
Université Paris-Dauphine

Introduction to the Ising model

Master 2, MATH

Béatrice de Tilière
Based on the lecture notes and book of

Y. Velenik [Vel], V. Tassion [Tas18], S. Friedli and Y.Velenik [FV17]





CONTENTS

1 Definitions and notation 3
1.1 The Ising model with free boundary conditions . . . . . . . . . . . . . . . . . . . 3
1.2 Boundary conditions, magnetization, phase transition . . . . . . . . . . . . . . . . 4

1.2.1 Ising model with boundary conditions . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Magnetization and phase transition . . . . . . . . . . . . . . . . . . . . . . 5

2 Domain Markov property, correlation inequalities 7
2.1 Domain Markov property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Increasing functions and local functions . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Correlation inequalities and consequences . . . . . . . . . . . . . . . . . . . . . . 10

3 Thermodynamic limit 13
3.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Structure of compact metric space on Ω . . . . . . . . . . . . . . . . . . . 13
3.1.2 Weak convergence and the Riesz-Markov-Kakutani theorem . . . . . . . . 14

3.2 Two infinite volume Gibbs measure . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 A characterization of the phase transition . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Magnetization and phase transition, rigorous definitions . . . . . . . . . . 16
3.3.2 Characterization of the phase transition . . . . . . . . . . . . . . . . . . . 17

4 Magnetization and phase diagram 19
4.1 Non-uniqueness at low temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Low temperature expansion d = 2 . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Uniqueness at high temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 High temperature expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 No phase transition in dimension 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1



Bibliography 26

2



Chapter 1

Definitions and notation

1.1 The Ising model with free boundary conditions

We start by describing the context and defining the Ising model.

• The material (piece of metal, liquid) is represented by a finite, connected subgraph (Λ, E) ⊂
Zd, for some fixed d ≥ 1; that is, Λ is a subset of vertices of Zd, and E is the corresponding
subset of edges:

E = {xy : x ∼ y in Zd, x, y ∈ Λ}.

• On Λ, we consider the set of spin configurations, denoted by ΩΛ, defined as

ΩΛ = {−1, 1}Λ = {σ = (σx)x∈Λ : ∀x ∈ Λ, σx ∈ {−1, 1}}.
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Figure 1.1: An example of subgraph (Λ, E) of Z2 together with a spin configuration σ.

• The inverse external temperature is represented by a parameter β ≥ 0.

• For every σ ∈ ΩΛ, the energy of the configuration σ, denoted by HΛ,β(σ) is defined to be

HΛ,β(σ) = −β
∑
xy∈E

σxσy.

3



Chapter 1. Definitions and notation

• The probability of occurrence of a spin configuration is given by the Ising Boltzmann
measure, denoted by µΛ,β , and defined by

∀ σ ∈ ΩΛ, µΛ,β(σ) =
1

ZΛ,β
e−HΛ,β(σ),

where ZΛ,β =
∑

σ∈ΩΛ
e−HΛ,β(σ) is the partition function. Note that this measure favors

neighboring spins that agree, and that this tendency becomes greater as the temperature
lowers (β increases).

1.2 Boundary conditions, magnetization, phase transition

Assume that Λ contains the origin 0. Under the measure µΛ,β , since for all σ ∈ ΩΛ, µΛ,β(σ) =
µΛ,β(−σ), the expected spin at 0 is

⟨σ0⟩Λ,β = µΛ,β(σ0 = +1)− µΛ,β(σ0 = −1) = 0.

In order to break this ± symmetry, one introduces more general boundary conditions.

1.2.1 Ising model with boundary conditions

Consider (Λ, E) ⊂ Zd as before. Let us define

◦ ∂Λ = {x ∈ Zd \ Λ : ∃ y ∈ Λ, x ∼ y},

◦ Λ̄ := Λ ∪ ∂Λ,

◦ ∂E = {xy : x ∼ y in Zd, x ∈ Λ, y ∈ ∂Λ},

◦ Ē = E ∪ ∂E.

A boundary condition for Λ is the data of ω ∈ {−1, 0, 1}∂Λ.
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Figure 1.2: A subgraph (Λ, E) of Z2, its boundary vertices ∂Λ, the edges ∂E (dotted), and
the edges Ē (plain and dotted); the vertices of ∂Λ are assigned a boundary configuration ω ∈
{−1, 1}∂Λ.

Given a boundary condition ω, the corresponding definitions of energy and Ising Boltzmann
measure are:
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Chapter 1. Definitions and notation

• For every σ ∈ ΩΛ, the energy of the configuration σ is:

Hω
Λ,β(σ) = −β

∑
xy∈E

σxσy − β
∑

xy∈∂E
σxωy.

• The Ising Boltzmann measure with ω-boundary conditions is:

∀ σ ∈ ΩΛ, µω
Λ,β(σ) =

1

Zω
Λ,β

e−Hω
Λ,β(σ),

where Zω
Λ,β =

∑
σ∈ΩΛ

e−Hω
Λ,β is the corresponding partition function.

Notation. From now on, we try and simplify notation and depending on the context, we will
use the notation:

Hω
Λ,β = Hω

β = Hω, µω
Λ,β = µω

β = µω,

For every function f : ΩΛ → R, ⟨f⟩ωΛ,β = ⟨f⟩ωβ = ⟨f⟩ω =

∫
ΩΛ

fdµω =
∑
σ∈ΩΛ

f(σ)µω(σ).

Example 1.1. Here are some examples of boundary conditions (b.c.).

• + b.c.: ∀ x ∈ ∂Λ, ωx = +1, with the notation H+, µ+, ⟨f⟩+.

• − b.c.: ∀ x ∈ ∂Λ, ωx = −1, with the notation H−, µ−, ⟨f⟩−.

• Free b.c.: ∀ x ∈ ∂Λ, ωx = 0, and we recover the Ising model with free boundary conditions
of Section 1.1. The usual notation is H∅ = H,µ∅ = µ, ⟨f⟩∅ = ⟨f⟩.

1.2.2 Magnetization and phase transition

Let us get ahead of ourselves and explain one of the main goals of these lectures. We want
to prove that, when d ≥ 2, the Ising model undergoes a phase transition between a low and a
high temperature regime; in the first regime, neighboring spins are expected to influence each
other, while in the second, the model is closer to independent. One way to study this is to see
how boundary conditions in a box influence the value of the spin at the center of the box. This
motivates the following definitions.

An exhaustion of Zd is a sequence (Λn)n≥1 of increasing subsets of Zd, such that
⋃

n≥1 Λn = Zd.

The magnetization is defined to be:

⟨σ0⟩+β = lim
n→∞

⟨σ0⟩+Λn,β
.

Remark 1.2. As we go along, we will be proving that:

◦ this limit exists,

◦ for all β ≥ 0, ⟨σ0⟩+β ≥ 0,
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Chapter 1. Definitions and notation

◦ ⟨σ0⟩+β is increasing as a function of β.

Assuming this for the moment, one defines the critical inverse temperature βc(d) as the largest
β such that the magnetization is zero:

βc(d) = sup{β ≥ 0 : ⟨σ0⟩+β = 0}.

When d ≥ 2, we will show that for β small enough ⟨σ0⟩+β = 0, and that for β large enough
⟨σ0⟩+β > 0.

⟨σ0⟩+β = 0 ⟨σ0⟩+β > 0βc0
β

Figure 1.3: Pictorial view of the phase diagram of the Ising model.

As a consequence, the Ising model undergoes a phase transition between the high temperature
regime where the magnetization behaves as if it had free boundary conditions (it does not feel
the effect of the boundary), and a low temperature regime where the model feels the boundary
(the + on the boundary influence the spin at 0).

We will also prove that, when d = 1, for all β ≥ 0, ⟨σ0⟩+β = 0, meaning that there is no phase
transition in this case; this result was originally established by Ising.

Another goal of these lectures is to prove an equivalent characterization of the phase transition
using uniqueness/non-uniqueness of the infinite volume limits of the Boltzmann measures with
different boundary conditions, which we will first need to construct.
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Chapter 2

Domain Markov property, correlation in-
equalities

In order to study limits of Boltzmann measures and phase transition, we need to study the
Ising model in infinite volume. This relies on a good understanding of the model defined on a
finite subgraph of Zd. Our main target for this section is to state correlation inequalities and
their consequences, but we start with another interesting property known as the domain Markov
property.

In all this section (Λ, E) is a finite, connected subgraph of Zd, and the inverse temperature β is
assumed to be fixed.

2.1 Domain Markov property

An interesting feature of the Ising model is that it satisfies a spatial Markov property, referred
to as domain Markov property, as stated by the following, see also Figure 2.1.

Proposition 2.1. Let Λ′ ⊂ Λ (where the inclusion is assumed to be strict), and let ω ∈ {−1, 1}∂Λ
be a boundary condition on Λ. Let σ̄ be a fixed spin configuration on Λ \Λ′ inducing a boundary
condition ω′ on ∂Λ′: ∀x ∈ ∂Λ′, ω′

x = σ̄x. Let C = {σ ∈ ΩΛ : ∀x ∈ Λ \ Λ′, σx = σ̄x}. Then,

µω
Λ( · |C) = µω′

Λ′( · ).

Proof. Note that there is a natural bijection between C and ΩΛ′ . We need to show that, for all
σ ∈ C, µω

Λ(σ)

µω
Λ(C) = µω′

Λ′(σ). We have,

−Hω
Λ(σ) = β

∑
xy∈E

σxσy + β
∑

xy∈∂E
σxωy

= β
∑

xy∈E′

σxσy + β
∑

xy∈∂E′

σxω
′
y + β

∑
xy∈E\Ē′

σ̄xσ̄y + β
∑

xy∈∂E
σ̄xωy

= −Hω′
Λ′ (σ) + C(σ̄, ω),
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Chapter 2. Domain Markov property, correlation inequalities

where C(σ̄, ω) =
∑

xy∈E\Ē′ σ̄xσ̄y+β
∑

xy∈∂E σ̄xωy does not depend on σ ∈ C. As a consequence,

µω
Λ(σ)

µω
Λ(C)

=
e−Hω

Λ (σ)∑
σ∈C e−Hω

Λ (σ)
=

eC(σ̄,ω)e−Hω′
Λ′ (σ)

eC(σ̄,ω)
∑

σ∈C e−Hω′
Λ′ (σ)

= µω′
Λ′(σ).

Remark 2.2. This implies that, for every function f : ΩΛ′ → R,

⟨f IC⟩ωΛ
⟨IC⟩ωΛ

= ⟨f⟩ω′
Λ′ .
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Figure 2.1: Illustration of the domain Markov property.

2.2 Increasing functions and local functions

We define two special kinds of functions that will play an important role in the sequel, namely
increasing, resp. local functions. In all that follows, we let Ω = {−1, 1}Zd .

Definition 2.3. A function f : Ω → R is said to be increasing if

σ ≤ σ′ ⇒ f(σ) ≤ f(σ′),

where σ ≤ σ′ means that, for all x ∈ Zd, σx ≤ σ′
x.

Example 2.4.

1. For every x ∈ Zd, the function σ̃ 7→ σx(σ̃) = σ̃x is increasing.

2. For every subset A ⊂ Λ, define the multipoint spin function σA to be

σ̃ 7→ σA(σ̃) =
∏
x∈A

σx(σ̃) =
∏
x∈A

σ̃x.

8



Chapter 2. Domain Markov property, correlation inequalities

This function is not increasing if |A| ≥ 2. For example, take A = {x1, x2} with x1 ̸= x2, and

σ̃ = (σ̃x) with σ̃x =

{
+1 if x /∈ {x1, x2}
−1 if x ∈ {x1, x2}

, σ̃′ = (σ̃′
x) with σ̃′

x =


+1 if x /∈ {x1, x2}
1 if x = x1

−1 if x = x2.

Then σ̃ ≤ σ̃′, and σA(σ̃) > σA(σ̃
′).

3. For all x ∈ Zd, the function nx = I{σx=1} : σ̃ 7→ σ̃x+1
2 = I{σx=1}(σ̃) is increasing.

4. For all A ⊂ Λ, the function nA =
∏

x∈A nx = I{∀x∈A, σx=1} is increasing.

5. For all A ⊂ Λ, the function (
∑

x∈A nx)− nA is increasing. Indeed,(∑
x∈A

nx

)
− nA = |{x ∈ A : σx = 1}| − I{∀x∈A :σx=1}.

Consider σ̃ ≤ σ̃′. If both configurations are equal on A, it is trivial; else, if σ̃ < σ̃′ on A,

|{x ∈ A : σ̃′
x = 1}| ≥ |{x ∈ A : σ̃x = 1}|+ 1, and I{∀x∈A : σ̃′

x=1} ≤ I{∀x∈A : σ̃x=1} + 1,

concluding the proof.

The fact that these functions are increasing will turn out to be crucial in forthcoming proofs.

Definition 2.5. A function f : Ω → R is said to be local if there exists Λ ⊂ Zd such that f is
ΩΛ-measurable. Otherwise stated, a function f is local if it only depends on a finite number of
spins. We denote by supp(f) the support of f , that is the smallest subset of Zd whose values
determine f .

Example 2.6. The functions σx, σA, nx, nA are all local functions, with respective support
x,A, x,A.

The next lemma gives two useful basis of local functions. Consider Λ ⊂ Zd, and define LΛ to be
the set of local functions with support included in Λ:

LΛ = {f : Ω → R : f is local and supp(f) ⊂ Λ}.

This set has dimension 2|Λ|, the number of spin configurations in ΩΛ. Indeed, any function f
in LΛ is ΩΛ-measurable and can be written as f =

∑
σ∈ΩΛ

f(σ)Iσ. On LΛ, consider the inner
product (f, g) = E[fg], where the expectation is taken with respect to the uniform measure on
ΩΛ.

Lemma 2.7. We have that (σA)A⊂Λ is an orthonormal basis of LΛ with respect to the scalar
product (·, ·), and (nA)A⊂Λ is a basis of LΛ.

Proof. Let us prove that (σA)A⊂Λ are orthonormal. Let A,B ⊂ Λ. Then,

(σA, σB) = E[σA\BσA∩BσB\AσB∩A]
sym. diff.

= E[σA∆B]
ind.
=

∏
x∈A∆B

E[σx] =

{
0 if A ̸= B

1 otherwise.

The proof is concluded by observing that (σA)A⊂Λ has 2|Λ| elements, which is the dimension of
LΛ.

By definition, for every A′ ⊂ Λ, σA′ =
∏

x∈A′(2nx − 1) is a linear combination of (nA)A⊂Λ

(with some coefficients equal to 0), implying that (nA)A⊂Λ generates LΛ. Since it also has 2|Λ|

elements, it is a basis.
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Chapter 2. Domain Markov property, correlation inequalities

2.3 Correlation inequalities and consequences

The goal of this section is to state two fundamental correlation inequalities: the GKS and FKG
inequalities; we refer to [FV17, Section 3.8] for their proofs.

Note that the coming assumption supp(f) ⊂ Λ on a local function f : Ω → R is there to ensure
that f is ΩΛ-measurable. This implies that f can be seen as a function f : ΩΛ → R, and that
⟨f⟩Λ is well defined.

Theorem 2.8 (Griffiths-Kelly-Sherman inequalities). Let A,B ⊂ Λ, then

i) ⟨σA⟩+Λ ≥ 0

ii) ⟨σAσB⟩+Λ ≥ ⟨σA⟩+Λ ⟨σB⟩+Λ .

Theorem 2.9 (Fortuin-Kasteleyn-Ginibre inequality). For every pair of increasing, local func-
tions f, g : Ω → R such that supp(f), supp(g) ⊂ Λ, and for every boundary condition ω ∈
{−1, 1}∂Λ, we have

⟨f g⟩ωΛ ≥ ⟨f⟩ωΛ ⟨g⟩ωΛ.

Here are two consequences. The first allows to compare boundary conditions, while the second
allows to compare nested domains.

Lemma 2.10. For every increasing, local function f : Ω → R such that supp(f) ⊂ Λ, and for
every boundary condition ω ∈ {−1, 1}∂Λ, we have

⟨f⟩−Λ ≤ ⟨f⟩ωΛ ≤ ⟨f⟩+Λ .

Proof. Define Iω(σ) = eβ
∑

xy∈∂E σx(1−ωy). Then, since 1− ωy ≥ 0, the function Iω is increasing.

Moreover, for every σ ∈ ΩΛ,

−H+(σ) = β
∑
xy∈E

σxσy + β
∑

xy∈∂E
σx · 1

= β
∑
xy∈E

σxσy + β
∑

xy∈∂E
σxωy + log

(
Iω(σ)

)
= −Hω(σ) + log(Iω(σ)).

As a consequence, for every σ ∈ ΩΛ and every local function f ,

e−H+(σ) = e−Hω(σ)Iω(σ), e−H+(σ)f(σ) = e−Hω(σ)Iω(σ)f(σ).

Using that Iω is increasing and the FKG inequality we deduce that, for every increasing, local
function f ,

⟨f⟩+Λ =

∑
σ∈ΩΛ

e−H+(σ)f(σ)∑
σ∈ΩΛ

e−H+(σ)
=

∑
σ∈ΩΛ

e−Hω(σ)Iω(σ)f(σ)∑
σ∈ΩΛ

e−Hω(σ)Iω(σ)
=

⟨Iωf⟩ωΛ
⟨Iω⟩ωΛ

FKG
≥ ⟨f⟩ωΛ.

Lemma 2.11. Let Λ′ ⊂ Λ (where the inclusion is assumed to be strict). Then for every increas-
ing, local function f : Ω → R such that supp(f) ⊂ Λ′, we have

⟨f⟩+Λ′ ≥ ⟨f⟩+Λ .
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Chapter 2. Domain Markov property, correlation inequalities

Proof. Let C = {σ ∈ ΩΛ : ∀ x ∈ Λ \ Λ′, σx = 1}. Note that we have, IC = nΛ\Λ′ which is an
increasing function. Let f be as in the statement, then by the domain Markov property (and
Remark 2.2), and by the FKG inequality, we have

⟨f⟩+Λ′
DMP
=

⟨f nΛ\Λ′⟩+Λ
⟨nΛ\Λ′⟩+Λ

FKG
≥ ⟨f⟩+Λ .
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Chapter 3

Thermodynamic limit

The goal of this section is to define infinite volume versions of the Ising Boltzmann measures.
This poses some natural questions: how are such Ising probability measures defined ? Are there
many or just one ? How do you construct such measures ?

Let us stay informal at this point. A natural definition uses the DLR (Dobrushin-Lanford-Ruelle)
approach: an infinite volume Ising Gibbs measure is a probability measure on (Ω,F) (where F is
the σ-field generated by cylinder sets) such that, when conditioning on a fixed spin configuration
outside of a box, the conditional measure inside the box is the Ising Boltzmann measure with
the induced boundary conditions. We refer to [FV17, Section 6.2.1] for more details on this
definition.

An explicit approach for constructing infinite volume Gibbs measures consists in considering
weak limits of the Boltzmann measures µωn

Λn
, where (Λn)n≥1 is an exhaustion of Zd, and (ωn)n≥1

is a sequence of boundary conditions, and to use the Riesz representation theorem. Infinite
volume Gibbs measures are then defined to be accumulation points of these weak limits. It can
be shown that this definition is consistent with the one given by the DLR approach, see for
example [FV17, Chapter 6, Equation (6.11)].

In this section we consider the second approach, and explicitly construct two Ising Gibbs mea-
sures as the weak limit of the Boltzmann measures with ± boundary conditions. We will also
address the question of (non)-uniqueness.

3.1 Prerequisites

Recall that Ω = {−1, 1}Zd .

3.1.1 Structure of compact metric space on Ω

Consider Ω as a topological space, with the product topology arising from the discrete topology
on {−1, 1}. Then, Ω is a compact topological space as the cartesian product of the compact
topological space {−1, 1}.
The space Ω can also be seen as a metric space with distance function d defined by

∀σ, σ′ ∈ Ω, d(σ, σ′) =
∑
x∈Zd

1

2∥x∥∞
I{σx ̸=σ′

x},

13



Chapter 3. Thermodynamic limit

where ∥x∥∞ = maxi∈{1,...,d} |xi|. This metric induces the product topology on Ω. Intuitively, two
spin configurations should be thought of as “close” if they coincide on a large ball surrounding
the origin. The space Ω is thus now equipped with a structure of compact metric space.

Let C(Ω) be the set of continuous function on Ω. Note that since Ω is compact, it coincides
with the set of uniformly continuous functions:

{f : Ω → R : ∀ ε > 0, ∃ δ > 0, s.t. ∀σ, σ′, d(σ, σ′) < δ ⇒ |f(σ)− f(σ′)| < ε}.

One can check that continuous functions are bounded, and that the set of local functions of
Definition 2.5 is dense in C(Ω). More details can be found in [FV17, Section 6.4.1].

3.1.2 Weak convergence and the Riesz-Markov-Kakutani theorem

Let us denote by F the σ-field generated by cylinder sets on Ω, that is, F is defined to be

F = σ(∪Λ⊂ZdCΛ),

where CΛ = {σ ∈ Ω : σ|Λ ∈ A,A ∈ P(ΩΛ)} is the cylinder corresponding to the box Λ. Then,
one can check that F coincides with the Borel σ-field on Ω, see [FV17, Exercice 6.10].

We can now introduce the notion of weak convergence for Boltzmann measures. A sequence of
Boltzmann measures (µωn

Λn
)n≥1 on (Ω,F) converges weakly to a probability measure µ on (Ω,F),

if for every bounded continuous function on Ω,

lim
n→∞

⟨f⟩ωn
Λn

= ⟨f⟩µ,

one then writes µωn
Λn

⇒ µ.

Remark 3.1. In our case, continuous functions are bounded and local functions are dense in
the set of continuous functions. One can check that µωn

Λn
⇒ µ if and only if, for every local

function f : Ω → R, limn→∞⟨f⟩ωn
Λn

= ⟨f⟩µ.

Suppose that we have proved:

For every local function f , lim
n→∞

⟨f⟩ωn
Λn

= ℓ(f), (3.1)

for some value ℓ(f). Then the functional ℓ : {Local functions} → R, is positive, linear and
satisfies ℓ(1) = 1. Since local functions are dense in continuous functions, the functional ℓ can
be extended to the set of continuous functions C(Ω).

Can we deduce the existence of a probability measure µ on (Ω,F) such that ℓ(f) = ⟨f⟩µ ? The
answer is yes and is given by the following.

Theorem 3.2 (A version of the Riesz-Markov-Kakutani representation theorem). Let X be
a compact metric space. If ℓ : C(X) → R is a positive linear functional on C(X) such that
ℓ(1) = 1, then there exists a unique probability measure on (X,F) such that

ℓ(f) = ⟨f⟩µ,

where F is the Borel σ-field of X.

Definition 3.3. An infinite volume Ising Gibbs measure is defined to be an accumulation point
of the Boltzmann measures (µωn

Λn
)n≥1, as described above.

The bottom line of this discussion is that as soon as we prove Condition (3.1) for a sequence of
Boltzmann measures, this establishes weak convergence of this sequence to an infinite volume
Gibbs measure.

14



Chapter 3. Thermodynamic limit

3.2 Two infinite volume Gibbs measure

We now prove weak convergence of the Boltzmann measure with ± boundary conditions.

Theorem 3.4. Let us fix β ≥ 0. Then, for every exhaustion (Λn)n≥1 of Zd, the sequence of
measures (µ+

Λn
)n≥1, resp. (µ−

Λn
)n≥1, converges weakly to an infinite volume Ising Gibbs measure

µ+, resp µ−, and this limit is independent of the choice of exhaustion. Moreover, the measures
µ+, µ− are invariant by translation.

Proof of Theorem 3.4. Let (Λn)n≥1 be an exhaustion of Zd. By Section 3.1.2, we need to prove
Condition (3.1), i.e., that for every local function f , (⟨f⟩+Λn

)n≥1 converges; we also need to prove
that this limit is independent of the choice of the exhaustion (Λn)n≥1.

Let A ⊂ Zd, then nA is a local increasing function. Let m be large enough so that Λm ⊃ A.
Then, by Lemma 2.11, for every n ≥ m, we have ⟨nA⟩+Λn+1

≤ ⟨nA⟩+Λn
. Moreover nA is a bounded

function, so that (⟨nA⟩+Λn
)n≥m is a bounded decreasing sequence, thus convergent to a limit that

we denote by ⟨nA⟩+.

Let f be a local function. Then by Lemma 2.7, we can write f =
∑

A⊂supp(f) f̃A nA and, since
the sum is finite, we deduce from the above that

lim
n→∞

⟨f⟩+Λn
=

∑
A⊂supp(f)

f̃A⟨nA⟩+ = ⟨f⟩+.

We now prove that the limit is independent of the exhaustion (Λn)n≥1 of Zd.

Let (Λ1
n)n≥1, (Λ2

n)n≥1 be two exhaustions of Zd, and let µ+
1 , µ

+
2 be the two corresponding limiting

Gibbs measures. Define a new exhaustion (∆n)n≥1 of Zd as follows

∆1 = Λ1
1, ∀ k ≥ 1, ∆2k =

⋂
n≥1

{Λ2
n : Λ2

n ⊃ ∆2k−1}, ∆2k+1 =
⋂
n≥1

{Λ1
n : Λ1

n ⊃ ∆2k}.

Since (∆n)n≥1 is an exhaustion, µ+
∆n

converge weakly to a Gibbs measure µ+. Since it converges,
it does so on subsequences and the limit is the same. As a consequence, it converges to µ+ on
a subsequence of (Λ1

n)n≥1, resp. (Λ2
n)n≥1, implying that µ+

1 = µ+
2 .

(Λ1
n) (Λ2

n)

∆1
∆2

∆3

∆4

∆5

∆6

Figure 3.1: The two exhaustions (Λ1
n)n≥1, (Λ2

n)n≥1, and the exhaustion (∆n)n≥1.

Translation invariance follows from the definition of the Boltzmann measure. The same argument
holds for − boundary conditions.
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Chapter 3. Thermodynamic limit

3.3 A characterization of the phase transition

The goal of this section is to characterize the phase transition of the Ising model using the
Gibbs measures µ±. But before that, recall that in Section 1.2.2 we went ahead of ourselves
when defining the phase transition; we now have all the tools to do it rigorously, which is the
purpose of the next sub-section.

3.3.1 Magnetization and phase transition, rigorous definitions

Since the value of the spin at the origin is a local function, by Theorem 3.4, we have that the
magnetization

⟨σ0⟩+β = lim
n→∞

⟨σ0⟩+Λn,β

is well defined and independent of the choice of exhaustion (Λn)n≥1. Moreover, using the first
GKS inequality (Theorem 2.8), we deduce that ⟨σ0⟩+β ≥ 0. Hence, in order to prove that the
critical temperature is well defined, we are left with showing the following.

Lemma 3.5. The function β 7→ ⟨σ0⟩+β is increasing.

Notation. Before turning to the proof of this lemma, let us introduce the following useful
notation for the Ising model with ± boundary conditions. Recall the notation Λ, ∂Λ, Λ̄, E, ∂E, Ē.
We now introduce

Ω+
Λ = {σ ∈ {−1, 1}Λ̄ : ∀x ∈ ∂Λ, σx = 1},

which is in bijection with ΩΛ. As a consequence,

∀σ ∈ Ω+
Λ , H+

β (σ) = −β
∑
xy∈Ē

σxσy, µ+
β (σ) =

1

Z+
β

e−H+
β (σ), where Z+

β =
∑
σ∈Ω+

Λ

e−H+
β (σ).

Proof of Lemma 3.5. It suffices to prove that the result holds for all finite Λ ⊂ Zd. Note that
for a fixed Λ ⊂ Zd, the function β 7→ ⟨σ0⟩+Λ,β is differentiable, and we have

∂

∂β
⟨σ0⟩+Λ,β =

∂

∂β

∑
σ∈Ω+

Λ

σ0 e
β
∑

xy∈Ē σxσy

∑
σ∈Ω+

Λ

eβ
∑

xy∈Ē σxσy

=

∑
xy∈Ē

∑
σ∈Ω+

Λ

σxσyσ0e
β
∑

xy∈Ē σxσy

Z+
Λ,β

−

∑
xy∈Ē

∑
σ∈Ω+

Λ

σxσye
β
∑

xy∈Ē σxσy

Z+
Λ,β

∑
σ∈Ω+

Λ

σ0e
β
∑

xy∈Ē σxσy

Z+
Λ,β

=
∑
xy∈Ē

[⟨σxσyσ0⟩+Λ,β − ⟨σ0⟩+Λ,β⟨σxσy⟩
+
Λ,β].

Now, by the second GKS inequality (Theorem 2.8), each term in the sum is non-negative, so
that the derivative is.

We are now ready for the following.
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Chapter 3. Thermodynamic limit

Definition 3.6. The inverse critical temperature βc(d) is defined to be

βc(d) = sup{β ≥ 0 : ⟨σ0⟩+β = 0}.

Remark 3.7. Since µ+(σ0 = ±1) = µ−(σ0 = ∓1), we have that ⟨σ0⟩+β = −⟨σ0⟩−β . This implies
that

⟨σ0⟩+β > 0 ⇔ ⟨σ0⟩+β ̸= ⟨σ0⟩−β .

3.3.2 Characterization of the phase transition

The next result characterizes the phase transition through the Ising Gibbs measures.

Theorem 3.8. Let β ≥ 0. Then the following are equivalent.

1. There exists a unique infinite volume Gibbs measure.

2. µ+
β = µ−

β .

3. ⟨σ0⟩+β = ⟨σ0⟩−β .

Proof. The implications 1 ⇒ 2 ⇒ 3 are straightforward.

Consider an exhaustion (Λn)n≥1 of Zd. In all that follows, we let A ⊂ Zd be finite, and n be
large enough so that Λn ⊃ A.

2 ⇒ 1. As a consequence of Lemma 2.10, we have that for every boundary condition ω ∈
{−1, 1}∂Λn ,

⟨nA⟩−Λn
≤ ⟨nA⟩ωΛn

≤ ⟨nA⟩+Λn
.

By Point 2., this implies that the limit is unique (independently of the choice of boundary
condition ω and of the exhaustion). The proof is concluded by using Lemma 2.7 stating that
every local function can be decomposed in the basis (nA)A⊂supp(f).

3 ⇒ 2. Since the function
∑

x∈A nx − nA is increasing (see Example 2.4), as a consequence of
Lemma 2.10, we have that 〈∑

x∈A
nx − nA

〉−

Λn

≤
〈∑
x∈A

nx − nA

〉+

Λn

.

Taking the limit n → ∞ gives∑
x∈A

(
⟨nx⟩+ − ⟨nx⟩−

)
≥ ⟨nA⟩+ − ⟨nA⟩− ≥ 0,

where in the last inequality we used that nA is increasing. By translation invariance of µ±, we
have that

∀x ∈ A, ⟨nx⟩± = ⟨n0⟩±.

Moreover by definition, ⟨n0⟩± = 1
2⟨σ0⟩

± + 1
2 . As a consequence, if ⟨σ0⟩+ = ⟨σ0⟩−, then ⟨nx⟩+ =

⟨nx⟩−, implying that ⟨nA⟩+ = ⟨nA⟩−. The proof is again concluded by using Lemma 2.7.
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Chapter 4

Magnetization and phase diagram

We now turn to establishing the phase diagram of the Ising model for d ≥ 1. Note that it
undergoes a phase transition if 0 < βc < ∞.

4.1 Non-uniqueness at low temperature

The goal of this section is to prove the following.

Theorem 4.1. For all d ≥ 2, βc(d) < ∞.

This theorem implies non uniqueness of the Gibbs measures when d ≥ 2 and β is large enough.
The proof uses what is known as the Peierl’s argument and relies on the low temperature
expansion of Kramers and Wannier, which we now explain. In fact, we will prove this result for
d = 2. A way to extend it to higher dimensions consists in proving that ⟨σ0⟩+Λn,β

is an increasing
function of the dimension (when Λn is the box of size 2n around 0), see for example [Vel].

4.1.1 Low temperature expansion d = 2

Note that despite the name, this is an exact expansion of the partition function. We fix Λ ⊂ Z2,
and consider the Ising model with + boundary conditions. A slight adaptation of the argument
allows to handle other boundary conditions.

Consider the graph (Λ̄, Ē) where the boundary vertices ∂Λ are merged into one vertex, and the
corresponding graph is embedded in the sphere. Denote by (Λ∗, E∗) the dual of this graph, and
observe that edges of E∗ are in bijection with those of Ē.

Let P(Λ∗) denote the set of polygon configurations of (Λ∗, E∗), otherwise stated:

P(Λ∗) = {P : P subgraph of (Λ∗, E∗) such that all vertices of Λ∗ have even degree in P}.
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Chapter 4. Magnetization and phase diagram

(a) The graph (Λ̄, Ē) where boundary ver-
tices are merged into one (represented by
the grey line), thought of as embedded
in the sphere. In green: the dual graph
(Λ∗, E∗).

+

+ + +

+

+

+

+

+

+

+

+

+

+++

++

+

+

+

+

+

+

+

+

+

++

+ +

+

+

+

+ +

+ +

+ +

+

+

+

+

+ + +

+

+

+

++

++

+ ++

++

+

++

+

+

+ + +

+

++ +

+

+ +

+

+

++

++

(b) A polygon configuration of P(Λ∗) and
the corresponding spin configuration.

Note that, for all σ ∈ Ω+
Λ ,

β
∑
xy∈Ē

σxσy = β|Ē| − β
∑
xy∈Ē

(1− σxσy) = β|Ē| − 2β|{xy ∈ Ē : σx ̸= σy}|.

To every spin configuration σ, assign the subgraph P (σ) of (Λ∗, E∗) consisting of the dual edges
of the edges xy such that σx ̸= σy. Then, a simple case handling shows that every vertex of
P (σ) has even degree; it is thus a polygon configuration. The configuration P (σ) consists of the
contours separating the clusters of ± spins.

Conversely, to every P ∈ P(Λ∗), there corresponds a unique σ such that P = P (σ): the spins of
one cluster are fixed by the + boundary conditions, and then the spins of clusters change each
time a polygon edge is crossed. As a consequence on has,

∀σ ∈ Ω+
Λ , β

∑
xy∈Ē

σxσy = β|Ē| − 2β|P (σ)|,

where |P (σ)| is the number of edges of P (σ).

The Ising Boltzmann measure with + boundary conditions can thus be re-written as,

∀σ ∈ Ω+
Λ , µ+

β (σ) =
eβ|Ē|e−2β|P (σ)|

eβ|Ē|∑
σ∈Ω+

Λ
e−2β|P (σ)| =

e−2β|P (σ)|∑
σ∈Ω+

Λ
e−2β|P (σ)| .

With the above bijection, the Ising Boltzmann measure µ+ can be seen as a probability measure
on polygon configurations P(Λ∗) where the probability of occurrence of a polygon configuration
P is proportional to

∏
e∗∈P

e−2β .
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Chapter 4. Magnetization and phase diagram

4.1.2 Proof of Theorem 4.1

• We want to prove that ⟨σ0⟩+β > 0 for β sufficiently large. It thus suffices to prove that,
uniformly in n,

⟨σ0⟩+Λn,β
> c,

for some c > 0. Since

⟨σ0⟩+Λn,β
= µ+

Λn,β
(σ0 = 1)− µ+

Λn,β
(σ0 = −1) = 1− 2µ+

Λn,β
(σ0 = −1),

this is equivalent to showing that, for β sufficiently large, uniformly in n,

µ+
Λn,β

(σ0 = −1) <
1

2
− c′. (4.1)

• Let Λn be the square of size 2n centered at the origin. We have the following inclusion:

{σ0 = −1} ⊂ {P ∈ P(Λ∗
n) : P contains a contour γ surrounding 0 = (0, 0)}.

Indeed, take a path from 0 to the boundary ∂Λn, then along this path, the spin changes each
time a contour is crossed. If P does not contain a contour γ surrounding 0, the number of
contours crossed from 0 to the boundary is even, so that the spin at 0 and the boundary are the
same thus proving the reverse inclusion for complementary events.

• If P ∈ P(Λ∗
n) and P contains a contour γ surrounding the origin, then P \ γ ∈ P(Λ∗

n). Given
such a contour γ, define

Pγ(Λ
∗
n) = {P \ γ : P ∈ P(Λ∗

n) and P contains γ} ⊂ P(Λ∗
n).

γ

(0, 0)

( 1
2
, 1
2
) (⌊ k

2
⌋ − 1

2
, 1
2
)

Figure 4.2: A contour γ surrounding the origin; the segment {(i−1/2, 1/2) : i ∈ {1, · · · , ⌊k/2⌋}.
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Chapter 4. Magnetization and phase diagram

• We are now ready to prove (4.1).

µ+
Λn,β

(σ0 = −1) ≤ µ+
Λn,β

(∃ contour γ surrounding 0)

≤
∑

{γ surr. 0}

∑
P∈P(Λ∗

n), P⊃γ e
−2β|P |∑

P∈P(Λ∗
n)
e−2β|P |

=
∑

{γ surr. 0}

e−2β|γ|∑
P∈P(Λ∗

n), P⊃γ e
−2β(|P |−|γ|)∑

P∈P(Λ∗
n)
e−2β|P | =

∑
{γ surr. 0}

e−2β|γ|
∑

P∈Pγ(Λ∗
n)
e−2β|P |∑

P∈P(Λ∗
n)
e−2β|P |

≤
∑

{γ surr. 0}

e−2β|γ|, since Pγ(Λ
∗
n) ⊂ P(Λ∗

n)

≤
∑
k≥4

e−2βk|{γ : γ contour in Z2 surrounding 0, and γ has length k}|

≤
∑
k≥4

e−2βk4 · 3k−1k

2
.

Let us show the last inequality. A contour γ in Z2 of length k surrounding 0 necessarily contains
a vertex of the segment {(i − 1/2, 1/2) : i ∈ {1, · · · , ⌊k/2⌋}}. Indeed, a contour containing 0
either crosses this segment, in which case we are OK, or it strictly contains this segment, in
which case it has length > k and this is not possible. We can thus choose the starting point of
γ in this segment, and we have ⌊k/2⌋ choices. Given such a starting point, a contour of length
k containing 0 is obviously also a path of length k. For the first step of the path, there are 4
choices (since we are on Z2); then each subsequent step has 3 choices, since one has to choose a
new edge, giving the contribution 4 · 3k−1.

The proof is concluded by noting that, uniformly in n,
∑

k≥1 k(3e
−2β)k = 3e−2β

(1−3e−2β)2
→ 0 as

β → ∞.

4.2 Uniqueness at high temperature

The goal of this section is to prove the following.

Theorem 4.2. For all d ≥ 1, βc(d) > 0.

This theorem implies uniqueness of the Gibbs measure when d ≥ 1 and β is small enough. The
method of proof proposed here is also a Peierl’s type argument. It relies on the high temperature
expansion of Kramers and Wannier which we now turn to.

4.2.1 High temperature expansion

Again, the high temperature expansion is an exact expansion of the partition function using
polygon configurations. This time the latter live on the graph itself and not the dual. As we will
see, there is no bijection between spin and polygon configurations. This expansion is nevertheless
very useful since it allows to express observables, as for example the partition function or the
expected spin at 0, in terms of polygon configurations.

Fix Λ ⊂ Zd such that 0 ∈ Λ, and consider the Ising model with + boundary conditions.

22



Chapter 4. Magnetization and phase diagram

Similarly to the low temperature expansion (but this time on the primal graph) define,

P(Λ̄) = {P : P subgraph of (Λ̄, Ē) s.t. all vertices of Λ have even degree in P}
P0(Λ̄) = {P : P subgraph of (Λ̄, Ē) s.t. all vertices of Λ \ {0} have even degree, 0 has odd degree}.

0

(a) An example of polygon configuration
of P(Λ̄).

0

(b) An example of polygon configuration
of P0(Λ̄).

The high temperature expansion relies on the following key identity.

∀σ ∈ Ω+
Λ , eβσxσy = coshβ + σxσy sinhβ = coshβ(1 + σxσy tanhβ).

Using this, the partition function can be rewritten as follows

Z+
β =

∑
σ∈Ω+

Λ

∏
xy∈Ē

eβσxσy = (coshβ)|Ē|
∑
σ∈Ω+

Λ

∏
xy∈Ē

(1 + σxσy tanhβ).

Let us set C := (coshβ)|Ē|, and observe that a subgraph of Λ̄ can be seen as a subset of edges
of Ē. Then, expanding the product gives

Z+
β =

∑
σ∈Ω+

Λ

∏
xy∈Ē

eβσxσy = C
∑
σ∈Ω+

Λ

∑
{P : subgraph of (Λ̄, Ē)}

∏
xy∈P

(σxσy tanhβ)

= C
∑
σ∈Ω+

Λ

∑
{P : subgraph of (Λ̄, Ē)}

(tanhβ)|P |
∏
x∈P

σ
degP (x)
x ,

where |P | denotes the number of edges of P , and degP (x) the degree of the vertex x in P . Note
that we have∏

x∈Λ\P

σ
degP (x)
x = 1, since all vertices of Λ \ P have degree 0 in P

∏
x∈∂Λ∩P

σ
degP (x)
x = 1, since all boundary vertices have spins equal to +1.
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As a consequence, we have

Z+
β = C

∑
{P : subgraph of (Λ̄, Ē)}

(tanhβ)|P |
∑
σ∈ΩΛ

∏
x∈Λ

σ
degP (x)
x ,

where we have replaced Ω+
Λ by ΩΛ since there is no dependence on the boundary spins. Now we

have

∑
σ∈ΩΛ

∏
x∈Λ

σ
degP (x)
x =

∏
x∈Λ

∑
σx∈{−1,1}

σ
degP (x)
x , and

∑
σx∈{−1,1}

σ
degP (x)
x = 2 · I{degP (x) is even},

and we conclude that

Z+
β = 2|Λ|C

∑
P∈P(Λ̄)

(tanhβ)|P |.

Let us now turn to the expected spin at 0. Using a similar argument we obtain

Z+
β ⟨σ0⟩+Λ,β =

∑
σ∈Ω+

Λ

σ0
∏
xy∈Ē

eβσxσy

= C
∑

{P : subgraph of (Λ̄, Ē)}

(tanhβ)|P |
∑
σ∈ΩΛ

σ
degP (0)+1
0

∏
x∈Λ\{0}

σ
degP (x)
x

= 2|Λ|C
∑

P∈P0(Λ̄)

(tanhβ)|P |,

and we conclude that

⟨σ0⟩+Λ,β =

∑
P∈P0(Λ̄)

(tanhβ)|P |∑
P∈P(Λ̄)(tanhβ)

|P | .

4.2.2 Proof of Theorem 4.2

Our goal is to prove that ⟨σ0⟩+β = 0 for all β small enough (so as to have βc(d) > 0).

• Let Λn be the box of size 2n centered at the origin. We now use a rewriting of the high
temperature expansion of ⟨σ0⟩+Λn,β

= 0. Given a subgraph P of (Λ̄n, Ēn), denote by

∆(P ) = {edges of Λ̄n containing no vertices of P}.

As a consequence, every P ∈ P0(Λ̄n) can be decomposed as P = P0 ⊔ P ′, where P0 is the
connected component containing the origin, P ′ ⊂ ∆(P0) and P ′ ∈ P(Λ̄n) (all vertices of Λn have
even degree in P ′).
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0

Figure 4.4: An example of decomposition of P ∈ P0(Λ̄) as P0 (red) and P ′ (blue).

Using this decomposition and the high temperature expansion, we have

⟨σ0⟩+Λn,β
=

∑
{P0∈P0(Λ̄n): P0 connected}

(tanhβ)|P0|
∑

{P ′∈P(Λ̄n):P ′⊂∆(P0)}(tanhβ)
|P ′|∑

{P∈P(Λ̄n)}(tanhβ)
|P |

≤
∑

{P0∈P0(Λ̄n): P0 connected}

(tanhβ)|P0|, since the second term is ≤ 1

=
∑
ℓ≥1

∑
{P0∈P0(Λ̄n): P0 connected, |P0| = ℓ}

(tanhβ)ℓ

=
∑
ℓ≥1

(tanhβ)ℓ|{P0 ∈ P0(Λ̄n) : P0 connected, |P0| = ℓ}|.

• Before proceeding with the proof, let us prove the following lemma.

Lemma 4.3. Let G be a finite connected graph. Starting from an arbitrary vertex of G, there
exists a closed path in G crossing each edge of G exactly twice.

Proof. Let us show this by induction on the number m of edges of G. If m = 1, this is clear. We
now use the following fact: an arbitrary connected graph can be constructed by adding one edge
after the other while always staying connected. Suppose that G has m edges, and add an edge
x′y′ so that it stays connected, yielding a graph G′ with m + 1 edges. Suppose without loss of
generality that x′ is a vertex of G. If one starts from a vertex x of G, we let γ2m be such a closed
path; when the path γ2m reaches x′, stop, explore the edge x′y′ back and forth and then proceed
with γ2m. This gives a closed path starting from x, of length 2(m+ 1) crossing each edge of G′

twice. If one starts from the vertex y′ ∈ G′ \ G (only possibility outside of G), explore (y′, x′),
then proceed with a closed path of length 2m starting from x′, and finally explore (x′, y′), giving
a closed path of length 2(m+ 1) starting from y′.

• Let us now bound |{P0 ∈ P0(Λ̄n) : P0 connected, |P0| = ℓ}|.
First note that since each edge is incident to two vertices, we have∑

x∈Λ̄n

degP0
(x) = 2|P0|.
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Now since 0 has odd degree in P0, and all other vertices of Λn have even degree, there is an odd
number vertices of ∂Λn having odd degree, in particular there is at least one. This means that
P0 contains a boundary vertex, and since it is connected it must contain at least n edges; hence
ℓ ≥ n.

By Lemma 4.3, each P0 in the set above gives a path starting from 0 of length 2ℓ, and two
different polygon configurations yield different paths, so that

{P0 ∈ P0(Λ̄n) : P0 connected, |P0| = ℓ} ⊂ {Paths starting from 0 of length 2ℓ, ℓ ≥ n}.

For each ℓ, the number of such paths is smaller than (2d)2ℓ since there are 2d choices for each
of the 2ℓ edges of the path.

Wrapping up, we obtain

⟨σ0⟩+Λn,β
≤

∑
ℓ≥n

(tanhβ)ℓ(2d)2ℓ =
∑
ℓ≥n

(
tanhβ(2d)2

)ℓ
=

(tanhβ(2d)2)n

1− tanhβ(2d)2
, if tanhβ <

1

4d2

n→∞−→ 0, if tanhβ <
1

4d2
.

As a conclusion, we have that for all β such that tanhβ < 1
4d2

, ⟨σ0⟩+β = 0 implying that
βc(d) > 0.

4.3 No phase transition in dimension 1

Using the high temperature expansion, let us prove that there is no phase transition in dimension
1, that is βc(1) = ∞, or otherwise stated that

∀ β ≥ 0, ⟨σ0⟩+β = 0.

Let Λn be a segment of length 2n around 0. Recall that we have

⟨σ0⟩+Λn,β
=

∑
P∈P0(Λ̄n)

(tanhβ)|P |∑
P∈P(Λ̄n)

(tanhβ)|P | .

The set P(Λ̄n) has two elements, one of length 0 and the other of length 2(n+ 1), while the set
P0(Λ̄n) has two elements of size n+ 1, see Figure 4.5.

−n 0 n −n 0 n

Figure 4.5: The two polygon configurations of P(Λ̄n) (left), resp. P0(Λ̄n) (right).

As a consequence, for all β ≥ 0, since 0 ≤ tanhβ < 1,

⟨σ0⟩+Λn,β
=

2(tanhβ)n+1

1 + (tanhβ)2(n+1)

n→∞−→ 0,

thus concluding the proof.
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