MODÈLES EXACTEMENT SOLUBLES DE MÉCANIQUE STATISTIQUE EN DIMENSION DEUX : Modèle d'Ising, dimères et arbres couvrants

Béatrice de Tilière Université Pierre et Marie Curie, Paris

Soutenance d'habilitation à diriger des recherches 25 Novembre 2013

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ● ◆ ●

I. INTRODUCTION

・ロト・西ト・ヨト・ヨー うへぐ

Compréhension des propriétés macroscopiques d'un système physique dont les interactions sont décrites au niveau microscopique

Modèle :

Structure représentée par un graphe G = (V, E), fini.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Compréhension des propriétés macroscopiques d'un système physique dont les interactions sont décrites au niveau microscopique

Modèle :

Structure représentée par un graphe G = (V, E), fini.

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

Compréhension des propriétés macroscopiques d'un système physique dont les interactions sont décrites au niveau microscopique

Modèle :

Structure représentée par un graphe G = (V, E), fini.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Ensemble de configurations sur G : C(G).

 Paramètres : intensité des interactions entre les composants microscopiques, température extérieure.

Fonction de poids $w = (w_e)_{e \in E}$ positive sur les arêtes.

- À une configuration C, on associe une énergie $\mathcal{E}_w(C)$.
- Probabilité de Boltzmann sur les configurations :

$$\forall \mathbf{C} \in \mathcal{C}(\mathbf{G}), \quad \mathbb{P}(\mathbf{C}) = \frac{e^{-\mathcal{E}_w(\mathbf{C})}}{Z(\mathbf{G}, w)},$$

où $Z(\mathbf{G}, w) = \sum_{\mathbf{C} \in \mathcal{C}(\mathbf{G})} e^{-\mathcal{E}_w(\mathbf{C})}$ est la fonction de partition.

Modèle de ferromagnétisme, d'alliages binaires

Wilhelm Lenz (1888-1957)

Ernst Ising (1900-1998)

- Graphe G = (V, E).
- ► Une configuration de spins σ associe à chaque sommet x du graphe G un spin $\sigma_x \in \{-1, 1\}$.

 $\Rightarrow C(G) = \{-1, 1\}^{V}$ = ensemble des configurations de spins.

Une configuration de spins

▶ Une configuration de spins / deux interprétations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Moments magnétiques : $+1/\rightarrow, -1/\leftarrow$

Une configuration de spins / deux interprétations.

Mélange de deux matériaux : $+1/\bullet, -1/\bullet$.

Modèle d'Ising

- ► Fonction de poids positive : constantes de couplage $J = (J_e)_{e \in E}$.
- Énergie d'une configuration de spins : $\mathcal{E}_J(\sigma) = -\sum_{e=xy\in E} J_{xy}\sigma_x\sigma_y$.
- Probabilité de Boltzmann d'Ising :

$$\forall \sigma \in \{-1,1\}^{\vee}, \quad \mathbb{P}_{\text{Ising}}(\sigma) = \frac{e^{-\mathcal{E}_J(\sigma)}}{Z_{\text{Ising}}(\mathsf{G},J)}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ● ◆ ●

- Deux spins voisins σ_x, σ_y ont tendance à s'aligner.
- Plus le couplage J_{xy} est élevé, plus cette tendance est forte.

Répartition de molécules di-atomiques sur la surface d'un cristal

Sir Ralph H. Fowler (1889-1944) Congrès Solvay 1927.

George S. Rushbrooke (1915-1995)

- Graphe G = (V, E).
- Une configuration de dimères ou couplage parfait : sous-ensemble d'arêtes tel que chaque sommet touche exactement une arête.
 ⇒ C(G) = M(G) = ensemble des configurations de dimères.

▶ Une configuration de dimères.

► Une configuration de dimères.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

▶ Une configuration de dimères.

Une configuration de dimères.

- Fonction de poids positive : $v = (v_e)_{e \in E}$.
- Énergie d'une configuration $M : \mathcal{E}_{\nu}(M) = -\sum_{e \in M} \log \nu_e$.
- Probabilité de Boltzmann des dimères :

$$\forall \mathbf{M} \in \mathcal{M}(\mathbf{G}), \quad \mathbb{P}_{\text{dimère}}(\mathbf{M}) = \frac{\prod_{\mathbf{e} \in \mathbf{M}} \nu_{\mathbf{e}}}{Z_{\text{dimère}}(\mathbf{G}, \nu)}.$$

Les arêtes avec un poids élevé ont plus de chance d'être présentes.

Liés aux réseaux électriques

Gustav Kirchhoff (1824-1887)

- Graphe G = (V, E).
- Un arbre couvrant : sous-ensemble d'arêtes touchant tous les sommets du graphe, connexe et ne contenant pas de cycle.
 ⇒ C(G) = T(G) = ensemble des arbres couvrants.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Un arbre couvrant

- Fonction de poids positive : $\rho = (\rho_e)_{e \in E}$.
- Energie d'un arbre T : $\mathcal{E}_{\rho}(T) = -\sum_{e \in T} \log \rho_e$.
- Probabilité de Boltzmann des arbres :

$$\forall \mathsf{T} \in \mathfrak{T}(\mathsf{G}), \quad \mathbb{P}_{\mathrm{arbre}}(\mathsf{T}) = \frac{\prod_{\mathsf{e} \in \mathsf{T}} \rho_{\mathsf{e}}}{Z_{\mathrm{arbre}}(\mathsf{G}, \rho)}.$$

Les arêtes avec un poids élevé ont plus de chance d'être présentes.

Comportement macroscopique

Faire tendre la longueur des arêtes vers zéro Regarder une configuration "typique".

Modèle d'Ising (Illustrations de R. Cerf)

J petit

J critique

J grand

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ● ◆ ●

Comportement macroscopique

• Modèle de dimères (Illustration de R. Kenyon)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Modèles exactement solubles

Probabilité de Boltzmann sur les configurations :

$$\forall \mathbf{C} \in \mathcal{C}(\mathbf{G}), \quad \mathbb{P}(\mathbf{C}) = \frac{e^{-\mathcal{E}_w(\mathbf{C})}}{Z(\mathbf{G}, w)},$$

où $Z(G, w) = \sum_{C \in \mathcal{C}(G)} e^{-\mathcal{E}_w(C)}$ est la fonction de partition.

- Le modèle est exactement soluble s'il existe une formule exacte, explicite pour la fonction de partition.
- Trois modèles exactement solubles :
 - ► Ising-2d : Onsager (1944) Fisher (1966) : $Z_{\text{Ising}}(G, J) = \sqrt{\det(K_{G^F})}$.
 - Dimères-2d : Kasteleyn, Temperley-Fisher (1961) :

$$Z_{\text{dimère}}(\mathbf{G}, \mathbf{v}) = \sqrt{\det(K_{\mathbf{G}})}.$$

• Arbres couvrants : Kirchhoff (1848) : $Z_{arbre}(G, \rho) = det(\Delta_G^{(r)})$.

► Des boucles apparaissent naturellement dans le modèle de dimères.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Étude de la distribution de l'enroulement des boucles sur le tore.

▶ Soit G un graphe hexagonal plongé sur le tore.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▶ Soit G un graphe hexagonal plongé sur le tore.

ヘロト ヘロト ヘビト ヘビト

▶ Soit G un graphe hexagonal plongé sur le tore.

• Configuration de dimères de base M_0 fixée.

э

▶ Configuration de dimères M prise au hasard dans $\mathcal{M}(G)$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

 \blacktriangleright Superposition $M_0 \cup M$ des configurations M_0 et M :

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

 \blacktriangleright Superposition $M_0 \cup M$ des configurations M_0 et M :

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

 \blacktriangleright Superposition $M_0 \cup M$ des configurations M_0 et M :

Wind(M) = (2, 0).

Le nombre d'enroulements de la configuration de dimères M, noté Wind(M), est le nombre de tours (signés) de la superposition M₀ ∪ M dans les directions horizontales et verticales du tore.

(Wind_{m,n})

Théorème (Boutillier, dT (2006))

Lorsque $n, m \to \infty$ et $\frac{n}{\sqrt{3m}} \to \rho$, avec $\rho > 0$, la suite de variables aléatoires (Wind_{*m*,*n*}) converge en loi vers une variable aléatoire gaussienne discrète Wind_{ρ} dont la loi est donnée par :

$$\forall (k,\ell) \in \mathbb{Z}^2, \quad \mathbb{P}[\operatorname{Wind}_{\rho} = (k,\ell)] = \frac{1}{Z_{\rho}} e^{-\frac{\pi}{2}(\frac{k^2}{\rho} + \rho\ell^2)}.$$

・ロト・(型)・(ヨ)・(ヨ)・(ロ)・

III. Le modèle d'Ising Z-invariant critique via les dimères

 Fisher établit une correspondance entre le modèle d'Ising sur un graphe G et le modèle de dimères sur un graphe décoré G^F.

 \Rightarrow Outils puissants des dimères pour étudier le modèle d'Ising.

 Étude du modèle de dimères correspondant au modèle d'Ising Z-invariant critique.

Correspondance de Fisher

• Modèle d'Ising sur graphe G.

Représentation en contours : développement basse température (Kramers-Wannier).

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 - の Q ()・

 Représentation en contours : développement basse température (Kramers-Wannier).

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - の Q ()・

▶ Modèle de contours polygonaux sur le graphe dual G^{*}.

 Des contours aux configurations de dimères : prendre le complémentaire.

 Des contours aux configurations de dimères : prendre le complémentaire.

• Décorer le graphe \rightarrow graphe de Fisher G^F . Garder le négatif.

• Compléter en une configuration de dimères : $2^{|V^*|}$ manières.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

• Compléter en une configuration de dimères : $2^{|V^*|}$ manières.

- En fonction des constantes de couplage, le comportement du modèle d'Ising évolue :
 - J petit : spins mélangés,
 - J grand : majorité de spins + ou -,
 - J critique : transition de phase.
- ► Si le graphe G est Z², Kramers et Wannier déterminent les constantes de couplage critiques :

$$\forall \mathbf{e} \in \mathsf{E}, \quad J_{\mathsf{e}} = \frac{1}{2} \log(1 + \sqrt{2}).$$

► Baxter généralise le modèle d'Ising critique sur Z² à une grande famille de graphes : les graphes isoradiaux.

Un graphe G est isoradial s'il est planaire et s'il peut être plongé dans le plan de sorte que toutes ses faces soient inscrites dans un cercle de rayon 1 et que les centres des cercles soient à l'intérieur des faces (Duffin-Mercat-Kenyon).

Un graphe G est isoradial s'il est planaire et s'il peut être plongé dans le plan de sorte que toutes ses faces soient inscrites dans un cercle de rayon 1 et que les centres des cercles soient à l'intérieur des faces (Duffin-Mercat-Kenyon).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Un graphe G est isoradial s'il est planaire et s'il peut être plongé dans le plan de sorte que toutes ses faces soient inscrites dans un cercle de rayon 1 et que les centres des cercles soient à l'intérieur des faces (Duffin-Mercat-Kenyon).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Un graphe G est isoradial s'il est planaire et s'il peut être plongé dans le plan de sorte que toutes ses faces soient inscrites dans un cercle de rayon 1 et que les centres des cercles soient à l'intérieur des faces (Duffin-Mercat-Kenyon).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Un graphe G est isoradial s'il est planaire et s'il peut être plongé dans le plan de sorte que toutes ses faces soient inscrites dans un cercle de rayon 1 et que les centres des cercles soient à l'intérieur des faces (Duffin-Mercat-Kenyon).

Un graphe G est isoradial s'il est planaire et s'il peut être plongé dans le plan de sorte que toutes ses faces soient inscrites dans un cercle de rayon 1 et que les centres des cercles soient à l'intérieur des faces (Duffin-Mercat-Kenyon).

• On prend les centres des cercles circonscrits.

On relie les centres des cercles aux sommets du graphe G.
⇒ Graphe de losanges associé G°.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

On relie les centres des cercles aux sommets du graphe G.
⇒ Graphe de losanges associé G°.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

On associe à chaque arête e, le demi-angle θ_e du losange correspondant.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Modèle d'Ising Z-invariant critique

► Le modèle d'Ising est Z-invariant critique si les constantes de couplage sont égales à :

$$\forall \mathbf{e} \in \mathsf{E}, \quad J_{\mathbf{e}} = \frac{1}{2} \log \left(\frac{1 + \sin \theta_{\mathbf{e}}}{\cos \theta_{\mathbf{e}}} \right).$$

- Baxter les déterminent en utilisant :
 - ► la *Z*-invariance (invariance par transformation ΔY),
 - une forme généralisée d'auto-dualité,
 - l'hypothèse d'unicité du point critique.
- Li et Duminil-Copin Cimasoni, montrent que le modèle est bien critique.
- ► Si $G = \mathbb{Z}^2$, $\forall e \in E$, $\theta_e = \frac{\pi}{4}$, d'où $J_e = \frac{1}{2}\log(1 + \sqrt{2})$.

- On considère donc le modèle de dimères sur un graphe de Fisher G^F, correspondant à un modèle d'Ising Z-invariant critique défini sur un graphe isoradial G.
- La correspondance de Fisher nous donne aussi la transformation des poids.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ つ ト

- $\begin{aligned} \text{Ising critique : } \forall \, \mathbf{e} \in \mathbf{E}, & \text{Dimères correspondant : } \forall \mathbf{e} \in \mathbf{E}^{\mathrm{F}} \\ J_{\mathbf{e}} &= \frac{1}{2} \left(\frac{1 + \sin \theta_{\mathbf{e}}}{\cos \theta_{\mathbf{e}}} \right). & \nu_{\mathbf{e}} &= \begin{cases} \cot \frac{\theta_{\mathbf{e}}}{2} & \text{si arête commune,} \\ 1 & \text{si nouvelle arête.} \end{cases} \end{aligned}$
- On souhaite déterminer le comportement macroscopique du modèle de dimères critique.

• Soit G un graphe isoradial infini, \mathbb{Z}^2 -périodique.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

► Constantes de couplage $(J_e)_{e \in E}$ critiques sur les arêtes de G.

• Soit G un graphe isoradial infini, \mathbb{Z}^2 -périodique.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

► Constantes de couplage $(J_e)_{e \in E}$ critiques sur les arêtes de G.

▶ Soit G^F le graphe de Fisher correspondant, aussi \mathbb{Z}^2 -périodique.

▶ Soit G^F le graphe de Fisher correspondant, aussi \mathbb{Z}^2 -périodique.

▶ Poids critiques $(v_e)_{e \in E^F}$ correspondants, sur les arêtes de G^F .

・ロト・西ト・ヨト・ヨー もんぐ

Exhaustion de G^F par des graphes toriques

• Exhaustion de G^F par des graphes toriques : $(G_n^F) = (G^F/n\mathbb{Z}^2)$.

▶ Pour tout $n \in \mathbb{N}^*$, modèle de dimères sur $\mathbf{G}_n^{\mathrm{F}}$:

$$\forall \mathsf{M} \in \mathcal{M}(\mathsf{G}_{n}^{\mathrm{F}}), \quad \mathbb{P}_{n}(\mathsf{M}) = \frac{\prod_{\mathsf{e} \in \mathsf{M}} v_{\mathsf{e}}}{Z_{\mathrm{dim}\check{\mathrm{e}}\mathrm{re}}(\mathsf{G}_{n}^{\mathrm{F}}, v)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Les questions que l'on se pose

Calcul de l'énergie libre :

$$f = -\lim_{n \to \infty} \frac{1}{n^2} \log Z_{\text{dimère}}(\mathbf{G}_n^{\text{F}}, \nu).$$

- ► Obtenir une expression explicite pour une mesure de Gibbs naturelle, qui est une mesure de probabilité P telle que :
 - si l'on fixe un couplage parfait dans une région annulaire, les couplages parfaits à l'intérieur et à l'extérieur de l'anneau sont indépendants,
 - ▶ si M est un couplage parfait à l'intérieur de l'anneau,

$$\mathbb{P}(\mathsf{M}) \propto \prod_{\mathsf{e} \in \mathsf{M}} \nu_{\mathsf{e}}.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

(Conditions DLR)

Théorème (Boutillier, dT (2010-2011))

L'énergie libre du modèle de dimères critique sur G^F est égale à :

$$f = -\frac{1}{2(2\pi i)^2} \iint_{\mathbb{T}^2} \log(\det K_1(z, w)) \frac{dz}{z} \frac{dw}{w}, \text{ et aussi à}$$
$$f = \mathcal{C}_{+\sum_{e \in \mathsf{E}_1} \left[\frac{\pi - 2\theta_e}{2\pi} \log \tan \theta_e - \frac{1}{2} \log \cot \frac{\theta_e}{2} - \frac{1}{\pi} \left(L(\theta_e) + L(\frac{\pi}{2} - \theta_e) \right) \right],$$

où L est la fonction de Lobatchevski, $L(x) = -\int_0^x \log 2 \sin t \, dt$.

 La limite faible des mesures de Boltzmann P_n définit une mesure de Gibbs P sur G^F. La probabilité qu'un sous-ensemble d'arêtes {e₁ = x₁y₁, ..., e_k = x_ky_k}, appartienne à une configuration de dimères de G^F est donnée par :

$$\mathbb{P}(\mathbf{e}_1,\cdots,\mathbf{e}_k) = \left(\prod_{i=1}^k \nu_{\mathbf{x}_i \mathbf{y}_i}\right) \mathbb{P}f((K^{-1})_{\{\mathbf{x}_1 \mathbf{y}_1,\cdots,\mathbf{x}_k \mathbf{y}_k\}}), \quad o\check{u}$$

$$K_{(\mathbf{x},n,m)(\mathbf{y},n',m')}^{-1} = \frac{1}{(2\pi i)^2} \iint_{\mathbb{T}^2} \frac{\operatorname{Com}(K_1(z,w))_{\mathbf{x},\mathbf{y}}^t}{\det K_1(z,w)} Z^{n'-n} w^{m'-m} \frac{dz}{z} \frac{dw}{w}.$$

Polynôme caractéristique : det $K_1(z, w)$

• Soit le domaine fondamental G_1^F , contenant k sommets.

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

Polynôme caractéristique : det $K_1(z, w)$

• Soit le domaine fondamental G_1^F , contenant k sommets.

- Orientation des arêtes
- Soit K_1 la matrice définie par :

$$\forall \mathbf{x}, \mathbf{y} \in \mathsf{V}^{\mathrm{F}}, \quad (K_1)_{\mathbf{x},\mathbf{y}} = \begin{cases} \nu_{\mathbf{x}\mathbf{y}} & \text{si } \mathbf{x} \sim \mathbf{y}, \ \mathbf{x} \to \mathbf{y}, \\ -\nu_{\mathbf{x}\mathbf{y}} & \text{si } \mathbf{x} \sim \mathbf{y}, \ \mathbf{y} \to \mathbf{x}, \\ 0 & \text{sinon.} \end{cases}$$

J. F. Pfaff (1765-1825)

$$Pf(K_{1}) = \sum_{\{\pi: \text{ appariement de } \{1, \dots, k\}\}} \underbrace{\text{sgn}(\sigma_{\pi})}_{\pm 1} \underbrace{K_{1\pi(1), \pi(2)} \dots K_{1\pi(k-1), \pi(k)}}_{\pm 1 \text{ contribution config. dimères}} \\ = \sqrt{\det(K_{1})}.$$

Polynôme caractéristique : det $K_1(z, w)$

• Soit le domaine fondamental G_1^F , contenant k sommets.

- Orientation des arêtes : orientation de Kasteleyn.
- Soit K_1 la matrice définie par :

$$\forall \mathbf{x}, \mathbf{y} \in \mathsf{V}^{\mathrm{F}}, \quad (K_1)_{\mathbf{x},\mathbf{y}} = \begin{cases} \nu_{\mathbf{x}\mathbf{y}} & \text{si } \mathbf{x} \sim \mathbf{y}, \ \mathbf{x} \to \mathbf{y}, \\ -\nu_{\mathbf{x}\mathbf{y}} & \text{si } \mathbf{x} \sim \mathbf{y}, \ \mathbf{y} \to \mathbf{x}, \\ 0 & \text{sinon.} \end{cases}$$

J. F. Pfaff (1765-1825)

$$Pf(K_{1}) = \sum_{\{\pi: \text{ appariement de } \{1, \dots, k\}\}} \underbrace{\text{sgn}(\sigma_{\pi})}_{\pm 1} \underbrace{K_{1\pi(1), \pi(2)} \dots K_{1\pi(k-1), \pi(k)}}_{\pm 1 \text{ contribution config. dimères}} \\ = \sqrt{\det(K_{1})}.$$

Polynôme caractéristique

▶ Ne suffit pas. On rajoute des poids $z, w \rightarrow K_1(z, w)$.

Le polynôme caractéristique est : $det(K_1(z, w))$. Théorème (Kasteleyn, T., G.-L., C.-R.)

$$Z_{dim \grave{e}re}(\mathsf{G}_{1}^{\mathrm{F}}) = \frac{1}{2} \sum_{(z,w) \in \{-1,1\}^{2}} \pm \sqrt{\det(K_{1}(z,w))}.$$

▶ Pour $\mathbf{G}_n^{\mathrm{F}}$, grâce à l'invariance par translation, tout s'exprime en fonction de $K_1(z, w)$ et det $K_1(z, w)$ [Cohn-Kenyon-Propp].

- Problèmes de convergence.
- Analyse des zéros de det $K_1(z, w)$.

IV. Double modèle d'Ising critique et forêts couvrantes enracinées sur des cycles¹

 Analyse des zéros du polynôme caractéristique det K₁(z, w) en le reliant au polynôme caractéristique du Laplacien critique det(Δ₁(z, w)) de G₁.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

Double modèle d'Ising critique et CRSFs

$\det K_1(z,w) \stackrel{[\mathrm{B},\mathrm{dT}]}{=} \mathcal{C} \quad \det \Delta_1(z,w)$

Double modèle d'Ising critique et CRSFs

 $\det K_1(z,w) \stackrel{[\mathrm{B},\mathrm{dT}]}{=} \mathfrak{C} \quad \det \Delta_1(z,w)$

THÉORÈME (FORMAN) det $\Delta_1(z, w) = \sum_{F \in \mathcal{F}(G_1)} (\prod_{e \in F} \tan \theta_e) \prod_{T \in F} (1 - z^{h(T)} w^{v(T)}).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Double modèle d'Ising critique et CRSFs

▲□▶▲圖▶▲≧▶▲≣▶ ≧ のなぐ
Double modèle d'Ising critique et CRSFs

THÉORÈME (FORMAN) det $\Delta_1(z, w) = \sum_{F \in \mathcal{F}(G_1)} (\prod_{e \in F} \tan \theta_e) \prod_{T \in F} (1 - z^{h(T)} w^{v(T)}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Double modèle d'Ising critique et CRSFs

THÉORÈME (FORMAN) det $\Delta_1(z, w) = \sum_{F \in \mathcal{F}(G_1)} (\prod_{e \in F} \tan \theta_e) \prod_{T \in F} (1 - z^{h(T)} w^{v(T)}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Double modèle d'Ising critique et CRSFs

Théorème (dT (2013))

Soit un modèle d'Ising critique défini sur un graphe G isoradial, infini, \mathbb{Z}^2 -périodique. Alors, il existe une "correspondance" explicite entre les configurations de "doubles dimères" de G_1^F avec poids critiques, comptées par le polynôme caractéristique det($K_1(z, w)$) et les CRSFs de G_1 avec poids critiques, comptés par le polynôme caractéristique du Laplacien det($\Delta_1(z, w)$).

Ceci démontre une "correspondance" explicite et inattendue entre deux modèles classiques de mécanique statistique au point critique.

1. Théorème "matrix-tree" pour le polynôme caractéristique :

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Le polynôme caractéristique des dimères $det(K_1(z, w))$...

I. Théorème "matrix-tree" pour le polynôme caractéristique :

Le polynôme caractéristique des dimères $det(K_1(z, w))...$ compte des CRSFs de G_1^F :

$$\det K_1(z,w) = \sum_{\mathsf{F}\in\mathcal{F}(\mathsf{G}_1^\mathsf{F})} \left(\prod_{\mathsf{e}=(\mathsf{x},\mathsf{y})\in\mathsf{F}} v_{\mathsf{x}\mathsf{y}}\right) \prod_{\mathsf{T}\in\mathsf{F}} (1-z^{h(\mathsf{T})}w^{v(\mathsf{T})}).$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

1. Théorème "matrix-tree" pour le polynôme caractéristique :

Le polynôme caractéristique des dimères $det(K_1(z, w))...$ compte des CRSFs de G_1^F :

$$\det K_1(z,w) = \sum_{\mathsf{F}\in\mathcal{F}(\mathsf{G}_1^\mathsf{F})} \left(\prod_{\mathsf{e}=(x,y)\in\mathsf{F}} v_{xy}\right) \prod_{\mathsf{T}\in\mathsf{F}} (1-z^{h(\mathsf{T})}w^{v(\mathsf{T})}).$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

- Rentre dans le cadre général du théorème "matrix-tree" (Tutte, Forman), car le modèle est au point critique.
- Preuves classiques n'expliquent pas comment les CRSFs sont construits à partir des doubles dimères.

Comment construire des demi-arbres à partir de configurations de dimères ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

► PFAFFIAN HALF-TREE THEOREM (DT, 2012)

- 2. Caractérisation des CRSFs de G_1^F qui contribuent à det $(K_1(z, w))$.
- 3. "Correspondance" entre les CRSFs de G_1 et les CRSFs de G_1^F :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 2. Caractérisation des CRSFs de G_1^F qui contribuent à det $(K_1(z, w))$.
- 3. "Correspondance" entre les CRSFs de G_1 et les CRSFs de G_1^F :

- si $\mathbf{F}_1 \neq \mathbf{F}_2$, alors $\mathcal{S}(\mathbf{F}_1) \cap \mathcal{S}(\mathbf{F}_2) = \emptyset$,
- ► $\bigcup_{\mathbf{F}\in\mathcal{F}(\mathbf{G}_1)} \mathcal{S}(\mathbf{F}) = \{ \text{ CRSFs qui contribuent à det}(K_1(z, w)) \},$
- ► Contrib. de F à det($\Delta_1(z, w)$) = C· Contrib. de S(F) à det($K_1(z, w)$).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ

Construction de S(F)

 $CRSF \ F \ de \ G_1$

Construction de S(F)

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > ― 臣 = ∽ 의 Q ()~

Construction de S(F)

Famille $\mathcal{F}(\mathbf{F}, \mathcal{E})$ de CRSFs de $\mathbf{G}_1^{\mathrm{F}}$ qui,

- contiennent les arêtes $\mathbf{F} \cup \mathcal{E}$,
- ▶ ont la même classe d'homol. que F,
- contribuent à det $K_1(z, w)$.
- Construction de F(F, E) par récurrence sur Card(E) avec des mouvements licites.

$$\mathbb{S}(\mathbf{F}) = \bigcup_{\mathcal{E} \subset \mathsf{E}_1 \setminus \mathsf{F}} \mathcal{F}(\mathbf{F}, \mathcal{E})$$

PERSPECTIVES

- Modèle d'Ising dans le plan et arbres/forêts couvrantes :
 - Fonction de partition,
 - Corrélations de spins.
- Extension au "Random cluster model".
- ► Invariance conforme de la fonction de hauteur du modèle de dimères correspondant au double modèle d'Ising.
- ▶ Modèle d'Ising Z-invariant en dehors du point critique : localité ?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへつ