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Chapter 1

Introdu
tion

1.1 Statisti
al me
hani
s and 2-dimensional models

Statisti
al me
hani
s is the appli
ation of probability theory, whi
h in
ludes mathemati
al tools

for dealing with large populations, to the �eld of me
hani
s, whi
h is 
on
erned with the motion

of parti
les or obje
ts when subje
ted to a for
e. Statisti
al me
hani
s provides a framework for

relating the mi
ros
opi
 properties of individual atoms and mole
ules to the ma
ros
opi
 bulk

properties of materials that 
an be observed in everyday life (sour
e: `Wikipedia').

In other words, statisti
al me
hani
s aims at studying large s
ale properties of physi
s system,

based on probabilisti
 models des
ribing mi
ros
opi
 intera
tions between 
omponents of the

system. Statisti
al me
hani
s is also known as statisti
al physi
s.

It is a priori natural to introdu
e 3-dimensional graphs in order to a

urately model the mole
ular

stru
ture of a material as for example a pie
e of iron, a porous material or water. Sin
e the

3-dimensional version of many models turns out to be hardly tra
table, mu
h e�ort has been

put into the study of their 2-dimensional 
ounterpart. The latter have been shown to exhibit

ri
h, 
omplex and fas
inating behaviors. Here are a few examples.

• Per
olation. This model des
ribes the �ow of a liquid through a porous material. The

system 
onsidered is a square grid representing the mole
ular stru
ture of the material.

Ea
h bond of the grid is either �open� with probability p, or �
losed� with probability 1−p,
and bonds are assumed to behave independently from ea
h other. The set of open bonds

in a given 
on�guration represents the part of the material wetted by the liquid, and the

main issue addressed is the existen
e and properties of in�nite 
lusters of open edges. The

behavior of the system depends on the parameter p: when p = 0, all edges are 
losed,

there is no in�nite 
luster and the liquid 
annot �ow through the material; when p = 1, all
edges are open and there is a unique in�nite 
luster �lling the whole grid. One 
an show

that there is a spe
i�
 value of the parameter p, known as 
riti
al p, equal to 1/2 for the

square grid, below whi
h the probability of having an in�nite 
luster of open edges is 0, and

above whi
h the probability of it existing and being unique is 1. One says that the system
undergoes a phase transition at p = 1/2. Referen
es [Kes82, Gri99, BR06, W+

07, Wer09℄

are books or le
ture notes giving an overview of per
olation theory.

• The Ising model. The system 
onsidered is a magnet made of parti
les restri
ted to stay on

a grid. Ea
h parti
le has a spin whi
h points either �up� or �down� (spin ±1). Ea
h 
on�g-

uration σ of spins on the whole grid has an energy E(σ), whi
h is the sum of an intera
tion
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Figure 1.1: An in�nite 
luster of open edges, when p = 1
2 . Courtesy of V. Be�ara.

energy between pairs of neighboring spins, and of an intera
tion energy of spins with an

external magneti
 �eld. The probability of a 
on�guration σ is proportional to e−
1
kT

E(σ)
,

where k is the Boltzmann 
onstant, and T is the external temperature. When there is no

magneti
 �eld and the temperature is 
lose to 0, spins tend to align with their neighbors

and a typi
al 
on�guration 
onsists of all +1 or all −1. When the temperature is very

high, all 
on�gurations have the same probability of o

urring and a typi
al 
on�guration


onsists of a mixture of +1 and −1. Again, there is a 
riti
al temperature Tc at whi
h the

Ising model undergoes a phase transition between the ordered and disordered phase. The

literature on the Ising model is huge, as an introdu
tory reading we would suggest the

book by Baxter [Bax89℄, the one by M
Coy and Wu [MW73℄, the le
ture notes by Velenik

[Vel℄ and referen
es therein.

Figure 1.2: An Ising 
on�guration, when

1
T
= 0.9. Courtesy of V. Be�ara.

These two examples illustrate some of the prin
ipal 
hallenges of 2-dimensional statisti
al me-


hani
s, whi
h are:

• Find the 
riti
al parameters of the models.

• Understand the behavior of the model in the sub-
riti
al and super-
riti
al regimes.
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• Understand the behavior of the system at 
riti
ality. Criti
al systems exhibit surprising fea-

tures, and are believed to be universal in the s
aling limit, i.e. independent of the spe
i�


features of the latti
e on whi
h the model is de�ned. Very pre
ise predi
tions were estab-

lished by physi
ists in the last 30-50 years, in parti
ular by Nienhuis, Cardy, Duplantier

and many others. On the mathemati
s side, a huge step forward was the introdu
tion

of the S
hramm-Loewner evolution by S
hramm in [S
h00℄, a pro
ess 
onje
tured to de-

s
ribe the limiting behavior of well 
hosen observables of 
riti
al models. Many of these


onje
tures were solved in the following years, in parti
ular by Lawler, S
hramm, Werner

[LSW04℄ and Smirnov [Smi10℄, Chelkak-Smirnov [CS12℄. The importan
e of these results

was a
knowledged with the two Fields medals awarded to Werner (2006) and Smirnov

(2010). Interesting 
ollaborations between the physi
s and mathemati
s 
ommunities are

emerging, with for example the work of Duplantier and She�eld [DS11℄.

The general framework for statisti
al me
hani
s is the following. Consider an obje
t G (most

often a graph) representing the physi
al system, and de�ne all possible 
on�gurations of the

system. To every 
on�guration σ, assign an energy E(σ), then the probability of o

urren
e of

the 
on�guration σ is given by the Boltzmann measure µ:

µ(σ) =
e−E(σ)

Z(G)
.

Note that the energy is often multiplied by a parameter representing the inverse external tem-

perature. The denominator Z(G) is the normalizing 
onstant, known as the partition fun
tion:

Z(G) =
∑

σ

e−E(σ).

When the system is in�nite, the above de�nition does not hold, but we do not want to enter

into these 
onsiderations here.

The partition fun
tion is one of the key obje
ts of statisti
al me
hani
s. Indeed it en
odes mu
h

of the ma
ros
opi
 behavior of the system. Hen
e, its 
omputation is the �rst question one

addresses when studying su
h a model. It turns out that there are very few models where this


omputation 
an be done exa
tly. Having a 
losed form for the partition fun
tion opens the

way to �nding many exa
t results, and to having a very deep understanding of the ma
ros
opi


behavior of the system.

Two famous examples are the 2-dimensional Ising model, where the 
omputation of the partition

fun
tion is due to Onsager [Ons44℄, and the dimer model where it is due to Kasteleyn [Kas61,

Kas67℄, and independently to Temperley and Fisher [TF61℄. The dimer model is the main topi


of these le
tures and is de�ned in the next se
tion.

1.2 The dimer model

The dimer model was introdu
ed in the physi
s and 
hemists 
ommunities to represent the

adsorption of di-atomi
 mole
ules on the surfa
e of a 
rystal. It is part of a larger family of

models des
ribing the adsorption of mole
ules of di�erent sizes on a latti
e. It was �rst mentioned

in a paper by Fowler and Rushbrooke [FR37℄ in 1937. As mentioned in the previous se
tion, the

�rst major breakthrough in the study of the dimer model is the 
omputation of the partition

fun
tion by Kasteleyn [Kas61, Kas67℄ and independently by Temperley and Fisher [TF61℄.

It is interesting to observe that for a long time, the physi
s and mathemati
s 
ommunities were

unaware of their respe
tive advan
es. Mathemati
ians studied related questions as for example
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the enumeration of non-interse
ting latti
e paths by Ma
 Mahon [Ma
01℄, the understanding of

geometri
 and 
ombinatorial properties of tilings of regions of the plane by dominoes or rhombi.

To the best of our knowledge, the latter problem was �rst introdu
ed in a paper by David

and Tomei [DT89℄. A major breakthrough was a
hieved in the paper [Thu90℄ Thurston, where

the author interprets rhombus tilings as 2-dimensional interfa
es in a 3-dimensional spa
e. An

example of rhombus tiling is given in Figure 1.3.

Figure 1.3: Rhombus tiling. Courtesy of R. Kenyon.

In the late 90's and early 00's, a lot of progresses were made in understanding the model, see the

papers of Kenyon [Ken97, Ken00℄, Cohn-Kenyon-Propp [CKP01℄, Kuperberg [Kup98℄, Kenyon-

Propp-Wilson [KPW00℄. In 2006 Kenyon-Okounkov-She�eld [KOS06℄, followed by Kenyon-

Okounkov [KO06, KO07℄ wrote breakthrough papers, whi
h give a full understanding of the

model on in�nite, periodi
, bipartite graphs. Su
h deep understanding of phenomena is a real

treasure in statisti
al me
hani
s.

My goal for these le
tures is to present the results of Kasteleyn, Temperley and Fisher, of

Thurston, and of the paper of Kenyon, Okounkov and She�eld. As you will see, the dimer

model has rami�
ations to many �elds of mathemati
s: probability, geometry, 
ombinatori
s,

analysis, algebrai
 geometry. I will try to be as thorough as possible, but of 
ourse some results

addressing the �eld of algebrai
 geometry rea
h the limit of my knowledge, so that I will only
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state them. In other 
ases, I will try and give ideas of proofs at least.

Inspiration for these notes 
omes in large parts from the le
tures given by R. Kenyon on the

subje
t [Ken04, Ken℄. The main other referen
es are [Kas67, Thu90, KOS06, KO06℄.
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Chapter 2

Definitions and founding results

2.1 Dimer model and tiling model

In this se
tion, we de�ne the dimer model and the equivalent tiling model, using the terminology

of statisti
al me
hani
s. The system 
onsidered is a graph G = (V,E) satisfying the following:

it is planar, simple (no loops and no multiple edges), �nite or in�nite.

Con�gurations of the system are perfe
t mat
hings of the graph G. A perfe
t mat
hing is a subset

of edges whi
h 
overs ea
h vertex exa
tly on
e. In the physi
s literature, perfe
t mat
hings are

also referred to as dimer 
on�gurations, a dimer being a di-atomi
 mole
ule represented by an

edge of the perfe
t mat
hing. Let us denote byM(G) the set of all dimer 
on�gurations of the

graph G.

Figure 2.1 gives an example of a dimer 
on�guration when the graph G is a �nite subgraph of

the honey
omb latti
e H.

Figure 2.1: Dimer 
on�guration of a subgraph of the honey
omb latti
e.

In order to de�ne the equivalent tiling model, we 
onsider a planar embedding of the graph G,

and suppose that it is simply 
onne
ted, i.e. that it is the one-skeleton of a simply 
onne
ted

union of fa
es. From now on, when we speak of a planar graph G, we a
tually mean a graph

with a parti
ular planar embedding.

The tiling model is de�ned on the dual graph G
∗
of G. An embedding of the dual graph G

∗
is

obtained by assigning a vertex to every fa
e of G and joining two verti
es of G
∗
by an edge if

and only if the 
orresponding fa
es of G are adja
ent. The dual graph will also be thought of as

an embedded graph. When the graph is �nite, we take a slightly di�erent de�nition of the dual:

we take G to be the dual of G
∗
and remove the vertex 
orresponding to the outer fa
e, as well

as edges 
onne
ted to it, see Figure 2.2.

A tile of G
∗
is a polygon 
onsisting of two adja
ent inner fa
es of G

∗
glued together. A tiling

of G
∗
is a 
overing of the graph G

∗
with tiles, su
h that there are no holes and no overlaps.

11



Figure 2.2 gives an example of a tiling of a �nite subgraph of the triangular latti
e T, the dual

graph of the honey
omb latti
e. Tiles of the triangular latti
e are 60◦-rhombi, and are also

known as lozenges or 
alissons.

Figure 2.2: Dual graph of a �nite subgraph of the honey
omb latti
e (left). Tiling of this

subgraph (right).

Another 
lassi
al example is the tiling model on the graph Z
2
, the dual of the graph Z

2
. Tiles

are made of two adja
ent squares, and are known as dominoes.

Dimer 
on�gurations of the graph G are in bije
tion with tilings of the graph G
∗
through the

following 
orresponden
e, see also Figure 2.3: dimer edges of perfe
t mat
hings 
onne
t pairs of

adja
ent fa
es forming tiles of the tiling. It is an easy exer
ise to prove that this indeed de�nes

a bije
tion.

Figure 2.3: Bije
tion between dimer 
on�gurations of the graph G and tilings of the graph G
∗
.

2.2 Energy of 
onfigurations and Boltzmann measure

We let G be a planar, simple graph. In this se
tion, and for the remainder of Chapter 2, we take

G to be �nite. Suppose that edges are assigned a positive weight fun
tion ν, that is every edge

e of G has weight ν(e).

The energy of a dimer 
on�guration M of G, is E(M) = −∑
e∈M log ν(e). The weight ν(M) of

a dimer 
on�guration M of G, is exponential of minus its energy:

ν(M) = e−E(M) =
∏

e∈M
ν(e).

Note that by the 
orresponden
e between dimer 
on�gurations and tilings, the fun
tion ν 
an

be seen as weighting tiles of G
∗
, ν(M) is then the weight of the tiling 
orresponding to M .

12



Weights of 
on�gurations allow to introdu
e randomness in the model: the Boltzmann measure

µ is a probability measure on the set of dimer 
on�gurationsM(G), de�ned by:

∀M ∈ M(G), µ(M) =
e−E(M)

Z(G)
=
ν(M)

Z(G)
.

The term Z(G) is the normalizing 
onstant known as the partition fun
tion. It is the weighted

sum of dimer 
on�gurations, that is,

Z(G) =
∑

M∈M(G)

ν(M).

When ν ≡ 1, the partition fun
tion 
ounts the number of dimer 
on�gurations of the graph G,

or equivalently the number of tilings of the graph G
∗
, and the Boltzmann measure is simply the

uniform measure on the set of dimer 
on�gurations.

When analyzing a model of statisti
al me
hani
s, the �rst question addressed is that of 
omput-

ing the free energy, whi
h is minus the exponential growth rate of the partition fun
tion, as the

size of the graph in
reases. The most natural way of attaining this goal, if the model permits,

is to obtain an expli
it expression for the partition fun
tion. Re
all that the dimer model is one

of the rare 2-dimensional models where a 
losed formula 
an be obtained. This is the topi
 of

the next se
tion.

2.3 Expli
it 
omputations

The expli
it 
omputation of the partition fun
tion is due to Kasteleyn [Kas61, Kas67℄ and

independently to Temperley and Fisher [TF61℄. A proof of this result is provided in Se
tion 2.3.1,

in the 
ase where the underlying graph G is bipartite. This is one of the founding results of the

dimer model, paving the way to obtaining other expli
it expressions as for example Kenyon's


losed formula for the Boltzmann measure [Ken97℄, see Se
tion 2.3.2. In Se
tion 2.3.3, we provide

an example of 
omputation of the partition fun
tion and of the Boltzmann measure.

2.3.1 Partition fun
tion formula

We restri
t ourselves to the 
ase where the graph G is bipartite, the proof in the non-bipartite


ase is similar in spirit although a little more involved. The simpli�
ation in the bipartite 
ase

is due to Per
us [Per69℄.

A graph G = (V,E) is bipartite if the set of verti
es V 
an be split into two subsets W∪B, where
W denotes white verti
es, B bla
k ones, and verti
es in W are only adja
ent to verti
es in B.

We suppose that |W| = |B| = n, for otherwise there are no perfe
t mat
hings of the graph G;

indeed a dimer edge always 
overs a bla
k and a white vertex.

Label the white verti
es w1, . . . ,wn and the bla
k ones b1, . . . , bn, and suppose that edges of G are

oriented. The 
hoi
e of orientation will be spe
i�ed later in the proof. Then the 
orresponding

oriented, weighted, adja
en
y matrix is the n × n matrix K whose lines are indexed by white

verti
es, whose 
olumns are indexed by bla
k ones, and whose entry K(wi, bj) is:

K(wi, bj) =





ν(wibj) if wi ∼ bj , and wi → bj

−ν(wibj) if wi ∼ bj , and wi ← bj

0 if the verti
es wi and bj are not adja
ent.

13



By de�nition, the determinant of the matrix K is:

det(K) =
∑

σ∈Sn

sgn(σ)K(w1, bσ(1)) . . . K(wn, bσ(n)),

where Sn is the set of permutations of n elements. Let us �rst observe that ea
h non-zero

term in the expansion of det(K) 
orresponds to the weight of a dimer 
on�guration, up to sign.

Thus, the determinant of K seems to be the appropriate obje
t for 
omputing the partition

fun
tion, the only problem being that not all terms may be 
ounted with the same sign. Note

that reversing the orientation of an edge wibj 
hanges the sign of K(wi, bj). The remainder of

the proof 
onsists in 
hoosing an orientation of the edges of G allowing to 
ompensate signature

of permutations, so that all terms in the expansion of the determinant of K indeed have the

same sign.

Let M1 and M2 be two perfe
t mat
hings of G drawn one on top of the other. De�ne an

alternating 
y
le to be a 
y
le of G whose edges alternate between edges of M1 and M2. Then,

an alternating 
y
le has even length, and if the length is equal to 2, the 
y
le is a doubled edge,

that is an edge 
overed by both M1 and M2. The superimposition of M1 and M2 is a union of

disjoint alternating 
y
les, see Figure 2.4. This is be
ause, by de�nition of a perfe
t mat
hing,

ea
h vertex is adja
ent to exa
tly one edge of the mat
hing, so that in the superimposition of

two mat
hings M1 and M2, ea
h vertex is adja
ent to exa
tly one edge of M1 and one edge of

M2.

M

M1

2

Figure 2.4: Superimposition of two dimer 
on�gurations M1 and M2 of a subgraph G of the

honey
omb latti
e H.

One 
an transform the mat
hing M1 into the mat
hing M2, by repla
ing edges of M1 by those

ofM2 in all alternating 
y
les of length ≥ 4 of the superimposition. Thus, arguing by indu
tion,

it su�
es to show that the sign of the 
ontributions of M1 and M2 to det(K) is the same when

M1 and M2 di�er along a single alternating 
y
le of length ≥ 4. Let us assume that this is the


ase, denote the unique 
y
le by C and by wi1 , bj1 , . . . ,wik , bjk its verti
es in 
lo
kwise order,

see Figure 2.5.

Let σ (resp. τ) be the permutation 
orresponding toM1 (resp. M2). Then by the 
orresponden
e

between enumeration of mat
hings and terms in the expansion of the determinant, we have:

j1 = σ(i1) = τ(i2), j2 = σ(i2) = τ(i3), . . . , jk = σ(ik) = τ(i1).

If we let c be the permutation 
y
le c = (ik . . . i1), then we dedu
e:

τ(iℓ) = σ(iℓ−1) = σ ◦ c(iℓ). (2.1)

14



...

PSfrag repla
ements

wi1 bj1
wi2

bj2
wik

bjk
M1

M2C

Figure 2.5: Labeling of the verti
es of an example of superimposition 
y
le of M1 and M2.

In order to 
he
k that the 
ontributions of M1 and M2 to det(K) have the same sign, it su�
es

to 
he
k that the sign of the ratio of the 
ontributions is positive. The sign of this ratio, denoted

by Sign(M1/M2), is:

Sign(M1/M2) = Sign

(
sgn(σ)

sgn(τ)

K(wi1 , bσ(i1)) . . . K(wik , bσ(ik))

K(wi1 , bτ(i1)) . . . K(wik , bτ(ik))

)
,

whi
h is the same as the sign of the produ
t of the numerator and the denominator. Now,

(⋄1) : = sgn(σ)sgn(τ) = sgn(σ ◦ τ) = sgn(σ ◦ σ ◦ c) by Equation (2.1)

= (−1)k+1.

(⋄2) : = Sign ( [K(wi1 , bσ(i1)) . . . K(wik , bσ(ik))][K(wi1 , bτ(i1)) . . . K(wik , bτ(ik))]
)

= Sign
(
[K(wi1 , bj1) . . . K(wik , bjk)][K(wi1 , bjk) . . . K(wik , bjk−1

)]
)

= Sign
(
K(wi1 , bj1)K(wi1 , bjk) . . . K(wik , bjk)K(wik , bjk−1

)
)

Let p be the parity of the number of edges of the 
y
le C oriented 
lo
kwise. The 
y
le C is

said to be 
lo
kwise odd if p = 1, 
lo
kwise even if p = 0. Let us show that Sign(M1/M2) = +1
if and only if p = 1. To this purpose, we �rst relate (⋄2) and (−1)p.
Partition WC := {wi1 , . . . ,wik} as W

e
C ∪W

o
C , where W

e
C 
onsists of white verti
es with 0 or 2

in
oming edges (equivalently 2 or 0 outgoing edges), and W
o
C 
onsists of white verti
es with one

in
oming and one outgoing edge, then |We
C | + |Wo

C | = k. If a white vertex belongs to W
e
C , it


ontributes 1 to (⋄2) and 1 to p; if a white vertex belongs to W
o
C , it 
ontributes −1 to (⋄2) and

0 to p. We thus have:

{
(⋄2) = (−1)|Wo

C
|

(−1)p = (−1)|We
C | ⇒ (⋄2) = (−1)k(−1)p.

As a 
onsequen
e Sign(M1/M2) = (⋄1)(⋄2) = (−1)2k+1(−1)p, so that Sign(M1/M2) is positive
if and only if p = 1, i.e. if and only if the 
y
le C is 
lo
kwise odd.

Following Kasteleyn [Kas67℄, an orientation of the edges of G su
h that all 
y
les obtained as

superimposition of dimer 
on�gurations are 
lo
kwise odd, is 
alled admissible. De�ne a 
ontour


y
le to be a 
y
le bounding an inner fa
e of the graph G. Kasteleyn proves that if the orientation

is su
h that all 
ontour 
y
les are 
lo
kwise odd, then the orientation is admissible. The proof is

by indu
tion on the number of fa
es in
luded in the 
y
le, refer to the paper [Kas67℄ for details.

An orientation of the edges of G su
h that all 
ontour 
y
les are 
lo
kwise odd is 
onstru
ted in

the following way, see for example [CR07℄. Consider a spanning tree of the dual graph G
∗
, with a

vertex 
orresponding to the outer fa
e, taken to be the root of the tree. Choose any orientation

for edges of G not 
rossed by the spanning tree. Then, start from a leaf of the tree, and orient
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the dual of the edge 
onne
ting the leaf to the tree in su
h a way that the 
ontour 
y
le of the


orresponding fa
e is 
lo
kwise odd. Remove the leaf and the edge from the tree. Iterate until

only the root remains. Sin
e the tree is spanning, all fa
es are rea
hed by the algorithm, and by


onstru
tion all 
orresponding 
ontour 
y
les are 
lo
kwise odd.

A Kasteleyn-Per
us matrix, or simply Kasteleyn matrix, denoted by K, asso
iated to the graph

G is the oriented, weighted adja
en
y matrix 
orresponding to an admissible orientation. We

have thus proved the following:

Theorem 1. [Kas67℄ Let G be a �nite, planar bipartite graph with an admissible orientation of

its edges, let ν be a positive weight fun
tion on the edges, and K be the 
orresponding Kasteleyn

matrix. Then, the partition fun
tion of the graph G is:

Z(G) = |det(K)|.

When the graph G is not bipartite, lines and 
olumns of the adja
en
y matrix are indexed by

all verti
es of G (verti
es 
annot be naturally split into two subsets). By 
hoosing an admissible

orientation of the edges, the partition fun
tion 
an be expressed as the square root of the

determinant of the 
orresponding Kasteleyn matrix or, sin
e this matrix is skew-symmetri
, as

the Pfa�an of this same matrix. For more details, refer to [Kas67℄.

2.3.2 Boltzmann measure formula

When the graph G is bipartite, Kenyon [Ken97℄ gives an expli
it expression for the lo
al statisti
s

of the Boltzmann measure. Let K be a Kasteleyn matrix asso
iated to G, and let {e1 =
w1b1, . . . , ek = wkbk} be a subset of edges of G.

Theorem 2. [Ken97℄ The probability µ(e1, . . . , ek) of edges {e1, . . . , ek} o

urring in a dimer


on�guration of G 
hosen with respe
t to the Boltzmann measure µ is:

µ(e1, . . . , ek) =

∣∣∣∣∣

(
k∏

i=1

K(wi, bi)

)
det

1≤i,j≤k
K−1(bi,wj)

∣∣∣∣∣ . (2.2)

Proof. The weighted sum of dimer 
on�gurations 
ontaining the edges {e1, . . . , ek} is (up to

sign) the sum of all terms 
ontaining K(w1, b1) . . . K(wk, bk) in the expansion of det(K). By

expanding this determinant along lines (or 
olumns), it is easy to see by indu
tion that this is

equal to: ∣∣∣∣∣

(
k∏

i=1

K(wi, bi)

)
det(KE)

∣∣∣∣∣ ,

where KE is the matrix obtained from K by removing the lines 
orresponding to w1, . . . ,wk and

the 
olumns 
orresponding to b1, . . . , bk. Now by Ja
obi's identity, see for example [HJ90℄:

det(KE) = det(K) det
(
(K−1)E∗

)
,

where E∗
is the set of edges not in E. Otherwise stated, (K−1)E∗

is the k × k matrix obtained

from K−1
by keeping the lines 
orresponding to b1, . . . , bk and the 
olumns 
orresponding to

w1, . . . ,wk. Thus,

µ(e1, . . . , ek) =

∣∣∣
(∏k

i=1K(wi, bi)
)
det(KE)

∣∣∣
|det(K)| =

∣∣∣∣∣

(
k∏

i=1

K(wi, bi)

)
det
(
(K−1)E∗

)
∣∣∣∣∣ .
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Remark 3. Edges form a determinantal point pro
ess with respe
t to the 
ounting measure,

that is a point pro
ess su
h that the joint probabilities are of the form

µ(e1, . . . , ek) = det(M(ei, ej)1≤i,j≤k),

for some kernelM . In the 
ase of bipartite dimers,M(ei, ej) = K(wi, bj)K
−1(bi,wj), see [Sos07℄

for an overview.

2.3.3 Expli
it example

Figure 2.6 gives an example of a planar, bipartite graph whose edges are assigned positive weights

and an admissible orientation.

a a

a a

a

b b b

b b

a, b > 0

PSfrag repla
ements

w1 b1 w2

b2w3
b3

w4 b4

Figure 2.6: A planar, bipartite graph with a positive weight fun
tion and an admissible orien-

tation.

The 
orresponding Kasteleyn matrix is:

K =




a 0 −b 0
a −b 0 0
b a a b
0 0 b −a


 ,

and the determinant is equal to

det(K) = 2a3b+ 2b3a.

Setting a = b = 1 yields that the number of perfe
t mat
hings of this graph is 4. In this 
ase,

the Boltzmann measure is the uniform measure on tilings of this graph.

The inverse Kasteleyn matrix K−1
is:

K−1 =
1

4




2 1 1 1
2 −3 1 1
−2 1 1 1
−2 1 1 −3


 .

Using the labeling of the verti
es of Figure 2.6 and Theorem 2, we 
ompute the probability of

o

urren
e of some subset of edges:

µ(w1b1) = |K−1(b1,w1)| =
1

2

µ(w3b1) = |K−1(b1,w3)| =
1

4

µ(w1b1,w3b4) =

∣∣∣∣det
(
K−1(b1,w1) K−1(b1,w3)
K−1(b4,w1) K−1(b4,w3)

)∣∣∣∣ =
1

16

∣∣∣∣det
(

2 1
−2 1

)∣∣∣∣ =
1

4
.
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You 
an try and 
ompute other probabilities. In this simple 
ase, it is a
tually easier to expli
itly

�nd all possible 
on�gurations (4 of them), and 
ompute the probabilities. However, the goal of

this example is to show how to use the general formulae.

2.4 Geometri
 interpretation of lozenge tilings

By means of the height fun
tion, Thurston interprets lozenge tilings of the triangular latti
e

as dis
rete surfa
es in a rotated version of Z
3
proje
ted onto the plane. He gives a similar

interpretation of domino tilings of the square latti
e. This approa
h 
an be generalized to dimer


on�gurations of bipartite graphs using �ows. This yields an interpretation of the dimer model

on a bipartite graph as a random interfa
e model in dimensions 2 + 1, and o�ers more insight

into the model. In this se
tion we exhibit Thurston's 
onstru
tion of the height fun
tion on

lozenge tilings. We postpone the de�nition of the height fun
tion on general bipartite graphs

until Se
tion 3.1.

Fa
es of the triangular latti
e T 
an be 
olored in bla
k and white, so that bla
k fa
es (resp.

white ones) are only adja
ent to white ones (resp. bla
k ones). This is a 
onsequen
e of the fa
t

that its dual graph, the honey
omb latti
e, is bipartite. Orient the bla
k fa
es 
ounter
lo
kwise,

and the white ones 
lo
kwise, see Figure 2.7 (left). Consider a �nite subgraph X of T whi
h

is tileable by lozenges, and a lozenge tiling T of X. Then the height fun
tion hT is an integer

valued fun
tion on verti
es of X, de�ned indu
tively as follows:

• Fix a vertex v0 of X, and set hT (v0) = 0.

• For every boundary edge uv of a lozenge, hT (v) − hT (u) = +1 if the edge uv is oriented

from u to v, implying that hT (v)− hT (u) = −1 when the edge uv is oriented from v to u.

The height fun
tion is well de�ned, in the sense that the height 
hange around any oriented


y
le is 0. An example of 
omputation of the height fun
tion is given in Figure 2.7 (right).

0

3

1

1
2

3

2

4

1

2
3

4
3

2
1

0

1

2

0

1

2

1

0

2
3 3

4 4
5

3
4

3
2

1
0

4

2
1

2

2
3

2

0v

Figure 2.7: Orientation of fa
es of the triangular latti
e (left). Height fun
tion 
orresponding to

a lozenge tiling (right).
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As a 
onsequen
e, lozenge tilings are interpreted as stepped surfa
es in Z̃3
proje
ted onto the

plane, where Z̃3
is Z

3
rotated so that diagonals of the 
ubes are orthogonal to the plane. The

height fun
tion is then simply the �height� of the surfa
e (i.e. third 
oordinate). This 
onstru
-

tion gives a mathemati
al sense to the intuitive feeling of 
ubes sti
king in or out, whi
h strikes

us when wat
hing a pi
ture of lozenge tilings.

Height fun
tions 
hara
terize lozenge tilings as stated by the following lemma.

Lemma 4. Let X be a �nite simply 
onne
ted subgraph of the triangular latti
e T, whi
h is

tileable by lozenges. Let h be an integer valued fun
tion on the verti
es of X, satisfying:

• h(v0) = 0, where v0 is a �xed vertex of X.

• h(v) − h(u) = 1 for any boundary edge uv of X oriented from u to v.

• h(v) − h(u) = 1 or −2 for any interior edge uv of X oriented from u to v.

Then, there is a bije
tion between fun
tions h satisfying these two 
onditions, and tilings of X.

Proof. Let T be a lozenge tiling of X and let uv be an edge of X, oriented from u to v. Then,

the edge uv is either a boundary edge or a diagonal of a lozenge. By de�nition of the height

fun
tion, the height 
hange is 1 in the �rst 
ase, and −2 in the se
ond.

Conversely, let h be an integer fun
tion as in the lemma. Let us 
onstru
t a tiling T whose height

fun
tion is h. Consider a bla
k fa
e of X, then there is exa
tly one edge uv on the boundary of

this fa
e whose height 
hange is −2. To this fa
e, we asso
iate the lozenge whi
h is 
rossed by

the edge uv. Repeating this pro
edure for all bla
k fa
es yields a tiling of X.

Thurston [Thu90℄ uses height fun
tions in order to determine whether a subgraph of the trian-

gular latti
e 
an be tiled by lozenges. Refer to the paper for details.
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Chapter 3

Dimer model on infinite periodi
 bipartite graphs

This 
hapter is devoted to the paper �Dimers and amoebas� [KOS06℄ by Kenyon, Okounkov and

She�eld.

Re
all that edges of dimer 
on�gurations represent di-atomi
 mole
ules. Sin
e we are interested

in the ma
ros
opi
 behavior of the system, our goal is to study the model on very large graphs. It

turns out that it is easier to extra
t information for the model de�ned on in�nite graphs, rather

than very large ones. Indeed, on very large but �nite graphs, Kasteleyn's 
omputation 
an be

done, but involves 
omputing the determinant of huge matri
es, whi
h is of 
ourse very hard in

general, and won't tell us mu
h about the system. Computing expli
itly the lo
al statisti
s of

the Boltzmann measure be
omes hardly tra
table sin
e it requires inverting very large matri
es.

This motivates the following road map.

• Assume that the graph G = (V,E) is simple, planar, in�nite, bipartite, and Z
2
-periodi
.

This means that G is embedded in the plane so that translations a
t by 
olor-preserving

isomorphism of G, i.e. isomorphisms whi
h map bla
k verti
es to bla
k ones and white

verti
es to white ones. For later purposes, we 
onsider the underlying latti
e Z
2
to be

a subgraph of the dual graph G
∗
, and �x a basis {ex, ey}, allowing to re
ord 
opies of a

vertex v of G as {v+(k, l) : (k, l) ∈ Z
2}. Refer to Figure 3.1 for an example when G is the

square-o
tagon graph.

ex

ey

Figure 3.1: A pie
e of the square-o
tagon graph. The underlying latti
e Z
2
is in light grey, the

two bla
k ve
tors represent a 
hoi
e of basis {ex, ey}.
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• Let Gn = (Vn,En) be the quotient of G by the a
tion of nZ2
. Then the sequen
e of graphs

{Gn}n≥1 is an exhaustion of the in�nite graph G by toroidal graphs. The graph G1 = G/Z2

is 
alled the fundamental domain, see Figure 3.2. Assume that edges of G1 are assigned a

positive weight fun
tion ν thus de�ning a periodi
 weight fun
tion on the edges of G.

1 1

1

1

1

1

1 1
1

11 1

PSfrag repla
ements

G1

Figure 3.2: Fundamental domain G1 of the square-o
tagon graph, opposite sides in light grey

are identi�ed. Edges are assigned weight 1.

• The goal of this 
hapter is to understand the dimer model on G, using the exhaustion

{Gn}n≥1, by taking limits as n→∞ of appropriate quantities.

Note that it is 
ru
ial to take an exhaustion of G by toroidal graphs. Indeed, the latter are

invariant by translations in two dire
tions, a key fa
t whi
h allows 
omputations to go through

using Fourier te
hniques. Note also that taking an exhaustion by planar graphs a priori leads

to di�erent results be
ause of the in�uen
e of the boundary whi
h 
annot be negle
ted.

Although it might not seem so 
lear at this stage, the fa
t that G and {Gn}n≥1 are assumed to be

bipartite is also 
ru
ial for the results of this 
hapter, be
ause it allows to relate the dimer model

to well behaved algebrai
 
urves. Having a general theory of the dimer model on non-bipartite

graphs is one of the important open questions of the �eld.

3.1 Height fun
tion

In this se
tion, we des
ribe the 
onstru
tion of the height fun
tion on dimer 
on�gurations of the

in�nite graph G and of the toroidal graphs Gn, n ≥ 1. Sin
e we are working on the dimer model

and not on the tiling model, as in Thurston's 
onstru
tion, the height fun
tion is a fun
tion on

fa
es of G or equivalently, a fun
tion on verti
es of the dual graph G
∗
.

The de�nition of the height fun
tion relies on �ows. Denote by

~E the set of dire
ted edges of the

graph G, i.e. every edge of E yields two oriented edges of

~E. A �ow ω is a real valued fun
tion

de�ned on

~E, that is every dire
ted edge (u, v) of ~E is assigned a �ow ω(u, v).

The divergen
e of a �ow ω, denoted by divω, is a real valued fun
tion de�ned on V giving the

di�eren
e between total out�ow and total in�ow at verti
es:

∀u ∈ V, divω(u) =
∑

v∼u

ω(u, v) −
∑

v∼u

ω(v, u).

Sin
e G is bipartite, we split verti
es V into white and bla
k ones: V = W ∪ B. Then, every

dimer 
on�guration M of G de�nes a white-to-bla
k unit �ow ωM
as follows. The �ow ωM

takes

value 0 on all dire
ted edges arising from edges of E whi
h do not belong to M , and

∀wb ∈M, ωM (w, b) = 1, ωM (b,w) = 0.
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Sin
e every vertex of the graph G is in
ident to exa
tly one edge of the perfe
t mat
hing M , the

�ow ωM
has divergen
e 1 at every white vertex, and -1 at every bla
k one, that is:

∀w ∈W, div ωM(w) =
∑

b∼w

ωM (w, b) −
∑

b∼w

ωM(b,w) = 1,

∀ b ∈ B, divωM (b) =
∑

w∼b

ωM (b,w) −
∑

w∼b

ωM (w, b) = −1.

Let M0 be a �xed periodi
 referen
e perfe
t mat
hing of G, and ωM0
be the 
orresponding

�ow, 
alled the referen
e �ow. Then, for any other mat
hing M with �ow ωM
, the di�eren
e

ωM − ωM0
is a divergen
e-free �ow, that is:

∀w ∈W, div(ωM − ωM0)(w) =
∑

b∼w

(ωM (w, b) − ωM0(w, b)) −
∑

b∼w

(ωM (b,w)− ωM0(b,w))

= div ωM(w) − divωM0(w) = 1− 1 = 0,

and similarly for bla
k verti
es.

We are now ready to de�ne the height fun
tion. Let M be a dimer 
on�guration of G, then the

height fun
tion hM is an integer valued fun
tion on fa
es of G de�ned as follows.

• Fix a fa
e f0 of G, and set hM (f0) = 0.

• For any other fa
e f1, 
onsider an edge-path γ of the dual graph G
∗
, from f0 to f1. Let

(u1, v1), . . . , (uk, vk) denote edges of G 
rossing the path γ, where for every i, ui is on the

left of the path γ and vi on the right. Then hM (f1)−hM (f0) is the total �ux of ωM −ωM0

a
ross γ, that is:

hM (f1)− hM (f0) =
k∑

i=1

[(ωM (ui, vi)− ωM (vi, ui))− (ωM0(ui, vi)− ωM0(vi, ui))].

The height fun
tion is well de�ned if it is independent of the 
hoi
e of γ, or equivalently if the

height 
hange around every fa
e f
∗
of the dual graph G

∗
is 0. Let u be the vertex of the graph G


orresponding to the fa
e f
∗
, and let v1, . . . , vk be its neighbors. Then, by de�nition, the height


hange around the fa
e f
∗
, in 
ounter
lo
kwise order, is:

k∑

i=1

[(ωM (u, vi)− ωM (vi, u)) − (ωM0(u, vi)− ωM0(vi, u))] = div(ωM − ωM0)(u) = 0.

The height fun
tion is thus well de�ned as a 
onsequen
e of the fa
t that the �ow ωM − ωM0
is

divergen
e free, up to the 
hoi
e of a base fa
e f0 and of a referen
e mat
hing M0. An analog of

Lemma 4 gives a bije
tion between height fun
tions and dimer 
on�gurations of G.

Remark 5.

• There is a
tually an easy way of 
omputing the height fun
tion. Re
all from Se
tion 2.3

that the superimposition of two dimer 
on�gurations M and M0 
onsists of doubled edges

and alternating 
y
les of length ≥ 4 (
y
les may extend to in�nity when G is in�nite). Let

us denote byM−M0 the oriented superimposition ofM andM0, with edges ofM oriented

from white verti
es to bla
k ones, and those of M0 from bla
k verti
es to white ones, then

M −M0 
onsists of doubled edges oriented in both dire
tions and oriented alternating


y
les of length ≥ 4, see for example Figure 3.3. Returning to the de�nition of the height

fun
tion, one noti
es that the height 
hanges by ±1 exa
tly when 
rossing a 
y
le, and the

sign only depends on the orientation of the 
y
le.
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• By taking a di�erent 
hoi
e of referen
e �ow, one 
an re
over Thurston's height fun
tion

in the 
ase of lozenge and domino tilings, up to a global multipli
ative fa
tor of

1
3 in the

�rst 
ase, and

1
4 in the se
ond - the interested reader 
an try and work out this relation

expli
itly.

Let us now 
onsider the toroidal graph Gn = G/nZ2
. In this 
ase, the height fun
tion is not

well de�ned sin
e there might be some period, or height 
hange, along 
y
les in the dual graph

winding around the torus horizontally or verti
ally, see Figure 3.3. More pre
isely, a perfe
t

mat
hing M of Gn 
an be lifted to a perfe
t mat
hing of the in�nite graph G, also denoted M .

Then, the perfe
t mat
hing M of Gn is said to have height 
hange (hMx , h
M
y ) if:

hM (f + (n, 0)) = hM (f) + hMx

hM (f + (0, n)) = hM (f) + hMy .

Note that height 
hange is well de�ned, i.e. does not depend on the 
hoi
e of fa
e f, be
ause

the �ow ωM − ωM0
is divergen
e-free.

Figure 3.3 gives an example of the referen
e perfe
t mat
hingM0 indu
ed by a periodi
 referen
e

mat
hing of G, and of the height 
hange 
omputation of a dimer 
on�guration M of the toroidal

graph G2 of the square-o
tagon graph. The perfe
t mat
hing M has height 
hange (0, 1).

0
f0

M

M

0

0 00 0 0

−1−1 0 −1

00000

−1 0 −1 0 −1

−1−1−1−1−1

Figure 3.3: A perfe
t mat
hing M of the toroidal graph G2, having height 
hange (0, 1).

Remark 6. Let T
2 = {(z, w) ∈ C

2 : |z| = |w| = 1} denote the two-dimensional unit torus, and

let H1(T
2,Z) ∼= Z

2
be the �rst homology group of T

2
in Z. The graph Gn being embedded in

T
2
, we take as representative of a basis of H1(T

2,Z) the ve
tors nex and ney embedded on the

torus, where re
all {ex, ey} were our 
hoi
e of basis ve
tor for Z2
, see Figure 3.1. In the 
ase of

the square-o
tagon graph and G2 of Figure 3.3, the �rst basis ve
tor is the light grey horizontal


y
le oriented from left to right, and the se
ond is the light grey verti
al 
y
le oriented from

bottom to top. Then, the homology 
lass of the oriented superimposition M −M0 in this basis

is (1, 0), and the height 
hange is (0, 1). More generally, if the homology 
lass of M −M0 is

(a, b), then the height 
hange (hMx , h
M
y ) is (−b, a). This is be
ause, as mentioned in Remark 5,

the height fun
tion 
hanges by ±1 exa
tly when it 
rosses oriented 
y
les of M −M0, implying

that the height 
hange (hMx , h
M
y ) 
an be identi�ed through the interse
tion pairing with the

homology 
lass of the oriented 
on�guration M −M0 in H1(T
2,Z).
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3.2 Partition fun
tion, 
hara
teristi
 polynomial, free energy

Let us re
all the setting: G is a simple, planar, in�nite, bipartite Z
2
-periodi
 graph, and {Gn}n≥1

is the 
orresponding toroidal exhaustion. Edges of G are assigned a periodi
, positive weight

fun
tion ν, and {ex, ey} denotes a 
hoi
e of basis of the underlying latti
e Z
2
.

In this se
tion we present the 
omputation of the partition fun
tion for dimer 
on�gurations of

the toroidal graph Gn, and the 
omputation of the free energy, whi
h is minus the exponential

growth rate of the partition fun
tion of the exhaustion Gn. More pre
isely, Se
tion 3.2.1 is

devoted to Kasteleyn theory on the torus. Then, in Se
tion 3.2.2 we de�ne the 
hara
teristi


polynomial, one of the key obje
ts underlying the dimer model on bipartite graphs, yielding a


ompa
t 
losed formula for the partition fun
tion, see Corollary 10. With this expression at

hand, one then derives the expli
it formula for the free energy, see Theorem 11.

3.2.1 Kasteleyn matrix

In Se
tion 2.3, we proved that the partition fun
tion of a �nite, simply 
onne
ted planar graph

is given by the determinant of a Kasteleyn matrix. When the graph is embedded on the torus,

a single determinant is not enough, what is needed is a linear 
ombination of determinants

determined in the following way.

Consider the fundamental domain G1 and let K1 be a Kasteleyn matrix of this graph, that is

K1 is the oriented, weighted, adja
en
y matrix of G1 for a 
hoi
e of admissible orientation of

the edges. Note that admissible orientations also exist for graphs embedded in the torus. Let us

now look at the signs of the weighted mat
hings in the expansion of det(K1). Consider a �xed

referen
e mat
hing M0 of G1, and let M be any other mat
hing of G1. Then, by the results of

[Kas67, DZM

+
96, GL99, Tes00, CR07℄, the sign of the mat
hing M only depends on the parity

of the verti
al and horizontal height 
hange. Moreover, of the four possible parity 
lasses, three

have the same sign in det(K1) and one has opposite sign. By an appropriate 
hoi
e of admissible

orientation, one 
an make the (0, 0) 
lass have positive sign.

Let γx, γy be the basis ve
tor ex, ey of the underlying latti
e Z
2
, embedded on the torus. Sin
e

we have 
hosen Z
2
to be a subgraph of the dual graph G

∗
, γx, γy are oriented 
y
les of the dual

graph G
∗
1, see Figure 3.4. We refer to γx as a horizontal 
y
le, and to γy as a verti
al one.

G1

γ

γ

x

y

Figure 3.4: Fundamental domain G1 of the square o
tagon graph with the oriented paths γx, γy
in the dual graph G

∗
1. The two 
opies of γx, respe
tively γy, are glued together.

For σ, τ ∈ {0, 1}, let Kθτ
1 be the Kasteleyn matrix in whi
h the weights of the edges 
rossing

the horizontal 
y
le γx are multiplied by (−1)θ, and those 
rossing the verti
al 
y
le γy are

multiplied by (−1)τ . Observing that 
hanging the signs along a horizontal dual 
y
le has the

e�e
t of negating the weight of mat
hings with odd horizontal height 
hange, and similarly for
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verti
al; the following table indi
ates the sign of the mat
hings in the expansion of det(Kθτ
1 ), as

a fun
tion of the horizontal and verti
al height 
hange mod 2.

(0, 0) (1, 0) (0, 1) (1, 1)

det(K00
1 ) + − − −

det(K10
1 ) + + − +

det(K01
1 ) + − + +

det(K11
1 ) + + + −

(3.1)

From Table 3.1, we dedu
e

Z(G1) =
1

2

(
− det(K00

1 ) + det(K10
1 ) + det(K01

1 ) + det(K11
1 )
)
. (3.2)

A similar argument holds for the toroidal graph Gn, n ≥ 1. The orientation of edges of G1

de�nes a periodi
 orientation of edges of G, and thus an orientation of edges of Gn. Let γx,n,
γy,n be the oriented 
y
les in the dual graph G

∗
n, obtained by taking n times the basis ve
tor ex,

n times the basis ve
tor ey respe
tively, embedded on the torus. For σ, τ ∈ {0, 1}, let Kστ
n be

the matrix Kn in whi
h the weights of edges 
rossing the horizontal 
y
le γx,n are multiplied by

(−1)θ, and those 
rossing the verti
al 
y
le γy,n are multiplied by (−1)τ . Then,
Theorem 7. [Kas67, DZM

+
96, GL99, Tes00, CR07, CR08℄

Z(Gn) =
1

2

(
− det(K00

n ) + det(K10
n ) + det(K01

n ) + det(K11
n )
)
.

3.2.2 Chara
teristi
 polynomial

Let K1 be a Kasteleyn matrix of the fundamental domain G1. Given 
omplex numbers z and

w, an altered Kasteleyn matrix K1(z, w) is 
onstru
ted as follows. Let γx, γy be the oriented

horizontal and verti
al 
y
les of G
∗
1. Then, multiply edge-weights of edges 
rossing γx by z

whenever the white vertex is on the left, and by z−1
whenever the bla
k vertex is on the left.

Similarly, multiply edge-weights of edges 
rossing the verti
al path γy by w±1
, see Figure 3.5.

The 
hara
teristi
 polynomial P (z, w) of the graph G1 is de�ned as the determinant of the

altered Kasteleyn matrix:

P (z, w) = det(K1(z, w)).

As we will see, the 
hara
teristi
 polynomial 
ontains most of the information on the ma
ros
opi


behavior of the dimer model on the graph G.

The next very useful lemma expresses the 
hara
teristi
 polynomial using height 
hanges of

dimer 
on�gurations of G1. Refer to Se
tion 3.1 for de�nitions and notations 
on
erning height


hanges. LetM0 be a referen
e dimer 
on�guration of G1, and suppose the admissible orientation

of the edges is 
hosen su
h that perfe
t mat
hings having (0, 0) mod (2, 2) height 
hange have +
sign in the expansion of det(K1). We 
onsider the altered Kasteleyn matrixK1(z, w) 
onstru
ted
from K1. Let ω

M0
be the referen
e �ow 
orresponding to the referen
e dimer 
on�guration M0,

and let x0 denote the total �ux of ωM0
a
ross γx, similarly y0 is the total �ux of ωM0

a
ross γy.
Then, we have:

Lemma 8. [KOS06℄

P (z, w) = zx0wy0
∑

M∈M(G1)

ν(M)zh
M
x whM

y (−1)hM
x hM

y +hM
x +hM

y , (3.3)

where, for every dimer 
on�guration M ofM(G1), (h
M
x , h

M
y ) is the height 
hange of M .
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Proof. Let M be a perfe
t mat
hing of G1. Then, by the 
hoi
e of Kasteleyn orientation, the

sign of the term 
orresponding toM in the expansion of det(K1(z, w)) is: + if (hMx , h
M
y ) = (0, 0)

mod (2, 2), and − else. This 
an be summarized as:

(−1)hM
x hM

y +hM
x +hM

y .

Let us denote by νz,w, the weight fun
tion on edges of G1 obtained from G1 by multiplying

edge-weights of edges 
rossing γx by z±1
, and those 
rossing γy by w±1

as above. Then,

νz,w(M) = ν(M)zn
wb
x (M)−nbw

x (M)wnwb
y (M)−nbw

y (M),

where nwbx (M) is the number of edges of M 
rossing γx, whi
h have a white vertex on the left

of γx, and n
bw
x (M) is the number of edges of M 
rossing γx, whi
h have a bla
k vertex on the

left of γx. The de�nition of nwby (M), nbwy (M) is similar with γx repla
ed by γy.

Returning to the de�nition of the height 
hange for dimer 
on�gurations of the toroidal graph

Gn, we have:

hMx = nwbx (M)− nbwx (M)− nwbx (M0) + nbwx (M0),

so that:

nwbx (M)− nbwx (M) = hMx + nwbx (M0)− nbwx (M0) = hMx + x0,

sin
e by de�nition x0 is the total �ux of ωM0
a
ross γx. Computing hMy in a similar way yields

the lemma.

Example 3.1. Let us 
ompute the 
hara
teristi
 polynomial of the fundamental domain G1 of

the square-o
tagon graph, with weights one on the edges. Figure 3.5 (left) des
ribes the labeling

of the verti
es, and weights of the altered Kasteleyn matrix. The orientation of the edges is

admissible and is su
h that perfe
t mat
hings having (0, 0) height 
hange with respe
t to the

referen
e mat
hing M0 given on the right, have a + sign in the expansion of det(K1).

γ

γ

γ

γ

1/w

w

1/z z

1

1

1
1

1

1

1 1

y

x

y

x

M0

PSfrag repla
ements

w1

w2

b2

b2

w3b3

w4

b4

G1

Figure 3.5: Left: labeling of the verti
es of G1, edge-weights of the altered Kasteleyn matrix,


hoi
e of admissible Kasteleyn orientation. Right: 
hoi
e of referen
e perfe
t mat
hing M0.

The altered Kasteleyn matrix K1(z, w) is:

K1(z, w) =




1 0 1
z

1
−1 1 0 −w
−z 1 1 0
0 1

w
1 1


 ,

and the 
hara
teristi
 polynomial is:

P (z, w) = det(K1(z, w)) = 5− z − 1

z
− w − 1

w
. (3.4)
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Let us 
ompute the right hand side of Equation (3.3) expli
itly. With our 
hoi
e of referen
e

mat
hing M0 of Figure 3.5 (right), the total �ux of ωM0
through γx and γy is (0, 0), so that

zx0wy0 = 1. Sin
e all edges have weight 1, ν(M) ≡ 1. Figure 3.6 des
ribes the 9 perfe
t

mat
hings of G1, with their respe
tive height 
hange. As a 
onsequen
e, the 
ontribution of the

perfe
t mat
hings of G1 to the right hand side of (3.3) is 1 for ea
h of the 5 �rst ones, −w,
respe
tively, − 1

w
, −z, −1

z
for the last four ones. Combining the di�erent 
ontributions yields,

as expe
ted, the 
hara
teristi
 polynomial as 
omputed in Equation (3.4).

4 matchings with height change (0,0) matching with height change (0,0)

or

matching with height change (0,1)

(0,−1), (1,0) and (−1,0)
+ 3 symmetries with height change 

0

00

0

0

00

0

00

0

0 0

0

0

1 0 0

1 1 1

1

0

Figure 3.6: 9 possible dimer 
on�gurations of G1 with their height 
hange.

In the spe
i�
 
ase when (z, w) ∈ {−1, 1}2 inK1(z, w), on re
overs the four matri
es (Kθτ
1 )θ,τ∈{0,1}.

Using Equation (3.2), we re
over that the number of dimer 
on�gurations of G1 is:

Z(G1) =
1

2
(−P (1, 1) + P (−1, 1) + P (1,−1) + P (−1,−1)) = 9. (3.5)

Chara
teristi
 polynomials of larger graphs may be 
omputed re
ursively as follows. Let Kn be

a Kasteleyn matrix of the graph Gn as above, and let γx,n and γy,n be the horizontal and verti
al


y
les of G
∗
n. For z, w ∈ C, the altered Kasteleyn matrix Kn(z, w) is 
onstru
ted similarly to

K1(z, w), and the 
hara
teristi
 polynomial of Gn is Pn(z, w) = det(Kn(z, w)).

Theorem 9. [CKP01, KOS06℄ For every n ≥ 1, and every (z, w) ∈ C
2
, the 
hara
teristi


polynomial Pn(z, w) of Gn is:

Pn(z, w) =
∏

αn
i =z

∏

βn
j =w

P (αi, βj).

Proof. The proof is a generalization of [CKP01℄ where the same result is obtained for the graph

G = Z
2
. We only give the argument when z = w = 1. The proof for general z, w's follows the

same steps. Note that Kn(1, 1) = K00
n = Kn, so that our goal is to show that, for every n ≥ 1:

det(Kn) =
∏

αn
i =1

∏

βn
j =1

det(K1(αi, βj)).

Let Wn, respe
tively Bn, denote the set of white, respe
tively bla
k, verti
es of Gn. The idea is

to use the translation invarian
e of the graph Gn and of the matrix Kn to blo
k diagonalize Kn,

and to 
ompute its determinant by 
omputing the determinant of the di�erent blo
ks.
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Let C
Wn

be the set of 
omplex-valued fun
tions on white verti
es Wn, and C
Bn

those on bla
k

verti
es Bn. Then the matrix Kn 
an be interpreted as a linear operator from C
Bn

to C
Wn

: let

f ∈ C
Bn
, then

(Knf)(w) =
∑

b∈Bn

Kn(w, b)f(b).

Let TBn
x (resp. TBn

y ) be the horizontal (resp. verti
al) translation operator a
ting on C
Bn
:

∀b ∈ Bn, (TBn
x f)(b) = f(b+ (1, 0)), (TBn

y f)(b) = f(b+ (0, 1)),

and 
onsider TBn = TBn
y ◦ TBn

x . The operator TBn
being an isometry, it yields an orthonormal

de
omposition of C
Bn
, 
onsisting of eigenve
tors of TBn

. The eigenvalues of TBn
are the produ
ts

of n-th roots of unity: (αjβk)j,k∈{0,...,n−1}, where αj = ei
2πj

n
, βk = ei

2πk
n

(as a 
onsequen
e of

the fa
t that (TBn)n = Id). Let us denote by V Bn

αjβk
the eigenspa
e of the eigenvalue αjβk:

V Bn

αjβk
= {f ∈ C

Bn : ∀ b ∈ Bn, f(b + (1, 1)) = αjβkf(b)}. Then V Bn

αjβk

an be rewritten as

V Bn

αjβk
= {f ∈ C

Bn : ∀ b ∈ B1, ∀ (x, y) ∈ {0, . . . , n− 1}2, f(b+ (x, y)) = f(b)αx
j β

y
k}, where re
all

that G1 = (W1 ∪ B1,E1) is the fundamental domain. For every b ∈ B1, de�ne e
b

αjβk
∈ C

Bn
by:

∀ b′ ∈ B1, ∀ (x, y) ∈ {0, . . . , n − 1}2, e
b

αjβk
(b′ + (x, y)) =

1

n
δb,b′α

x
j β

y
k .

Then, Eαjβk
= {ebαjβk

: b ∈ B1} is a basis of V Bn

αjβk
, the eigenspa
e V Bn

αjβk
is

|V (G1)|
2 dimensional,

and E = ∪{αjβk: j,k∈{0,...,n−1}}Eαjβk
is an orthonormal basis of C

Bn
. In a similar way, one obtains

an orthonormal de
omposition of C
Wn

using TWn = TWn
x ◦ TWn

y a
ting on C
Wn

.

Let us show that Kn represented in this basis is blo
k diagonal, with a blo
k of size

|V (G1)|
2 for

ea
h of the n2 eigenvalues αjβk. For all w ∈W1, (x, y) ∈ {0, . . . , n− 1}2, one has:

(Kne
b

αjβk
)(w + (x, y)) =

∑

b′∈B1

∑

(x′,y′)∈{0,...,n−1}2
Kn(w + (x, y), b′ + (x′, y′))ebαjβk

(b′ + (x′ + y′))

=
∑

(x′,y′)∈{0,...,n−1}2
Kn(w + (x, y), b + (x′, y′))

1

n
αx′

j β
y′

k , by de�nition of e
b

αjβk

=
1

n
K1(αj , βk)w,b α

x
j β

y
k , by translation invarian
e of Kn

=
∑

w′∈W1

K1(αj , βk)w′,b e
w′

αjβk
(w + (x, y)), by de�nition of e

w′

αjβk
.

As a 
onsequen
e, (Kne
b

αjβk
) ∈ V Wn

αjβk
, and the matrixKn written in the basis E is blo
k diagonal.

For all w ∈W1, b ∈ B1, the (w, b)- 
oe�
ient of the blo
k 
orresponding to the eigenvalue αjβk
is given by:

(ewαjβk
)∗Kne

b

αjβk
=
∑

w′∈W1

K1(αj , βk)w′,b (e
w

αjβk
)∗ ew

′

αjβk

= K1(αj , βk)w,b, sin
e the basis is orthonormal,

thus proving Theorem 9 in the 
ase where z = w = 1.
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3.2.3 Free energy

As a 
orollary to Theorems 7 and 9, we have an expli
it expression for the partition fun
tion of

Gn as a fun
tion of the 
hara
teristi
 polynomial P .

Corollary 10. When the Kasteleyn orientation is 
hosen su
h that the sign table of the funda-

mental domain is given by Table 3.1, then for every n ≥ 1,

Z(Gn) =
1

2

(
−Z00

n + Z10
n + Z01

n + Z11
n

)
,

where Zθτ
n = Pn((−1)θ, (−1)τ ) =

∏

αn
i =(−1)θ

∏

βn
j =(−1)τ

P (αi, βj).

The partition fun
tion is growing with the size of the graph. A natural question to ask now is :

�what is this growth rate ?� In order to formulate the question 
orre
tly, we need to know about

the order of magnitude of this growth. Intuition tells us that it is going to be exponential in the

area of the graph: Z(Gn) ∼ ecn2
. Thus the right quantity to look at is:

lim
n→∞

1

n2
logZ(Gn).

Minus this quantity is known as the free energy.

Theorem 11. [CKP01, KOS06℄ Under the assumption that P (z, w) has only a �nite number of

zeros on the unit torus T
2 = {(z, w) ∈ C

2 : |z| = |w| = 1}, we have:

lim
n→∞

1

n2
logZ(Gn) =

1

(2πi)2

∫

T2

log |P (z, w)|dz
z

dw

w
.

Proof. Sin
e Zθτ
n 
ounts some dimer 
on�gurations of Gn with the wrong sign, we have the

following bound:

Zθτ
n ≤ Z(Gn).

Moreover, looking at Table 3.1, we dedu
e:

−Z00
n ≤ +Z10

n + Z01
n + Z11

n ,

and thus by Theorem 7,

max
θ,τ∈{0,1}

{Zθτ
n } ≤ Z(Gn) ≤ Z10

n + Z01
n + Z11

n ≤ 3 max
θ,τ∈{0,1}

{Zθτ
n }.

So that limn→∞
1
n2 logZ(Gn) = limn→∞

1
n2 log

(
maxθ,τ∈{0,1}{Zθτ

n }
)
, provided that these limits

exist. By Theorem 9, we have:

1

n2
logZ00

n =
1

(2π)2
(2π)2

n2

n−1∑

j=0

n−1∑

k=0

logP (ei
2πj

n , ei
2πk
n ). (3.6)

The other terms

1
n2 logZ

θτ
n 
an be written in a similar way. These four terms look like Riemann

sums for the integral:

I =
1

(2π)2

∫ 2π

0

∫ 2π

0
log P (eiθ, eiτ )dθ dτ =

1

(2πi)2

∫

T2

logP (z, w)
dz

z

dw

w
.
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We may nevertheless have a 
onvergen
e problem. Indeed, terms of the sum (3.6) with arguments

too 
lose to the zeros of P (z, w) may explode. By using the very 
areful argument of Theorem

7.3. of [CKP01℄, one 
an 
he
k that this will not happen, and so the Riemann sum of the

maximum 
onverges to the integral I.

The proof is 
on
luded by observing that sin
e P (e−iθ, e−iτ ) = P (eiθ, eiτ ),

I =
1

(2π)2

∫ 2π

0

∫ 2π

0
log |P (eiθ, eiτ )|dθ dτ.

Example. The free energy of the dimer model on the square-o
tagon graph with uniform

weights is:

− 1

(2πi)2

∫

T2

log

∣∣∣∣5− z −
1

z
− w − 1

w

∣∣∣∣
dz

z

dw

w
.

Note that it is in general hard to expli
itly 
ompute this integral.

3.3 Gibbs measures

We are now interested in 
hara
terizing probability measures on the set of perfe
t mat
hings

M(G) of the in�nite graph G whi
h are, in some appropriate sense, in�nite volume versions of the

Boltzmann measure onM(Gn). Re
all that by de�nition, the probability of a mat
hing 
hosen

with respe
t to the Boltzmann measure on M(Gn) is proportional to the produ
t of its edge

weights. This de�nition does not work when the graph is in�nite, and is repla
ed by the notion

of Gibbs measure, whi
h is a probability measure on M(G) satisfying the DLR

1


onditions:

if the perfe
t mat
hing in an annular region of G is �xed, mat
hings inside and outside of the

annulus are independent, and the probability of any interior mat
hing is proportional to the

produ
t of its edge-weights.

3.3.1 Limit of Boltzmann measures

A natural way of 
onstru
ting a Gibbs measure is to take the limit of the Boltzmann measures

on 
ylinder sets of M(Gn), where a 
ylinder set 
onsists of all perfe
t mat
hings 
ontaining a

�xed subset of edges of Gn.

Theorem 2 gives an expli
it expression for the Boltzmann measure on 
ylinder sets when the

graph is planar and �nite. In the 
ase of toroidal graphs, a similar but more 
ompli
ated

expression holds: it is a 
ombination of fours terms similar to those of Equation (2.2), involving

the matri
es K00
n , . . . ,K

11
n , and their inverses.

Using the blo
k diagonalization of the matri
es Kστ
n of the proof of Theorem 9, one 
an 
ompute

the elements of the inverse expli
itly and obtain Riemann sums. The 
onvergen
e of these

Riemann sums is again 
ompli
ated by the zeros of P (z, w) on the torus T
2
, but 
an be shown

to 
onverge on a subsequen
e of n's to the right hand side of Equation (3.7). Using a Theorem of

She�eld [She05℄ whi
h shows a priori existen
e of the limit, one dedu
es 
onvergen
e for every

n. Then, by Kolmogorov's extension theorem, there exists a unique probability measure on

(M(G), σ(A)) whi
h 
oin
ides with the limit of the Boltzmann measures on 
ylinder sets, where

σ(A) is the smallest sigma-�eld 
ontaining 
ylinder sets. This limiting measure is of Gibbs type

by 
onstru
tion. We have thus sket
hed the proof of the following theorem.

1

DLR stands for Dobrushin, Lanford and Ruelle
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Theorem 12. [CKP01, KOS06℄ Let {e1 = w1b1, . . . , ek = wkbk} be a subset of edges of G. Then
there exists a unique probability measure µ on (M(G), σ(A)) su
h that:

µ(e1, . . . , ek) =

(
k∏

i=1

K(wi, bi)

)
det(K−1(bi,wj)1≤i,j≤k), (3.7)

where K is a Kasteleyn matrix asso
iated to the graph G, and assuming b and w are in a single

fundamental domain:

K−1(b,w + (x, y)) =
1

(2πi)2

∫

T2

Qbw(z, w)

P (z, w)
zxwy dw

w

dz

z
,

and Qbw(z, w) is the (b,w) element of the adjugate matrix (transpose of the 
ofa
tor matrix) of

K1(z, w). It is a polynomial in z, w, z−1, w−1
.

3.3.2 Ergodi
 Gibbs measures

In the previous se
tion, we have expli
itly determined a Gibbs measure onM(G). We now aim

at 
hara
terizing all of them. In order to this in a way whi
h is 
oherent with the model, we

introdu
e the following notions.

A probability measure on M(G) is translation-invariant, if the measure of a subset of M(G)
is invariant under the translation-isomorphism a
tion. An ergodi
 Gibbs measure (EGM) is a

Gibbs measure whi
h is translation invariant and ergodi
, i.e. translation invariant sets have

measure 0 or 1.

For an ergodi
 Gibbs measure µ, de�ne the slope (s, t) to be the expe
ted horizontal and verti
al

height 
hange in the (1, 0) and (0, 1) dire
tions, that is s = Eµ[h(v + (1, 0)) − h(v)], and t =
Eµ[h(v + (0, 1)) − h(v)].
Let us denote by µn the Boltzmann measure on M(Gn). For a �xed (s, t) ∈ R

2
, let Ms,t(Gn)

be the set of mat
hings of Gn whi
h have height 
hange (⌊sn⌋, ⌊tn⌋). Assuming thatMs,t(Gn)
is non-empty for n su�
iently large, let µn(s, t) denote the 
onditional measure indu
ed by µn
on Ms,t(Gn). Then, a 
hara
terization of all ergodi
 Gibbs measures onM(G) is given by the

following theorem of She�eld.

Theorem 13. [She05℄ For ea
h (s, t) for whi
h Ms,t(Gn) is non-empty for n su�
iently large,

µn(s, t) 
onverges as n →∞ to an EGM µ(s, t) of slope (s, t). Furthermore µn itself 
onverges

to µ(s0, t0) where (s0, t0) is the limit of the slopes of µn. Finally, if (s0, t0) lies in the interior

of the set of (s, t) for whi
h Ms,t(Gn) is non-empty for n su�
iently large, then every EGM

of slope (s, t) is of the form µ(s, t) for some (s, t) as above; that is µ(s, t) is the unique ergodi


Gibbs measure of slope (s, t).

Proof. The existen
e is established by taking limits of Boltzmann measures on larger and larger

tori while restri
ting height 
hange. The uniqueness is mu
h harder, and we won't dis
uss it

here.

3.3.3 Newton polygon and available slopes

Theorem 13 raises the following question: what is the set of possible slopes for Gibbs measures or

equivalently for limits of 
onditional Boltzmann measures ? The answer is given by the Newton

polygon N(P ) de�ned as follows: N(P ) is the 
losed 
onvex hull in R
2
of the set of integer
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exponents of the monomials of the 
hara
teristi
 polynomial P (z, w), up to 
ontribution of the

referen
e �ow ωM0
, that is:

N(P ) = 
onvex hull{(i, j) ∈ Z
2|zi+x0wj+y0

is a monomial in P (z, w)}.

Proposition 14. [KOS06℄ The Newton polygon is the set of possible slopes of EGMs, that is

there exists an EGM µ(s, t) if and only if (s, t) ∈ N(P ).

Proof. Observing that 
hanging the referen
e �ow merely translates the Newton polygon, we

assume that (x0, y0) = (0, 0).

Let us �rst prove that if (s, t) ∈ N(P ), then there is a Gibbs measure of slope (s, t), or equiva-
lentlyMs,t(Gn) is non-empty for n large enough. For 
onvenien
e, we will assume that the set

of possible slopes is 
losed.

By Lemma 8, the absolute value of the 
oe�
ient ziwj
in P (z, w) is the weighted sum of mat
h-

ings of G1 with height 
hange (i, j), thus there is a mat
hing 
orresponding to ea
h extremal

point of N(P ), i.e. if (s, t) is an extremal point of N(P ), thenMs,t(G1) 6= ∅. It su�
es to show

that ifMs1,t1(Gn1) andMs2,t2(Gn2) are non-empty for some n1 and n2, thenM s1+s2
2

,
t1+t2

2
(Gm)

is also non-empty for some m. Indeed, by indu
tion, this allows to prove existen
e of a Gibbs

measure of slope (s, t) for a dense subset of the Newton polygon. The proof is ended by using

the assumption that the set of possible slopes is 
losed.

Without loss of generality, we 
an assume that n1 = n2, otherwise take the l
m of their periods.

Consider two mat
hings ofMs1,t1(Gn) andMs2,t2(Gn), respe
tively. The superimposition of the

two mat
hings being a set of disjoint alternating 
y
les, one 
an 
hange from one mat
hing to

the other by rotating along the 
y
les. If the height 
hanges (⌊s1n⌋, ⌊t1n⌋), (⌊s2n⌋, ⌊t2n⌋) of the
two mat
hings are unequal, some of these 
y
les have non-zero homology in H1(T

2,Z), so that

rotating along them will 
hange the height 
hange. On the toroidal graph G2n, 
onsider four


opies of the two mat
hings and shift half of the non-trivial 
y
les; this 
reates a new mat
hing

with height 
hange (⌊(s1 + s2)n⌋, ⌊(t1 + t2)n⌋) =
(
⌊s1+s2

2 2n⌋, ⌊ t1+t2
2 2n⌋

)
, thus proving that

M s1+s2
2

,
t1+t2

2
(Gm) is non-empty for m = 2n.

Let us now suppose that there exists a Gibbs measure µ(s, t) of slope (s, t) and prove that

(s, t) ∈ N(P ). Denote by ~E1 the set of dire
ted edges of the fundamental domain G1 = (V1,E1).
Re
alling that the divergen
e div is a linear fun
tion of �ows, the set of non-negative, white-to-

bla
k unit �ows de�nes a polytope of R
~E1
:

{ω ∈ R
~E1 : ∀wb ∈ E1, ω(b,w) = 0, 0 ≤ ω(w, b) ≤ 1; ∀w ∈ W1, divω(w) = 1, ∀ b ∈ B1, divω(b) = −1}.

The mapping ψ whi
h assigns to a �ow ω the total �ux a
ross γx and γy is a linear mapping

from the polytope to R
2
, implying that the image of the polytope under ψ is the 
onvex hull of

the images of the extremal points of the polytope.

Now, from Se
tion 3.1, we know that every dimer 
on�guration of G1 de�nes a non-negative,

white-to-bla
k unit �ow taking values in {0, 1} on every dire
ted edge of

~E1. The 
onverse being

also true, this implies that extremal points of the polytope are given by dimer 
on�gurations.

Sin
e the referen
e �ow is su
h that (x0, y0) = (0, 0), the image of a dimer 
on�guration under

ψ is its height 
hange. This means that the image of extremal points of the polytope 
ontains

the extremal points of the Newton polygon N(P ); the image of the polytope under ψ is thus

N(P ).

The Gibbs measure µ(s, t) of slope (s, t) de�nes a non-negative, white-to-bla
k �ow ωµ(s,t)
:

∀ e = wb ∈ E1, ω
µ(s,t)(w, b) = µ(s, t)(e), ωµ(s,t)(b,w) = 0.
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Sin
e µ(s, t) is a probability measure, the �ow ωµ(s,t)
has divergen
e 1 at every white vertex and

-1 at every bla
k vertex. It thus belongs to the polytope and its image under ψ belongs to N(P ).
The proof is 
on
luded by observing that the image of µ(s, t) under ψ is the slope (s, t).

Example 3.2. Figure 3.7 shows the Newton polygon of the dimer model on the square-o
tagon

graph with weights 1 on the edges. Marked points represent monomials of the 
hara
teristi


polynomial P (z, w) = 5− z − 1
z
− w − 1

w
.

1

1

Figure 3.7: Newton polygon of the dimer model on the square-o
tagon graph with uniform

weights.

3.3.4 Surfa
e tension

For every (s, t) ∈ N(P ), let Zs,t(Gn) be the partition fun
tion ofMs,t(Gn), that is:

Zs,t(Gn) =
∑

M∈Ms,t(Gn)

ν(M).

Then, by de�nition, the free energy of the measure µ(s, t) is:

σ(s, t) = − lim
n→∞

1

n2
logZs,t(Gn).

The fun
tion σ : N(P )→ R is known as the surfa
e tension. She�eld [She05℄ proves that it is

stri
tly 
onvex.

As a 
onsequen
e of this de�nition and of Theorem 13, one dedu
es that the measure µ(s0, t0)
of Theorem 13 is the one whi
h has minimal free energy. Moreover, sin
e the surfa
e tension is

stri
tly 
onvex, the surfa
e tension minimizing slope is unique and equal to (s0, t0).

3.3.5 Constru
ting Gibbs measures

Theorem 12 of Se
tion 3.3.1 proves an expli
it expression for the Gibbs measure µ(s0, t0) of slope
(s0, t0). Our goal now is to obtain an expli
it expression for the Gibbs measures µ(s, t) with all

possible slopes (s, t).

Re
all that by Theorem 13, the Gibbs measure µ(s, t) is the limit of the 
onditional Boltzmann

measures µn(s, t) on Ms,t(Gn). The problem is that 
onditional measures are hard obje
ts

to work with in order to obtain expli
it expressions. But we know how to handle the full

Boltzmann measure, whi
h 
onverges to the Gibbs measure of slope (s0, t0). So the idea to

avoid handling 
onditional measures is to modify the weight fun
tion on the edges of Gn in su
h
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a way that mat
hings with another slope than (s0, t0) get favored. Hen
e, we are looking for a

weight fun
tion whi
h satis�es the following: the new weight of a mat
hing is equal to the old

weight multiplied by a quantity whi
h depends only on its height 
hange. This 
an be done by

introdu
ing magneti
 �eld 
oordinates as follows.

Re
all that γx,n, γy,n are oriented horizontal and verti
al 
y
les in the dual graph G
∗
n obtained

by taking n times the basis ve
tor ex of the underlying latti
e Z
2
, n times the basis ve
tor ey

respe
tively, embedded on the torus. Then, on G
∗
n there are n horizontal 
opies of the 
y
le γx,n,

and n verti
al 
opies of the 
y
le γy,n. Let (Bx, By) be two real numbers known as magneti


�eld 
oordinates. Multiply all edges 
rossing the n 
opies of the horizontal 
y
le γx,n by e±Bx
,

depending on whether the white vertex is on the left or on the right. In a similar way, edges


rossing the n 
opies of the verti
al 
y
le γy,n are multiplied by e±By
. This de�nes a magneti


altered weight fun
tion, denoted by ν(Bx,By) satisfying our requirement. Indeed, let M0 be the

periodi
 referen
e mat
hing of Gn, and denote by xn0 , y
n
0 the total �ux of ωM0

through γx,n, γy,n.
Then, arguing in a way similar to the proof of Lemma 8, one 
an express the magneti
 altered

weight fun
tion ν(Bx,By) as the weight fun
tion ν, multiplied by a quantity whi
h only depends

on the height 
hange:

∀M ∈ M(Gn), ν(Bx,By)(M) = ν(M)enBx(hM
x +xn

0 )enBy(hM
y +yn0 ). (3.8)

Let P(Bx,By)(z, w) be the 
hara
teristi
 polynomial of the graph G1 
orresponding to the magneti


altered weight fun
tion. The key fa
t is that P(Bx,By)(z, w) 
an easily be expressed using the


hara
teristi
 polynomial P (z, w) of the graph G1: expressing P(Bx,By)(z, w) using Lemma 8 and

repla
ing ν(Bx,By)(M) by the right hand side of (3.8) in the 
ase where n = 1, yields:

P(Bx,By)(z, w) = P (eBxz, eByw).

Let Z(Bx,By)(Gn) be the partition fun
tion and µ
(Bx,By)
n be the Boltzmann measure of the graph

Gn with the magneti
 altered weight fun
tion. Denote by µ(Bx,By) the Gibbs measure obtained

as weak limit of the Boltzmann measures µ
(Bx,By)
n . Then, as a dire
t 
orollary of Theorems 11

and 12, we have:

Corollary 15. [KOS06℄

Under the assumption that P (eBxz, eByw) has only a �nite number of zeros on the unit torus T
2
:

lim
n→∞

1

n2
logZ(Bx,By)(Gn) =

1

(2πi)2

∫

T2

log
∣∣P (eBxz, eByw)

∣∣ dz
z

dw

w
.

Corollary 16. [KOS06℄

Let {e1 = w1b1, . . . , ek = wkbk} be a subset of edges of G. Then there exists a unique probability

measure µ(Bx,By) on (M(G), σ(A)) su
h that:

µ(Bx,By)(e1, . . . , ek) =

(
k∏

i=1

K(Bx,By)(wi, bi)

)
det(K−1

(Bx,By)
(bi,wj)1≤i,j≤k), (3.9)

where K(Bx,By) is a Kasteleyn matrix asso
iated to the graph G, and assuming b and w are in a

single fundamental domain:

K−1
(Bx,By)

(b,w + (x, y)) =
1

(2πi)2

∫

T2

Qbw(e
Bxz, eByw)

P (eBxz, eByw)
zyw−x dw

w

dz

z
,

and Qbw(z, w) is the (b,w) element of the adjugate matrix of K1(z, w) of the original graph.
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So, it is quite remarkable that the results obtained for the weight fun
tion ν also yield the results

for the magneti
 altered weight fun
tion ν(Bx,By).

Note that we have not yet related the magneti
 �eld 
oordinates to the slope of the Gibbs

measure µ(Bx,By). This is postponed until Se
tion 3.4.2.

3.4 Phases of the model

In this se
tion, we des
ribe one of the most beautiful results on the bipartite dimer model

obtained by Kenyon, Okounkov and She�eld [KOS06℄, namely the full des
ription of the phase

diagram of the dimer model. It involves magneti
 �eld 
oordinates and an obje
t from algebrai


geometry 
alled �Harna
k 
urves�.

A way to 
hara
terize phases is by the rate of de
ay of edge-edge 
orrelations. In the dimer

model, this amounts to studying asymptoti
s of K−1
(Bx,By)

. Indeed, let e1 = w1b1 and e2 = w2b2

be two edges of G, whi
h are thought of as being far away from ea
h other. Let Ie be the random

variable whi
h is 1 if the edge e is present in a dimer 
on�guration, and 0 else. Then, using the

expli
it expression for the Gibbs measure µ(Bx,By) yields:

Cov(Ie1 , Ie2) = µ(Bx,By)(e1, e2)− µ(Bx,By)(e1)µ(Bx,By)(e2),

= K(Bx,By)(w1, b1)K(Bx,By)(w2, b2)K
−1
(Bx,By)

(b2,w1)K
−1
(Bx,By)

(b1,w2).

The asymptoti
 behavior of K−1
(Bx,By)

(b,w+(x, y)) (as x2+y2 gets large) depends on the zeros of

the denominator on the unit torus, i.e. on the zeros of P (eBxz, eByw) on the unit torus. Hen
e,

the goal is to study the set: {(z, w) ∈ T
2 : P (eBxz, eByw) = 0}, or equivalently, the set:

{(z, w) ∈ C
2 : |z| = eBx , |w| = eBy , P (z, w) = 0}.

This is the subje
t of the next se
tion.

3.4.1 Amoebas, Harna
k 
urves and Ronkin fun
tion

The amoeba of a polynomial P ∈ C[z, w] in two 
omplex variables, denoted by A(P ), is de�ned
as the image of the 
urve P (z, w) = 0 in C

2
under the map:

(z, w) 7→ (log |z|, log |w|).

When P is the 
hara
teristi
 polynomial of a dimer model, the 
urve P (z, w) = 0 is known as

the spe
tral 
urve of the dimer model. Note that a point (x, y) ∈ R
2
is in the amoeba A(P ), if

and only if |z| = ex, |w| = ey, and P (z, w) = 0. Otherwise stated, a point (x, y) ∈ R
2
is in the

amoeba if and only if the polynomial P (exz, eyw) has at least one zero on the unit torus.

The theory of amoebas is a fresh and beautiful �eld of resear
h. The paper �What is ... an

amoeba?� in the noti
es of the AMS, by Oleg Viro gives a very ni
e overview of the results

obtained over a period of 8 years by [FPT00, GKZ94, Mik00, MR01℄. It provides a pre
ise

geometri
 pi
ture of the obje
t, whi
h heavily depends on the Newton polygon N(P ) of Se
-

tion 3.3.3. Loosely stated, an amoeba satis�es the following, see also Figure 3.8.

• An amoeba rea
hes in�nity by several tenta
les. Ea
h tenta
le a

ommodates a ray and

narrows exponentially fast towards it, so that there is only one ray in ea
h tenta
le.
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• Ea
h ray is orthogonal to a side of the Newton polygon N(P ), and dire
ted towards an

outward normal of the side.

• For ea
h side of N(P ), there is at least one tenta
le asso
iated to it. The maximal number

of tenta
les 
orresponding to a side of N(P ) is the number of pie
es it is divided in by

integer latti
e points.

• The amoeba's 
omplement R
2 \ A(P ) 
onsists of 
omponents between the tenta
les, and

bounded 
omponents. Ea
h bounded 
omponent 
orresponds to a di�erent integer latti
e

point of N(P ), and the maximal number of bounded 
omponents is the total number of

interior integer latti
e points of N(P ).

• Ea
h 
onne
ted 
omponent of the amoeba's 
omplement R
2 \ A(P ) is 
onvex.

• Planar amoebas are not bounded, but

Area(A(P )) ≤ π2Area(N(P )).

log|z|

log|w|
tentacle

ray

Figure 3.8: Newton polygon (left) and amoeba (right, shaded) of the 
hara
teristi
 polynomial

P (z, w) = 5− z − 1
z
− w − 1

w
of the uniform dimer model on the square-o
tagon graph.

One of the main tools used to study the amoeba of a polynomial P is the Ronkin fun
tion R of

this polynomial de�ned by:

∀ (x, y) ∈ R
2, R(x, y) =

1

(2πi)2

∫

T2

log |P (exz, eyw)|dz
z

dw

w
.

It has the following properties:

• The Ronkin fun
tion is 
onvex

• It is linear on ea
h 
omponent of the amoeba 
omplement, and the gradient is the 
orre-

sponding integer point of N(P ).
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Complex 
urves P (z, w) = 0 whose amoeba area is maximal, i.e. equal to π2Area(N(P )), are

alled maximal. Curves with this property are very spe
ial: they have real 
oe�
ients and

their amoeba has the maximal number of 
omponents. Su
h 
urves were already introdu
ed by

Harna
k in 1876, and are known as Harna
k 
urves. There is an alternative 
hara
terization of

Harna
k 
urves given in [MR01℄, whi
h is more useful here: a real 
urve P (z, w) = 0 is Harna
k

if and only if the map from the 
urve to its amoeba is at most 2-to-1. It will be 2-to-1, with a

�nite number of possible ex
eptions where it may be 1-to-1 (the boundary of the amoeba, and

when bounded 
omponents shrink to a point).

One of the most fruitful theorem of the paper [KOS06℄ is the following.

Theorem 17. [KOS06, KO06℄ The spe
tral 
urve of a dimer model is a Harna
k 
urve. Con-

versely, every Harna
k 
urve arises as the spe
tral 
urve of some periodi
 bipartite weighted

dimer model.

For the proof of this theorem, we refer to [KOS06, KO06℄.

3.4.2 Surfa
e tension revisited

In this se
tion, we relate the magneti
 �eld 
oordinates to the slope of the measure µ(Bx,By).

This is done by expressing the surfa
e tension as a fun
tion of the Ronkin fun
tion.

Let us assume that the referen
e �ow ωM0
of the fundamental domain G1 �ows by 0 through

the paths γx, γy, i.e. x0 = y0 = 0.

Theorem 18. [KOS06℄ The surfa
e tension is the Legendre transform of the Ronkin fun
tion

of the 
hara
teristi
 polynomial, i.e.

σ(s, t) = max
x,y
{−R(x, y) + sx+ ty}.

Proof. (Sket
h) Let us sket
h the proof that the Ronkin fun
tion is the Legendre transform

of the surfa
e tension. Sin
e the surfa
e tension is stri
tly 
onvex [She05℄, then the Legendre

transform is involutive, and Theorem 18 is obtained.

By Corollary 15, we know that:

R(Bx, By) = lim
n→∞

1

n2
logZ(Bx,By)(Gn).

Moreover, by de�nition:

Z(Bx,By)(Gn) =
∑

M∈M(Gn)

ν(M)enBxhxenByhy . This sum 
an be de
omposed as:

Z(Bx,By)(Gn) =

∫∫

N(P )

∑

{M∈M(Gn):hx=⌊ns⌋,hy=⌊nt⌋}
ν(M)enBxhxenByhyds dt

=

∫∫

N(P )

en
2(Bxs+Byt)+O(n)

( ∑

{M∈M(Gn):hx=⌊ns⌋,hy=⌊nt⌋}
ν(M)

)
ds dt

=

∫∫

N(P )

en
2(Bxs+Byt)+O(n)e−n2σ(s,t)+O(n)ds dt, by de�nition of σ(s, t)

=

∫∫

N(P )

en
2(Bxs+Byt−σ(s,t)+o(1))ds dt.
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An upper bound is obtained by writing:

∫∫

N(P )

en
2(Bxs+Byt−σ(s,t)+o(1))ds dt ≤ en2[max{(s,t)∈N(P )}(Bxs+Byt−σ(s,t))+o(1)]|N(P )|

A lower bound is obtained by performing Taylor expansion of φ(s, t) := Bxs + Byt − σ(s, t)
around its maximum and using the fa
t that the surfa
e tension is stri
tly 
onvex.

Taking

1
n2 log yields that the Ronkin fun
tion is the Legendre transform of the surfa
e tension:

R(Bx, By) = max
(s,t)∈N(P )

{Bxs+Byt− σ(s, t)}.

Corollary 19. The slope of the measure µ(Bx,By) is the gradient of the Ronkin fun
tion at the

point (Bx, By).

3.4.3 Phases of the dimer model

In the introdu
tory part of Se
tion 3.4, we mentioned that a way to 
hara
terize phases of a

given model is to use the rate of de
ay of edge-edge 
orrelations and that, in the 
ase of the

dimer model, it required a 
hara
terization of the zeros of P (eBxz, eByw) on the unit torus. This

information is now available and one 
an give a pre
ise des
ription of the phase diagram of the

dimer model.

A
tually, Kenyon, Okounkov and She�eld use height fun
tion �u
tuations to de�ne the di�erent

phases, but show that this is equivalent to 
lassifying phases using rate of de
ay of 
orrelations.

Here are their de�nitions:

• An EGM µ is 
alled a frozen phase if there exists distin
t fa
es f, f
′
of G for whi
h h(f)−h(f ′)

is deterministi
.

• An EGM µ is 
alled a gaseous or smooth phase, if the height �u
tuations have bounded

varian
e.

• An EGM µ is 
alled a liquid or rough phase, if the µ-varian
e of the height di�eren
e is

unbounded.

Now 
omes the theorem 
hara
terizing phases.

Theorem 20. [KOS06℄ The measure µ(Bx,By) is:

• frozen when (Bx, By) is in the 
losure of an unbounded 
onne
ted 
omponent of the amoeba's


omplement R
2 \ A(P ),

• liquid when (Bx, By) is in the interior of the amoeba A(P ),

• gaseous when (Bx, By) is in the 
losure of a bounded 
onne
ted 
omponent of the amoeba's


omplement R
2 \ A(P ).

Figure 3.9 represents the amoeba of the dimer model on the square-o
tagon graph with uniform

weights, and the 
orresponding phases of the model.

We only give a few ideas on the proof of this theorem.
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By

Bx

frozen

frozen

gas

liquid

frozenfrozen

Figure 3.9: Phase diagram of the uniform dimer model on the square-o
tagon graph.

• Suppose that (Bx, By) is in the 
losure of an unbounded 
omponent of the amoeba's


omplement and re
all (Corollary 19) that the slope of the measure µ(Bx,By) is the gradient

of the Ronkin fun
tion at the point (Bx, By). The slope is thus an integer point on the

boundary of N(P ). Using the max-�ow min 
ut theorem used by Thurston [Thu90℄ to

give a 
riterion of existen
e of dimer 
on�gurations, one dedu
es that: if the slope is a

non-extremal boundary point of N(P ), then there is an edge-path in the dual graph G
∗
1,

whose dire
tion is orthogonal to the side of the Newton polygon, and su
h that dual edges


rossing 
opies of this path appear with probability 1 or 0; if the slope is an extremal

point of N(P ), there are two non-parallel edge-paths in the dual G
∗
1, whose dire
tions are

orthogonal to the two side of the Newton polygon meeting at the extremal point, and su
h

that dual edges 
rossing 
opies of these paths appear with probability 1 or 0. Otherwise

stated, in the tiling representation of the dimer model, there are paths in the dual graph

G
∗
1 generating a latti
e of G

∗
, 
onsisting of frozen paths for all tilings of G

∗

hosen with

respe
t to the measure µ(Bx,By). Tilings in 
onne
ted 
omponents of the 
omplement of

this latti
e are independent.

The height di�eren
e of fa
es f, f ′ whi
h belong to the latti
e of frozen paths is 
onstant,

i.e. h(f)− h(f ′) is deterministi
 and the measure µ(Bx,By) is in the frozen phase.

In the other two 
ases, the proof 
onsists of expli
it asymptoti
 expansions of

K−1
(Bx,By)

(b,w + (x, y)),

whi
h is the (x, y)-Fourier 
oe�
ient of

Qbw(e
Bxz,eByw)

P (eBxz,eByw)
seen as a fun
tion of (z, w) ∈ T

2
.

• When (Bx, By) is in the interior of the amoeba, then P (eBxz, eByw) has 1 or 2 zeros on the

unit torus, and KOS show that the only 
ontribution to the (x, y)-Fourier 
oe�
ient 
omes

from a neighborhood of the pole(s). They extra
t the exa
t asymptoti
s by doing Taylor

approximations and 
ontour integration, and show that K−1
(Bx,By)

(b,w + (x, y)) de
reases

linearly, implying that the edge 
ovarian
es de
reases quadrati
ally. The authors then

prove that the height di�eren
e between two fa
es f, f ′ grows universally like

1
π
times the

logarithm of the distan
e from f to f
′
. The measure µ(Bx,By) is thus a liquid phase.
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• When (Bx, By) belongs to the 
omplement of the amoeba, then P (eBxz, eByw) has no

zero on the unit torus, and

Qbw(e
Bxz,eByw)

P (eBxz,eByw)
is analyti
, implying that its Fourier 
oe�
ients

de
rease exponentially fast. When, (Bx, By) is in an unbounded 
omponent, then using

the above spe
i�
 argument of the frozen phase, the authors show that some Fourier


oe�
ients are 0. When (Bx, By) is in a bounded 
omponent, then the Fourier 
oe�
ient

de
reases exponentially fast, and the height �u
tuations have bounded varian
e. The

measure µ(Bx,By) is thus a gaseous phase.

3.5 Flu
tuations of the height fun
tion

In this se
tion we address the question of the �u
tuations of the height fun
tion around its

mean. We restri
t ourselves to the 
ase of the uniform dimer model on the in�nite honey
omb

latti
e H, with no magneti
 �eld. The goal is to prove that the limiting �u
tuations of the height

fun
tion are des
ribed by a Gaussian free �eld of the plane, a behavior whi
h is 
hara
teristi


of the liquid phase.

Results presented here, and extensions 
an be found in [Ken00, Ken01, Ken08, dT07℄.

3.5.1 Uniform dimer model on the honey
omb latti
e

Let us spe
ify the results obtained in the previous se
tions to the 
ase where H is the honey
omb

latti
e, edges are assigned weights 1, and there is no magneti
 �eld. The 
hoi
e of fundamental

domain is given in Figure 3.10.

1/w

γx

yγ

z

1

1

1 1

1

Figure 3.10: Choi
e of fundamental domain of the honey
omb latti
e

The 
hara
teristi
 polynomial is:

P (z, w) = 1 + z +
1

w
.

The Gibbs measure µ obtained as weak limit of the Boltzmann measures µn on M(Gn) (with
no magneti
 �eld) has the following expression on 
ylinder sets:

µ(e1, . . . , ek) = det
(
K−1(bi,wj)1≤i,j≤k

)
, (3.10)

where

K−1(b0,0,wx,y) =
1

(2πi)2

∫

T2

1

1 + z + 1
w

zyw−x dz

z

dw

w
,

and wx,y represents the white vertex of the (x, y) 
opy of the fundamental domain, and similarly

for bx,y.
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When there is no magneti
 �eld, the 
hara
teristi
 polynomial has two 
onjugate simple zeros

on the unit torus T: (z0, w0) = (ei
2π
3 , ei

2π
3 ), and (z0, w0). The uniform dimer model on the

honey
omb latti
e is thus in the liquid phase.

In Se
tion 2.4, we de�ned Thurston's height fun
tion on lozenge tilings of the triangular latti
e

T, whi
h was a fun
tion on verti
es of T. Equivalently, it is a fun
tion on dimer 
on�gurations

of the honey
omb latti
e H, de�ned on fa
es of H. For 
onvenien
e, from now on, we 
onsider

1
3 of Thurston's height fun
tion.

The following lemma gives an expression of the height fun
tion using indi
ator fun
tions of

edges. We will use this in the proof of the 
onvergen
e of the height fun
tion. Let u, v be two

fa
es of H, and let γ be an edge-path in the dual graph from u to v. Denote by e1, . . . , em the

dual edges of edges of γ whi
h have a bla
k vertex on the left, and by f1, . . . , fn those whi
h have

a white vertex on the left. Then,

Lemma 21.

h(v)− h(u) =
m∑

i=1

(
−Iei +

1

3

)
+

n∑

j=1

(
Ifj −

1

3

)
.

Proof. Let ei be the dual edge of an edge uivi of γ, whi
h has a bla
k vertex on the left of

γ. Then, returning to the orientation of the edges of the triangular latti
e introdu
ed in the


onstru
tion of Thurston's height fun
tion, see Se
tion 2.4, we know that the edge uivi is oriented

from ui to vi. Thus by de�nition, we have:

h(vi)− h(ui) =
{

1
3 if the edge ei is not in the dimer 
on�guration

−2
3 if the edge ei is in the dimer 
on�guration.

This 
an be summarized as: h(vi)− h(ui) = −Iei + 1
3 .

A similar argument holds for edges whi
h have a white vertex on the left. Summing over all

edges in the path γ yields the result.

3.5.2 Gaussian free field of the plane

We now de�ne the Gaussian free �eld of the plane, whi
h is, as we will see, the limiting obje
t

of the height fun
tion.

The Green's fun
tion of the plane, denoted by g satis�es ∆xg(x, y) = δx(y), where δx is the

Dira
 distribution at x. Up to an additive 
onstant, g is given by

g(x, y) = − 1

2π
log |x− y|.

Let C∞
c,0(R

2) be the set of C∞
fun
tion of R

2
with 
ompa
t support and zero mean, and de�ne

the following 
ontinuous, bilinear form:

G : C∞
c,0(R

2)× C∞
c,0(R

2) → R

(ϕ1, ϕ2) 7→ G(ϕ1, ϕ2) =

∫

R2

∫

R2

g(x, y)ϕ1(x)ϕ2(y)dx dy.

Introdu
ing fi(x) =
√
2
∫
R
g(x, y)ϕi(x)dx, i ∈ {1, 2}, and using Green's formula, one shows that:

G(ϕ1, ϕ2) =
1

2

∫

R2

∇f1(x) · ∇f2(x)dx,
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implying that the bilinear form G is positive de�nite. The quantity G(ϕ1, ϕ1) is known as the

Diri
hlet energy of f1.

A random generalized fun
tion F assigns to every test fun
tion ϕ in C∞
c,0(R

2), a real random

variable Fϕ. It is assumed to be linear and 
ontinuous, where 
ontinuity means that 
onvergen
e

of the fun
tions ϕnj
(1 ≤ j ≤ k) to ϕj , implies 
onvergen
e in law of the random ve
tor

(Fϕn1 , . . . , Fϕnk
) to (Fϕ1, . . . , Fϕk). A random generalized fun
tion is said to beGaussian if for

every linearly independent fun
tions ϕ1, . . . , ϕk ∈ C∞
c,0(R

2), the random ve
tor (Fϕ1, . . . , Fϕk)
is Gaussian.

Theorem 22. [Bo
55℄ If B : C∞
c,0(R

2)×C∞
c,0(R

2)→ R is a bilinear, 
ontinuous, positive de�nite

form, then there exists a Gaussian random generalized fun
tion F , whose 
ovarian
e fun
tion is

given by:

E[Fϕ1Fϕ2] = B(ϕ1, ϕ2).

By de�nition a Gaussian free �eld of the plane GFF is a Gaussian random generalized fun
tion

whose 
ovarian
e fun
tion is the bilinear form G de�ned above, i.e.

E[GFF(ϕ1)GFF(ϕ2)] = −
1

2π

∫

R2

∫

R2

log |x− y|ϕ1(x)ϕ2(y)dx dy.

There are other ways of de�ning the Gaussian free �eld, see for example [GJ81℄ and [She07℄.

3.5.3 Convergen
e of the height fun
tion to a Gaussian free field

Let H
ε
be the graph H whose edge-lengths have been multiplied by ε, and 
onsider the un-

normalized height fun
tion h on fa
es of H
ε
. De�ne,

Hε : C∞
c,0(R

2) → R

ϕ 7→ Hεϕ = ε2
∑

v∈F (Hε)

ϕ(v)h(v).

Theorem 23. The random generalized fun
tion Hε

onverges weakly in law to

1√
π
times a

Gaussian free �eld, i.e. for every ϕ1, . . . , ϕk ∈ C∞
c,0(R

2), (Hεϕ1, . . . ,H
εϕk) 
onverges in law (as

ε→ 0) to 1√
π
(GFFϕ1, . . . ,GFFϕk), where GFF is a Gaussian free �eld.

Sin
e the ve
tor (GFFϕ1, . . . ,GFFϕk) is Gaussian, to prove 
onvergen
e of (Hεϕ1, . . . ,H
εϕk)

to (GFFϕ1, . . . ,GFFϕk), it su�
es to prove 
onvergen
e of the moments of (Hεϕ1, . . . ,H
εϕk)

to those of (GFFϕ1, . . . ,GFFϕk); that is we need to show that for every k-tuple of positive

integers (m1, . . . ,mk), we have:

lim
ε→0

E[(Hεϕ1)
m1 . . . (Hεϕk)

mk ] = E[(GFFϕ1)
m1 . . . (GFFϕk)

mk ]. (3.11)

We now state the key proposition used to prove 
onvergen
e of the moments. Let u1, . . . uk,
v1, . . . , vk be distin
t points of R

2
, and let γ1 . . . , γk be pairwise disjoint paths su
h that γj runs

from uj to vj . Let u
ε
j , v

ε
j be fa
es of H

ε
lying within O(ε) of uj and vj respe
tively. Then,

Proposition 24.

lim
ε→0

E [(h(vε1)− h(uε1)) . . . (h(vεk)− h(uεk))] =

=





0 when k is odd

(
1

π

) k
2 ∑

σ

g(uσ(1), vσ(1), uσ(2), vσ(2)) . . . g(uσ(k−1), vσ(k−1), uσ(k), vσ(k)) when k is even
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where g(u, v, u′, v′) = g(v, v′)+ g(u, u′)− g(v, u′)− g(u, v′), g is the Green's fun
tion of the plane,

and the sum is over all (k − 1)!! pairings of {1, . . . , k}.

Proof. We prove this proposition in a parti
ular 
ase. The proof of the general 
ase is similar,

although notationally mu
h more 
umbersome. Let us assume that k = 2, and suppose that

u1, v1, u2, v2 are su
h that we 
an 
hoose u
ε
1, v

ε
1, u

ε
2, v

ε
2 as in Figure 3.11. Let γε1 and γε2 be the

paths joining u
ε
1, v

ε
1 and u

ε
2, v

ε
2 respe
tively as in Figure 3.11.

ε

u

u

v

v

1

1

2

2

ε

ε

ε

ε

Figure 3.11: Choi
e of u
ε
1, u

ε
2, v

ε
1, v

ε
2

.

Denote by e1 = w1b1, . . . , em = wmbm the dual edges of the edges of the path γε1, and by

f1 = w
′
1b

′
1, . . . , fn = w

′
nb

′
n, the dual edges of the edges of γ

ε
2. Then, by Lemma 21,

E [(h(vε1)− h(uε1))(h(vε2)− h(uε2))] = E




m∑

i=1

(
−Iei +

1

3

) n∑

j=1

(
Ifj −

1

3

)


=
m∑

i=1

n∑

j=1

(
−µ(ei, fj) +

1

3
µ(ei) +

1

3
µ(fj)−

1

9

)

=

m∑

i=1

n∑

j=1

(
−µ(ei, fj) +

1

9

)
, (sin
e µ(e) =

1

3
for every edge e),

= −
m∑

i=1

n∑

j=1

K−1(bi,w
′
j)K

−1(b′j ,wi), (sin
e K(wi, bi) = K(w′
j , b

′
j) = 1),

Using asymptoti
 formulae for K−1(bi,w
′
j), K

−1(b′j ,wi) (see either [KOS06℄ or [Ken02℄), one

obtains:

−K−1(bi,w
′
j)K

−1(b′j ,wi) = −
1

(2π)2

(
ε2dz′jdzi
(z′j − zi)2

+
ε2dz̄′jdz̄i

(z̄′j − z̄i)2

)
+ 
ross terms+ o(),

where z′j and zi are points approximating w
′
j, b

′
j and wi, bi, respe
tively. One 
an show that the

sum over the paths γε1, γ
ε
2 of the 
ross terms is O(ε), so that summing over all edges in the paths
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yields:

lim
ε→0

E [(h(vε1)− h(uε1))(h(vε2)− h(uε2))] = −2Re
∫

v1

u1

∫
v2

u2

1

4π2(z2 − z1)2
dz1dz2

= − 1

2π2
log

∣∣∣∣
(v1 − v2)(u1 − u2)

(v1 − u2)(u1 − v2)

∣∣∣∣

=
1

π
g(u1, v1, u2, v2).

On
e Proposition 24 is available, one then introdu
es test fun
tions and prove 
onvergen
e of

all moments of (3.11). This implies handling moments of height di�eren
es involving verti
es

whi
h are 
lose. The asymptoti
 formula for the inverse Kasteleyn matrix does not hold in this


ase, and one has to do 
areful bounds to see that everything still works.

********************************

We have rea
hed the end of these le
ture notes 
overing the foundations of the dimer model

and the paper �Dimers and amoeba� of Kenyon, Okounkov and She�eld [KOS06℄, giving a full

des
ription of the phase diagram of the dimer model on periodi
, bipartite graphs. Although

these are spe
ta
ular results, there are others, su
h as the spe
i�
 behavior of the dimer model

de�ned on isoradial graphs [Ken02, KO06℄, the understanding of limit shapes [CKP01, KO07℄,

the appli
ation of dimer te
hniques to study the Ising model [BdT10b, BdT10a℄. We do hope

that these notes will en
ourage the reader to learn more on this very ri
h model of statisti
al

me
hani
s.
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