansion of det(K) orresponds to the weight of a dimer on�guration, up to sign.

Thus, the determinant of K seems to be the appropriate objet for omputing the partition

funtion, the only problem being that not all terms may be ounted with the same sign. Note

that reversing the orientation of an edge wibj hanges the sign of K(wi, bj). The remainder of

the proof onsists in hoosing an orientation of the edges of G allowing to ompensate signature

of permutations, so that all terms in the expansion of the determinant of K indeed have the

same sign.

Let M1 and M2 be two perfet mathings of G drawn one on top of the other. De�ne an

alternating yle to be a yle of G whose edges alternate between edges of M1 and M2. Then,

an alternating yle has even length, and if the length is equal to 2, the yle is a doubled edge,

that is an edge overed by both M1 and M2. The superimposition of M1 and M2 is a union of

disjoint alternating yles, see Figure 2.4. This is beause, by de�nition of a perfet mathing,

eah vertex is adjaent to exatly one edge of the mathing, so that in the superimposition of

two mathings M1 and M2, eah vertex is adjaent to exatly one edge of M1 and one edge of

M2.

M

M1

2

Figure 2.4: Superimposition of two dimer on�gurations M1 and M2 of a subgraph G of the

honeyomb lattie H.

One an transform the mathing M1 into the mathing M2, by replaing edges of M1 by those

ofM2 in all alternating yles of length ≥ 4 of the superimposition. Thus, arguing by indution,

it su�es to show that the sign of the ontributions of M1 and M2 to det(K) is the same when

M1 and M2 di�er along a single alternating yle of length ≥ 4. Let us assume that this is the

ase, denote the unique yle by C and by wi1 , bj1 , . . . ,wik , bjk its verties in lokwise order,

see Figure 2.5.

Let σ (resp. τ) be the permutation orresponding toM1 (resp. M2). Then by the orrespondene

between enumeration of mathings and terms in the expansion of the determinant, we have:

j1 = σ(i1) = τ(i2), j2 = σ(i2) = τ(i3), . . . , jk = σ(ik) = τ(i1).

If we let c be the permutation yle c = (ik . . . i1), then we dedue:

τ(iℓ) = σ(iℓ−1) = σ ◦ c(iℓ). (2.1)

14
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wi1 bj1
wi2

bj2
wik

bjk
M1

M2C

Figure 2.5: Labeling of the verties of an example of superimposition yle of M1 and M2.

In order to hek that the ontributions of M1 and M2 to det(K) have the same sign, it su�es

to hek that the sign of the ratio of the ontributions is positive. The sign of this ratio, denoted

by Sign(M1/M2), is:

Sign(M1/M2) = Sign

(
sgn(σ)

sgn(τ)

K(wi1 , bσ(i1)) . . . K(wik , bσ(ik))

K(wi1 , bτ(i1)) . . . K(wik , bτ(ik))

)
,

whih is the same as the sign of the produt of the numerator and the denominator. Now,

(⋄1) : = sgn(σ)sgn(τ) = sgn(σ ◦ τ) = sgn(σ ◦ σ ◦ c) by Equation (2.1)

= (−1)k+1.

(⋄2) : = Sign ( [K(wi1 , bσ(i1)) . . . K(wik , bσ(ik))][K(wi1 , bτ(i1)) . . . K(wik , bτ(ik))]
)

= Sign
(
[K(wi1 , bj1) . . . K(wik , bjk)][K(wi1 , bjk) . . . K(wik , bjk−1

)]
)

= Sign
(
K(wi1 , bj1)K(wi1 , bjk) . . . K(wik , bjk)K(wik , bjk−1

)
)

Let p be the parity of the number of edges of the yle C oriented lokwise. The yle C is

said to be lokwise odd if p = 1, lokwise even if p = 0. Let us show that Sign(M1/M2) = +1
if and only if p = 1. To this purpose, we �rst relate (⋄2) and (−1)p.
Partition WC := {wi1 , . . . ,wik} as W

e
C ∪W

o
C , where W

e
C onsists of white verties with 0 or 2

inoming edges (equivalently 2 or 0 outgoing edges), and W
o
C onsists of white verties with one

inoming and one outgoing edge, then |We
C | + |Wo

C | = k. If a white vertex belongs to W
e
C , it

ontributes 1 to (⋄2) and 1 to p; if a white vertex belongs to W
o
C , it ontributes −1 to (⋄2) and

0 to p. We thus have:

{
(⋄2) = (−1)|Wo

C
|

(−1)p = (−1)|We
C | ⇒ (⋄2) = (−1)k(−1)p.

As a onsequene Sign(M1/M2) = (⋄1)(⋄2) = (−1)2k+1(−1)p, so that Sign(M1/M2) is positive
if and only if p = 1, i.e. if and only if the yle C is lokwise odd.

Following Kasteleyn [Kas67℄, an orientation of the edges of G suh that all yles obtained as

superimposition of dimer on�gurations are lokwise odd, is alled admissible. De�ne a ontour

yle to be a yle bounding an inner fae of the graph G. Kasteleyn proves that if the orientation

is suh that all ontour yles are lokwise odd, then the orientation is admissible. The proof is

by indution on the number of faes inluded in the yle, refer to the paper [Kas67℄ for details.

An orientation of the edges of G suh that all ontour yles are lokwise odd is onstruted in

the following way, see for example [CR07℄. Consider a spanning tree of the dual graph G
∗
, with a

vertex orresponding to the outer fae, taken to be the root of the tree. Choose any orientation

for edges of G not rossed by the spanning tree. Then, start from a leaf of the tree, and orient
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the dual of the edge onneting the leaf to the tree in suh a way that the ontour yle of the

orresponding fae is lokwise odd. Remove the leaf and the edge from the tree. Iterate until

only the root remains. Sine the tree is spanning, all faes are reahed by the algorithm, and by

onstrution all orresponding ontour yles are lokwise odd.

A Kasteleyn-Perus matrix, or simply Kasteleyn matrix, denoted by K, assoiated to the graph

G is the oriented, weighted adjaeny matrix orresponding to an admissible orientation. We

have thus proved the following:

Theorem 1. [Kas67℄ Let G be a �nite, planar bipartite graph with an admissible orientation of

its edges, let ν be a positive weight funtion on the edges, and K be the orresponding Kasteleyn

matrix. Then, the partition funtion of the graph G is:

Z(G) = |det(K)|.

When the graph G is not bipartite, lines and olumns of the adjaeny matrix are indexed by

all verties of G (verties annot be naturally split into two subsets). By hoosing an admissible

orientation of the edges, the partition funtion an be expressed as the square root of the

determinant of the orresponding Kasteleyn matrix or, sine this matrix is skew-symmetri, as

the Pfa�an of this same matrix. For more details, refer to [Kas67℄.

2.3.2 Boltzmann measure formula

When the graph G is bipartite, Kenyon [Ken97℄ gives an expliit expression for the loal statistis

of the Boltzmann measure. Let K be a Kasteleyn matrix assoiated to G, and let {e1 =
w1b1, . . . , ek = wkbk} be a subset of edges of G.

Theorem 2. [Ken97℄ The probability µ(e1, . . . , ek) of edges {e1, . . . , ek} ourring in a dimer

on�guration of G hosen with respet to the Boltzmann measure µ is:

µ(e1, . . . , ek) =

∣∣∣∣∣

(
k∏

i=1

K(wi, bi)

)
det

1≤i,j≤k
K−1(bi,wj)

∣∣∣∣∣ . (2.2)

Proof. The weighted sum of dimer on�gurations ontaining the edges {e1, . . . , ek} is (up to

sign) the sum of all terms ontaining K(w1, b1) . . . K(wk, bk) in the expansion of det(K). By

expanding this determinant along lines (or olumns), it is easy to see by indution that this is

equal to: ∣∣∣∣∣

(
k∏

i=1

K(wi, bi)

)
det(KE)

∣∣∣∣∣ ,

where KE is the matrix obtained from K by removing the lines orresponding to w1, . . . ,wk and

the olumns orresponding to b1, . . . , bk. Now by Jaobi's identity, see for example [HJ90℄:

det(KE) = det(K) det
(
(K−1)E∗

)
,

where E∗
is the set of edges not in E. Otherwise stated, (K−1)E∗

is the k × k matrix obtained

from K−1
by keeping the lines orresponding to b1, . . . , bk and the olumns orresponding to

w1, . . . ,wk. Thus,

µ(e1, . . . , ek) =

∣∣∣
(∏k

i=1K(wi, bi)
)
det(KE)

∣∣∣
|det(K)| =

∣∣∣∣∣

(
k∏

i=1

K(wi, bi)

)
det
(
(K−1)E∗

)
∣∣∣∣∣ .
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Remark 3. Edges form a determinantal point proess with respet to the ounting measure,

that is a point proess suh that the joint probabilities are of the form

µ(e1, . . . , ek) = det(M(ei, ej)1≤i,j≤k),

for some kernelM . In the ase of bipartite dimers,M(ei, ej) = K(wi, bj)K
−1(bi,wj), see [Sos07℄

for an overview.

2.3.3 Expliit example

Figure 2.6 gives an example of a planar, bipartite graph whose edges are assigned positive weights

and an admissible orientation.

a a

a a

a

b b b

b b

a, b > 0

PSfrag replaements

w1 b1 w2

b2w3
b3

w4 b4

Figure 2.6: A planar, bipartite graph with a positive weight funtion and an admissible orien-

tation.

The orresponding Kasteleyn matrix is:

K =




a 0 −b 0
a −b 0 0
b a a b
0 0 b −a


 ,

and the determinant is equal to

det(K) = 2a3b+ 2b3a.

Setting a = b = 1 yields that the number of perfet mathings of this graph is 4. In this ase,

the Boltzmann measure is the uniform measure on tilings of this graph.

The inverse Kasteleyn matrix K−1
is:

K−1 =
1

4




2 1 1 1
2 −3 1 1
−2 1 1 1
−2 1 1 −3


 .

Using the labeling of the verties of Figure 2.6 and Theorem 2, we ompute the probability of

ourrene of some subset of edges:

µ(w1b1) = |K−1(b1,w1)| =
1

2

µ(w3b1) = |K−1(b1,w3)| =
1

4

µ(w1b1,w3b4) =

∣∣∣∣det
(
K−1(b1,w1) K−1(b1,w3)
K−1(b4,w1) K−1(b4,w3)

)∣∣∣∣ =
1

16

∣∣∣∣det
(

2 1
−2 1

)∣∣∣∣ =
1

4
.
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You an try and ompute other probabilities. In this simple ase, it is atually easier to expliitly

�nd all possible on�gurations (4 of them), and ompute the probabilities. However, the goal of

this example is to show how to use the general formulae.

2.4 Geometri interpretation of lozenge tilings

By means of the height funtion, Thurston interprets lozenge tilings of the triangular lattie

as disrete surfaes in a rotated version of Z
3
projeted onto the plane. He gives a similar

interpretation of domino tilings of the square lattie. This approah an be generalized to dimer

on�gurations of bipartite graphs using �ows. This yields an interpretation of the dimer model

on a bipartite graph as a random interfae model in dimensions 2 + 1, and o�ers more insight

into the model. In this setion we exhibit Thurston's onstrution of the height funtion on

lozenge tilings. We postpone the de�nition of the height funtion on general bipartite graphs

until Setion 3.1.

Faes of the triangular lattie T an be olored in blak and white, so that blak faes (resp.

white ones) are only adjaent to white ones (resp. blak ones). This is a onsequene of the fat

that its dual graph, the honeyomb lattie, is bipartite. Orient the blak faes ounterlokwise,

and the white ones lokwise, see Figure 2.7 (left). Consider a �nite subgraph X of T whih

is tileable by lozenges, and a lozenge tiling T of X. Then the height funtion hT is an integer

valued funtion on verties of X, de�ned indutively as follows:

• Fix a vertex v0 of X, and set hT (v0) = 0.

• For every boundary edge uv of a lozenge, hT (v) − hT (u) = +1 if the edge uv is oriented

from u to v, implying that hT (v)− hT (u) = −1 when the edge uv is oriented from v to u.

The height funtion is well de�ned, in the sense that the height hange around any oriented

yle is 0. An example of omputation of the height funtion is given in Figure 2.7 (right).

0

3

1

1
2

3

2

4

1

2
3

4
3

2
1

0

1

2

0

1

2

1

0

2
3 3

4 4
5

3
4

3
2

1
0

4

2
1

2

2
3

2

0v

Figure 2.7: Orientation of faes of the triangular lattie (left). Height funtion orresponding to

a lozenge tiling (right).
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As a onsequene, lozenge tilings are interpreted as stepped surfaes in Z̃3
projeted onto the

plane, where Z̃3
is Z

3
rotated so that diagonals of the ubes are orthogonal to the plane. The

height funtion is then simply the �height� of the surfae (i.e. third oordinate). This onstru-

tion gives a mathematial sense to the intuitive feeling of ubes stiking in or out, whih strikes

us when wathing a piture of lozenge tilings.

Height funtions haraterize lozenge tilings as stated by the following lemma.

Lemma 4. Let X be a �nite simply onneted subgraph of the triangular lattie T, whih is

tileable by lozenges. Let h be an integer valued funtion on the verties of X, satisfying:

• h(v0) = 0, where v0 is a �xed vertex of X.

• h(v) − h(u) = 1 for any boundary edge uv of X oriented from u to v.

• h(v) − h(u) = 1 or −2 for any interior edge uv of X oriented from u to v.

Then, there is a bijetion between funtions h satisfying these two onditions, and tilings of X.

Proof. Let T be a lozenge tiling of X and let uv be an edge of X, oriented from u to v. Then,

the edge uv is either a boundary edge or a diagonal of a lozenge. By de�nition of the height

funtion, the height hange is 1 in the �rst ase, and −2 in the seond.

Conversely, let h be an integer funtion as in the lemma. Let us onstrut a tiling T whose height

funtion is h. Consider a blak fae of X, then there is exatly one edge uv on the boundary of

this fae whose height hange is −2. To this fae, we assoiate the lozenge whih is rossed by

the edge uv. Repeating this proedure for all blak faes yields a tiling of X.

Thurston [Thu90℄ uses height funtions in order to determine whether a subgraph of the trian-

gular lattie an be tiled by lozenges. Refer to the paper for details.
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Chapter 3

Dimer model on infinite periodi bipartite graphs

This hapter is devoted to the paper �Dimers and amoebas� [KOS06℄ by Kenyon, Okounkov and

She�eld.

Reall that edges of dimer on�gurations represent di-atomi moleules. Sine we are interested

in the marosopi behavior of the system, our goal is to study the model on very large graphs. It

turns out that it is easier to extrat information for the model de�ned on in�nite graphs, rather

than very large ones. Indeed, on very large but �nite graphs, Kasteleyn's omputation an be

done, but involves omputing the determinant of huge matries, whih is of ourse very hard in

general, and won't tell us muh about the system. Computing expliitly the loal statistis of

the Boltzmann measure beomes hardly tratable sine it requires inverting very large matries.

This motivates the following road map.

• Assume that the graph G = (V,E) is simple, planar, in�nite, bipartite, and Z
2
-periodi.

This means that G is embedded in the plane so that translations at by olor-preserving

isomorphism of G, i.e. isomorphisms whih map blak verties to blak ones and white

verties to white ones. For later purposes, we onsider the underlying lattie Z
2
to be

a subgraph of the dual graph G
∗
, and �x a basis {ex, ey}, allowing to reord opies of a

vertex v of G as {v+(k, l) : (k, l) ∈ Z
2}. Refer to Figure 3.1 for an example when G is the

square-otagon graph.

ex

ey

Figure 3.1: A piee of the square-otagon graph. The underlying lattie Z
2
is in light grey, the

two blak vetors represent a hoie of basis {ex, ey}.
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• Let Gn = (Vn,En) be the quotient of G by the ation of nZ2
. Then the sequene of graphs

{Gn}n≥1 is an exhaustion of the in�nite graph G by toroidal graphs. The graph G1 = G/Z2

is alled the fundamental domain, see Figure 3.2. Assume that edges of G1 are assigned a

positive weight funtion ν thus de�ning a periodi weight funtion on the edges of G.

1 1

1

1

1

1

1 1
1

11 1

PSfrag replaements

G1

Figure 3.2: Fundamental domain G1 of the square-otagon graph, opposite sides in light grey

are identi�ed. Edges are assigned weight 1.

• The goal of this hapter is to understand the dimer model on G, using the exhaustion

{Gn}n≥1, by taking limits as n→∞ of appropriate quantities.

Note that it is ruial to take an exhaustion of G by toroidal graphs. Indeed, the latter are

invariant by translations in two diretions, a key fat whih allows omputations to go through

using Fourier tehniques. Note also that taking an exhaustion by planar graphs a priori leads

to di�erent results beause of the in�uene of the boundary whih annot be negleted.

Although it might not seem so lear at this stage, the fat that G and {Gn}n≥1 are assumed to be

bipartite is also ruial for the results of this hapter, beause it allows to relate the dimer model

to well behaved algebrai urves. Having a general theory of the dimer model on non-bipartite

graphs is one of the important open questions of the �eld.

3.1 Height funtion

In this setion, we desribe the onstrution of the height funtion on dimer on�gurations of the

in�nite graph G and of the toroidal graphs Gn, n ≥ 1. Sine we are working on the dimer model

and not on the tiling model, as in Thurston's onstrution, the height funtion is a funtion on

faes of G or equivalently, a funtion on verties of the dual graph G
∗
.

The de�nition of the height funtion relies on �ows. Denote by

~E the set of direted edges of the

graph G, i.e. every edge of E yields two oriented edges of

~E. A �ow ω is a real valued funtion

de�ned on

~E, that is every direted edge (u, v) of ~E is assigned a �ow ω(u, v).

The divergene of a �ow ω, denoted by divω, is a real valued funtion de�ned on V giving the

di�erene between total out�ow and total in�ow at verties:

∀u ∈ V, divω(u) =
∑

v∼u

ω(u, v) −
∑

v∼u

ω(v, u).

Sine G is bipartite, we split verties V into white and blak ones: V = W ∪ B. Then, every

dimer on�guration M of G de�nes a white-to-blak unit �ow ωM
as follows. The �ow ωM

takes

value 0 on all direted edges arising from edges of E whih do not belong to M , and

∀wb ∈M, ωM (w, b) = 1, ωM (b,w) = 0.
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Sine every vertex of the graph G is inident to exatly one edge of the perfet mathing M , the

�ow ωM
has divergene 1 at every white vertex, and -1 at every blak one, that is:

∀w ∈W, div ωM(w) =
∑

b∼w

ωM (w, b) −
∑

b∼w

ωM(b,w) = 1,

∀ b ∈ B, divωM (b) =
∑

w∼b

ωM (b,w) −
∑

w∼b

ωM (w, b) = −1.

Let M0 be a �xed periodi referene perfet mathing of G, and ωM0
be the orresponding

�ow, alled the referene �ow. Then, for any other mathing M with �ow ωM
, the di�erene

ωM − ωM0
is a divergene-free �ow, that is:

∀w ∈W, div(ωM − ωM0)(w) =
∑

b∼w

(ωM (w, b) − ωM0(w, b)) −
∑

b∼w

(ωM (b,w)− ωM0(b,w))

= div ωM(w) − divωM0(w) = 1− 1 = 0,

and similarly for blak verties.

We are now ready to de�ne the height funtion. Let M be a dimer on�guration of G, then the

height funtion hM is an integer valued funtion on faes of G de�ned as follows.

• Fix a fae f0 of G, and set hM (f0) = 0.

• For any other fae f1, onsider an edge-path γ of the dual graph G
∗
, from f0 to f1. Let

(u1, v1), . . . , (uk, vk) denote edges of G rossing the path γ, where for every i, ui is on the

left of the path γ and vi on the right. Then hM (f1)−hM (f0) is the total �ux of ωM −ωM0

aross γ, that is:

hM (f1)− hM (f0) =
k∑

i=1

[(ωM (ui, vi)− ωM (vi, ui))− (ωM0(ui, vi)− ωM0(vi, ui))].

The height funtion is well de�ned if it is independent of the hoie of γ, or equivalently if the

height hange around every fae f
∗
of the dual graph G

∗
is 0. Let u be the vertex of the graph G

orresponding to the fae f
∗
, and let v1, . . . , vk be its neighbors. Then, by de�nition, the height

hange around the fae f
∗
, in ounterlokwise order, is:

k∑

i=1

[(ωM (u, vi)− ωM (vi, u)) − (ωM0(u, vi)− ωM0(vi, u))] = div(ωM − ωM0)(u) = 0.

The height funtion is thus well de�ned as a onsequene of the fat that the �ow ωM − ωM0
is

divergene free, up to the hoie of a base fae f0 and of a referene mathing M0. An analog of

Lemma 4 gives a bijetion between height funtions and dimer on�gurations of G.

Remark 5.

• There is atually an easy way of omputing the height funtion. Reall from Setion 2.3

that the superimposition of two dimer on�gurations M and M0 onsists of doubled edges

and alternating yles of length ≥ 4 (yles may extend to in�nity when G is in�nite). Let

us denote byM−M0 the oriented superimposition ofM andM0, with edges ofM oriented

from white verties to blak ones, and those of M0 from blak verties to white ones, then

M −M0 onsists of doubled edges oriented in both diretions and oriented alternating

yles of length ≥ 4, see for example Figure 3.3. Returning to the de�nition of the height

funtion, one noties that the height hanges by ±1 exatly when rossing a yle, and the

sign only depends on the orientation of the yle.
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• By taking a di�erent hoie of referene �ow, one an reover Thurston's height funtion

in the ase of lozenge and domino tilings, up to a global multipliative fator of

1
3 in the

�rst ase, and

1
4 in the seond - the interested reader an try and work out this relation

expliitly.

Let us now onsider the toroidal graph Gn = G/nZ2
. In this ase, the height funtion is not

well de�ned sine there might be some period, or height hange, along yles in the dual graph

winding around the torus horizontally or vertially, see Figure 3.3. More preisely, a perfet

mathing M of Gn an be lifted to a perfet mathing of the in�nite graph G, also denoted M .

Then, the perfet mathing M of Gn is said to have height hange (hMx , h
M
y ) if:

hM (f + (n, 0)) = hM (f) + hMx

hM (f + (0, n)) = hM (f) + hMy .

Note that height hange is well de�ned, i.e. does not depend on the hoie of fae f, beause

the �ow ωM − ωM0
is divergene-free.

Figure 3.3 gives an example of the referene perfet mathingM0 indued by a periodi referene

mathing of G, and of the height hange omputation of a dimer on�guration M of the toroidal

graph G2 of the square-otagon graph. The perfet mathing M has height hange (0, 1).

0
f0

M

M

0

0 00 0 0

−1−1 0 −1

00000

−1 0 −1 0 −1

−1−1−1−1−1

Figure 3.3: A perfet mathing M of the toroidal graph G2, having height hange (0, 1).

Remark 6. Let T
2 = {(z, w) ∈ C

2 : |z| = |w| = 1} denote the two-dimensional unit torus, and

let H1(T
2,Z) ∼= Z

2
be the �rst homology group of T

2
in Z. The graph Gn being embedded in

T
2
, we take as representative of a basis of H1(T

2,Z) the vetors nex and ney embedded on the

torus, where reall {ex, ey} were our hoie of basis vetor for Z2
, see Figure 3.1. In the ase of

the square-otagon graph and G2 of Figure 3.3, the �rst basis vetor is the light grey horizontal

yle oriented from left to right, and the seond is the light grey vertial yle oriented from

bottom to top. Then, the homology lass of the oriented superimposition M −M0 in this basis

is (1, 0), and the height hange is (0, 1). More generally, if the homology lass of M −M0 is

(a, b), then the height hange (hMx , h
M
y ) is (−b, a). This is beause, as mentioned in Remark 5,

the height funtion hanges by ±1 exatly when it rosses oriented yles of M −M0, implying

that the height hange (hMx , h
M
y ) an be identi�ed through the intersetion pairing with the

homology lass of the oriented on�guration M −M0 in H1(T
2,Z).
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3.2 Partition funtion, harateristi polynomial, free energy

Let us reall the setting: G is a simple, planar, in�nite, bipartite Z
2
-periodi graph, and {Gn}n≥1

is the orresponding toroidal exhaustion. Edges of G are assigned a periodi, positive weight

funtion ν, and {ex, ey} denotes a hoie of basis of the underlying lattie Z
2
.

In this setion we present the omputation of the partition funtion for dimer on�gurations of

the toroidal graph Gn, and the omputation of the free energy, whih is minus the exponential

growth rate of the partition funtion of the exhaustion Gn. More preisely, Setion 3.2.1 is

devoted to Kasteleyn theory on the torus. Then, in Setion 3.2.2 we de�ne the harateristi

polynomial, one of the key objets underlying the dimer model on bipartite graphs, yielding a

ompat losed formula for the partition funtion, see Corollary 10. With this expression at

hand, one then derives the expliit formula for the free energy, see Theorem 11.

3.2.1 Kasteleyn matrix

In Setion 2.3, we proved that the partition funtion of a �nite, simply onneted planar graph

is given by the determinant of a Kasteleyn matrix. When the graph is embedded on the torus,

a single determinant is not enough, what is needed is a linear ombination of determinants

determined in the following way.

Consider the fundamental domain G1 and let K1 be a Kasteleyn matrix of this graph, that is

K1 is the oriented, weighted, adjaeny matrix of G1 for a hoie of admissible orientation of

the edges. Note that admissible orientations also exist for graphs embedded in the torus. Let us

now look at the signs of the weighted mathings in the expansion of det(K1). Consider a �xed

referene mathing M0 of G1, and let M be any other mathing of G1. Then, by the results of

[Kas67, DZM

+
96, GL99, Tes00, CR07℄, the sign of the mathing M only depends on the parity

of the vertial and horizontal height hange. Moreover, of the four possible parity lasses, three

have the same sign in det(K1) and one has opposite sign. By an appropriate hoie of admissible

orientation, one an make the (0, 0) lass have positive sign.

Let γx, γy be the basis vetor ex, ey of the underlying lattie Z
2
, embedded on the torus. Sine

we have hosen Z
2
to be a subgraph of the dual graph G

∗
, γx, γy are oriented yles of the dual

graph G
∗
1, see Figure 3.4. We refer to γx as a horizontal yle, and to γy as a vertial one.

G1

γ

γ

x

y

Figure 3.4: Fundamental domain G1 of the square otagon graph with the oriented paths γx, γy
in the dual graph G

∗
1. The two opies of γx, respetively γy, are glued together.

For σ, τ ∈ {0, 1}, let Kθτ
1 be the Kasteleyn matrix in whih the weights of the edges rossing

the horizontal yle γx are multiplied by (−1)θ, and those rossing the vertial yle γy are

multiplied by (−1)τ . Observing that hanging the signs along a horizontal dual yle has the

e�et of negating the weight of mathings with odd horizontal height hange, and similarly for
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vertial; the following table indiates the sign of the mathings in the expansion of det(Kθτ
1 ), as

a funtion of the horizontal and vertial height hange mod 2.

(0, 0) (1, 0) (0, 1) (1, 1)

det(K00
1 ) + − − −

det(K10
1 ) + + − +

det(K01
1 ) + − + +

det(K11
1 ) + + + −

(3.1)

From Table 3.1, we dedue

Z(G1) =
1

2

(
− det(K00

1 ) + det(K10
1 ) + det(K01

1 ) + det(K11
1 )
)
. (3.2)

A similar argument holds for the toroidal graph Gn, n ≥ 1. The orientation of edges of G1

de�nes a periodi orientation of edges of G, and thus an orientation of edges of Gn. Let γx,n,
γy,n be the oriented yles in the dual graph G

∗
n, obtained by taking n times the basis vetor ex,

n times the basis vetor ey respetively, embedded on the torus. For σ, τ ∈ {0, 1}, let Kστ
n be

the matrix Kn in whih the weights of edges rossing the horizontal yle γx,n are multiplied by

(−1)θ, and those rossing the vertial yle γy,n are multiplied by (−1)τ . Then,
Theorem 7. [Kas67, DZM

+
96, GL99, Tes00, CR07, CR08℄

Z(Gn) =
1

2

(
− det(K00

n ) + det(K10
n ) + det(K01

n ) + det(K11
n )
)
.

3.2.2 Charateristi polynomial

Let K1 be a Kasteleyn matrix of the fundamental domain G1. Given omplex numbers z and

w, an altered Kasteleyn matrix K1(z, w) is onstruted as follows. Let γx, γy be the oriented

horizontal and vertial yles of G
∗
1. Then, multiply edge-weights of edges rossing γx by z

whenever the white vertex is on the left, and by z−1
whenever the blak vertex is on the left.

Similarly, multiply edge-weights of edges rossing the vertial path γy by w±1
, see Figure 3.5.

The harateristi polynomial P (z, w) of the graph G1 is de�ned as the determinant of the

altered Kasteleyn matrix:

P (z, w) = det(K1(z, w)).

As we will see, the harateristi polynomial ontains most of the information on the marosopi

behavior of the dimer model on the graph G.

The next very useful lemma expresses the harateristi polynomial using height hanges of

dimer on�gurations of G1. Refer to Setion 3.1 for de�nitions and notations onerning height

hanges. LetM0 be a referene dimer on�guration of G1, and suppose the admissible orientation

of the edges is hosen suh that perfet mathings having (0, 0) mod (2, 2) height hange have +
sign in the expansion of det(K1). We onsider the altered Kasteleyn matrixK1(z, w) onstruted
from K1. Let ω

M0
be the referene �ow orresponding to the referene dimer on�guration M0,

and let x0 denote the total �ux of ωM0
aross γx, similarly y0 is the total �ux of ωM0

aross γy.
Then, we have:

Lemma 8. [KOS06℄

P (z, w) = zx0wy0
∑

M∈M(G1)

ν(M)zh
M
x whM

y (−1)hM
x hM

y +hM
x +hM

y , (3.3)

where, for every dimer on�guration M ofM(G1), (h
M
x , h

M
y ) is the height hange of M .
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Proof. Let M be a perfet mathing of G1. Then, by the hoie of Kasteleyn orientation, the

sign of the term orresponding toM in the expansion of det(K1(z, w)) is: + if (hMx , h
M
y ) = (0, 0)

mod (2, 2), and − else. This an be summarized as:

(−1)hM
x hM

y +hM
x +hM

y .

Let us denote by νz,w, the weight funtion on edges of G1 obtained from G1 by multiplying

edge-weights of edges rossing γx by z±1
, and those rossing γy by w±1

as above. Then,

νz,w(M) = ν(M)zn
wb
x (M)−nbw

x (M)wnwb
y (M)−nbw

y (M),

where nwbx (M) is the number of edges of M rossing γx, whih have a white vertex on the left

of γx, and n
bw
x (M) is the number of edges of M rossing γx, whih have a blak vertex on the

left of γx. The de�nition of nwby (M), nbwy (M) is similar with γx replaed by γy.

Returning to the de�nition of the height hange for dimer on�gurations of the toroidal graph

Gn, we have:

hMx = nwbx (M)− nbwx (M)− nwbx (M0) + nbwx (M0),

so that:

nwbx (M)− nbwx (M) = hMx + nwbx (M0)− nbwx (M0) = hMx + x0,

sine by de�nition x0 is the total �ux of ωM0
aross γx. Computing hMy in a similar way yields

the lemma.

Example 3.1. Let us ompute the harateristi polynomial of the fundamental domain G1 of

the square-otagon graph, with weights one on the edges. Figure 3.5 (left) desribes the labeling

of the verties, and weights of the altered Kasteleyn matrix. The orientation of the edges is

admissible and is suh that perfet mathings having (0, 0) height hange with respet to the

referene mathing M0 given on the right, have a + sign in the expansion of det(K1).

γ

γ

γ

γ

1/w

w

1/z z

1

1

1
1

1

1

1 1

y

x

y

x

M0

PSfrag replaements

w1

w2

b2

b2

w3b3

w4

b4

G1

Figure 3.5: Left: labeling of the verties of G1, edge-weights of the altered Kasteleyn matrix,

hoie of admissible Kasteleyn orientation. Right: hoie of referene perfet mathing M0.

The altered Kasteleyn matrix K1(z, w) is:

K1(z, w) =




1 0 1
z

1
−1 1 0 −w
−z 1 1 0
0 1

w
1 1


 ,

and the harateristi polynomial is:

P (z, w) = det(K1(z, w)) = 5− z − 1

z
− w − 1

w
. (3.4)
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Let us ompute the right hand side of Equation (3.3) expliitly. With our hoie of referene

mathing M0 of Figure 3.5 (right), the total �ux of ωM0
through γx and γy is (0, 0), so that

zx0wy0 = 1. Sine all edges have weight 1, ν(M) ≡ 1. Figure 3.6 desribes the 9 perfet

mathings of G1, with their respetive height hange. As a onsequene, the ontribution of the

perfet mathings of G1 to the right hand side of (3.3) is 1 for eah of the 5 �rst ones, −w,
respetively, − 1

w
, −z, −1

z
for the last four ones. Combining the di�erent ontributions yields,

as expeted, the harateristi polynomial as omputed in Equation (3.4).

4 matchings with height change (0,0) matching with height change (0,0)

or

matching with height change (0,1)

(0,−1), (1,0) and (−1,0)
+ 3 symmetries with height change 

0

00

0

0

00

0

00

0

0 0

0

0

1 0 0

1 1 1

1

0

Figure 3.6: 9 possible dimer on�gurations of G1 with their height hange.

In the spei� ase when (z, w) ∈ {−1, 1}2 inK1(z, w), on reovers the four matries (Kθτ
1 )θ,τ∈{0,1}.

Using Equation (3.2), we reover that the number of dimer on�gurations of G1 is:

Z(G1) =
1

2
(−P (1, 1) + P (−1, 1) + P (1,−1) + P (−1,−1)) = 9. (3.5)

Charateristi polynomials of larger graphs may be omputed reursively as follows. Let Kn be

a Kasteleyn matrix of the graph Gn as above, and let γx,n and γy,n be the horizontal and vertial

yles of G
∗
n. For z, w ∈ C, the altered Kasteleyn matrix Kn(z, w) is onstruted similarly to

K1(z, w), and the harateristi polynomial of Gn is Pn(z, w) = det(Kn(z, w)).

Theorem 9. [CKP01, KOS06℄ For every n ≥ 1, and every (z, w) ∈ C
2
, the harateristi

polynomial Pn(z, w) of Gn is:

Pn(z, w) =
∏

αn
i =z

∏

βn
j =w

P (αi, βj).

Proof. The proof is a generalization of [CKP01℄ where the same result is obtained for the graph

G = Z
2
. We only give the argument when z = w = 1. The proof for general z, w's follows the

same steps. Note that Kn(1, 1) = K00
n = Kn, so that our goal is to show that, for every n ≥ 1:

det(Kn) =
∏

αn
i =1

∏

βn
j =1

det(K1(αi, βj)).

Let Wn, respetively Bn, denote the set of white, respetively blak, verties of Gn. The idea is

to use the translation invariane of the graph Gn and of the matrix Kn to blok diagonalize Kn,

and to ompute its determinant by omputing the determinant of the di�erent bloks.
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Let C
Wn

be the set of omplex-valued funtions on white verties Wn, and C
Bn

those on blak

verties Bn. Then the matrix Kn an be interpreted as a linear operator from C
Bn

to C
Wn

: let

f ∈ C
Bn
, then

(Knf)(w) =
∑

b∈Bn

Kn(w, b)f(b).

Let TBn
x (resp. TBn

y ) be the horizontal (resp. vertial) translation operator ating on C
Bn
:

∀b ∈ Bn, (TBn
x f)(b) = f(b+ (1, 0)), (TBn

y f)(b) = f(b+ (0, 1)),

and onsider TBn = TBn
y ◦ TBn

x . The operator TBn
being an isometry, it yields an orthonormal

deomposition of C
Bn
, onsisting of eigenvetors of TBn

. The eigenvalues of TBn
are the produts

of n-th roots of unity: (αjβk)j,k∈{0,...,n−1}, where αj = ei
2πj

n
, βk = ei

2πk
n

(as a onsequene of

the fat that (TBn)n = Id). Let us denote by V Bn

αjβk
the eigenspae of the eigenvalue αjβk:

V Bn

αjβk
= {f ∈ C

Bn : ∀ b ∈ Bn, f(b + (1, 1)) = αjβkf(b)}. Then V Bn

αjβk
an be rewritten as

V Bn

αjβk
= {f ∈ C

Bn : ∀ b ∈ B1, ∀ (x, y) ∈ {0, . . . , n− 1}2, f(b+ (x, y)) = f(b)αx
j β

y
k}, where reall

that G1 = (W1 ∪ B1,E1) is the fundamental domain. For every b ∈ B1, de�ne e
b

αjβk
∈ C

Bn
by:

∀ b′ ∈ B1, ∀ (x, y) ∈ {0, . . . , n − 1}2, e
b

αjβk
(b′ + (x, y)) =

1

n
δb,b′α

x
j β

y
k .

Then, Eαjβk
= {ebαjβk

: b ∈ B1} is a basis of V Bn

αjβk
, the eigenspae V Bn

αjβk
is

|V (G1)|
2 dimensional,

and E = ∪{αjβk: j,k∈{0,...,n−1}}Eαjβk
is an orthonormal basis of C

Bn
. In a similar way, one obtains

an orthonormal deomposition of C
Wn

using TWn = TWn
x ◦ TWn

y ating on C
Wn

.

Let us show that Kn represented in this basis is blok diagonal, with a blok of size

|V (G1)|
2 for

eah of the n2 eigenvalues αjβk. For all w ∈W1, (x, y) ∈ {0, . . . , n− 1}2, one has:

(Kne
b

αjβk
)(w + (x, y)) =

∑

b′∈B1

∑

(x′,y′)∈{0,...,n−1}2
Kn(w + (x, y), b′ + (x′, y′))ebαjβk

(b′ + (x′ + y′))

=
∑

(x′,y′)∈{0,...,n−1}2
Kn(w + (x, y), b + (x′, y′))

1

n
αx′

j β
y′

k , by de�nition of e
b

αjβk

=
1

n
K1(αj , βk)w,b α

x
j β

y
k , by translation invariane of Kn

=
∑

w′∈W1

K1(αj , βk)w′,b e
w′

αjβk
(w + (x, y)), by de�nition of e

w′

αjβk
.

As a onsequene, (Kne
b

αjβk
) ∈ V Wn

αjβk
, and the matrixKn written in the basis E is blok diagonal.

For all w ∈W1, b ∈ B1, the (w, b)- oe�ient of the blok orresponding to the eigenvalue αjβk
is given by:

(ewαjβk
)∗Kne

b

αjβk
=
∑

w′∈W1

K1(αj , βk)w′,b (e
w

αjβk
)∗ ew

′

αjβk

= K1(αj , βk)w,b, sine the basis is orthonormal,

thus proving Theorem 9 in the ase where z = w = 1.
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3.2.3 Free energy

As a orollary to Theorems 7 and 9, we have an expliit expression for the partition funtion of

Gn as a funtion of the harateristi polynomial P .

Corollary 10. When the Kasteleyn orientation is hosen suh that the sign table of the funda-

mental domain is given by Table 3.1, then for every n ≥ 1,

Z(Gn) =
1

2

(
−Z00

n + Z10
n + Z01

n + Z11
n

)
,

where Zθτ
n = Pn((−1)θ, (−1)τ ) =

∏

αn
i =(−1)θ

∏

βn
j =(−1)τ

P (αi, βj).

The partition funtion is growing with the size of the graph. A natural question to ask now is :

�what is this growth rate ?� In order to formulate the question orretly, we need to know about

the order of magnitude of this growth. Intuition tells us that it is going to be exponential in the

area of the graph: Z(Gn) ∼ ecn2
. Thus the right quantity to look at is:

lim
n→∞

1

n2
logZ(Gn).

Minus this quantity is known as the free energy.

Theorem 11. [CKP01, KOS06℄ Under the assumption that P (z, w) has only a �nite number of

zeros on the unit torus T
2 = {(z, w) ∈ C

2 : |z| = |w| = 1}, we have:

lim
n→∞

1

n2
logZ(Gn) =

1

(2πi)2

∫

T2

log |P (z, w)|dz
z

dw

w
.

Proof. Sine Zθτ
n ounts some dimer on�gurations of Gn with the wrong sign, we have the

following bound:

Zθτ
n ≤ Z(Gn).

Moreover, looking at Table 3.1, we dedue:

−Z00
n ≤ +Z10

n + Z01
n + Z11

n ,

and thus by Theorem 7,

max
θ,τ∈{0,1}

{Zθτ
n } ≤ Z(Gn) ≤ Z10

n + Z01
n + Z11

n ≤ 3 max
θ,τ∈{0,1}

{Zθτ
n }.

So that limn→∞
1
n2 logZ(Gn) = limn→∞

1
n2 log

(
maxθ,τ∈{0,1}{Zθτ

n }
)
, provided that these limits

exist. By Theorem 9, we have:

1

n2
logZ00

n =
1

(2π)2
(2π)2

n2

n−1∑

j=0

n−1∑

k=0

logP (ei
2πj

n , ei
2πk
n ). (3.6)

The other terms

1
n2 logZ

θτ
n an be written in a similar way. These four terms look like Riemann

sums for the integral:

I =
1

(2π)2

∫ 2π

0

∫ 2π

0
log P (eiθ, eiτ )dθ dτ =

1

(2πi)2

∫

T2

logP (z, w)
dz

z

dw

w
.
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We may nevertheless have a onvergene problem. Indeed, terms of the sum (3.6) with arguments

too lose to the zeros of P (z, w) may explode. By using the very areful argument of Theorem

7.3. of [CKP01℄, one an hek that this will not happen, and so the Riemann sum of the

maximum onverges to the integral I.

The proof is onluded by observing that sine P (e−iθ, e−iτ ) = P (eiθ, eiτ ),

I =
1

(2π)2

∫ 2π

0

∫ 2π

0
log |P (eiθ, eiτ )|dθ dτ.

Example. The free energy of the dimer model on the square-otagon graph with uniform

weights is:

− 1

(2πi)2

∫

T2

log

∣∣∣∣5− z −
1

z
− w − 1

w

∣∣∣∣
dz

z

dw

w
.

Note that it is in general hard to expliitly ompute this integral.

3.3 Gibbs measures

We are now interested in haraterizing probability measures on the set of perfet mathings

M(G) of the in�nite graph G whih are, in some appropriate sense, in�nite volume versions of the

Boltzmann measure onM(Gn). Reall that by de�nition, the probability of a mathing hosen

with respet to the Boltzmann measure on M(Gn) is proportional to the produt of its edge

weights. This de�nition does not work when the graph is in�nite, and is replaed by the notion

of Gibbs measure, whih is a probability measure on M(G) satisfying the DLR

1

onditions:

if the perfet mathing in an annular region of G is �xed, mathings inside and outside of the

annulus are independent, and the probability of any interior mathing is proportional to the

produt of its edge-weights.

3.3.1 Limit of Boltzmann measures

A natural way of onstruting a Gibbs measure is to take the limit of the Boltzmann measures

on ylinder sets of M(Gn), where a ylinder set onsists of all perfet mathings ontaining a

�xed subset of edges of Gn.

Theorem 2 gives an expliit expression for the Boltzmann measure on ylinder sets when the

graph is planar and �nite. In the ase of toroidal graphs, a similar but more ompliated

expression holds: it is a ombination of fours terms similar to those of Equation (2.2), involving

the matries K00
n , . . . ,K

11
n , and their inverses.

Using the blok diagonalization of the matries Kστ
n of the proof of Theorem 9, one an ompute

the elements of the inverse expliitly and obtain Riemann sums. The onvergene of these

Riemann sums is again ompliated by the zeros of P (z, w) on the torus T
2
, but an be shown

to onverge on a subsequene of n's to the right hand side of Equation (3.7). Using a Theorem of

She�eld [She05℄ whih shows a priori existene of the limit, one dedues onvergene for every

n. Then, by Kolmogorov's extension theorem, there exists a unique probability measure on

(M(G), σ(A)) whih oinides with the limit of the Boltzmann measures on ylinder sets, where

σ(A) is the smallest sigma-�eld ontaining ylinder sets. This limiting measure is of Gibbs type

by onstrution. We have thus skethed the proof of the following theorem.

1

DLR stands for Dobrushin, Lanford and Ruelle
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Theorem 12. [CKP01, KOS06℄ Let {e1 = w1b1, . . . , ek = wkbk} be a subset of edges of G. Then
there exists a unique probability measure µ on (M(G), σ(A)) suh that:

µ(e1, . . . , ek) =

(
k∏

i=1

K(wi, bi)

)
det(K−1(bi,wj)1≤i,j≤k), (3.7)

where K is a Kasteleyn matrix assoiated to the graph G, and assuming b and w are in a single

fundamental domain:

K−1(b,w + (x, y)) =
1

(2πi)2

∫

T2

Qbw(z, w)

P (z, w)
zxwy dw

w

dz

z
,

and Qbw(z, w) is the (b,w) element of the adjugate matrix (transpose of the ofator matrix) of

K1(z, w). It is a polynomial in z, w, z−1, w−1
.

3.3.2 Ergodi Gibbs measures

In the previous setion, we have expliitly determined a Gibbs measure onM(G). We now aim

at haraterizing all of them. In order to this in a way whih is oherent with the model, we

introdue the following notions.

A probability measure on M(G) is translation-invariant, if the measure of a subset of M(G)
is invariant under the translation-isomorphism ation. An ergodi Gibbs measure (EGM) is a

Gibbs measure whih is translation invariant and ergodi, i.e. translation invariant sets have

measure 0 or 1.

For an ergodi Gibbs measure µ, de�ne the slope (s, t) to be the expeted horizontal and vertial

height hange in the (1, 0) and (0, 1) diretions, that is s = Eµ[h(v + (1, 0)) − h(v)], and t =
Eµ[h(v + (0, 1)) − h(v)].
Let us denote by µn the Boltzmann measure on M(Gn). For a �xed (s, t) ∈ R

2
, let Ms,t(Gn)

be the set of mathings of Gn whih have height hange (⌊sn⌋, ⌊tn⌋). Assuming thatMs,t(Gn)
is non-empty for n su�iently large, let µn(s, t) denote the onditional measure indued by µn
on Ms,t(Gn). Then, a haraterization of all ergodi Gibbs measures onM(G) is given by the

following theorem of She�eld.

Theorem 13. [She05℄ For eah (s, t) for whih Ms,t(Gn) is non-empty for n su�iently large,

µn(s, t) onverges as n →∞ to an EGM µ(s, t) of slope (s, t). Furthermore µn itself onverges

to µ(s0, t0) where (s0, t0) is the limit of the slopes of µn. Finally, if (s0, t0) lies in the interior

of the set of (s, t) for whih Ms,t(Gn) is non-empty for n su�iently large, then every EGM

of slope (s, t) is of the form µ(s, t) for some (s, t) as above; that is µ(s, t) is the unique ergodi

Gibbs measure of slope (s, t).

Proof. The existene is established by taking limits of Boltzmann measures on larger and larger

tori while restriting height hange. The uniqueness is muh harder, and we won't disuss it

here.

3.3.3 Newton polygon and available slopes

Theorem 13 raises the following question: what is the set of possible slopes for Gibbs measures or

equivalently for limits of onditional Boltzmann measures ? The answer is given by the Newton

polygon N(P ) de�ned as follows: N(P ) is the losed onvex hull in R
2
of the set of integer
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exponents of the monomials of the harateristi polynomial P (z, w), up to ontribution of the

referene �ow ωM0
, that is:

N(P ) = onvex hull{(i, j) ∈ Z
2|zi+x0wj+y0

is a monomial in P (z, w)}.

Proposition 14. [KOS06℄ The Newton polygon is the set of possible slopes of EGMs, that is

there exists an EGM µ(s, t) if and only if (s, t) ∈ N(P ).

Proof. Observing that hanging the referene �ow merely translates the Newton polygon, we

assume that (x0, y0) = (0, 0).

Let us �rst prove that if (s, t) ∈ N(P ), then there is a Gibbs measure of slope (s, t), or equiva-
lentlyMs,t(Gn) is non-empty for n large enough. For onveniene, we will assume that the set

of possible slopes is losed.

By Lemma 8, the absolute value of the oe�ient ziwj
in P (z, w) is the weighted sum of math-

ings of G1 with height hange (i, j), thus there is a mathing orresponding to eah extremal

point of N(P ), i.e. if (s, t) is an extremal point of N(P ), thenMs,t(G1) 6= ∅. It su�es to show

that ifMs1,t1(Gn1) andMs2,t2(Gn2) are non-empty for some n1 and n2, thenM s1+s2
2

,
t1+t2

2
(Gm)

is also non-empty for some m. Indeed, by indution, this allows to prove existene of a Gibbs

measure of slope (s, t) for a dense subset of the Newton polygon. The proof is ended by using

the assumption that the set of possible slopes is losed.

Without loss of generality, we an assume that n1 = n2, otherwise take the lm of their periods.

Consider two mathings ofMs1,t1(Gn) andMs2,t2(Gn), respetively. The superimposition of the

two mathings being a set of disjoint alternating yles, one an hange from one mathing to

the other by rotating along the yles. If the height hanges (⌊s1n⌋, ⌊t1n⌋), (⌊s2n⌋, ⌊t2n⌋) of the
two mathings are unequal, some of these yles have non-zero homology in H1(T

2,Z), so that

rotating along them will hange the height hange. On the toroidal graph G2n, onsider four

opies of the two mathings and shift half of the non-trivial yles; this reates a new mathing

with height hange (⌊(s1 + s2)n⌋, ⌊(t1 + t2)n⌋) =
(
⌊s1+s2

2 2n⌋, ⌊ t1+t2
2 2n⌋

)
, thus proving that

M s1+s2
2

,
t1+t2

2
(Gm) is non-empty for m = 2n.

Let us now suppose that there exists a Gibbs measure µ(s, t) of slope (s, t) and prove that

(s, t) ∈ N(P ). Denote by ~E1 the set of direted edges of the fundamental domain G1 = (V1,E1).
Realling that the divergene div is a linear funtion of �ows, the set of non-negative, white-to-

blak unit �ows de�nes a polytope of R
~E1
:

{ω ∈ R
~E1 : ∀wb ∈ E1, ω(b,w) = 0, 0 ≤ ω(w, b) ≤ 1; ∀w ∈ W1, divω(w) = 1, ∀ b ∈ B1, divω(b) = −1}.

The mapping ψ whih assigns to a �ow ω the total �ux aross γx and γy is a linear mapping

from the polytope to R
2
, implying that the image of the polytope under ψ is the onvex hull of

the images of the extremal points of the polytope.

Now, from Setion 3.1, we know that every dimer on�guration of G1 de�nes a non-negative,

white-to-blak unit �ow taking values in {0, 1} on every direted edge of

~E1. The onverse being

also true, this implies that extremal points of the polytope are given by dimer on�gurations.

Sine the referene �ow is suh that (x0, y0) = (0, 0), the image of a dimer on�guration under

ψ is its height hange. This means that the image of extremal points of the polytope ontains

the extremal points of the Newton polygon N(P ); the image of the polytope under ψ is thus

N(P ).

The Gibbs measure µ(s, t) of slope (s, t) de�nes a non-negative, white-to-blak �ow ωµ(s,t)
:

∀ e = wb ∈ E1, ω
µ(s,t)(w, b) = µ(s, t)(e), ωµ(s,t)(b,w) = 0.

33



Sine µ(s, t) is a probability measure, the �ow ωµ(s,t)
has divergene 1 at every white vertex and

-1 at every blak vertex. It thus belongs to the polytope and its image under ψ belongs to N(P ).
The proof is onluded by observing that the image of µ(s, t) under ψ is the slope (s, t).

Example 3.2. Figure 3.7 shows the Newton polygon of the dimer model on the square-otagon

graph with weights 1 on the edges. Marked points represent monomials of the harateristi

polynomial P (z, w) = 5− z − 1
z
− w − 1

w
.

1

1

Figure 3.7: Newton polygon of the dimer model on the square-otagon graph with uniform

weights.

3.3.4 Surfae tension

For every (s, t) ∈ N(P ), let Zs,t(Gn) be the partition funtion ofMs,t(Gn), that is:

Zs,t(Gn) =
∑

M∈Ms,t(Gn)

ν(M).

Then, by de�nition, the free energy of the measure µ(s, t) is:

σ(s, t) = − lim
n→∞

1

n2
logZs,t(Gn).

The funtion σ : N(P )→ R is known as the surfae tension. She�eld [She05℄ proves that it is

stritly onvex.

As a onsequene of this de�nition and of Theorem 13, one dedues that the measure µ(s0, t0)
of Theorem 13 is the one whih has minimal free energy. Moreover, sine the surfae tension is

stritly onvex, the surfae tension minimizing slope is unique and equal to (s0, t0).

3.3.5 Construting Gibbs measures

Theorem 12 of Setion 3.3.1 proves an expliit expression for the Gibbs measure µ(s0, t0) of slope
(s0, t0). Our goal now is to obtain an expliit expression for the Gibbs measures µ(s, t) with all

possible slopes (s, t).

Reall that by Theorem 13, the Gibbs measure µ(s, t) is the limit of the onditional Boltzmann

measures µn(s, t) on Ms,t(Gn). The problem is that onditional measures are hard objets

to work with in order to obtain expliit expressions. But we know how to handle the full

Boltzmann measure, whih onverges to the Gibbs measure of slope (s0, t0). So the idea to

avoid handling onditional measures is to modify the weight funtion on the edges of Gn in suh
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a way that mathings with another slope than (s0, t0) get favored. Hene, we are looking for a

weight funtion whih satis�es the following: the new weight of a mathing is equal to the old

weight multiplied by a quantity whih depends only on its height hange. This an be done by

introduing magneti �eld oordinates as follows.

Reall that γx,n, γy,n are oriented horizontal and vertial yles in the dual graph G
∗
n obtained

by taking n times the basis vetor ex of the underlying lattie Z
2
, n times the basis vetor ey

respetively, embedded on the torus. Then, on G
∗
n there are n horizontal opies of the yle γx,n,

and n vertial opies of the yle γy,n. Let (Bx, By) be two real numbers known as magneti

�eld oordinates. Multiply all edges rossing the n opies of the horizontal yle γx,n by e±Bx
,

depending on whether the white vertex is on the left or on the right. In a similar way, edges

rossing the n opies of the vertial yle γy,n are multiplied by e±By
. This de�nes a magneti

altered weight funtion, denoted by ν(Bx,By) satisfying our requirement. Indeed, let M0 be the

periodi referene mathing of Gn, and denote by xn0 , y
n
0 the total �ux of ωM0

through γx,n, γy,n.
Then, arguing in a way similar to the proof of Lemma 8, one an express the magneti altered

weight funtion ν(Bx,By) as the weight funtion ν, multiplied by a quantity whih only depends

on the height hange:

∀M ∈ M(Gn), ν(Bx,By)(M) = ν(M)enBx(hM
x +xn

0 )enBy(hM
y +yn0 ). (3.8)

Let P(Bx,By)(z, w) be the harateristi polynomial of the graph G1 orresponding to the magneti

altered weight funtion. The key fat is that P(Bx,By)(z, w) an easily be expressed using the

harateristi polynomial P (z, w) of the graph G1: expressing P(Bx,By)(z, w) using Lemma 8 and

replaing ν(Bx,By)(M) by the right hand side of (3.8) in the ase where n = 1, yields:

P(Bx,By)(z, w) = P (eBxz, eByw).

Let Z(Bx,By)(Gn) be the partition funtion and µ
(Bx,By)
n be the Boltzmann measure of the graph

Gn with the magneti altered weight funtion. Denote by µ(Bx,By) the Gibbs measure obtained

as weak limit of the Boltzmann measures µ
(Bx,By)
n . Then, as a diret orollary of Theorems 11

and 12, we have:

Corollary 15. [KOS06℄

Under the assumption that P (eBxz, eByw) has only a �nite number of zeros on the unit torus T
2
:

lim
n→∞

1

n2
logZ(Bx,By)(Gn) =

1

(2πi)2

∫

T2

log
∣∣P (eBxz, eByw)

∣∣ dz
z

dw

w
.

Corollary 16. [KOS06℄

Let {e1 = w1b1, . . . , ek = wkbk} be a subset of edges of G. Then there exists a unique probability

measure µ(Bx,By) on (M(G), σ(A)) suh that:

µ(Bx,By)(e1, . . . , ek) =

(
k∏

i=1

K(Bx,By)(wi, bi)

)
det(K−1

(Bx,By)
(bi,wj)1≤i,j≤k), (3.9)

where K(Bx,By) is a Kasteleyn matrix assoiated to the graph G, and assuming b and w are in a

single fundamental domain:

K−1
(Bx,By)

(b,w + (x, y)) =
1

(2πi)2

∫

T2

Qbw(e
Bxz, eByw)

P (eBxz, eByw)
zyw−x dw

w

dz

z
,

and Qbw(z, w) is the (b,w) element of the adjugate matrix of K1(z, w) of the original graph.
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So, it is quite remarkable that the results obtained for the weight funtion ν also yield the results

for the magneti altered weight funtion ν(Bx,By).

Note that we have not yet related the magneti �eld oordinates to the slope of the Gibbs

measure µ(Bx,By). This is postponed until Setion 3.4.2.

3.4 Phases of the model

In this setion, we desribe one of the most beautiful results on the bipartite dimer model

obtained by Kenyon, Okounkov and She�eld [KOS06℄, namely the full desription of the phase

diagram of the dimer model. It involves magneti �eld oordinates and an objet from algebrai

geometry alled �Harnak urves�.

A way to haraterize phases is by the rate of deay of edge-edge orrelations. In the dimer

model, this amounts to studying asymptotis of K−1
(Bx,By)

. Indeed, let e1 = w1b1 and e2 = w2b2

be two edges of G, whih are thought of as being far away from eah other. Let Ie be the random

variable whih is 1 if the edge e is present in a dimer on�guration, and 0 else. Then, using the

expliit expression for the Gibbs measure µ(Bx,By) yields:

Cov(Ie1 , Ie2) = µ(Bx,By)(e1, e2)− µ(Bx,By)(e1)µ(Bx,By)(e2),

= K(Bx,By)(w1, b1)K(Bx,By)(w2, b2)K
−1
(Bx,By)

(b2,w1)K
−1
(Bx,By)

(b1,w2).

The asymptoti behavior of K−1
(Bx,By)

(b,w+(x, y)) (as x2+y2 gets large) depends on the zeros of

the denominator on the unit torus, i.e. on the zeros of P (eBxz, eByw) on the unit torus. Hene,

the goal is to study the set: {(z, w) ∈ T
2 : P (eBxz, eByw) = 0}, or equivalently, the set:

{(z, w) ∈ C
2 : |z| = eBx , |w| = eBy , P (z, w) = 0}.

This is the subjet of the next setion.

3.4.1 Amoebas, Harnak urves and Ronkin funtion

The amoeba of a polynomial P ∈ C[z, w] in two omplex variables, denoted by A(P ), is de�ned
as the image of the urve P (z, w) = 0 in C

2
under the map:

(z, w) 7→ (log |z|, log |w|).

When P is the harateristi polynomial of a dimer model, the urve P (z, w) = 0 is known as

the spetral urve of the dimer model. Note that a point (x, y) ∈ R
2
is in the amoeba A(P ), if

and only if |z| = ex, |w| = ey, and P (z, w) = 0. Otherwise stated, a point (x, y) ∈ R
2
is in the

amoeba if and only if the polynomial P (exz, eyw) has at least one zero on the unit torus.

The theory of amoebas is a fresh and beautiful �eld of researh. The paper �What is ... an

amoeba?� in the noties of the AMS, by Oleg Viro gives a very nie overview of the results

obtained over a period of 8 years by [FPT00, GKZ94, Mik00, MR01℄. It provides a preise

geometri piture of the objet, whih heavily depends on the Newton polygon N(P ) of Se-

tion 3.3.3. Loosely stated, an amoeba satis�es the following, see also Figure 3.8.

• An amoeba reahes in�nity by several tentales. Eah tentale aommodates a ray and

narrows exponentially fast towards it, so that there is only one ray in eah tentale.
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• Eah ray is orthogonal to a side of the Newton polygon N(P ), and direted towards an

outward normal of the side.

• For eah side of N(P ), there is at least one tentale assoiated to it. The maximal number

of tentales orresponding to a side of N(P ) is the number of piees it is divided in by

integer lattie points.

• The amoeba's omplement R
2 \ A(P ) onsists of omponents between the tentales, and

bounded omponents. Eah bounded omponent orresponds to a di�erent integer lattie

point of N(P ), and the maximal number of bounded omponents is the total number of

interior integer lattie points of N(P ).

• Eah onneted omponent of the amoeba's omplement R
2 \ A(P ) is onvex.

• Planar amoebas are not bounded, but

Area(A(P )) ≤ π2Area(N(P )).

log|z|

log|w|
tentacle

ray

Figure 3.8: Newton polygon (left) and amoeba (right, shaded) of the harateristi polynomial

P (z, w) = 5− z − 1
z
− w − 1

w
of the uniform dimer model on the square-otagon graph.

One of the main tools used to study the amoeba of a polynomial P is the Ronkin funtion R of

this polynomial de�ned by:

∀ (x, y) ∈ R
2, R(x, y) =

1

(2πi)2

∫

T2

log |P (exz, eyw)|dz
z

dw

w
.

It has the following properties:

• The Ronkin funtion is onvex

• It is linear on eah omponent of the amoeba omplement, and the gradient is the orre-

sponding integer point of N(P ).
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Complex urves P (z, w) = 0 whose amoeba area is maximal, i.e. equal to π2Area(N(P )), are
alled maximal. Curves with this property are very speial: they have real oe�ients and

their amoeba has the maximal number of omponents. Suh urves were already introdued by

Harnak in 1876, and are known as Harnak urves. There is an alternative haraterization of

Harnak urves given in [MR01℄, whih is more useful here: a real urve P (z, w) = 0 is Harnak

if and only if the map from the urve to its amoeba is at most 2-to-1. It will be 2-to-1, with a

�nite number of possible exeptions where it may be 1-to-1 (the boundary of the amoeba, and

when bounded omponents shrink to a point).

One of the most fruitful theorem of the paper [KOS06℄ is the following.

Theorem 17. [KOS06, KO06℄ The spetral urve of a dimer model is a Harnak urve. Con-

versely, every Harnak urve arises as the spetral urve of some periodi bipartite weighted

dimer model.

For the proof of this theorem, we refer to [KOS06, KO06℄.

3.4.2 Surfae tension revisited

In this setion, we relate the magneti �eld oordinates to the slope of the measure µ(Bx,By).

This is done by expressing the surfae tension as a funtion of the Ronkin funtion.

Let us assume that the referene �ow ωM0
of the fundamental domain G1 �ows by 0 through

the paths γx, γy, i.e. x0 = y0 = 0.

Theorem 18. [KOS06℄ The surfae tension is the Legendre transform of the Ronkin funtion

of the harateristi polynomial, i.e.

σ(s, t) = max
x,y
{−R(x, y) + sx+ ty}.

Proof. (Sketh) Let us sketh the proof that the Ronkin funtion is the Legendre transform

of the surfae tension. Sine the surfae tension is stritly onvex [She05℄, then the Legendre

transform is involutive, and Theorem 18 is obtained.

By Corollary 15, we know that:

R(Bx, By) = lim
n→∞

1

n2
logZ(Bx,By)(Gn).

Moreover, by de�nition:

Z(Bx,By)(Gn) =
∑

M∈M(Gn)

ν(M)enBxhxenByhy . This sum an be deomposed as:

Z(Bx,By)(Gn) =

∫∫

N(P )

∑

{M∈M(Gn):hx=⌊ns⌋,hy=⌊nt⌋}
ν(M)enBxhxenByhyds dt

=

∫∫

N(P )

en
2(Bxs+Byt)+O(n)

( ∑

{M∈M(Gn):hx=⌊ns⌋,hy=⌊nt⌋}
ν(M)

)
ds dt

=

∫∫

N(P )

en
2(Bxs+Byt)+O(n)e−n2σ(s,t)+O(n)ds dt, by de�nition of σ(s, t)

=

∫∫

N(P )

en
2(Bxs+Byt−σ(s,t)+o(1))ds dt.
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An upper bound is obtained by writing:

∫∫

N(P )

en
2(Bxs+Byt−σ(s,t)+o(1))ds dt ≤ en2[max{(s,t)∈N(P )}(Bxs+Byt−σ(s,t))+o(1)]|N(P )|

A lower bound is obtained by performing Taylor expansion of φ(s, t) := Bxs + Byt − σ(s, t)
around its maximum and using the fat that the surfae tension is stritly onvex.

Taking

1
n2 log yields that the Ronkin funtion is the Legendre transform of the surfae tension:

R(Bx, By) = max
(s,t)∈N(P )

{Bxs+Byt− σ(s, t)}.

Corollary 19. The slope of the measure µ(Bx,By) is the gradient of the Ronkin funtion at the

point (Bx, By).

3.4.3 Phases of the dimer model

In the introdutory part of Setion 3.4, we mentioned that a way to haraterize phases of a

given model is to use the rate of deay of edge-edge orrelations and that, in the ase of the

dimer model, it required a haraterization of the zeros of P (eBxz, eByw) on the unit torus. This

information is now available and one an give a preise desription of the phase diagram of the

dimer model.

Atually, Kenyon, Okounkov and She�eld use height funtion �utuations to de�ne the di�erent

phases, but show that this is equivalent to lassifying phases using rate of deay of orrelations.

Here are their de�nitions:

• An EGM µ is alled a frozen phase if there exists distint faes f, f
′
of G for whih h(f)−h(f ′)

is deterministi.

• An EGM µ is alled a gaseous or smooth phase, if the height �utuations have bounded

variane.

• An EGM µ is alled a liquid or rough phase, if the µ-variane of the height di�erene is

unbounded.

Now omes the theorem haraterizing phases.

Theorem 20. [KOS06℄ The measure µ(Bx,By) is:

• frozen when (Bx, By) is in the losure of an unbounded onneted omponent of the amoeba's

omplement R
2 \ A(P ),

• liquid when (Bx, By) is in the interior of the amoeba A(P ),

• gaseous when (Bx, By) is in the losure of a bounded onneted omponent of the amoeba's

omplement R
2 \ A(P ).

Figure 3.9 represents the amoeba of the dimer model on the square-otagon graph with uniform

weights, and the orresponding phases of the model.

We only give a few ideas on the proof of this theorem.
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By

Bx

frozen

frozen

gas

liquid

frozenfrozen

Figure 3.9: Phase diagram of the uniform dimer model on the square-otagon graph.

• Suppose that (Bx, By) is in the losure of an unbounded omponent of the amoeba's

omplement and reall (Corollary 19) that the slope of the measure µ(Bx,By) is the gradient

of the Ronkin funtion at the point (Bx, By). The slope is thus an integer point on the

boundary of N(P ). Using the max-�ow min ut theorem used by Thurston [Thu90℄ to

give a riterion of existene of dimer on�gurations, one dedues that: if the slope is a

non-extremal boundary point of N(P ), then there is an edge-path in the dual graph G
∗
1,

whose diretion is orthogonal to the side of the Newton polygon, and suh that dual edges

rossing opies of this path appear with probability 1 or 0; if the slope is an extremal

point of N(P ), there are two non-parallel edge-paths in the dual G
∗
1, whose diretions are

orthogonal to the two side of the Newton polygon meeting at the extremal point, and suh

that dual edges rossing opies of these paths appear with probability 1 or 0. Otherwise

stated, in the tiling representation of the dimer model, there are paths in the dual graph

G
∗
1 generating a lattie of G

∗
, onsisting of frozen paths for all tilings of G

∗
hosen with

respet to the measure µ(Bx,By). Tilings in onneted omponents of the omplement of

this lattie are independent.

The height di�erene of faes f, f ′ whih belong to the lattie of frozen paths is onstant,

i.e. h(f)− h(f ′) is deterministi and the measure µ(Bx,By) is in the frozen phase.

In the other two ases, the proof onsists of expliit asymptoti expansions of

K−1
(Bx,By)

(b,w + (x, y)),

whih is the (x, y)-Fourier oe�ient of

Qbw(e
Bxz,eByw)

P (eBxz,eByw)
seen as a funtion of (z, w) ∈ T

2
.

• When (Bx, By) is in the interior of the amoeba, then P (eBxz, eByw) has 1 or 2 zeros on the

unit torus, and KOS show that the only ontribution to the (x, y)-Fourier oe�ient omes

from a neighborhood of the pole(s). They extrat the exat asymptotis by doing Taylor

approximations and ontour integration, and show that K−1
(Bx,By)

(b,w + (x, y)) dereases

linearly, implying that the edge ovarianes dereases quadratially. The authors then

prove that the height di�erene between two faes f, f ′ grows universally like

1
π
times the

logarithm of the distane from f to f
′
. The measure µ(Bx,By) is thus a liquid phase.
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• When (Bx, By) belongs to the omplement of the amoeba, then P (eBxz, eByw) has no

zero on the unit torus, and

Qbw(e
Bxz,eByw)

P (eBxz,eByw)
is analyti, implying that its Fourier oe�ients

derease exponentially fast. When, (Bx, By) is in an unbounded omponent, then using

the above spei� argument of the frozen phase, the authors show that some Fourier

oe�ients are 0. When (Bx, By) is in a bounded omponent, then the Fourier oe�ient

dereases exponentially fast, and the height �utuations have bounded variane. The

measure µ(Bx,By) is thus a gaseous phase.

3.5 Flutuations of the height funtion

In this setion we address the question of the �utuations of the height funtion around its

mean. We restrit ourselves to the ase of the uniform dimer model on the in�nite honeyomb

lattie H, with no magneti �eld. The goal is to prove that the limiting �utuations of the height

funtion are desribed by a Gaussian free �eld of the plane, a behavior whih is harateristi

of the liquid phase.

Results presented here, and extensions an be found in [Ken00, Ken01, Ken08, dT07℄.

3.5.1 Uniform dimer model on the honeyomb lattie

Let us speify the results obtained in the previous setions to the ase where H is the honeyomb

lattie, edges are assigned weights 1, and there is no magneti �eld. The hoie of fundamental

domain is given in Figure 3.10.

1/w

γx

yγ

z

1

1

1 1

1

Figure 3.10: Choie of fundamental domain of the honeyomb lattie

The harateristi polynomial is:

P (z, w) = 1 + z +
1

w
.

The Gibbs measure µ obtained as weak limit of the Boltzmann measures µn on M(Gn) (with
no magneti �eld) has the following expression on ylinder sets:

µ(e1, . . . , ek) = det
(
K−1(bi,wj)1≤i,j≤k

)
, (3.10)

where

K−1(b0,0,wx,y) =
1

(2πi)2

∫

T2

1

1 + z + 1
w

zyw−x dz

z

dw

w
,

and wx,y represents the white vertex of the (x, y) opy of the fundamental domain, and similarly

for bx,y.
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When there is no magneti �eld, the harateristi polynomial has two onjugate simple zeros

on the unit torus T: (z0, w0) = (ei
2π
3 , ei

2π
3 ), and (z0, w0). The uniform dimer model on the

honeyomb lattie is thus in the liquid phase.

In Setion 2.4, we de�ned Thurston's height funtion on lozenge tilings of the triangular lattie

T, whih was a funtion on verties of T. Equivalently, it is a funtion on dimer on�gurations

of the honeyomb lattie H, de�ned on faes of H. For onveniene, from now on, we onsider

1
3 of Thurston's height funtion.

The following lemma gives an expression of the height funtion using indiator funtions of

edges. We will use this in the proof of the onvergene of the height funtion. Let u, v be two

faes of H, and let γ be an edge-path in the dual graph from u to v. Denote by e1, . . . , em the

dual edges of edges of γ whih have a blak vertex on the left, and by f1, . . . , fn those whih have

a white vertex on the left. Then,

Lemma 21.

h(v)− h(u) =
m∑

i=1

(
−Iei +

1

3

)
+

n∑

j=1

(
Ifj −

1

3

)
.

Proof. Let ei be the dual edge of an edge uivi of γ, whih has a blak vertex on the left of

γ. Then, returning to the orientation of the edges of the triangular lattie introdued in the

onstrution of Thurston's height funtion, see Setion 2.4, we know that the edge uivi is oriented

from ui to vi. Thus by de�nition, we have:

h(vi)− h(ui) =
{

1
3 if the edge ei is not in the dimer on�guration

−2
3 if the edge ei is in the dimer on�guration.

This an be summarized as: h(vi)− h(ui) = −Iei + 1
3 .

A similar argument holds for edges whih have a white vertex on the left. Summing over all

edges in the path γ yields the result.

3.5.2 Gaussian free field of the plane

We now de�ne the Gaussian free �eld of the plane, whih is, as we will see, the limiting objet

of the height funtion.

The Green's funtion of the plane, denoted by g satis�es ∆xg(x, y) = δx(y), where δx is the

Dira distribution at x. Up to an additive onstant, g is given by

g(x, y) = − 1

2π
log |x− y|.

Let C∞
c,0(R

2) be the set of C∞
funtion of R

2
with ompat support and zero mean, and de�ne

the following ontinuous, bilinear form:

G : C∞
c,0(R

2)× C∞
c,0(R

2) → R

(ϕ1, ϕ2) 7→ G(ϕ1, ϕ2) =

∫

R2

∫

R2

g(x, y)ϕ1(x)ϕ2(y)dx dy.

Introduing fi(x) =
√
2
∫
R
g(x, y)ϕi(x)dx, i ∈ {1, 2}, and using Green's formula, one shows that:

G(ϕ1, ϕ2) =
1

2

∫

R2

∇f1(x) · ∇f2(x)dx,
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implying that the bilinear form G is positive de�nite. The quantity G(ϕ1, ϕ1) is known as the

Dirihlet energy of f1.

A random generalized funtion F assigns to every test funtion ϕ in C∞
c,0(R

2), a real random

variable Fϕ. It is assumed to be linear and ontinuous, where ontinuity means that onvergene

of the funtions ϕnj
(1 ≤ j ≤ k) to ϕj , implies onvergene in law of the random vetor

(Fϕn1 , . . . , Fϕnk
) to (Fϕ1, . . . , Fϕk). A random generalized funtion is said to beGaussian if for

every linearly independent funtions ϕ1, . . . , ϕk ∈ C∞
c,0(R

2), the random vetor (Fϕ1, . . . , Fϕk)
is Gaussian.

Theorem 22. [Bo55℄ If B : C∞
c,0(R

2)×C∞
c,0(R

2)→ R is a bilinear, ontinuous, positive de�nite

form, then there exists a Gaussian random generalized funtion F , whose ovariane funtion is

given by:

E[Fϕ1Fϕ2] = B(ϕ1, ϕ2).

By de�nition a Gaussian free �eld of the plane GFF is a Gaussian random generalized funtion

whose ovariane funtion is the bilinear form G de�ned above, i.e.

E[GFF(ϕ1)GFF(ϕ2)] = −
1

2π

∫

R2

∫

R2

log |x− y|ϕ1(x)ϕ2(y)dx dy.

There are other ways of de�ning the Gaussian free �eld, see for example [GJ81℄ and [She07℄.

3.5.3 Convergene of the height funtion to a Gaussian free field

Let H
ε
be the graph H whose edge-lengths have been multiplied by ε, and onsider the un-

normalized height funtion h on faes of H
ε
. De�ne,

Hε : C∞
c,0(R

2) → R

ϕ 7→ Hεϕ = ε2
∑

v∈F (Hε)

ϕ(v)h(v).

Theorem 23. The random generalized funtion Hε
onverges weakly in law to

1√
π
times a

Gaussian free �eld, i.e. for every ϕ1, . . . , ϕk ∈ C∞
c,0(R

2), (Hεϕ1, . . . ,H
εϕk) onverges in law (as

ε→ 0) to 1√
π
(GFFϕ1, . . . ,GFFϕk), where GFF is a Gaussian free �eld.

Sine the vetor (GFFϕ1, . . . ,GFFϕk) is Gaussian, to prove onvergene of (Hεϕ1, . . . ,H
εϕk)

to (GFFϕ1, . . . ,GFFϕk), it su�es to prove onvergene of the moments of (Hεϕ1, . . . ,H
εϕk)

to those of (GFFϕ1, . . . ,GFFϕk); that is we need to show that for every k-tuple of positive

integers (m1, . . . ,mk), we have:

lim
ε→0

E[(Hεϕ1)
m1 . . . (Hεϕk)

mk ] = E[(GFFϕ1)
m1 . . . (GFFϕk)

mk ]. (3.11)

We now state the key proposition used to prove onvergene of the moments. Let u1, . . . uk,
v1, . . . , vk be distint points of R

2
, and let γ1 . . . , γk be pairwise disjoint paths suh that γj runs

from uj to vj . Let u
ε
j , v

ε
j be faes of H

ε
lying within O(ε) of uj and vj respetively. Then,

Proposition 24.

lim
ε→0

E [(h(vε1)− h(uε1)) . . . (h(vεk)− h(uεk))] =

=





0 when k is odd

(
1

π

) k
2 ∑

σ

g(uσ(1), vσ(1), uσ(2), vσ(2)) . . . g(uσ(k−1), vσ(k−1), uσ(k), vσ(k)) when k is even
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where g(u, v, u′, v′) = g(v, v′)+ g(u, u′)− g(v, u′)− g(u, v′), g is the Green's funtion of the plane,

and the sum is over all (k − 1)!! pairings of {1, . . . , k}.

Proof. We prove this proposition in a partiular ase. The proof of the general ase is similar,

although notationally muh more umbersome. Let us assume that k = 2, and suppose that

u1, v1, u2, v2 are suh that we an hoose u
ε
1, v

ε
1, u

ε
2, v

ε
2 as in Figure 3.11. Let γε1 and γε2 be the

paths joining u
ε
1, v

ε
1 and u

ε
2, v

ε
2 respetively as in Figure 3.11.

ε

u

u

v

v

1

1

2

2

ε

ε

ε

ε

Figure 3.11: Choie of u
ε
1, u

ε
2, v

ε
1, v

ε
2

.

Denote by e1 = w1b1, . . . , em = wmbm the dual edges of the edges of the path γε1, and by

f1 = w
′
1b

′
1, . . . , fn = w

′
nb

′
n, the dual edges of the edges of γ

ε
2. Then, by Lemma 21,

E [(h(vε1)− h(uε1))(h(vε2)− h(uε2))] = E




m∑

i=1

(
−Iei +

1

3

) n∑

j=1

(
Ifj −

1

3

)


=
m∑

i=1

n∑

j=1

(
−µ(ei, fj) +

1

3
µ(ei) +

1

3
µ(fj)−

1

9

)

=

m∑

i=1

n∑

j=1

(
−µ(ei, fj) +

1

9

)
, (sine µ(e) =

1

3
for every edge e),

= −
m∑

i=1

n∑

j=1

K−1(bi,w
′
j)K

−1(b′j ,wi), (sine K(wi, bi) = K(w′
j , b

′
j) = 1),

Using asymptoti formulae for K−1(bi,w
′
j), K

−1(b′j ,wi) (see either [KOS06℄ or [Ken02℄), one

obtains:

−K−1(bi,w
′
j)K

−1(b′j ,wi) = −
1

(2π)2

(
ε2dz′jdzi
(z′j − zi)2

+
ε2dz̄′jdz̄i

(z̄′j − z̄i)2

)
+ ross terms+ o(),

where z′j and zi are points approximating w
′
j, b

′
j and wi, bi, respetively. One an show that the

sum over the paths γε1, γ
ε
2 of the ross terms is O(ε), so that summing over all edges in the paths
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yields:

lim
ε→0

E [(h(vε1)− h(uε1))(h(vε2)− h(uε2))] = −2Re
∫

v1

u1

∫
v2

u2

1

4π2(z2 − z1)2
dz1dz2

= − 1

2π2
log

∣∣∣∣
(v1 − v2)(u1 − u2)

(v1 − u2)(u1 − v2)

∣∣∣∣

=
1

π
g(u1, v1, u2, v2).

One Proposition 24 is available, one then introdues test funtions and prove onvergene of

all moments of (3.11). This implies handling moments of height di�erenes involving verties

whih are lose. The asymptoti formula for the inverse Kasteleyn matrix does not hold in this

ase, and one has to do areful bounds to see that everything still works.

********************************

We have reahed the end of these leture notes overing the foundations of the dimer model

and the paper �Dimers and amoeba� of Kenyon, Okounkov and She�eld [KOS06℄, giving a full

desription of the phase diagram of the dimer model on periodi, bipartite graphs. Although

these are spetaular results, there are others, suh as the spei� behavior of the dimer model

de�ned on isoradial graphs [Ken02, KO06℄, the understanding of limit shapes [CKP01, KO07℄,

the appliation of dimer tehniques to study the Ising model [BdT10b, BdT10a℄. We do hope

that these notes will enourage the reader to learn more on this very rih model of statistial

mehanis.
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