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Foreword

This report aims at giving an overview of my research work since the PhD thesis, by presenting
the papers [2, 3, 4, 5, 10, 11, 1].

The unifying theme of these articles is Statistical Mechanics, whose goal is to understand the
large scale properties of a physics system, based on a model describing interactions between
microscopic components. These spatially extended systems, consisting of a large number of
mutually interacting components, exhibit intriguing phenomena, and require the use of powerful
techniques from different fields of mathematics: probability by the very nature of these models
and combinatorics since a central quantity, known as the partition function, plays the role of
generating function for macroscopic quantities of the model. The nature of the mathematical
objects representing the systems require the use of discrete geometry and graph theory. Recently,
links have also appeared with complex analysis [Duf68, Mer01b, CS11], and algebraic geometry
[KOS06].

Statistical mechanics started with Maxwell and Boltzmann in the 19 th century, and was part
of physics; mathematical activity followed, and rich interactions have now emerged between
the two communities. Many models belong to the field of statistical mechanics, as for example
percolation, the Ising model, the dimer model, spanning trees, the random cluster model, polymer
models... Within this diversity, common features appear, the most remarkable certainly being the
phenomenon of phase transition between different states of the system. At the phase transition,
also known as the critical point, models often exhibit a specific behavior. The understanding
of the critical behavior of two-dimensional models has been going through a phase of rapid and
exciting development since the introduction of SLE by Schramm [Sch00], in particular with the
work of Lawler, Schramm and Werner [LSW04] and Smirnov [Smi01, Smi10].

The six papers [2, 3, 4, 5, 10, 11] concentrate on the dimer model, the Ising model and spanning
trees in two dimensions. These three models have the common feature of being exactly solvable,
meaning that there is an exact, explicit expression for the partition function. Since the partition
function encodes much of the macroscopic behavior of the system, having an explicit expression
opens the way to a deep understanding of the models. The title of this report is motivated by
these papers.

The last paper [1] is about a polymer model, which is one-dimensional and not exactly solvable,
thus bringing a different flavor. It is not referred to in the title, since we wanted to keep it
relatively short. We now give an outline of this report.

• Chapter 1 is devoted to preliminaries. We define the Ising model, the dimer model, and
spanning trees. In each case we state a few founding result, aiming at setting the basis for
future chapters. We present Fisher’s mapping from the Ising model to the dimer model on

iii



a decorated graph. We also dedicate one section to defining critical versions of the models
on isoradial graphs, since these play an important role all along.

• Chapter 2 presents the papers [3, 4] in collaboration with Cédric Boutillier. Our main
theorems give a full description of the critical dimer model corresponding to the critical
Ising model on infinite isoradial graphs, by proving an explicit expression for the free
energy and for a natural Gibbs measure. In the first paper [3] we consider the Z2-periodic
case, in the second [4] we relax this assumption and prove local formulas in the spirit of
[Ken02].

• Chapter 3 is concerned with the papers [11, 10], both having a combinatorial flavor. In
the first paper [11], we provide an explicit mapping from critical cycle rooted spanning
forests - the pendent of spanning trees when working on the torus - to the double critical
Ising model on the torus, via characteristic polynomials. This proves a surprising relation
between two well known models of statistical mechanics. The second paper [10] answers
a question raised when working on the first paper [11]. The main theorem can actually
be phrased in a more general context: we prove a half-tree theorem for the Pfaffian of
a skew-symmetric matrix, whose column-sum is zero. This is a Pfaffian version of the
classical matrix-tree theorem of Kirchhoff [Kir47].

• Chapter 4 describes two papers [2, 5] in collaboration with Cédric Boutillier, focusing on
loop configurations related to bipartite dimer models. The first paper [2] considers the
loop representation of the uniform dimer model on a subgraph of the honeycomb lattice
embedded in the torus. Our main theorem proves that, when the mesh of the lattice
tends to zero and the aspect ratio of the torus is fixed, the winding number of the loops
converge to a two-dimensional discrete Gaussian random variable. The second paper [5]
relates XOR-loop configurations, constructed from two independent Ising models, to loop
configurations of a dimer model on a bipartite graph. At criticality, this allows to shed a
light on a conjecture of Wilson [Wil11], stating that these loops are, in the scaling limit,
level lines of the Gaussian free field.

• Chapter 5 presents the paper [1] in collaboration with Erwin Bolthausen and Francesco
Caravenna. Our main theorem determines the quenched critical point for the local-
ization/delocalization phase transition of a polymer interacting with an attractive wall
through a diluted, disordered potential.

• Chapter 6 mentions work in progress and perspectives.
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Chapter 1

Preliminaries

In this chapter, we define the models of statistical mechanics on which we have worked: the Ising
model, the dimer model and spanning trees. In each case, the physics system is represented by
a graph G = (V,E), where V denotes the set of vertices, and E the set of edges. Throughout
this report, we suppose that G is simple. When it is infinite, we suppose moreover that degrees
of vertices are uniformly bounded. For each model, we state a few founding results. This is by
no means a state of the art, but rather aims at setting the basis for future chapters. The last
section is devoted to defining critical versions of the models on isoradial graphs, since these play
an important role all along.

1.1 The two-dimensional Ising model

The Ising model is a model of ferromagnetism introduced by the physicist Wilhelm Lenz in 1920
as PhD subject for his student Ernst Ising. Consider a finite graph G = (V,E) together with a
collection of positive real numbers (Je)e∈E indexed by the edges of G. The Ising model on G,
with coupling constants J , is defined as follows. A spin-configuration σ of G is a function of the
vertices of G taking values in {−1, 1}. The probability of occurrence of a spin configuration σ is
given by the Ising Boltzmann measure, denoted PIsing:

PIsing(σ) =
1

ZIsing(G, J)
exp
( ∑
e=uv∈E

Jeσuσv

)
,

where ZIsing(G, J) is the normalizing constant, known as the Ising partition function. Note
that the definition of the Ising model usually involves the inverse temperature β. To simplify
notations, we suppose that it is included in the coupling constants.

In the two-dimensional case, when the inverse temperature is 0, all spin configurations have the
same probability of occurring and a typical configuration consists of a mixture of +1 and −1.
When the inverse temperature is infinite, spins tend to align with their neighbors and a typical
configuration consists of all +1 or all −1. For a specific value of the inverse temperature, the
Ising model undergoes a phase transition between the disordered and ordered phases, the model
is said to be critical.

1



Chapter 1. Preliminaries

Low and high temperature expansions

Suppose that the graph G is embedded in the torus T2 = {(z, w) ∈ C2 : |z| = |w| = 1}. The low
and high temperature expansions of Kramers and Wannier [KW41a, KW41b] allow to rewrite
the Ising partition function as a sum over polygon configurations of the dual graph G∗, and over
polygon configurations of the graph G respectively.

A polygon configuration of the graph G is an even subgraph, that is a subset of edges having
even degree at every vertex. Let P(G) denote the set of polygon configurations of the graph
G, and P(0,0)(G) denote polygon configurations winding around the torus an even number of
times horizontally and vertically, i.e. having (0, 0) homology class in H1(T,Z/2Z). Polygon
configurations of the dual graph G∗ are defined in a similar way.

The low temperature expansion of the Ising partition function is based on the following identity:

∀ e = uv ∈ E, eJeσuσv = eJe(δ{σu=σv} + e−2Jeδ{σu 6=σv}).

Injecting the RHS into the Ising partition function and expanding the product, yields a sum over
polygon configurations of the dual graph G∗ separating clusters of ± spins, with a contribution
of e−2Je for each edge e∗ present in a polygon configuration P∗. Each such polygon configuration
is obtained from two spin configurations, one being obtained from the other by negating all
spins. We have thus sketched the proof of:

Proposition 1.1. [KW41a, KW41b][Low temperature expansion] The Ising partition function
can be rewritten as:

ZIsing(G, J) = 2
(∏
e∈E

eJe
) ∑

P∗∈P(0,0)(G∗)

( ∏
e∗∈P∗

e−2Je
)
.

The high temperature expansion is based on the identity:

∀ e = uv ∈ E, eJeσuσv = cosh Je(1 + σuσv tanh Je).

Using this identity, the Ising model partition function is expanded as a sum over monomials
in (σu)u∈V. In the expansion, spin variables come in pairs of neighbors σuσv and can thus be
formally identified with the edge connecting u and v, associated with a weight tanh Je. Each
monomial is then interpreted as a subgraph of G, the degree of σu being the degree of the
corresponding edge configuration. Because of the symmetry σ ↔ −σ, when resumming over
spin configurations, only terms having an even degree in each variable remain, giving a factor 2
per dual vertex, and other contributions cancel. We have thus proved:

Proposition 1.2. [KW41a, KW41b][High temperature expansion] The Ising partition function
can be rewritten as:

ZIsing(G, J) = 2|V|
(∏
e∈E

cosh Je

) ∑
P∈P(G)

(∏
e∈P

tanh Je

)
.

Remark 1.1.

• Propositions 1.1 and 1.2 yield a relation between the sum over polygon configurations
of the primal and dual graphs with appropriate weights, this is known as Kramers and
Wannier (low/high temperature) duality relation.
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Chapter 1. Preliminaries

• In the paper [5], we prove an extension of the low and high temperature expansions to
Ising models defined on graphs embedded in compact, orientable surfaces of genus g with
boundary. In the literature, we did find versions of this duality for graphs embedded in
surfaces of genus g [LG94], but we could not find versions taking into account boundaries.
This extension involves homology theory relative to a boundary and the intersection form.

1.2 The dimer model

The dimer model represents the adsorption of di-atomic molecules on the surface of a crystal.
It is first mentionned in a paper of Fowler and Rushbrooke [FR37]. Consider a finite graph
G = (V,E), and suppose that edges of G are assigned a positive weight function ν = (νe)e∈E.
The dimer model on G with weight function ν is defined as follows. A dimer configuration, also
known as a perfect matching, is a subset of edges which covers each vertex of the graph exactly
once, see Figure 1.1 for an example.

Figure 1.1: A dimer configuration of a portion of the honeycomb lattice embedded in the torus,
opposite sides are identified.

Let M(G) denote the set of dimer configurations of the graph G, and assume that M(G) is
non-empty. The probability of occurrence of a dimer configuration M is given by the dimer
Boltzmann measure, denoted Pdimer:

Pdimer(M) =

∏
e∈M νe

Zdimer(G, ν)
,

where Zdimer(G, ν) is the normalizing constant known as the dimer partition function.

1.2.1 Explicit formulas in the finite, planar case

Suppose that the graph G is finite and planar, and consider G as an embedded graph. Then, the
dimer model has the very nice feature of having an explicit formula for the partition function,
due to Kasteleyn [Kas61, Kas67] and independently to Temperley and Fisher [TF61]. We now
introduce the definitions needed to state their result.

An admissible orientation of the edges of G is an orientation of the edges such that all cycles
surrounding inner faces of the graph are clockwise odd, i.e. when traveling clockwise around
such a cycle, the number of co-oriented edges is odd. Kasteleyn proves that a planar, finite
graph always has an admissible orientation [Kas67].

Given such an orientation, and writing the set of vertices as V = {u1, · · · , un}, the Kasteleyn
matrix K is the corresponding weighted, oriented, adjacency matrix; it has size n × n, it is
skew-symmetric and is defined by:

∀ i, j ∈ {1, · · · , n}, Kui,uj =


νuiuj if ui ∼ uj and ui → uj

−νuiuj if ui ∼ uj and ui ← uj

0 else.
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It is sometimes useful to interpret K as an operator acting on CV:

∀ f ∈ CV, (Kf)u =
∑
v∈V

Ku,vfv. (1.1)

The Pfaffian of a skew-symmetric matrix K is 0 if n is odd; if n is even, it is given by:

Pf(K) =
∑
π∈Πn

sgn(σπ)Kuπ(1),uπ(2) · · ·Kuπ(n−1),uπ(n) , (1.2)

where Πn is the set of partitions of the numbers {1, · · · , n} into n/2 unordered pairs, and σπ is
a permutation describing the partition π.

Remark 1.2. Non-zero terms in the expansion of the Pfaffian correspond to perfect matchings
of the graph G, so that the Pfaffian can also be written as a sum over perfect matchings of G.

Theorem 1.1. [Kas61, Kas67, TF61] The dimer partition function is equal to the absolute value
of the Pfaffian of the Kasteleyn matrix:

Zdimer(G, ν) = |Pf(K)|.

Idea of the proof. By Remark 1.2, non-zero terms in the expansion of Pf(K) correspond to dimer
configurations of G. The only issue preventing the Pfaffian from being a generating function
are the signatures of the permutations. Kasteleyn shows [Kas67] that if edges are oriented
according to an admissible orientation, signs of coefficients exactly compensate signatures of
permutations.

Using the explicit formula for the dimer partition function, Kenyon [Ken97] derives an explicit
formula for the dimer Boltzmann measure:

Theorem 1.2. [Ken97] Let Ek = {e1 = u1v1, · · · , ek = ukvk} be a subset of edges of the graph G.
Then, the probability of these edges occurring in a dimer configuration of G chosen with respect
to the dimer Boltzmann measure, is equal to:

Pdimer[e1, · · · , ek] =
∣∣∣( k∏
i=1

Kui,vi

)
Pf([K−1

Ek
]t)
∣∣∣,

where K−1
Ek

is the submatrix of the inverse Kasteleyn matrix K−1 whose lines and columns are
indexed by {u1, v1, · · · , uk, vk}.

Idea of the proof. The key to the proof of this result is Jacobi’s Pfaffian Identity, see for example
[IW00], stating that: ∣∣∣Pf(KEc

k
)
∣∣∣ =

∣∣∣Pf([K−1
Ek

]t) · Pf(K)
∣∣∣, (1.3)

where KEc
k
is the submatrix of the matrix K whose lines and columns are indexed by vertices

of V \ {u1, v1, · · · , uk, vk}.

Bipartite case

When the graph G is moreover bipartite, explicit formulas simplify and involve the determinant
rather than the Pfaffian. The set of vertices V can naturally be split into two subsets W ∪ B,
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Chapter 1. Preliminaries

where W denotes white vertices, B black ones, and vertices in W are only adjacent to vertices in
B. With a slight abuse of notation, let us denote by K the submatrix of the Kasteleyn matrix
whose lines are indexed by white vertices and columns by black vertices. Then, in the bipartite
case, the full Kasteleyn matrix takes the following simpler form:(

0 K
−Kt 0

)
.

All information is contained in the matrix K, so that we refer to it as the Kasteleyn matrix.

Since the Pfaffian of a skew-symmetric matrix is the square root of the determinant, we have:

Theorem 1.3. [Kas61, Per69] When the graph G is bipartite, the dimer partition function is
equal to:

Zdimer(G, ν) = | det(K)|.

An analog of Theorem 1.2, involving the determinant instead of the Pfaffian, yields an explicit
expression for the dimer Boltzmann measure.

1.2.2 Explicit formulas in the toroidal case

When the graph G is embedded in the torus, the dimer partition function and the dimer Boltz-
mann measure can also be computed explicitly. The result for the partition function in the
case of portions of Z2 embedded in the torus is due to Kasteleyn [Kas67]. Extensions to graphs
embedded in higher genus surfaces are due to [DZM+96, GL99, Tes00, CR07, CR08].

If the graph G is embedded in the torus, the choice of an admissible orientation of the edges
does not suffice to cancel signatures of permutations in the expansion of the Pfaffian. One needs
a signed sum of 4 Kasteleyn matrices (22g matrices when the graph is embedded in a genus g
surface), defined as follows.

Consider an admissible orientation of the edges of G and the corresponding Kasteleyn matrix K.
Let γ1 and γ2 be two edge-cycles in the dual graph G∗, winding around two non-trivial directions
of the torus. For θ, τ ∈ {0, 1}, let Kθτ be the matrix K in which the weight of edges crossing
the cycle γ1 are multiplied by (−1)θ, and the weight of edges crossing the cycle γ2 are multiplied
by (−1)τ .

Then, the dimer partition function and the Boltzmann measure are given by the following.
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Theorem 1.4. [Kas67, DZM+96, GL99, Tes00, CR07, CR08] [Ken97]

• The dimer partition function is equal to:

Zdimer(G, ν) =
1

2

∣∣−Pf(K00) + Pf(K10) + Pf(K01) + Pf(K11)
∣∣. (1.4)

• Let Ek = {e1 = u1v1, · · · , ek = ukvk} be a subset of edges of the graph G. Then, the
probability of these edges occurring in a dimer configuration of G chosen with respect to
the dimer Boltzmann measure, is equal to:

Pdimer[e1, · · · , ek] =

∣∣∣(∏k
i=1Kui,vi

)(
−Pf(K00

Eck
) + Pf(K10

Eck
) + Pf(K01

Eck
) + Pf(K11

Eck
)
)∣∣∣

2Zdimer(G, ν)
, (1.5)

where Kθτ
Eck

is the submatrix of the matrix Kθτ whose lines and columns are indexed by
V \ {u1, v1, · · · , uk, vk}.

When the graph G is moreover bipartite, the dimer partition function and the Boltzmann mea-
sure are computed explicitly by similar formulas, involving determinants instead of Pfaffians.

1.2.3 Dimer model on infinite periodic graphs

Assume that the graph G is infinite and Z2-periodic, meaning that G is embedded in the plane
so that it is invariant under translations by an underlying lattice Z2. Suppose that edges are
assigned a positive, periodic weight function ν = (νe)e∈E. The dimer model on the infinite graph
G is studied through the natural exhaustion {Gn = G/nZ2}n≥1 by toroidal graphs. The smallest
graph G1 of this exhaustion plays a specific role and is known as the fundamental domain. For
every n ≥ 1, let us denote by Pndimer the Boltzmann measure of the graph Gn, and by Zdimer(Gn, ν)
the dimer partition function.

The two key results one aims for in the first place, are an explicit expression for the free energy
and for the Gibbs measure(s), defined as follows. The free energy of the dimer model on G,
denoted by f , is minus the exponential growth rate of the partition function, that is:

f = − lim
n→∞

1

n2
logZdimer(Gn, ν).

A Gibbs measure on the set of dimer configurations M(G) of G, is a probability measure on
M(G), satisfying the DLR (Dobrushin, Lanford, Ruelle) conditions: if a perfect matching is
fixed in an annular region of G, then perfect matchings inside and outside of this annulus are
independent. Moreover, the probability of any interior matching is proportional to the product
of its edge weights.

Bipartite case

In 2006, Kenyon, Okounkov and Sheffield [KOS06] wrote a breakthrough paper, giving a full
description of the dimer model in the case where the graph G is bipartite. They prove an explicit
formula for the free energy, for a two-parameter family of ergodic, translation invariant Gibbs
measures. The authors also give a full description of the phase diagram of the model, using
algebraic geometry and Harnack curves. Some parts of the paper use techniques of the paper
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[CKP01] by Cohn, Kenyon and Propp, where a very thorough study of the dimer model on Z2

is established.

Non-bipartite case

When the graph G is not bipartite, there is no general theory for the dimer model. In the
paper [3] we give a full description of the dimer model on the non-bipartite graph corresponding
to the critical Ising model on isoradial graphs, see Sections 1.3 and 2.1. Some parts of the proof
are robust, but what is missing is a general understanding of the zeros of the dimer characteristic
polynomial, defined in Section 2.1.1. This is one of the big challenges in the dimer model.

1.2.4 Loop representation

Dimer configurations can be interpreted as loop configurations in the following way. Fix a
reference dimer configuration M0 of the graph G and consider a generic dimer configuration M.
Define an alternating cycle to be a cycle whose edges alternate between edges of M and edges
of M0, it has even length and if the cycle has length 2, it consists of a doubled edge, that is an
edge covered by both M and M0.

The superimposition of the dimer configuration M and the dimer configuration M0, denoted
M0 ∪M, is a collection of disjoint alternating cycles covering all vertices of the graph G. This
is because, by definition of a perfect matching, each vertex is incident to exactly one edge of
the matching, so that in the superimposition of two perfect matchings M0 and M, each vertex
is incident to exactly one edge of M and one edge of M0. We shall also refer to cycles as loops.

When the graph G is bipartite, orienting edges of the reference dimer configuration M0 from the
black vertex to the white one, and edges of the dimer configuration M from the white vertex to
the black one, yields a natural orientation of loops, see Figure 1.2. This collection of disjoint,
oriented loops is denoted by M−M0.

Figure 1.2: Oriented superimposition M−M0 of a portion of the honeycomb lattice embedded
in the torus.

When the graph G is bipartite and planar (finite or infinite), dimer configurations can be inter-
preted as discrete surfaces in dimension 2+1, via a height function. A height function is a random
variable h on the set of dimer configurations M(G), assigning to each dimer configuration M an
R-valued function hM on the faces of G. In the mathematics community, this was first established
by Thurston [Thu90] in the case of the square and honeycomb lattices. Following [KOS06], a
height function can be defined using the oriented superimposition M−M0: set the height to be
0 at some fixed face, then change the height by ±1 each time an oriented cycle is crossed, where
the sign depends on the orientation of the cycle. For a family of simply connected subgraphs of
the square lattice, Kenyon proves that the height function, interpreted as a random generalized
function, converges weakly in law to 1/

√
π times a Gaussian free field [Ken00, Ken01]. I have

generalized this result to all critical, bipartite dimer models on isoradial graphs, when the graph
G is infinite [9]. Loops of the superimpositions are conjectured to converge to a CLE(4) process.

7
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1.3 Fisher’s mapping from the Ising model to the dimer model

In the paper [Fis66], Fisher introduces a weight preserving mapping from the Ising model defined
on a graph G embedded in the torus, to the dimer model defined on a decorated version GF of
G1. Since then, dimer techniques have been a powerful tool for solving pertinent questions about
the Ising model, as for example the simple derivation of the free energy by Fisher [Fis66], first
computed by Onsager [Ons44], and the book by Mc Coy and Wu [MW73].

Consider the high temperature expansion of the Ising model defined on a graph G embedded in
the torus, see Proposition 1.2:

ZIsing(G, J) = 2|V|
(∏
e∈E

cosh Je

) ∑
P∈P(G)

(∏
e∈P

tanh Je

)
.

The decorated graph GF = (VF,EF) on which the dimer model lives, is constructed from G as
follows. Every vertex of degree d of G is replaced by a decoration consisting of 3d vertices:
a triangle is attached to every edge incident to this vertex, and these triangles are linked in
a circular way, see Figure 1.3. Edges of decorations are referred to as short edges, and those
corresponding to edges of the original graph G as long edges. The graph GF is also embedded in
the torus, and is known as the Fisher graph of G.

Figure 1.3: Left: a vertex of G with its incoming edges. Right: corresponding decoration of the
Fisher graph GF.

Here comes Fisher’s mapping [Fis66]. To any polygon configuration P coming from the high
temperature expansion, we associated 2|V| dimer configurations of GF: edges present (respectively
absent) in P are absent (respectively present) in the corresponding dimer configuration of GF.
Once the state of these edges is fixed, there is exactly two ways to fill each decoration so as to
obtain a dimer configuration of GF, see Figure 1.4 for an example.

Figure 1.4: (Left) Polygon configuration of a piece of Z2 embedded in the torus. Right: corre-
sponding dimer configurations of the associated Fisher graph.

Let us assign to every edge e of GF weight νe = 1 if it is a short edge, and weight νe = coth Je
if it is a long edge corresponding to an edge of the original graph G, also denoted by e. Then,
Fisher’s mapping is measure preserving, i.e. the probability of a polygon configuration P of the
Ising model’s high temperature expansion is equal to the probability of dimer configurations of
GF containing edges E \ P.

1Prior to Fisher, Kasteleyn [Kas63] introduced a mapping from the Ising model to the dimer model on a
non-planar decorated version of the graph. Since planar graphs are more convenient to study the dimer model,
Fisher’s mapping is most often used.
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1.4 Spanning trees

The study of spanning trees goes back to the work of Kirchhoff [Kir47], who studied its relation to
electrical networks. Random spanning trees have deep and fruitful connections to many objects
as random walks, harmonic functions and dimers, see [Lyo98] for an overview and references.

Consider a finite graph G. A spanning tree is a connected subset of edges containing all vertices
of the graph G and no cycle. Let us denote by T(G) the set of spanning trees of the graph G.
Assigning positive weights (ρe)e∈E to edges, the probability of occurrence of a spanning tree T,
chosen with respect to the spanning tree measure Ptree, is defined by:

Ptree(T) =

∏
e∈T ρe

Ztree(G, ρ)
,

where Ztree(G, ρ) is the spanning tree partition function.

1.4.1 Explicit formula for the partition function

An explicit formula for the partition function is given by Kirchhoff’s matrix-tree theorem [Kir47].
Consider a labeling V = {u1, · · · , un} of the vertices of the graph G, then the Laplacian matrix
∆, is the n× n symmetric matrix, defined by:

∀ i, j ∈ {1, · · · , n}, ∆ui,uj =


∑

uj∼ui
ρuiuj if i = j

−ρuiuj if i ∼ j
0 else.

The terminology Laplacian matrix comes from the fact that when interpreted as an operator
acting on CV, ∆ is a discrete version of the continuous Laplacian. The matrix-tree theorem
[Kir47] states that the weighted number of spanning trees is equal, up to sign, to any diagonal
cofactor of the Laplacian matrix. One way of proving this result is to use Cauchy-Binet’s formula.

1.4.2 Extensions

Kirchhoff’s matrix-tree theorem [Kir47] has been generalized in many directions. Let us state
the extension to directed graphs (di-graphs), due to Tutte [Tut48].

Consider the complete di-graph G on vertices V = {u1, · · · , un}, fix a vertex and label it by r.
An oriented spanning tree of G, rooted at the vertex r, is a spanning tree with edges oriented
towards the vertex r, referred to as the root vertex. Let us denote by Tr(G) the set of oriented
spanning trees of the graph G, rooted at r.

To every oriented edge (ui, uj), i 6= j, assign a variable aui,uj , and denote by A the n×n matrix
defined by:

Aui,uj =

{∑
j 6=i aui,uj if i = j

−aui,uj if i 6= j.

9
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Theorem 1.5. [Tut48] Let Ar be the matrix obtained from the matrix A by removing the line
and the column corresponding to the vertex r, then:

det(Ar) = ±
∑

T∈Tr(G)

∏
e=(ui,uj)∈T

aui,uj .

Remark 1.3.

• The interest of this generalization is that the only condition needed for a matrix-tree
type theorem to hold, is that the column-sum of the matrix is zero. This condition is in
particular satisfied by the Laplacian matrix.

• A very nice combinatorial proof of this result and extensions are given in the paper [Cha82]
by Chaiken. The phrasing of this theorem is also taken from [Cha82].

1.5 Critical models on isoradial graphs

In this section, we define the critical versions of the Ising model, the Fisher dimer model, the
bipartite dimer model and spanning trees, in the case where the underlying graph G is isoradial.
Other critical models on isoradial graphs have been studied, as for example bond percolation,
see [GM11, GM12].

A graph G is isoradial [Duf68, Ken02], if it can be embedded in the plane in such a way that all
faces are inscribable in a circle of radius 1. We suppose moreover that circumcenters are in the
closure of the faces. An isoradial embedding of the dual graph G∗ is obtained by taking as dual
vertices the circumcenters of the corresponding faces. When we speak of an isoradial graph, we
actually mean an isoradial graph with a choice of embedding. Example of isoradial graphs are
the square, triangular and honeycomb lattice. A more general example is given in Figure 1.5.

Figure 1.5: Left: example of isoradial graph. Center: corresponding diamond graph. Right:
rhombus half-angle associated to an edge e of the graph.

To such a graph is naturally associated the diamond graph, denoted G�, defined as follows.
Vertices of G� consist in the vertices of G and vertices of G∗. Dual vertices are then joined to
all primal vertices that are on the boundary of the corresponding face, see Figure 1.5 (center).
Since G is isoradial, all faces of G� are side-length-1 rhombi (or half-rhombi on the boundary).
Each edge e of G is the diagonal of exactly one rhombus (or half-rhombus) of G�; we let θe be
the half-angle of the rhombus at the vertex it has in common with e, see Figure 1.5 (right).

Isoradial graphs have two remarkable properties. First, they yield a natural setting to define
discrete complex analysis [Duf68, Mer01b, Ken02, CS11]. Second, the property of being isoradial
is preserved through Y −∆ transformations of the graph, also known as star-triangle transfor-
mations, underlying the concept of Z-invariance introduced by Baxter [Bax86]: a model is said
to be Z-invariant if the partition function only changes by a global constant when performing
a Y −∆ transformation.

10
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We now state for each model, its critical version when defined on an isoradial graph. This
amounts to specifying the positive weights assigned to edges. Note that criticality is also defined
away from isoradiality, so that we are handling a specific family of critical models.

Critical coupling constants for the Ising model on G:

∀ e ∈ E, Je =
1

2
log

(
1 + sin θe

cos θe

)
. (1.6)

These coupling constants were first derived by Baxter [Bax86], by imposing that the Ising
model is Z-invariant, satisfies a generalized form of self-duality (the high and low temperature
expansions yield the ‘same’ model), and by assuming uniqueness of the critical point. When G =
Z2, one recovers the critical temperature computed by Kramers and Wannier [KW41a, KW41b].
These coupling constants have now been proved to be critical when the underlying graph is
periodic [CD13, Li12].

Very precise predictions for the critical Ising model were established by physicists in the last
30-50 years, in particular by Cardy, Duplantier, Nienhuis and many others. In the mathemat-
ics community, following the introduction of SLE by Schramm [Sch00], huge progresses have
occurred in the last 10 years: in 2006, Smirnov [Smi10, Smi06] proves conformal invariance of
the FK-representation of the critical Ising model on Z2, and the convergence of an interface
to SLE(16/3). This work has been generalized to the critical Ising model on isoradial graphs
by Chelkak and Smirnov [CS12]. On this subject, let us also mention the paper by Mercat
[Mer01b], where the author defines a new theory of discrete Riemann surfaces and proves equiv-
alence between criticality and existence of Dirac spinors. Recently, Chelkak, Hongler and Izyurov
[CHI12] computed n-points correlation functions, a result obtained independently by Dubédat
in a weaker form [Dub11b].

Critical weights for the dimer model on the Fisher graph GF are obtained by ap-
plying Fisher’s mapping, see Section 1.3, starting from a critical Ising model on an isoradial
graph G:

∀ e ∈ EF, νe =

1 if e is a short edge,

coth Je = coth
(

log
√

1+sin θe
cos θe

)
= cot θe2 if e comes from an edge e of G.

Critical weights for the bipartite dimer model on G:

∀e ∈ E, νe = sin θe. (1.7)

Critical weights for spanning trees on G:

∀e ∈ E, ρe = tan θe.

The above weights for the bipartite dimer model and for spanning trees have been introduced by
Kenyon [Ken02], and are referred to as critical weights. They are not derived explicitely, and one
may wonder whether they can be obtained using Z-invariance. A straightforward application of
Z-invariance yields nothing but, for spanning trees, a way out might be to use the primal and
dual graphs simultaneously. Critical dimer weights are then obtained in a specific bipartite case
using Temperley’s bijection [Tem74] and its generalizations [BP93, KPW00].
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In the breakthrough paper [Ken02], Kenyon proves an explicit local expression for the inverse of
the Kasteleyn matrix of the critical bipartite dimer model, and for the Green’s function. Locality
means that the expressions only depend on the local geometry of the graph. For example, an
entry K−1

x,y of the inverse Kasteleyn matrix is expressed as a contour integral of an integrand
which only depends on a path joining vertices x and y in the isoradial embedding of the graph
G. This is a very surprising result since one would expect the combinatorics of the whole graph
to contribute.
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The critical Ising model via dimers

Let G be an infinite isoradial graph and consider the critical Ising model on G as defined in
Section 1.5, i.e. suppose that edges are assigned the critical coupling constants:

∀ e ∈ E, Je =
1

2
log

(
1 + sin θe

cos θe

)
.

Consider the corresponding critical dimer model on the Fisher graph GF of G, obtained through
Fisher’s mapping, see Sections 1.3 and 1.5: edges of GF are assigned Fisher-critical dimer weights:

∀ e ∈ EF, νe =

{
1 if e is a short edge, i.e. an edge of a decoration
cot θe2 if e is a long edge corresponding to an edge e of G.

In this chapter, we present two papers in collaboration with Cédric Boutillier giving a full
description of the critical dimer model on the Fisher graph GF: we prove an explicit expression
for the free energy and for a natural Gibbs measure. In the first paper [3], we consider the periodic
case, and prove explicit expressions in the spirit of [KOS06]. In the second paper [4], we prove
local expressions in the spirit of Kenyon [Ken02], and remove the periodicity assumption.

2.1 The periodic case

[3] C. Boutillier, B. de Tilière. The critical Z-invariant Ising model via dimers: the
periodic case. Probab. Theory Related Fields 147 (2009), no. 3, 379–413.

Suppose that the isoradial graph G is infinite and Z2-periodic, then the corresponding Fisher
graph GF is also Z2-periodic, and the dimer model is studied through the natural exhaustion
{GF

n = GF/nZ2}n≥1 of GF by toroidal graphs, see Section 1.2.3 for definitions.

In the paper [3], we prove an explicit expression for the free energy and for the Gibbs measure
obtained as weak limit of the Boltzmann measures of the graphs GF

n. These results are of the
same type as those obtained by Kenyon [Ken97], Cohn, Kenyon, Propp [CKP01] in the case of
the dimer model on the honeycomb and the square lattice, and by Kenyon, Okounkov, Sheffield
[KOS06] for the dimer model on general bipartite graphs. The results of [KOS06] do not apply
to our setting because the Fisher graph is not bipartite, the bipartite assumption being a key
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requirement of their paper. The two main difficulties that we had to face are: understanding
the zeros of the dimer characteristic polynomial, see Section 2.1.1 and proving convergence of
the Boltzmann measures for every n, see Section 2.1.2. The second part is robust and could be
used for other dimer models on non-bipartite graphs.

2.1.1 Dimer and Laplacian characteristic polynomials

Similarly to the bipartite case [CKP01, KOS06], the key object involved in the explicit expres-
sions of the free energy and the Gibbs measure is the dimer characteristic polynomial. It is
constructed from the Kasteleyn matrix of the fundamental domain in the following way.

Dimer characteristic polynomial

Suppose that edges of the fundamental domain GF
1 are oriented according to a Kasteleyn ori-

entation, and let K1 be the corresponding Kasteleyn matrix. Let γ1 and γ2 be two oriented
edge-cycles in the dual graph G∗1, winding around the two non-trivial directions of the torus,
and let z, w ∈ C∗. Multiply the coefficient (K1)u,v of the edge uv of GF

1 by z±1 (resp. w±1)
whenever it crosses γ1 (resp. γ2), the + sign (resp. − sign) is chosen if the vertex u is on the left
(resp. on the right) of the path, see Figure 2.1. This defines a modified weight Kasteleyn matrix
K1(z, w), which is skew-hermitian when |z| = |w| = 1. The dimer characteristic polynomial,
denoted Pdimer(z, w), is the determinant of K1(z, w):

Pdimer(z, w) = detK1(z, w).

Figure 2.1: Left: example of fundamental domain G1 (opposite sides are identified). Middle:
isoradial embedding of G1, underlying rhombus graph (dotted lines) and rhombus half-angles.
Right: Kasteleyn orientation of the corresponding fundamental domain GF

1 , and modified weights
of the Kasteleyn matrix K1(z, w).

In the paper [CKP01], Cohn, Kenyon and Propp provide a general argument allowing to prove
explicit expressions for the free energy and for Gibbs measure(s), see Section 2.1.2. One of the
key points is to have a precise description of the zeros of the dimer characteristic polynomial on
the torus T2.

In the case of the bipartite dimer model, Kenyon, Okounkov and Sheffield [KOS06] prove that
the zero set of the dimer characteristic polynomial is a Harnack curve of genus 0, implying
in particular that the polynomial has at most two conjugate zeros on T2. Their result is very
powerful since it applies to all bipartite dimer models, but it does not extend to the non-bipartite
case.

Quite surprisingly, we prove that for the non-bipartite Fisher graph GF, the zero set of Pdimer(z, w)
is also a Harnack curve, by relating it to the Laplacian. This is one of the main results of our
paper [3], in order to precisely state it, we need to define the Laplacian characteristic polynomial.

Laplacian characteristic polynomial

Consider the Laplacian matrix ∆1 of the fundamental domain G1 of the isoradial graph G, where
edges of the graph G1 are assigned the critical spanning tree weights, see Section 1.5:

∀ e ∈ E, ρe = tan θe.
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The modified weight Laplacian matrix ∆1(z, w) is constructed in a way similar to the modified
weight Kasteleyn matrix, see Figure 2.2. The Laplacian characteristic polynomial PLap(z, w) is
the determinant of ∆1(z, w):

PLap(z, w) = det ∆1(z, w).

Figure 2.2: Modified weights of the Laplacian matrix ∆1(z, w). The Laplacian characteristic
polynomial is equal to PLap(z, w) = tan(θe1)(2− w − w−1) + tan(θe2)(2− z − z−1).

We prove the following:

Theorem 2.1. [3] There exists a constant C 6= 0, such that:

∀ (z, w) ∈ C2, Pdimer(z, w) = CPLap(z, w).

Moreover {(z, w) ∈ C2 : Pdimer(z, w) = 0} is a Harnack curve of genus 0 and its unique point
on T2 is (1, 1) and it has multiplicity 2.

Remark 2.1.

• The proof of the first part consists in showing that PLap(z, w) divides Pdimer(z, w) and
that the Newton polygon of Pdimer(z, w) is included in the Newton polygon of PLap(z, w).
We don’t give more details here since we provide a combinatorial proof of this equality in
the next chapter. The remainder of the proof consists in using results of [Ken02, KPW00]
to relate the polynomial PLap(z, w) to the characteristic polynomial of a bipartite dimer
model, implying that its zero set is a Harnack curve [KOS06]. The fact that the zero is
located precisely at (1, 1) is a consequence of a result of Forman [For93], see Theorem 3.1.

• Since the publication of our paper [3], two related results have been obtained. The Ising
partition function can also be computed using Kac-Ward matrices [KW52]. In the paper
[Cim12], Cimasoni proves a result similar to Theorem 2.1, relating the determinant of
the Kac-Ward matrix to the determinant of the critical Laplacian matrix. Using a slight
variation of Fisher’s mapping, Dubédat [Dub11b] proves that the dimer characteristic
polynomial of GF

1 is equal, up to a constant, to the characteristic polynomial of yet another
bipartite dimer model, thus also implying that its zero set is a Harnack curve [KOS06].
The result of Dubédat is not directly related to the Laplacian, but also holds away from
the critical point.

2.1.2 Free energy and Gibbs measure

We now state the result of [3] proving an explicit expression for the free energy of the critical
dimer model on the infinite, Z2-periodic Fisher graph GF, and for the Gibbs measure obtained as
weak limit of the Boltzmann measures of GF

n. In order to state our result, we need the following
notations and definitions:

• F is the σ-field generated by cylinders, a cylinder being the set of dimer configurations
containing a fixed, finite subset of edges of GF.
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• Since the graph GF is Z2-periodic, vertices of GF can be identified with VF
1×Z2, i.e. (u, x, y)

is the vertex u in the (x, y)-copy of the fundamental domain GF
1 . The inverse Kasteleyn

matrix K−1 is defined to be the infinite matrix whose coefficients are given by:

K−1
(u,x,y),(u′,x′,y′) =

1

(2πi)2

∫∫
T2

Cof(K1(z, w))u′,u
Pdimer(z, w)

zx
′−xwy

′−y dz

z

dw

w
. (2.1)

In Proposition 5 of [3], we prove that K−1 is indeed an inverse of the infinite Kasteleyn
matrix K, in the sense that KK−1 = Id, and that it is the unique inverse tending to 0 as
‖(x′ − x, y′ − y)‖ → ∞. It is computed using Fourier techniques, as in [CKP01].

Theorem 2.2. [3]

1. The free energy f of the critical dimer model on the Fisher graph GF is equal to:

f = − 1

2(2πi)2

∫∫
T2

logPdimer(z, w)
dz

z

dw

w
. (2.2)

2. There is a unique probability measure Pdimer on (M(GF),F), such that the probability of
occurrence of a subset of edges Ek = {e1 = u1v1, · · · , ek = ukvk} of GF in a dimer configu-
ration is equal to:

Pdimer[e1, · · · , ek] =
( k∏
i=1

Kui,vi

)
Pf
(
[K−1

Ek
]t
)
, (2.3)

where K−1
Ek

is the submatrix of the infinite matrix K−1 of (2.1), whose lines and columns
are indexed by {u1, v1, · · · , uk, vk}. Moreover, Pdimer is a translation invariant Gibbs mea-
sure.
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Outline of the proof. As in [KOS06], the beginning of the proof follows [CKP01].

1. Using Theorem 1.4 of Section 1.2.2, one expresses, for every toroidal graph GF
n of the

exhaustion of GF, the partition function Zdimer(G
F
n, ν) and the Boltzmann measure Pndimer.

Both expressions (1.4) and (1.5) involve the four Kasteleyn matrices (Kθτ
n )θ,τ∈{0,1} of the

graph GF
n, where we have added a subscript n to emphasize the dependence in n.

2. Using translation invariance of the graph GF
n and Fourier techniques, for every θ, τ ∈ {0, 1},

the matrix Kθτ
n can be block-diagonalized, with (n2)2 blocks of size |VF

1 |, the number of
vertices of the fundamental domain. For every j, k ∈ {0, · · · , n− 1}, the (j, k)-th block is
explicitly expressed using the modified weight Kasteleyn matrix as:

K1

(
ei

(2j+θ)π
n , ei

(2k+τ)π
n

)
. (2.4)

The idea then is to use Points 1 and 2 above, to obtain analogs of Formulas (2.2) and (2.3)
with Riemann sums instead of integrals, and to show that Riemann sums converge to the cor-
responding integrals as n → ∞. This is where we need information on the zeros of the dimer
characteristic polynomial on T2, provided by Theorem 2.1:

3. The dimer characteristic polynomial Pdimer(z, w) = detK1(z, w), has a single double zero
at (1, 1) on T2. In the discretization of T2 obtained from the block-diagonal decomposition,
see Equation (2.4), the zero (1, 1) is reached by

(
ei

(2j+θ)π
n , ei

(2k+τ)π
n

)
if and only if (j, k) =

(0, 0) and (θ, τ) = (0, 0). For all other indices, the points are at distance at least O
(

1
n

)
from the zero (1, 1).

Free energy. Using the block decomposition of the matrices Kθτ
n of Point 2, one has, for

every θ, τ ∈ {0, 1}:

detKθτ
n =

n−1∏
j=0

n−1∏
k=0

Pdimer

(
ei

(2j+θ)π
n , ei

(2k+τ)π
n

)
. (2.5)

By Point 3, this determinant is 0 if and only if (θ, τ) = (0, 0). When (θ, τ) 6= (0, 0), since the
determinant is the square of the Pfaffian and since the points

(
ei

(2j+θ)π
n , ei

(2k+τ)π
n

)
are at distance

at least O
(

1
n

)
, one has:

lim
n→∞

1

n2
log Pf(Kθτ

n ) =
1

2

1

(2π)2
lim
n→∞

(2π)2

n2

n−1∑
j=0

n−1∑
k=0

logPdimer

(
ei

(2j+θ)π
n , ei

(2k+τ)π
n

)
,

=
1

2

1

(2π)2

∫ 2π

0

∫ 2π

0
logPdimer(e

iη, eiξ) dη dξ.

Details on the convergence of the Riemann sums to the corresponding integral are given in
the paper [CKP01]. Then, by Theorem 1.4 we have, maxθ,τ{Pf(Kθτ

n )} ≤ Zdimer(G
F
n, ν) ≤

2 maxθ,τ{Pf(Kθτ
n )}, which allows to conclude the proof.

Gibbs measure. As long as (θ, τ) 6= (0, 0), as in the planar case, one uses the Jacobi identity of
Equation (1.3) for each of the terms Pf((Kθτ

n )Eck) of the Boltzmann measure (1.5). Jacobi’s iden-
tity involves the Pfaffian of the full matrix, which will be compensated by the partition function
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Chapter 2. The critical Ising model via dimers

Zdimer(G
F
n, ν) in the denominator, and the Pfaffian of a restriction of the inverse Kasteleyn ma-

trix. Coefficients of the inverse Kasteleyn matrix are expressed using the block diagonalization
of Point 2, as Riemann sums for the integral (2.1):

(Kθτ
n )−1

(u,x,y),(u′,x′,y′) =
1

n2

n−1∑
j=0

n−1∑
k=0

ei
(2j+θ)π

n
(x′−x)ei

(2k+τ)π
n

(y′−y)
Cof

(
K1

(
ei

(2j+θ)π
n , ei

(2k+τ)π
n

))
u′,u

Pdimer

(
ei

(2j+θ)π
n , ei

(2k+τ)π
n

) ,

Convergence to the integral as n → ∞ is proved using Point 3, which tells us that we are far
enough from the zero of the characteristic polynomial.

The term involving (θ, τ) = (0, 0) in the expression of the Boltzmann measure (1.5) needs to
be treated separately. Indeed, since Pf(K00

n ) = 0, Jacobi’s identity does not hold in this case.
Using the Cauchy-Binet formula, rather involved expansions of the determinant [Bou70], and
careful estimates, we prove that:

Pf(K00
n )Ec

Zdimer(GF
n, ν)

= O
( 1

n

)
.

This ends the sketch of the proof of the convergence of the Boltzmann measure Pndimer[e1, · · · , ek]
to the right hand side of (2.3). Existence of a unique probability measure Pdimer equal to the
RHS of (2.3) on cylinder sets is then given by Kolmogorov’s extension theorem.

Remark 2.2. In the case of the bipartite dimer model, when proving convergence of the Boltz-
mann measures on cylinder sets, Kenyon, Okounkov and Sheffield [KOS06] actually prove con-
vergence on a subsequence of n’s where they use Jacobi’s formula for each (θ, τ). They conclude
using a theorem of Sheffield [She05] proving a priori existence of the limit. Sheffield’s theorem
strongly relies on the bipartite assumption and is thus not available for the Fisher graph. More-
over, in our case, the Pfaffian of K00

n cancels for every n, so that one can never use Jacobi’s’
identity for (θ, τ) = (0, 0). Finding a subsequence where the general argument of [CKP01]
works was not an option either. The method we provide is robust and can be used for other
non-bipartite graphs. As mentionned before, what is missing for the non-bipartite dimer model
is a general understanding of the zeros of the characteristic polynomial.

2.2 Non periodic case, local expressions

[4] C. Boutillier, B. de Tilière. The critical Z-invariant Ising model via dimers:
locality property. Comm. Math. Phys. 301 (2011), no. 2, 473–516.

In the paper [4] we suppose that the graph G is infinite, isoradial, but not necessarily Z2-periodic.
We consider the critical dimer model on the Fisher graph GF. Our main result is an explicit,
local formula for the inverse Kasteleyn matrix, in the spirit of [Ken02], it is stated in Section
2.2.1. Using the results of [3] and an argument of [8], this yields an explicit local formula for
a natural Gibbs measure, see Section 2.2.2. Using techniques of [Ken02], we recover Baxter’s
formula for the free energy of the critical Ising model, and thus a new proof of it. The latter is
equal, up to a constant, to 1

2 of the logarithm of the normalized determinant of the Laplacian
obtained in [Ken02]. This is the subject of Section 2.2.3.
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Chapter 2. The critical Ising model via dimers

2.2.1 Local expression for the inverse Kasteleyn matrix

Let us first introduce some notations for vertices of the isoradial graph G and for vertices of the
corresponding Fisher graph GF.

Notations. Vertices of GF are written in plain symbols, those of G in boldface. Let x be a
vertex of GF, then x belongs to a decoration corresponding to a unique vertex of G, denoted by
x. Conversely, vertices of a decoration of GF corresponding to a vertex x of G are labeled as
follows, refer to Figure 2.3 for an example. Let d(x) be the degree of the vertex x in G, then the
corresponding decoration consists of d(x) triangles, labeled from 1 to d(x) in counterclockwise
order. For the k-th triangle, let vk(x) be the vertex incident to an edge of G, and let wk(x),
zk(x) be the other two vertices in counterclockwise order, starting from vk(x). Later on, when
no confusion occurs, we will drop the argument x in the above labeling. Define a vertex x of GF

to be of type ‘v’, if x = vk(x) for some k ∈ {1, · · · , d(x)}, and similarly for ‘w’ and ‘z’.

Figure 2.3: Notations for vertices of GF.

The isoradial embedding of G fixes an isoradial embedding of the corresponding diamond graph
G�. There is a natural way of assigning rhombus unit-vectors of G� to vertices of GF: for every
vertex x of G, let us assign the rhombus unit-vector eiαwk(x) to wk(x), eiαzk(x) to zk(x), and the two
rhombus unit-vectors eiαwk(x) , eiαzk(x) to vk(x), as in Figure 2.4. Note that eiαwk(x) = e

iαzk+1(x) .

Figure 2.4: Rhombus vectors of the diamond graph G� (dotted lines) assigned to vertices of GF.

The integrand of the local formula for the inverse Kasteleyn matrix has two contributions: a
complex valued function defined on vertices of GF, and the discrete exponential function of
[Mer01a], see also [Ken02], which only depends on the underlying isoradial graph G. We now
define these two functions.

Complex valued function on vertices of GF. Define f : VF × C→ C, by:

f(wk(x), λ) := fwk(x)(λ) =
ei
αwk(x)

2

eiαwk(x) − λ

f(zk(x), λ) := fzk(x)(λ) =
ei
αzk(x)

2

eiαzk(x) − λ
f(vk(x), λ) := fvk(x)(λ) = fwk(x)(λ) + fzk(x)(λ), (2.6)

for every x ∈ G and every k ∈ {1, · · · , d(x)}. For these functions to be well defined, the angles
αwk(x) and αzk(x) need to be well defined modulo 4π, indeed half angles need to be well defined
modulo 2π. We refer to Lemma 4 of the original paper [4] for this definition. It is related to
spin structures on surface graphs, see [Kup98, CR07, CR08].

Discrete exponential function [Mer01a, Ken02]. Let x and y be two vertices of G, and
let y = x1, · · · , xn+1 = x be an edge-path of G from y to x. The complex vector xj+1 − xj is the
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Chapter 2. The critical Ising model via dimers

sum of two unit complex numbers eiβj + eiγj representing edges of the rhombus of G� associated
to the edge xjxj+1. Then, Exp : V × V × C→ C is defined by:

Exp(x, y, λ) := Expx,y(λ) =
n∏
i=1

(eiβj + λ

eiβj − λ

)(eiγj + λ

eiγj − λ

)
.

The function is well defined, i.e. independent of the choice of edge-path of G from y to x, since
the product of the multipliers around a rhombus is 1.

We can now state Theorem 2.3 proving an explicit, local expression for the coefficients of an
inverse K−1 of the Kasteleyn matrix K. The vertex x of GF in the statement should be thought
of as being one of wk(x), zk(x), vk(x) for some x of G and some k ∈ {1, · · · , d(x)}, and similarly
for the vertex y of GF.

Theorem 2.3. [4] Let x and y be any two vertices of GF. Then, the infinite matrix K−1, whose
coefficient K−1

x,y is given by (2.7) below, is an inverse Kasteleyn matrix,

K−1
x,y =

1

(2π)2

∮
Cx,y

fx(λ)fy(λ) Expx,y(λ) log λ dλ+ Cx,y. (2.7)

The contour of integration Cx,y is a simple closed curve oriented counterclockwise containing all
poles of the integrand, and avoiding a half-line dx,y1 with base point zero. The constant Cx,y is
zero whenever x and y do not belong to the same decoration, and is equal to ±1

4 , when they do.

Remark 2.3.

• Now that the theorem is stated, we can explain what is meant by a local formula, see also
Section 1.5. The integrand of the explicit expression for K−1

x,y given by Equation (2.7) only
depends on the geometry of the embedding of the isoradial graph G and on a path joining
vertices which are at distance at most 2 from x and y. This is surprising since one would
expect the combinatorics of the whole graph to contribute.

• The infinite inverse Kasteleyn matrix K−1 in the statement of Theorem 2.3 satisfies
KK−1 = Id. This raises the natural question of whether it is unique. When the graph
GF is assumed to be Z2-periodic, the answer is yes. Indeed, in Proposition 5 of [3], we
prove uniqueness of the inverse such that K−1

x,y → 0, as ‖x − y‖ → ∞. In Corollary 7 of
[4], we compute asymptotics of K−1

x,y from which one easily deduces that this condition is
satisfied. Uniqueness has an interesting consequence: it means that, in the Z2-periodic
case, the expressions (2.1) and (2.7) are equal. We have not yet been able to directly prove
this.

Proof (Idea). The proof consists in showing that KK−1 = Id. The idea of the argument comes
from [Ken02], where Kenyon computes a local explicit expression for the inverse Kasteleyn
matrix of the critical dimer model on a bipartite, isoradial graph. The results of the paper
[Ken02] cannot be applied to the critical dimer model on the Fisher graph GF, since GF is not
isoradial, nor bipartite.

• The first part of the argument consists in finding a complex valued function, depending on
a complex parameter, in the kernel of the Kasteleyn operator2. The difficulty lies in the fact

1Refer to the paper [4] for the precise definition of the half-line dx,y.
2The Kasteleyn operator is defined from the Kasteleyn matrix in Equation (1.1).
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Chapter 2. The critical Ising model via dimers

that there is no general method to construct such a function, nor even to determine whether it
exists. Nevertheless, we were able to find one: the next proposition proves that for every y ∈ G,
and every λ ∈ C, the function (fx(λ) Expx,y(λ))x∈VF , is in the kernel of the Kasteleyn operator
K of the Fisher graph GF.

Proposition 2.1. [4] Let x, y be two vertices of GF, and let x1, x2, x3 be the three neighbors of x
in GF, then for every λ ∈ C:

3∑
i=1

Kx,xifxi(λ) Expxi,y(λ) = 0.

The proof of Proposition 2.1 consists of explicit computations, which we omit here. Rather, let
us give an idea of how we identified the functions (fx(λ) Expx,y(λ))x∈VF . By Theorem (2.1), we
know that the characteristic polynomial of the critical dimer model on the Fisher graph GF is
equal, up to a constant, to the characteristic polynomial of the critical Laplacian on the isoradial
graph G. This led us to think that the discrete exponential functions, which are the integrand of
the local expression of the Green’s function [Ken02], should also appear in the integrand of the
inverse Kasteleyn operator. Then, since the model is defined on the Fisher graph GF and not
on the isoradial graph G, we believed that there should be some additional information coming
from the Fisher graph, hoping that it would be local, i.e. only involve the decoration of the
vertex in question. It turned out to be the case. Finding the functions (fx(λ))x∈VF involved
explicitly solving the case of Z2, and understanding how this could be extended to the case of a
general isoradial graph.

• Here is the idea of the second part of the argument. Let x, y be two vertices of GF, and let
Cx,y be a a simple closed curve oriented counterclockwise, containing all poles of the integrand
of (2.7), and avoiding an angular sector sx,y containing the half-line dx,y, see Figure 2.5.

Figure 2.5: Definition of the contour of integration Cx,y of the integral term of K−1
x,y . The poles

of the integrand are on the unit circle, and are drawn as thick points.
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Chapter 2. The critical Ising model via dimers

Denote by x1, x2, x3 the three neighbors of x in GF. The goal is to define angular sectors sx,y, in
such a way that:

- When x 6= y, the intersection ∩3
i=1sxi,y is non-empty, meaning that we are working on a

single branch of the logarithm. The three contours Cxi,y can then be continuously deformed
into a common contour C without meeting any pole which, using Proposition 2.1, yields:

3∑
i=1

Kx,xi

∮
Cxi,y

fxi(λ)fy(−λ) Expxi,y(λ) log λ
dλ

(2π)2
=

∮
C

( 3∑
i=1

Kx,xifxi(λ) Expxi,y(λ)
)
fy(−λ) log λ

dλ

(2π)2
= 0. (2.8)

- When x = y, the intersection of the three sectors is empty, meaning that we are sitting on
different branches of the logarithm. Using this fact, one aims at having

3∑
i=1

Kx,xi

∮
Cxi,y

fxi(λ)fy(−λ) Expxi,y(λ) log λ
dλ

(2π)2
, (2.9)

equal to 1.

It turns out that it is not possible to construct angular sectors such that Equation (2.8) holds
and such that (2.9) is equal to 1. Additional constants Cx,y need to be introduced, refer to the
statement of Theorem 2.3.

In the paper [Ken02], angular sectors are not constructed explicitly since geometric considera-
tions suffice to define an appropriate branched covering of the plane. Angular sectors appear in
[BMS05] for the isoradial graph G. In our case, the construction is complicated by the presence
of the decorations. The construction and the proof is rather involved (13 pages) and we do not
want to enter into more details here. Let us just mention that it heavily uses the underlying
rhombus graph G�, and train-tracks, where a train-track is a path of edge-adjacent rhombi of
G�, which does not turn: on entering a face, it exits along the opposite edge.

2.2.2 Local formula for a natural Gibbs measure

We let G be an infinite isoradial graph, not necessarily periodic, and let GF be the corresponding
Fisher graph. Using an argument of [8] and the explicit local expression for the inverse Kasteleyn
matrix, we prove an explicit, local expression for a Gibbs measure of the critical dimer model on
the Fisher graph GF. The strength of this result lies in the fact that the graph is not assumed
to be periodic.

Theorem 2.4. [4] There is a unique probability measure Pdimer on (M(GF),F), such that the
probability of occurrence of a subset of edges Ek = {e1 = x1y1, · · · , ek = xkyk} of GF in a dimer
configuration is:

Pdimer[e1, · · · , ek] =
( k∏
i=1

Kxi,yi

)
Pf
(

[K−1
Ek

]t
)
, (2.10)
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where K−1
Ek

is the submatrix of the infinite inverse Kasteleyn matrix K−1 of (2.7), whose lines
and columns are indexed by {x1, y1, · · · , xk, yk}; moreover Pdimer is a Gibbs measure. When GF

is Z2-periodic, Pdimer is the Gibbs measure of (2.3), obtained as weak limit of the Boltzmann
measures Pndimer on the toroidal exhaustion {GF

n = GF/(nZ2)}n≥1 of GF.

Proof (Idea). The idea of the argument comes from the paper [8]. The goal is to construct the
measure Pdimer using Kolmogorov’s extension theorem. Recall that F denotes the σ-algebra
generated by cylinder sets, where a cylinder consists of dimer configurations containing a fixed,
finite subset of edges of GF, that is:

F = σ(AE : E ⊂ EF), where AE = {M ∈M(GF) : E ⊂M}.

To simplify notations, we have identified AE with E in the statement of the theorem.

Fix a subset E of edges of GF and denote by FE the σ-algebra generated by the cylinders
(AE′)E′⊂E. Define an additive function PE on FE, by setting its value on every cylinder:

∀E′ = {ei1 , · · · , eik} ⊂ E, PE(AE′) =
( k∏
j=1

Kxij ,yij

)
Pf
(

[K−1
E′ ]t

)
. (2.11)

Our goal is to prove that PE is a probability measure. This is not clear a priori, because K−1 is
given by the local formula (2.7) and the graph GF is not assumed to be periodic. Indeed, this
implies that we cannot directly use uniqueness of the inverse Kasteleyn matrix in the periodic
case, see Remark 2.3, to prove that PE is a weak limit of Boltzmann measures. Working directly
with the expression of K−1 given by (2.7) turned out to be difficult, we could, for instance, not
even establish positiveness of PE.

Nevertheless, using the locality property of the inverse Kasteleyn matrix K−1, a result of [8]
and uniqueness in the Z2-periodic case, we can still prove that PE is a weak limit of Boltzmann
measures. The argument is the following.

The first fact is that there exists a Z2-periodic Fisher graph GF
p which is identical to GF on a

finite, simply connected region containing all edges of E. This is proved using Proposition 1 of
[8] stating the following: any finite, simply connected subgraph of a rhombus tiling of the plane
can be embedded into a Z2-periodic rhombus tiling of the plane. To extend this result to the
Fisher graph GF, one uses the isoradial graph G underlying the Fisher graph and the rhombus
graph G� corresponding to the isoradial graph G.

Let K−1
p denote the inverse Kasteleyn matrix of the critical dimer model on the periodic Fisher

graph GF
p , given by Theorem 2.3. Then, the second fact is that by the locality property of

the inverse Kasteleyn matrix, see also Remark 2.3, (K−1
p )x,y and K−1

x,y are equal for all pairs of
vertices of E.

Using uniqueness of the inverse Kasteleyn matrix decreasing at infinity in the Z2-periodic case,
see Remark 2.3, we know that K−1

p is equal to the inverse Kasteleyn matrix computed using
Fourier transforms given in Equation (2.1). By Theorem 2.2, we thus know that PE is a weak
limit of Boltzmann measures, and as such is a probability measure.

Similar arguments are used to prove Kolmogorov’s compatibility relations, thus allowing to
conclude the proof.
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Example. The critical Ising model on isoradial graphs satisfies a generalized form of self-
duality, see Section 1.5. This means that the critical dimer model on the Fisher graph GF can
be obtained, either from the high temperature expansion of a critical Ising model on the graph
G (as in Section 1.3), or from the low temperature expansion of a critical Ising model on the
dual graph G∗. The advantage of the second approach is that polygon configurations of the low
temperature expansion have a direct interpretation as separating clusters of ±1 spins.

As a consequence, consider a critical Ising model on the dual graph G∗, then the probability that
the spins at two neighboring vertices x∗, y∗ are equal, is equal to the probability of the dual edge
e = xy being absent in the low temperature expansion polygon configuration. Through Fisher’s
mapping, this is equal to the probability that the edge e is present in the dimer configuration of
GF. This probability can be computed explicitly using Theorem 2.4, and yields:

PIsing[σx∗ = σy∗ ] =
1

2
+

π − 2θe
2π cos θe

,

where θe is the rhombus half-angle corresponding to the edge e. Details of this computation can
be found in the appendix of the original paper [4].

2.2.3 Local formula for the free energy

Let us assume that the isoradial graph G is Z2-periodic. Using Theorem 2.3 and techniques of
[Ken02], we obtain an explicit expression for the free energy of the critical dimer model on the
Fisher graph GF. Using Fisher’s correspondence, this yields a new proof of Baxter’s formula for
the free energy fIsing of the critical Ising model on the isoradial graph G:

Theorem 2.5. [Bax89] The free energy of the critical Ising model on the isoradial graph G, is
equal to:

fIsing = −|V| log 2

2
−
∑
e∈E

[θe
π

tan θe +
1

π

(
L(θe) + L

(π
2
− θe

))]
,

where L is the Lobachevsky function, L(x) = −
∫ x

0 log |2 sin(t)|dt.

Note that, up to a constant, this is 1
2 of the logarithm of the normalized determinant of the

Laplacian operator obtained by Kenyon [Ken02].
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Chapter 3

CRSFs and the double critical Ising model

In this chapter, we present two papers with a combinatorial flavor. The first paper [11] focuses
on the critical dimer model on the Fisher graph GF, corresponding to a critical Ising model on
a periodic isoradial graph G. We establish a combinatorial proof of Theorem 2.1, thus explicitly
relating cycle rooted spanning forests (CRSFs) - the pendent of spanning trees when working
on the torus - and the double, critical Ising model on the torus. The second paper [10] answers
a question raised when working on [11]. The main theorem can actually be rephrased in a
more general context: we prove a half-tree theorem for the Pfaffian of a skew-symmetric matrix
whose column-sum is zero. This is a Pfaffian version of the classical matrix-tree theorem of
Kirchhoff [Kir47].

3.1 From CRSFs to the double critical Ising model: an explicit
construction

[11] B. de Tilière. From cycle rooted spanning forests to the critical Ising model: an
explicit construction. Comm. Math. Phys. 319 (2013), no. 1, 69–110.

Let us first give an idea of the main theorem of [11], and postpone the precise statement until
Section 3.1.3. Let G be an infinite, Z2-periodic, isoradial graph and consider the critical dimer
model on the Fisher graph GF, see Section 1.5. Recall the following definitions from Section 2.1.1.

• The dimer characteristic polynomial, Pdimer(z, w), is the determinant of the modified weight
Kasteleyn matrix K1(z, w) of the fundamental domain GF

1 . By Theorem 1.4, the dimer partition
function of the fundamental domain GF

1 is a combination of Pf K1(±,±1). Since the determinant
of a skew-symmetric matrix is the square of the Pfaffian, one deduces that Pdimer(z, w) is a
weighted sum over ‘superimpositions of dimer configurations’, also known as ‘double dimer
configurations’1. Using Fisher’s mapping, this means that Pdimer(z, w) is a weighted sum over
configurations of the ‘double critical Ising’ model on G1. For larger graphs GF

n, the partition
function is expressed using the characteristic polynomial, see Equation (2.5), so that it is actually
stronger to work with the characteristic polynomial rather than partition functions.

1When on the torus, there are non-trivial cycles which might have odd length but all other cycles are indeed
superimpositions of dimer configurations.
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Chapter 3. CRSFs and the double critical Ising model

• The Laplacian characteristic polynomial, PLap(z, w), is the determinant of the modified weight
Laplacian matrix ∆1(z, w) of the fundamental domain G1, where we have assigned critical span-
ning tree weights to edges, see Section 1.5. By a theorem of Forman [For93], PLap(z, w) is a
weighted sum over cycle rooted spanning forests, defined as follows.

A cycle-rooted tree (CRT) of the graph G1 embedded in the torus T2, is a connected subgraph of
G1 with a unique non-trivial cycle, where a non-trivial cycle is a cycle having non-zero homology
in H1(T2,Z). An oriented CRT (OCRT) is a CRT in which edges of the branches are oriented
towards the non-trivial cycle, and the non-trivial cycle is oriented in one of the two possible
directions. Given an OCRT T, denote by (h(T), v(T)) the homology class of its non-trivial cycle
in H1(T2,Z) ' Z2.

A cycle-rooted spanning forest (CRSF) is a collection of disjoint cycle-rooted trees covering every
vertex of G1. An oriented CRSF (OCRSF) is a CRSF consisting of OCRTs, see Figure 3.1 for
an example. Let us denote by F(G1) the set of OCRSFs of G1. Then, Forman [For93] proves
the following version of the matrix-tree theorem for toroidal graphs (which also holds for other
weights than the critical ones).

Theorem 3.1. [For93] The critical Laplacian characteristic polynomial is the following weighted
sum:

PLap(z, w) =
∑

F∈F(G1)

(∏
e∈F

tan θe

)∏
T∈F

(1− zh(T)wv(T)). (3.1)

Figure 3.1: An example of OCRSF counted by the Laplacian characteristic polynomial, consist-
ing of two OCRTs.

The main result of the paper [11] is a combinatorial proof of Theorem 2.1, stating that the
critical dimer and Laplacian characteristic polynomials are equal. This explains, on the level
of configurations, the relation between the double critical Ising model on the torus, and cycle
rooted spanning forests. Working on planar domains would certainly yield an explicit relation
between the double critical Ising model and spanning trees (the pendent of CRSFs when working
in planar domains), thus proving an explicit relation between two well known and very classical
models of statistical mechanics.

Notations. In the remainder of this section, we use the notations introduced in Section 2.2.1 for
vertices of the Fisher graph GF, and the definition of the complex valued functions (fx(λ))x∈VF

of Equation (2.6).

3.1.1 Matrix-tree theorem for the dimer characteristic polynomial

We first establish a matrix-tree type theorem for the dimer characteristic polynomial of GF
1 .

The proof is not combinatorial, that is, we do not explain on the level of configurations how
the dimer characteristic polynomial can be expressed, on the one side as a sum over ‘double
dimer’ configurations, and on the other as a sum over CRSFs of GF

1 . A combinatorial argument
is provided in a more general framework, in the paper [10]. This is the subject of Section 3.2.
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Let D be the diagonal matrix whose lines and columns are indexed by vertices of GF
1 , such that

Dx,x = fx, where fx is the complex valued function fx(λ) of Equation (2.6) evaluated at λ = 0.
Define,

K0
1 (z, w) := D∗K1(z, w)D,

and let P 0
dimer(z, w) denote the characteristic polynomial detK0

1 (z, w). This diagonal trans-
formation of the Kasteleyn matrix only changes the characteristic polynomial by an overall
constant. Using Proposition 2.1 at λ = 0, we prove that K0(1, 1) has the nice property of
having column-sum equal to 0. Using the extension of the matrix-tree theorem of Section 1.4.2,
we know that any cofactor of K0(1, 1) is a sum over oriented spanning trees. If instead we keep
all lines and columns and add parameters z and w, we have a toroidal version of this theorem,
in the spirit of the theorem of Forman [For93]. We prove it using the Cauchy-Binet formula.

Theorem 3.2. [11] The dimer characteristic polynomial P 0
dimer(z, w) can be rewritten as:

P 0
dimer(z, w) =

∑
F∈F(GF

1 )

( ∏
e=(x,y)∈F

fxfyKx,y

)∏
T∈F

(1− zh(T)wv(T)).

Figure 3.2: An example of OCRSF counted by the dimer characteristic polynomial.

3.1.2 OCRSFs contributing to the characteristic polynomial

It turns out that the contributions of some OCRSFs to P 0
dimer(z, w) cancel. The next step

consists in characterizing the OCRSFs that actually contribute. Denote by F a generic OCRSF
of GF

1 . We first look at the restriction of F to long edges, that is to edges of the graph G1, and
establish the following necessary condition:

(1) The restriction L(F) of the OCRSF F to edges of G1 must be an oriented edge configuration
of G1 such that there is at least one outgoing edge from every vertex of G1.

At each decoration, a vertex of type ’v’ with an outgoing edge of L(F) is referred to as a root
vertex, and a vertex of type ’v’ with either an incoming edge of L(F), or no edge incident is
referred to as non-root vertex, see Figure 3.3.

Figure 3.3: Example of a restriction to long edges (edges of G1), root vertices and non-root
vertices.

Next, we characterize the restriction to a decoration x of OCRSFs contributing to P 0
dimer(z, w).

There are two symmetric cases cw and cclw, we only describe the cw case here.

(2) If the OCRSF F contributes to P 0
dimer(z, w), then the restriction to every decoration consists

of, see also Figure 3.4.
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– all edges joining the triangles in a circular way, oriented clockwise,

– one of the three following 2-edge configurations at the triangle of every non-root
vertex vi:

{(wi, vi), (vi, zi)}, {(wi, zi), (vi, zi)}, {(vi,wi), (wi, zi)},

– one of the following 1-edge configuration at the triangle of every root vertex vi:

{(wi, vi)}, {(wi, zi)},

with the additional constraint that the triangle of at least one root vertex contains
the configuration (wi, vi).

Figure 3.4: Restriction to a decoration of an OCRSF that contributes to P 0
dimer(z, w).

A priori, the restriction to a decoration of an OCRSF of GF
1 can take many other forms. The

proof consists in showing that other contributions cancel.

Define an essential OCRSF of GF
1 to be an oriented edge configuration of F of GF

1 such that the
restriction of F to edges of G1 satisfies Condition (1), the restriction of F to every decoration
satisfies Condition (2), and such that F contains no trivial cycle consisting of long edges and
short edges. Denote by F0(GF

1 ) this set of OCRSFs. Then, as a consequence of the above we
have:

Corollary 3.3. [11] The dimer characteristic polynomial can be written as:

P 0
dimer(z, w) =

∑
F∈F0(GF

1 )

( ∏
e=(x,y)∈F

fxfyKx,y

)∏
T∈F

(1− zh(T)wv(T)). (3.2)

3.1.3 Main result

We can now give a precise statement of the main theorem of the paper [11].

Theorem 3.4. [11] Consider a critical Ising model defined on an infinite, Z2-periodic isoradial
graph G. Then, one can explicitly construct essential OCRSFs of GF

1 counted by the critical dimer
characteristic polynomial P 0

dimer(z, w), from OCRSFs of G1 counted by the critical Laplacian
characteristic polynomial PLap(z, w).

Sketch of proof. Both P 0
Lap and P 0

dimer are weighted sums over OCRSFs of a graph embedded in
the torus, see Equations (3.1) and (3.2). We first need a rewriting of these polynomials as sums
over pairs of primal and dual OCRSFs.

Rewriting of the characteristic polynomials. It is a general fact that if F is a CRSF,
then the complementary configuration consisting exactly of the dual edges of the edges absent
in F, is a CRSF of the dual graph, with non-trivial cycles parallel to those of F, such that primal
and dual non-trivial cycles alternate along the torus, see Figure 3.5. It is referred to as the dual
CRSF of F.
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Figure 3.5: Primal and dual CRSFs of a graph embedded in the torus.

OCRSFs are said to be dual to each other if their unoriented versions are. Define the homology
class of an OCRSF to be the sum of the homology classes of its OCRT components. Then,
we prove a rewriting of polynomials of the form (3.1) and (3.2), using pairs of primal and dual
OCRSFs. Denote by F(G1,G

∗
1) the set of pairs of dual OCRSFs of G1 and G∗1. Similarly, denote

by F0(GF
1 ,G

F
1
∗
) the set of pairs of dual OCRSFs, such that the primal is an essential OCRSF of

GF
1 .

Lemma 3.1. The critical Laplacian and dimer characteristic polynomials can be rewritten as:

PLap(z, w) =
∑

(F,F∗)∈F(G1,G∗1)

 ∏
e=xy∈F

tan θxy

 (−z
h(F)+h(F∗)

2 w
v(F)+v(F∗)

2 )

P 0
dimer(z, w) =

∑
(F,F∗)∈F0(GF

1 ,G
F
1
∗
)

 ∏
e=(x,y)∈F

fxfyKx,y

 (−z
h(F)+h(F∗)

2 w
v(F)+v(F∗)

2 ).

Let us now describe the mapping, constructing pairs of OCRSFs of F0(GF
1 ,G

F
1
∗
) from pairs of

OCRSFs of F(G1,G
∗
1).

Idea of the mapping. The mapping consists in assigning to every pair (F,F∗) of dual OCRSFs
of G1 and G∗1 a family S(F,F∗) of dual essential OCRSFs of GF

1 and GF
1
∗, such that:

1.
⋃

(F,F∗)∈F(G1,G∗1) S(F,F∗) = F0(GF
1 ,G

F
1
∗
).

2. When (F1,F
∗
1) 6= (F2,F

∗
2), then S(F1,F

∗
1) ∩ S(F2,F

∗
2) = ∅.

3. For every (F,F∗) ∈ S(F,F∗), we have:(h(F) + h(F∗)

2
,
v(F) + v(F∗)

2

)
=
(h(F) + h(F∗)

2
,
v(F) + v(F∗)

2

)
Construction of S(F,F∗). The family S(F,F∗) will be very large, indeed the decorated graph
GF

1 contains many more OCRSFs than the graph G1. The idea of the construction is to use a
inductive procedure, allowing to guarantee that, at each step, we are indeed constructing pairs
of OCRSFs and that these satisfy Point 3. The induction is on the number of long edges present.
More precisely, let e1, · · · , em be a labeling of the unoriented edges of E1\F. For k ∈ {0, · · · ,m},
let Jk = {(i1, · · · , ik) ∈ {1, · · · ,m}k | 1 ≤ i1 < · · · < ik ≤ m}, with the convention that Jk = ∅,
when k = 0. Then,

S(F,F∗) =

m⋃
k=0

⋃
(i1,··· ,ik)∈Jk

F(F,F∗),{ei1 ,··· ,eik}(GF
1 ,G

F
1
∗
),

where F(F,F∗),{ei1 ,··· ,eik}(GF
1 ,G

F
1
∗
) is constructed by induction on k. It consists of pairs of dual

essential OCRSFs of GF
1 and GF

1
∗ such that the primal contains exactly the oriented long edges

F and the long edges ei1 , · · · , eik in one of the two possible directions.
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• Initial step of the induction. Primal OCRSFs of F(F,F∗),∅(GF
1 ,G

F
1
∗
) are required to contain

exactly the oriented long edges F, and to have the restriction to every decoration satisfy
Condition (2) of Section 3.1.2. It is not so difficult to prove that the pairs of oriented edge
configurations obtained in this way are indeed OCRSFs and satisfy Point 3.

• Induction step. The idea is to construct pairs of dual OCRSFs of F(F,F∗),{ei1 ,··· ,eij ;·}(GF
1 ,G

F
1
∗
)

from pairs of dual OCRSFs of F(F,F∗),{ei1 ,··· ,eij−1
;·}(GF

1 ,G
F
1
∗
), by adding the long edge eij

to the primal OCRSFs. Simply adding an edge to an OCRSF does not yield an OCRSF,
one also needs to remove an edge. There are quite a few subtleties in doing this procedure,
and we do not want to enter into too many details here. The point is that we define licit
primal/dual edge moves that have to be performed on the primal and the dual OCRSFs
simultaneously. These moves guarantee that a long edge is added, and that the resulting
pair of oriented edge configuration is indeed a pair of OCRSFs, satisfying Point 3. Note
that performing such moves on the primal OCRSF only does not guarantee Point 3, so that
writing characteristic polynomials as a sum over pairs of dual OCRSFs as in Lemma 3.1
is really a key requirement.

Conclusion of the proof. Once the construction of S(F,F∗) is done, we consider⋃
(F,F∗)∈F(G1,G∗1)

S(F,F∗),

and need to prove Points 1 and 2, i.e. we need to show that we have constructed all pairs of
OCRSFs of F0(GF

1 ,G
F
1
∗
), and that we have constructed each pair only once. This still requires

a lot of work. Given a pair (F,F∗) of dual OCRSFs of F0(GF
1 ,G

F
1
∗
), we need to define a reverse

procedure, allowing to recover from which pair (F,F∗) they arise. We refer to the original paper
[11] for the full proof.

3.1.4 Weighted mapping

The mapping presented in Section 3.1.3 is between pairs of OCRSFs of G1 and G∗1 and pairs
of OCRSFs of GF

1 and GF
1
∗. Keeping track of the weights along the different steps yields the

following.

Theorem 3.5. [11] Let (F,F∗) be a pair of dual OCRSFs of G1 and G∗1. Then,∑
(F,F∗)∈S(F,F∗)

( ∏
(x,y)∈F

fxfyKx,y

)
(−z

h(F)+h(F∗)
2 w

v(F)+v(F∗)
2 ) =

= C

 ∏
(x,y)∈F

tan θxy

 (−z
h(F)+h(F∗)

2 w
v(F)+v(F∗)

2 ),

where C = 24|E1|+|V1|∏
xy∈E1

sin2
( θxy

2

)
cos θxy.

As a consequence we recover, by an explicit computation, Theorem 2.1. Note that the constant
could not be explicited in Theorem 2.1, but could only be recovered a posteriori.

Corollary 3.6. [3, 4]

Pdimer(z, w) =
(

2|V1|
∏

xy∈E1

[cot2
(θxy

2

)
− 1]

)
PLap(z, w).
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3.2 Pfaffian half-tree theorem

[10] B. de Tilière. Principal Minors Pfaffian Half-Tree Theorem. Arxiv: 1207.2759

In the paper [10], we prove a half-tree theorem for the Pfaffian principal minors of a skew-
symmetric matrix whose column-sum is zero. This is a Pfaffian version of the classical matrix-
tree theorem of Kirchoff [Kir47].

3.2.1 Setting

The idea of proving such a theorem comes from a question asked by David Wilson when talking
about the matrix-tree theorem for the Kasteleyn matrix, Theorem 3.2. On the one side, the
dimer characteristic polynomial detK1(z, w) is a sum over weighted ‘superimpositions of dimer
configurations’, consisting of disjoint unions of alternating cycles, see Section 1.2.4. On the
other side, the matrix-tree theorem for the Kasteleyn matrix states that the dimer characteristic
polynomial detK1(z, w) is a sum over weighted OCRSFs, which are the pendent of spanning
trees when working on the torus. The question is: how are these configurations constructed from
one another ? From the work of Temperley [Tem74], and Kenyon, Propp, Wilson [KPW00] it is
known that spanning trees are related to dimer configurations of a related graph, but how are
double-dimer configurations and spanning trees of the same graph related ?

We looked at the many available proofs of the matrix-tree theorem, in particular the combi-
natorial one by Chaiken [Cha82], but none explained how to construct spanning trees from
double-dimer configurations. The paper [10] provides an answer. It turns out that:

• The matrix does not have to be a Kasteleyn matrix, i.e. a weighted oriented adjacency
matrix of a planar graph or a graph embedded on the torus. It suffices that it is a skew-
symmetric matrix.

• A key requirement is that the column-sum is equal to 0, as in the statement of Theorem 1.5.
This is indeed the case for the matrixK1(0, 0), see Section 3.1.1, a fact related to the model
being critical.

• Not only can spanning trees be constructed from weighted double perfect matchings
counted by the determinant, but actually half-spanning trees can be constructed from
weighted perfect matchings counted by the Pfaffian. This is why we have called the main
theorem of the paper [10] the Pfaffian half-tree theorem.

3.2.2 Statement

The main theorem of [10] involves principal minors and half spanning-forests. We only state the
half-tree version here. Let V = {1, · · · , n, r}, where n is even, and r denotes a specific vertex
referred to as the root. Let A = (ai,j) be a skew-symmetric matrix of size (n + 1) × (n + 1),
whose column-sum is zero. Consider the graph G = (V,E), with edges corresponding to non-zero
coefficients of the matrix A, and such that every oriented edge (i, j) is assigned the weight ai,j .
Oriented edges are thus assigned a skew-symmetric weight function. Consider also the graph
Gr = (Vr,Er) obtained from G by removing the vertex r and edges connected to it.
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For the remainder of this section, a spanning tree will actually mean an oriented spanning tree,
oriented towards r. We now define spanning trees compatible with perfect matchings, and half-
spanning trees: fix a perfect matching M0 of Gr, then a spanning tree T of G is said to be
compatible with M0 if it consists of the n/2 edges of M0 and n/2 edges of E \M0. The oriented
edge configuration T \M0 is referred to as a half-spanning tree.

Example. Let V = {1, 2, 3, 4, r}. Consider the graph G of Figure 3.6 below, and the graph Gr

obtained by removing the vertex r and edges connected to it. A choice of perfect matching M0

of Gr is pictured in white. T1,T2,T3 are examples of spanning trees compatible with M0. Black
edges are half-spanning trees.

Figure 3.6: Spanning trees compatible with M0 and half-spanning trees (black edges).

Theorem 3.7. [10][Pfaffian half-tree theorem] Let A be a skew-symmetric matrix of size (n +
1) × (n + 1), whose column-sum is zero, such that n is even; and let Ar be the matrix obtained
from A by removing the last line and column. Let G and Gr be the graphs naturally constructed
from the matrices A and Ar respectively. Then, for every perfect matching M0 of Gr, the Pfaffian
of Ar is equal to:

Pf(Ar) =
∑

T∈Tr
M0

(G)

sgn(σM0(T\M0))
∏

e∈T\M0

ae,

where ae is the coefficient of the matrix A corresponding to the oriented edge e; sgn(σM0(T\M0))
is the signature of a permutation naturally constructed from T and M0

2; Tr
M0

(G) is the set of
spanning trees of G compatible with M0, satisfying Condition (C) of Definition 3.1 below.

Here is the algorithm used to characterize half-spanning trees contributing to Pf(Ar).

Trimming algorithm

Input: a spanning tree T of G compatible with M0.

Initialization: T1 = T.

Step i, i ≥ 1

Let `i1 be the largest leaf of Ti and consider the connected component containing `i1. Start from
`i1 along the unique path joining `i1 to the root, until the first time one of the following vertices
is reached:

- the root vertex r,

- a fork, that is a vertex with more than one incoming edge,

- a vertex which is smaller that the leaf `i1.

This yields a loopless path λ`i1 starting from `i1, of length ≥ 1. Let Ti+1 = Ti \ λ`i1 . If Ti+1 is
empty, stop; else go to Step i+ 1.

End: since edges are removed at every step, and since T contains a finite number of edges, the
trimming algorithm ends in finite time N .

2Refer to the paper [10] for the precise definition
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Definition 3.1. A spanning tree T compatible with M0 is said to satisfy Condition (C) if each
of the paths λ`11 , · · · , λ`N1 obtained from the trimming algorithm, starts from an edge of M0 and
has even length. We let Tr

M0
(G) denote the set of spanning trees compatible with M0, satisfying

Condition (C).

Example. Applying the trimming algorithm to each of the spanning trees T1,T2,T3 of Fig-
ure 3.6 yields:

T1 : Step 1: `11 = 2, λ2 = 2, 3, 1. Step 2: `21 = 1, λ1 = 1, 4, r.

T2 : Step 1: `11 = 2, λ2 = 2, 3, r. Step 2: `21 = 1, λ1 = 1, 4, r.

T3 : Step 1: `11 = 4, λ4 = 4, 1. Step 2: `21 = 1, λ1 = 1, 2, 3, r.

The spanning trees T1 and T2 satisfy Condition (C) but not T3.

Remark 3.1. In the paper [MV02], Masbaum and Vaintrob assign to a 3-uniform hypergraph
a specific skew-symmetric matrix whose column sum is zero, and prove that the Pfaffian of
any principal minor of this matrix enumerates signed spanning trees of the 3-uniform graph. A
combinatorial proof of their result is then given by Hirschman and Reiner [HR04], and yet another
proof using Grassman variables is provided by Abdesselam [Abd04]. The matrix considered by
Masbaum and Vaintrob satisfies the assumptions of Theorem 3.7, and it would interesting to
investigate whether there is an explicit relation between half-spanning trees of Theorem 3.7 and
spanning trees of the 3-uniform graph.

Using the fact that the determinant of a skew-symmetric matrix is the square of the Pfaffian,
we obtain the following corollary.

Corollary 3.8. [10] Let A be a skew-symmetric matrix of size (n+ 1)× (n+ 1), whose column
sum is zero, such that n is even; and let Ar be the matrix obtained from A by removing the last
line and column. Let G and Gr be the graphs naturally constructed from the matrices A and Ar

respectively. Then, the determinant of the matrix Ar is equal to:

det(Ar) =
∑

M0∈M(Gr)

∑
T∈Tr

M0
(Gr)

∏
e∈T

ae, (3.3)

where ae is the coefficient of the matrix A corresponding to the oriented edge e, and Tr
M0

(G) is
the set of spanning forests compatible with M0, satisfying Condition (C).

Remark 3.2.

• From Theorem 1.5, which holds for all matrices whose column-sum is zero, we know that:

det(Ar) =
∑

T∈Tr(G)

∏
e∈T

ae.

When the matrix A is moreover skew-symmetric, we also have the equality given by Equa-
tion (3.3). This is a refined version, because we prove in [10] that the following union is
disjoint, and the following inclusion is strict,⋃

M0∈M(Gr)

Tr
M0

(G) ⊂ Tr(G).

33



Chapter 3. CRSFs and the double critical Ising model

We also give an intrinsic definition of spanning trees of the union, without using refer-
ence perfect matchings. This means that when the matrix A is skew-symmetric, specific
cancellations occur between spanning trees, a fact hard to characterize without using
Corollary 3.8.

• We also prove a line bundle version of this result, in the spirit of [For93] and [Ken11].
In particular this allows to have a version of the theorem for the modified weight case
detK1(z, w).

3.2.3 Sketch of the proof of the Pfaffian half-tree theorem

The proof uses an explicit algorithm. In order to describe it, we need a few facts and definitions.
First, recall from Remark 1.2, that the Pfaffian of the matrix Ar can be written as a sum over
perfect matchings of the graph Gr:

Pf(Ar) =
∑

M∈M(Gr)

sgn(σM)aσM(1)σM(2)
· · · aσM(n−1)σM(n)

,

where σM is a permutation describing the perfect matching. Next, recall from Section 1.2.4
that the superimposition M0 ∪ M of a fixed reference matching M0 and of a generic perfect
matching M of Gr, is a collection of disjoint alternating cycles covering all vertices of the graph
Gr. As a consequence, the sum in the Pfaffian can graphically be interpreted as a sum over such
superimpositions, see Figure 3.7 for an example.

Figure 3.7: The sum over perfect matchings of Gr can graphically be interpreted as a sum over
collections of disjoint alternating cycles of the graph Gr.

The tool of the algorithm is to use the reference configuration M0 as a skeleton for ‘opening’
doubled edges of the superimposition M0 ∪ M, as in Figure 3.8. Indeed, because of the condition∑n+1

j=1 ai,j = 0, configurations of Figure 3.8 have opposite weights, so that up to a global sign
change, this ‘opening’ procedure is weight preserving. In this way, one obtains a new set of edge
configurations of the graph G.

Figure 3.8: ‘Opening’ of doubled edges procedure: ai′,i = −
∑

j∼i, j 6=i′
ai′,j .

Our goal is to do the ‘opening’ procedure in such a way that part of the new edge configurations
are spanning trees, and all the others have contributions that cancel. We face two difficulties:
the first is that, a priori, there is no natural way of deciding whether to ‘open’ the doubled
edge at the vertex i or at the vertex i′. The second is that we need to keep track of edge
configurations constructed, and to be able to characterize them. It turns out that the ‘opening’
procedure depends strongly on the labeling of vertices.

Edge configurations that we shall construct from the ‘opening’ procedure are half-RC-rooted
spanning forests, defined as follows. An RC-rooted spanning forest, referred to as an RC-RSF, is
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an oriented edge configuration of G, spanning vertices of Gr, such that each connected component
is, either a tree rooted on the root-vertex r, or a tree rooted on a cycle of length ≥ 3 of Gr. Edges
of each of the components are oriented towards its root, and edges of the cycles are oriented in
one of the two possible directions. An RC-RSF F is said to be compatible with M0, it is consists
of the n/2 edges of M0 and n/2 edges of E \M0. The oriented edge F \M0 is referred to as a
half-RC-RSF.

We now describe the algorithm. It is performed separately for each perfect matching M of the
graph Gr. Since it is notationally cumbersome to rigorously write it, we only state the main
ideas, and show its application to the explicit example M1 of Figure 3.7.

Algorithm

Let M be a perfect matching of Gr. Consider the superimposition M0 ∪M and do the following
steps.

Step 1

• If the superimposition M0 ∪M consists of cycles of length ≥ 4 only: stop.

Example. This is not the case for M0 ∪M1, so we go to the next step.

• If the superimposition M0 ∪M contains doubled edges, consider the one with the smallest
index. Do the ‘opening’ procedure, starting from the vertex with the smallest index,
yielding a new set of configurations.

Example. The superimposition M0 ∪M1 contains doubled edges. The one with the smallest
index is the doubled edge 14. Performing the ‘opening’ procedure yields three new configu-
rations M1,2, M1,3, M1,r.

Figure 3.9: Black edges consist of the new configurations M1,2, M1,3, M1,r obtained from the
‘opening’ procedure.

• For each new configuration, consider the terminal vertex of the ‘opening’ procedure:

– It it does not belong to a doubled edge: stop. Note that the algorithm stops when
either the root is reached or a cycle is created.
Example. Step 1 of the algorithm stops for M1,r, since the root is reached.

– If it belongs to a doubled edge, iterate the ‘opening’ procedure,
Example. The terminal vertex of the configurations M1,2 and M1,3 belong to a doubled
edge. For each of them, we iterate the ‘opening’ procedure, yielding new configurations
M1,2,1, M1,2,4, M1,2,r and M1,3,1, M1,3,4 respectively, see Figure 3.10.

Figure 3.10: First line, from left to right, black edges consist of the configurations M1,2,1, M1,2,4,
M1,2,r. Second line, from left to right, black edges consist of the configurations M1,3,1, M1,3,4.
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– Iterate this step of the algorithm with the new configurations.
Example. For each new configuration M1,2,1, M1,2,4, M1,2,r, M1,3,1, M1,3,4, the terminal
vertex does not belong to a doubled edge, so the algorithm stops.

• The output of Step 1 is the set of configurations obtained each time the algorithm stopped.

Example. The output of Step 1 is M1,r,M1,2,1, M1,2,4, M1,2,r, M1,3,1, M1,3,4.

Following steps

Step 1 is iterated until no doubled edge remains.

Example. From the output of Step 1, only the configuration M1,r contains a doubled edge. We
look for the doubled edge with the smallest index. Since there is only one doubled edge 23, we
perform the ‘opening’ procedure starting from the vertex with the smallest index, that is the vertex
2. This yields a new set of configurations M1,r;2,1,M1,r;2,4,M1,r;2,r. All the terminal vertices of
the ‘opening’ procedure do not belong to a doubled edge, so the algorithm stops.

Figure 3.11: Output of Step 2 of the algorithm.

The output of the full algorithm consists in the output of the different steps, applied to all perfect
matchings of the graph Gr. Note that when we apply the algorithm to the superimposition
M0 ∪M2 and M0 ∪M3, it stops right from the beginning because these configurations contain
no doubled edges.

Example. Figure 3.12 below summarizes the output of the algorithm. Observe that half-RC-RSFs
are obtained, and that half-RC-RSFs which are not half-spanning trees come into pairs.

36



Chapter 3. CRSFs and the double critical Ising model

Figure 3.12: Output of the full algorithm

Conclusion. In the example, half RC-RSFs which are not half- trees come into pairs. One
shows that this is always the case, and that their contributions to Pf(Ar) have opposite signs,
thus cancel. What then remains is the contributions of half-spanning trees. The fact that pairs of
half-RC-RSFs have opposite signs is established by keeping track of the signs when the ‘opening’
procedure is performed and of the signatures in the Pfaffian. In order to show that half-RC-RSFs
come into pairs, we need to carefully analyze the algorithm and characterize the configurations
obtained. Although it is quite clear that half-RC-RSFs are obtained, they are special in that
they have specific conditions on the labeling of their vertices. The characterization is done
by introducing a reverse algorithm. Specified to the case of half-spanning trees, the reverse
algorithm is exactly the trimming algorithm used to characterize half-spanning trees involved in
the expansion of the Pfaffian of Theorem 3.7.
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Chapter 4

Loops and bipartite dimer models

In this chapter, we present two papers in collaboration with Cédric Boutillier focusing on loop
configurations related to bipartite dimer models. The first paper [2] considers the loop repre-
sentation of the uniform dimer model on a subgraph of the honeycomb lattice embedded in the
torus. We prove that, when the mesh of the graph tends to 0 and the aspect ratio is fixed, the
winding number of the loops converge to a two-dimensional discrete Gaussian random variable.
The second paper [5] relates XOR-loop configurations, constructed from two independent Ising
models living on the same graph, to loop configurations of a dimer model defined on a deco-
rated, bipartite version of the graph. Using results of [9], this allows to shed a light on Wilson’s
conjecture [Wil11] stating that, at criticality and in the scaling limit, these loops are level lines
of the Gaussian free field.

4.1 Winding of loops in the toroidal honeycomb dimer model

[2] C. Boutillier, B. de Tilière. Loops statistics in the honeycomb dimer model. Ann.
Probab. 37 (2009), no. 5, 1747–1777.

Let G denote the honeycomb lattice embedded in the plane so that all faces are regular, side-
length 1 hexagons. The lattice and its bipartite coloring are invariant under translations by the
vectors e1, e2 of Figure 4.1. We let Lm,n be the lattice generated by me1 and ne1, and Gm,n be
the toroidal graph obtained by quotienting the honeycomb lattice by Lm,n.

Figure 4.1: Left: the honeycomb lattice G and its bipartite coloring are invariant under transla-
tions by e1 and e2. Right: the graph G2,3 (opposite sides are identified).

The setting of the paper [2] is the loop representation of the uniform dimer model on the toroidal
graph Gm,n, see Section 1.2.4. Let M0 be the fixed periodic reference dimer configuration of
Figure 4.2. For a generic dimer configuration M of Gm,n, consider the oriented superimposition
M −M0, consisting of a collection of disjoint, oriented alternating loops of Gm,n. An example
for G2,3 is provided in Figure 4.2, an example for G6,6 is given in Figure 1.2.
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Figure 4.2: Oriented superimpositionM−M0 of G2,3. The winding number ofM is, wind2,3(M) =
(0,−1).

The winding number of the dimer configuration M counts the winding of this collection in the
two non-trivial directions of the torus. More precisely, it is defined as follows. Consider the torus
T2
m,n = C/Lm,n, and let H1(T2

m,n,Z) ∼= Z2 denote its first homology group in Z. The graph
Gm,n being embedded in the torus T2

m,n, we choose a representative of a basis of H1(T2
m,n,Z)

using this embedding: we take as first (respectively second) basis vector me1 (respectively ne2),
embedded in the torus. Then, the winding number of M, denoted by windm,n(M) is the homology
class of the oriented superimposition M−M0 expressed in this basis. For example, the winding
number of the dimer configuration of Figure 4.2 is wind2,3(M) = (0,−1). The winding number
windm,n(·) is a Z2-valued random variable defined on dimer configurations of Gm,n. Note that
changing the reference dimer configuration changes the winding number by an overall constant,
so that it is not restrictive to fix M0 and to remove this dependence from the notations.

Prior to citing our main result, we need one more definition. The modulus of the torus T2
m,n is

the ratio of the two vectors ne2 and me1 (seen as complex numbers) generating the lattice Lm,n,
i.e. the modulus of T2

m,n is equal to ne2
me1

= i
√

3n
3m = i n√

3m
.

Theorem 4.1. [2] Suppose that in the joint limit m,n→∞, the modulus i n√
3m

of the torus Tm,n
converges to iρ for some ρ > 0. Then, the sequence of random variables (windm,n) converges in
law to the two-dimensional discrete Gaussian random variable windρ, whose law is given by:

∀ (k, `) ∈ Z2, P[windρ = (k, `)] =
1

Zρ
e
−π

2

(
k2

ρ
+`2ρ

)
, (4.1)

where Zρ =
∑

(k,`)∈Z2

e
−π

2

(
k2

ρ
+`2ρ

)
.

Remark 4.1.

• A similar result is obtained by Kenyon and Wilson [KW] in the case of the square lattice
embedded in the cylinder. Working on the torus makes computations much more difficult,
since it means dealing with the toroidal partition function in the proof, which is a com-
bination of four terms instead of one in the cylinder case. Moreover, we have to extract
information about the two components of the winding number, instead of one in the cylin-
der case. Note also that in proving Theorem 4.1, we give a full asymptotic expansion of a
perturbation of the uniform partition function, see Theorem 4.2 below.

• A certain asymptotic expansion of the uniform partition function is obtained in the physics
literature by Ferdinand [Fer67], in the case of the square lattice. Nevertheless, the expan-
sion of [Fer67] is not pertubative, it is not done at the same level of mathematical rigor,
and no information about the distribution of the winding is inferred.

• In Section 1.2.4, we outline the definition of the height function for the dimer model on
planar graphs. When the dimer model is defined on a toroidal graph, as is the case here,
the height function is additively multivalued, and it splits into a scalar and an instanton
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component. After the publication of our paper, Dubédat [Dub11a] proved the functional
convergence of the height function of the dimer model on the torus to the compactified
free field. Theorem 4.1 corresponds to proving the convergence of the instanton marginal.
It is in agreement with what is predicted by the compactified free field.

In the next two sections, we describe an outline of the proof.

4.1.1 Moment generating function and dimer partition function

Convergence in law of the random variables (windm,n) to the two-dimensional Gaussian distri-
bution windρ of (4.1) is equivalent to pointwise convergence of the moment generating func-
tions (Fm,n) of (windm,n) to the moment generating function of windρ. By definition, for all
(α, β) ∈ R2,

Fm,n(α, β) = E[e−πwindm,n ·(α,β)] =
∑

(k,`)∈Z2

P[windm,n = (k, `)]e−π(αk+β`).

The first step of the proof consists in expressing the moment generating function Fm,n in terms
of a perturbed uniform dimer partition function. Define edges to be of type I, II, III as in
Figure 4.3.

Figure 4.3: Labeling of the edges of the honeycomb lattice.

Let us assign weight e−
απ
2m to edges of type I, weight e−

βπ
2n to edges of type II, and weight e

βπ
2n to

those of type III. Note that the new edge-weights tend to 1 in the limit m,n tend to infinity, and
thus yield a perturbation of the uniform partition function. Denote by Zm,n(α, β) the partition
function of the dimer model on the graph Gm,n with these perturbed weights. Then,

Lemma 4.1. [2] The moment generating function of the winding number and the perturbed
partition function are related as follows:

∀ (α, β) ∈ R2, Fm,n(α, β) = e
παn
3
Zm,n(α, β)

Zm,n(0, 0)
.

Proof. Let Ni(M) denote the number of edges of type i (i =I, II, III) in a dimer configuration
M. Then by definition, the partition function Zm,n(α, β) is equal to:

Zm,n(α, β) =
∑

M∈M(Gm,n)

(
e−

απ
2m
)NI(M)(

e−
βπ
2n
)NII(M)(

e
βπ
2n
)NIII(M)

=
∑

M∈M(Gm,n)

(e−πα)
NI(M)

2m (e−πβ)
NII(M)−NIII(M)

2n .

The next step consists in computing the two components (wind1
m,n,wind2

m,n) of windm,n as a
function of NI, NII, NIII. We only show the computation of the second component. Consider
the 2n left-to-right horizontal paths of the dual graph G∗m,n as in Figure 4.4, fix one of these
paths and denote it by γ.
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Figure 4.4: Choice of 2n left-to-right horizontal paths to compute wind2
m,n.

Then, for any dimer configuration M, wind2
m,n(M) is equal to the number of positive crossings

(right-to-left) minus the number of negative crossings (left-to-right) of γ by M−M0. Recalling
that edges of M are oriented from the white vertex to the black one, and edges of M0 are oriented
from the black vertex to the white one, one deduces that each edge of type II of M contributes
a +1, each edge of type III contributes a −1, and the opposite for edges of M0. Since this holds
for any such horizontal path, summing over all 2n paths yields:

2nwind2
m,n(M) = NII(M)−NIII(M)−NII(M0) +NIII(M0).

Observing thatNII(M0) = NIII(M0) with our choice of reference matching, we obtain wind2
m,n(M) =

NII(M)−NIII(M)
2n .

Similarly, introducing 2m vertical paths, one shows that wind1
m,n(M) = −n

3 + NI(M)
2m . As a

consequence:

Zm,n(α, β) = e−
παn
3

∑
M∈M(Gm,n)

(e−πα)wind1
m,n(M)(e−πβ)wind2

m,n(M)

= e−
παn
3

∑
(k,`)∈Z2

Nk,`e
−π(αk+β`),

where Nk,` is the number of dimer configurations whose winding number is (k, `). The proof
is ended by recalling that dimer configurations of Gm,n are chosen with respect to the uniform
measure.

4.1.2 Asymptotic expansion of the perturbed weight partition function

The second part of the proof is rather technical. It consists in establishing a precise asymptotic
expansion of Zm,n(α, β) in the limit of Theorem 4.1. As one would expect, the exponential
growth rate mn of the partition function is governed by the free energy f of the uniform dimer
model on G. By the results of Kenyon, Okounkov and Sheffield [KOS06], we have:

f =
1

(2π)2

∫
T2

Pdimer(z, w)
dz

z

dw

w
,

where Pdimer(z, w) is the corresponding dimer characteristic polynomial. It is defined similarly
to the non-bipartite case, see Section 2.1.1, the only difference being that the matrix K1(z, w)
has lines indexed by white vertices and columns indexed by black ones. Using the fundamental
domain G1,1, the computation is straightforward and yields:

Pdimer(z, w) = w + w−1 + 2− z.

We then prove the following precise asymptotic expansion:
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Theorem 4.2. [2] In the joint limit m,n → ∞, n√
3m
→ ρ, ρ > 0, we have the following

asymptotic expansion of the perturbed partition function Zm,n(α, β). For all (α, β) ∈ R2:

Zm,n(α, β) = (−1)mne−
παn
3 e−mnf

e
π
6
ρ

√
2ρP (e−πρ)2

∑
(k,`)∈Z2

eπ(αk+β`)e
−π

2

(
k2

ρ
+ρ`2

)
(1 + o(1)),

where P (q) =
∏∞
k=1(1−q2k), and f is the free energy of the uniform dimer model on the graph G.

Before sketching the proof of Theorem 4.2, let us mention that the proof of Theorem 4.1 is
concluded by combining Lemma 4.1 and Theorem 4.2.

Sketch of proof. By Kasteleyn theory on the torus, see Section 1.2.2, the partition function
Zm,n(α, β) is equal to1:

Zm,n(α, β) =
1

2

(
(−1)n

(
−detK00

m,n(α, β) + detK01
m,n(α, β)

)
+ detK10

m,n(α, β) + detK11
m,n(α, β)

)
,

(4.2)
where (Kθτ

m,n(α, β))θ,τ∈{0,1} are the four Kasteleyn matrices of the toroidal graph Gm,n with
perturbed weights. Then, we perform an asymptotic expansion for each of the four terms. Let
us only state the result for detK11

m,n(α, β), and give an idea of the proof. It involves the third
Jacobi theta function ϑ3, defined by:

∀ ζ, q ∈ C, |q| < 1, ϑ3(ζ, q) =
∞∑

k=−∞
e2kiζqk

2
= P (q)

∞∏
`=0

(1 + 2q2`+1 cos(2ζ) + q4`+2),

where P (q) =
∏∞
k=1(1− q2k).

Proposition 4.1. [2] In the joint limit m,n → ∞, n√
3m
→ ρ, ρ > 0, we have the following

asymptotic expansion for detK11
m,n(α, β):

detK11
m,n(α, β) = (−1)mne−

παn
3 e−mnf

e
π
2
α2ρe

π
6
ρ

P (q)2
· ϑ3(ζ, q)ϑ3(ζ̄, q) + o(1).

where ζ = π
2 (ρα+ iβ), q = e−ρπ, f is the free energy, and ϑ3 is the third Jacobi theta function.

Idea of the proof. The beginning of the computation is inspired from [KW]. Using the arguments
of [CKP01], detailed in Section 2.1.2, we have:

detK11
m,n(α, β) =

∏
zm=−1

∏
wn=−1

P
(α,β)
dimer(z, w),

where P (α,β)
dimer(z, w) is the dimer characteristic polynomial with the perturbed weights. An explicit

computation using the fundamental domain G1,1 yields:

detK11
m,n(α, β) =

∏
zm=−1

∏
wn=−1

(
w(
e
βπ
2n

)2 +

(
e
βπ
2n

)2
w

+ (2−
(
e−

απ
2m
)2
z)

)
,

=
∏

zm=−1

∏
wn=−1

1(
e
βπ
2n

)2
w

(
w −

(
e
βπ
2n
)2
r1(z)

)(
w −

(
e
βπ
2n
)2
r2(z)

)
, (4.3)

1When n is odd, the linear combination is not the same as the one of Theorem 1.4, this is because we fix a
Kasteleyn orientation of the fundamental domain and extend it periodically.

43



Chapter 4. Loops and bipartite dimer models

where

r1(z), r2(z) = −1 +

(
e−

απ
2m

)2
z

2
±

√(
1−

(
e−

απ
2m

)2
z

2

)2
− 1.

Since w’s are n-th roots of −1 we have, ∀λ ∈ C,
∏
wn=−1(λ − w) = λn + 1. Performing the

product over w’s in (4.3) yields:

detK11
m,n(α, β) = (−1)mn

(
e−βπm

) ∏
zm=−1

(1 + eβπr1(z)n)(1 + eβπr2(z)n). (4.4)

The remainder of the proof is quite technical and involves rather heavy and detailed computa-
tions. Here are the main ideas. The first issue addressed is to clarify the determination of the
square root. Then, one observes that there is a change of behavior in the product (4.4) when
|rj | is smaller, greater or close to 1. In Lemma 11 of [2], we characterize the three regimes. Then
we separate the product in three parts accordingly. In a sequence of lemmas and propositions,
we then prove that the part of the product with terms:

• |rj(z)| > 1, grows exponentially and the growth rate is governed by the free energy f ,

• |rj(z)| < 1, does not contribute,

• |rj(z)| close to one, contributes the part involving the third Jacobi theta function.

The asymptotic expansions of detK00
m,n(α, β), detK01

m,n(α, β), detK10
m,n(α, β) are similar, the

only difference being that they involve the first ϑ1, second ϑ2 and fourth ϑ4 Jacobi theta function
respectively, instead of the third one (and eventually a global minus sign).

The next proposition explicitly computes the recombination of theta functions
∑4

i=1 ϑi(ζ, q)ϑi(ζ̄, q)
occurring when taking the signed sum of partition functions detKθτ

m,n(α, β) of Equation (4.2).

Proposition 4.2. [2] When ζ = π
2 (ρα+ iβ), and q = e−πρ,

4∑
i=1

ϑi(ζ, q)ϑi(ζ̄, q) =

√
2

ρ
e−

π
2
α2ρ

∑
(k,`)∈Z2

eπ(αk+β`)e
−π

2

(
k2

ρ
+ρ`2

)
.

The proof of Proposition 4.2 is an explicit computation with the four Jacobi theta functions. The
proof of Theorem 4.2 is concluded by combining Proposition 4.1, its pendent for detK00

m,n(α, β),
detK01

m,n(α, β), detK10
m,n(α, β), and Proposition 4.2.

4.2 XOR-Ising loops via bipartite dimers

[5] C. Boutillier, B. de Tilière. Height representation of XOR-Ising loops via dimers.
Arxiv: 1211.4825.

The XOR-Ising model is constructed from two independent Ising models living on the same
graph by taking at every vertex the product of the spins of the two Ising models. More precisely,
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let G be a graph embedded in a compact, orientable surface Σ of genus g, and let G∗ denote its
dual graph. Consider two independent Ising models defined on vertices of the dual graph G∗. To
every pair of spin configurations (σ, σ′), one associates the corresponding XOR-spin configuration
ξ ∈ {−1, 1}V∗ , obtained by taking the product of the spins:

∀ v∗ ∈ V∗, ξv∗ = σv∗σ
′
v∗ .

The terminology XOR-Ising comes from the paper [Wil11]; in the physics community this model
is known as the polarization of the double-Ising model [KB79]. The double-Ising model is related
[KW71, Wu71, Fan72, Weg72] to other models of statistical mechanics as the 8-vertex model
[Sut70, FW70] and the Ashkin-Teller model [AT43].

Interfaces separating ±1 clusters of XOR-spin configurations are polygon configurations of the
graph G, referred to as XOR-loop configurations. In the paper [5], we explicitly relate XOR-loop
configurations to loop configurations in a dimer model defined on a decorated, bipartite version
of the graph. This is done in two steps: the first step consists in a mixed contour expansion of the
double-Ising partition function, allowing to keep track of the XOR-loop configurations, it is the
subject of Section 4.2.1; the second step consists in relating loop configurations obtained from
the mixed contour expansion to loop configurations of a dimer model on a decorated, bipartite
version of the graph, using the 6-vertex model; this is the subject of Section 4.2.2. Then, in
Section 4.2.3 we prove that XOR-loop configurations have the same law as level lines of the
height function of the dimer model. Using results of [9], this allows to shed a light on Wilson’s
conjecture [Wil11], stating that in the scaling limit these loops are level lines of the Gaussian
free field.

Results of our paper are proved for the XOR-Ising model defined on a graph embedded in a
compact, orientable surface Σ of genus g. There are quite a few difficulties related to taking a
general genus, involving homology theory and homology theory relative to a boundary. Since
our goal here is to give main ideas of arguments, we choose not to address issues related to the
genus. We shall nevertheless state results in full generality, adding footnotes whenever necessary.
All details can be found in the original paper [5].

4.2.1 Mixed contour expansion

Consider the low temperature expansion of the two Ising models, see Section 1.1, i.e. consider
pairs of polygon configurations separating ±1 clusters of the two models, and assign them
different colors, say black and white. Since the two models are independent, we consider the
probability measure Pd-Ising on pairs of polygon configurations P 2 of the graph G, defined by:

∀ (Pb,Pw) ∈ P, Pd-Ising(Pb,Pw) =
C2
(∏

e∈Pb
e−2Je∗

)(∏
e∈Pw

e−2Je∗
)

Zd-Ising(G∗, J)
, (4.5)

where the constant C and the choice of weights come from the low temperature expansion, see
Proposition 1.1. The normalizing constant Zd-Ising(G∗, J) is the double-Ising partition function:

Zd-Ising(G∗, J) =
∑

(Pb,Pw)∈P

C2
(∏
e∈Pb

e−2Je∗
)( ∏

e∈Pw

e−2Je∗
)
. (4.6)

2Polygon configurations of the low temperature of the two Ising models are restricted to having the same
homology class in H1(Σ,Z/2Z), we then take the union over all homology classes of H1(Σ,Z/2Z); the double-
Ising partition function is thus the sum of 22g restricted partition functions. In the spin representation, this
amounts to considering Ising models with defects, both Ising models should then have the same defect condition.
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Consider the superimposition of a pair of polygon configurations (Pb,Pw) of P, see Figure 4.5.
One then defines two new edge configurations:

• Mono(Pb,Pw), consisting of monochromatic edges, that is edges covered by exactly one of
Pb or Pw,

• Bi(Pb,Pw), consisting of bichromatic edges, that is edges covered by both polygon config-
urations.

Figure 4.5: Left: superimposition of a pair of polygon configurations (Pb,Pw) of the low temper-
ature expansion of two Ising models defined on a portion of Z2 embedded in the torus. Right:
corresponding monochromatic edge configuration.

Moreover, denote by XOR(Pb,Pw) the XOR-loop configuration corresponding to the pair (Pb,Pw).
Observing that monochromatic edges are present exactly when spins of one of the two Ising mod-
els have opposite signs, one deduces that monochromatic edges are present when XOR-spins have
opposite signs and absent when XOR-spins have the same sign. We have thus sketched the proof
of the following:

Lemma 4.2. [5] For every pair of polygon configuration (Pb,Pw) ∈ P, the monochromatic edge
configuration Mono(Pb,Pw) is exactly the XOR-loop configuration XOR(Pb,Pw). In particular,
it is a polygon configuration of P0(G)3.

Understanding XOR-loop configurations thus amounts to understanding monochromatic edge
configurations. Each such configuration separates the surface Σ into connected components
Σ1, · · · ,ΣN . Inside each connected component, bichromatic edges are the low temperature
expansion of an Ising model, with coupling constants that are doubled, thus allowing for a
rewriting of the double-Ising partition function using XOR-loop configurations and bichromatic
edge configurations. Refer to Proposition 4.3. of the original paper [5] for an explicit form of
this rewriting.

The next part of the argument follows an idea of Nienhuis [Nie84]. It consists in fixing a
monochromatic loop configuration, and applying Kramers and Wannier’s low/high temperature
duality, see Remark 1.1, to the single Ising model corresponding to bichromatic edges in each
of the connected components Σ1, · · · ,ΣN . This is referred to as the mixed contour expansion.
As a result, we obtain a rewriting of the double-Ising partition function, as a sum over pairs
of non-intersecting polygon configurations of the primal and dual graph, where primal polygon
configurations exactly correspond to monochromatic loop configurations.

Proposition 4.3. [5] The double-Ising partition function on the graph G∗ can be rewritten as:

Zd-Ising(G∗, J) = CI

∑
{(P,P∗)∈P0(G)×P0(G∗):

P∩P∗=∅}

(∏
e∈P

2e−2Je∗

1 + e−4Je∗

)( ∏
e∗∈P∗

1− e−4Je∗

1 + e−4Je∗

)
,

where primal polygon configurations of P0(G) are the monochromatic/XOR loop configurations,
and CI = 2|V

∗|+2g+1
(∏

e∈E cosh(2Je∗)
)
.

3P0(G) denotes the set of polygon configurations of the graph G having 0 homology class in H1(Σ,Z/2Z).
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Remark 4.2.

• In the paper [Nie84], Nienhuis performs a similar expansion for a double-Ising model
defined on a finite, simply connected, planar graph. There are quite a few difficulties in
generalizing this result to graphs embedded in surfaces of genus g. First, we need a version
of Kramers and Wannier’s low and high temperature expansions for Ising models defined
on graphs embedded in compact surfaces of genus g with boundary. This is the content
of Propositions 6 and 7 of [5]. The formulas obtained are rather natural, but we do not
cite them here in order to avoid introducing homology theory relative to a boundary and
related notations. Second, the double-Ising partition function Zd-Ising(G∗, J) is a sum over
pairs of polygon configurations in P, which is a sum of the restricted partition functions
over the 22g homology classes of H1(Σ,Z/2Z), see Equation (4.6) and Footnote 1. There
is quite some work involved in proving that the restricted partition functions recombine
nicely as in the statement, and that only the 0 homology class remains.

• The weight of edges of monochromatic loop configurations have changed from e−2Je∗ in
Equation (4.5) to 2e−2Je∗

1+e−4Je∗
in the statement of Proposition 4.3. This comes from the

constants which occur when performing Kramers and Wannier’s low/high temperature
duality in each of the connected components Σ1, · · · ,ΣN . The weights of edges of dual
polygon configurations are equal to tanh(2Je∗), these are exactly the weights of the high
temperature expansion of an Ising model with doubled coupling constants (2Je∗), see
Proposition 1.2.

4.2.2 Polygon configurations in a related dimer model

In this section, we explicitly construct pairs of non-intersecting polygon configurations of the
primal and dual graph G and G∗ of Proposition 4.3, from a dimer model defined on a bipartite,
decorated version GQ of the graph G. This construction is done in two steps: the first step
uses a mapping of Nienhuis [Nie84], which constructs pairs of non-intersecting polygon config-
urations from the 6-vertex model on the medial graph GM; the second step consists in using
Wu-Lin/Dubédat’s mapping [WL75, Dub11b] from the 6-vertex model on the medial graph GM

to the bipartite dimer model on the decorated graph GQ.

The medial graph GM of the graph G is defined as follows. Vertices of GM correspond to edges
of G. Two vertices of the medial graph are joined by an edge if the corresponding edges in G are
incident. Observe that GM is also the medial graph of the dual graph G∗, and that vertices of
the medial graph all have degree four. Figure 4.6 represents the medial graph of a piece of Z2.

Figure 4.6: The medial graph of a piece of Z2: plain lines represent Z2, dotted lines represent
the dual graph Z2, and thick plain lines represent the medial graph (Z2)M. Grey (resp. white)
faces of the medial graph correspond to primal (resp. dual) vertices of the initial graph.

A 6V-configuration, also called ice-type configuration, is an orientation of edges of GM, such that
every vertex has exactly two incoming edges [Lie67]. An equivalent way of defining 6-vertex
configurations uses edge configurations instead of orientations. This approach is more useful in
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our context, so that we define a 6-vertex configuration to be an edge configuration, such that
around every vertex of GM, there is an even number of consecutive present edges, see Figure 4.7.

Figure 4.7: The six possible local configurations of the 6-vertex model around a vertex of the
medial graph GM.

Weights ω12 (respectively ω34, ω56) are assigned to configurations 1 and 2 of Figure 4.7 (respec-
tively 3 and 4, 5 and 6):

ω12 =
2e−2Je∗

1 + e−4Je∗
, ω34 =

1− e−4Je∗

1 + e−4Je∗
, ω56 = 1.

Mapping I [Nie84]. Consider the following combinatorial mapping from 6-vertex configurations
to edge configurations of the primal and dual graph: whenever a vertex of GM has two neighboring
edges in the 6-vertex configuration, put the edge of G or G∗ separating the present and the absent
edges, see Figure 4.8.

Figure 4.8: Mapping I on the local level (top), and on the global level (bottom).

Mapping I associates to a 6-vertex configuration a pair of non-intersecting polygon configurations
(P,P∗)4. Given such a pair of polygon configurations (P,P∗), there are exactly two 6-vertex
configurations which are mapped to (P,P∗), see Figure 4.8. As a consequence the 6-vertex
partition function Z6-vertex(GM, J) can be rewritten as:

Z6-vertex(GM, J) = 2
∑

{(P,P∗)∈P0(G∪G∗):P∩P∗=∅}

(∏
e∈P

2e−2Je∗

1 + e−4Je∗

)( ∏
e∗∈P∗

1− e−4Je∗

1 + e−4Je∗

)
.

Let us construct yet another graph from the graph G. The quadri-tiling graph GQ of G is
the decorated graph obtained from GM by replacing every vertex by a decoration which is a
quadrangle. The graph GQ is bipartite and can be drawn on the same surface as G. Edges
shared by GQ and GM are referred to as external edges, and those inside the decorations as
internal. Weights ω12, ω34, ω56 are assigned to edges as in Figure 4.9.

Figure 4.9: Left: a vertex of the medial graph GM. Right: corresponding decoration of the
quadri-tiling graph GQ.

Mapping II [WL75, Dub11b]. Requiring exterior edges to match yields a mapping from dimer
configurations of GQ to 6-vertex configurations of GM, see Figure 4.10. This mapping between
local configurations is one-to-one except in the empty edge case where this mapping is two-to-
one.

4The pair (P,P∗) is such that the superimposition P ∪ P∗ has 0 homology class in H1(Σ,Z/2Z), i.e. belongs
to P0(G ∪ G∗).
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Figure 4.10: Mapping II from the dimer model on GQ to the 6-vertex model on GM.

Observing that the weights ω12, ω34, ω56 satisfy the free-fermionic condition:

(ω12)2 + (ω34)2 = (ω56)2 ⇔ 2e−2Je∗

1 + e−4Je∗

2

+
1− e−4Je∗

1 + e−4Je∗

2

= 1,

we deduce that Mapping II is weight preserving, so that the dimer model partition function
Zdimer(G

Q, J) is equal to the 6-vertex partition function Z6-vertex(GM, J).

Consider a dimer configuration M of the graph GQ, then Mapping II assigns to M a 6-vertex
configuration, and Mapping I assigns to this 6-vertex configuration a pair of non-intersecting
polygon configuration of P0(G∪G∗). Let us denote this pair by Poly(M) = (Poly1(M),Poly2(M)).
Combining this with Proposition 4.3 yields:

Theorem 4.3. [5]

• The double-Ising partition function and the dimer partition function are equal up to an
explicit constant:

Zd-Ising(G∗, J) = 2|V
∗|+2g

(∏
e∈E

cosh(2Je∗)
)
Z0

dimer(G
Q, J).

• XOR-loop configurations of the double-Ising model on G∗ have the same law as Poly1

configurations of the corresponding dimer model on the bipartite graph GQ:

∀P ∈ P0(G), Pd-Ising[XOR = P] = P0
dimer[Poly1 = P].

Remark 4.3.

• In the paper [Dub11b], Dubédat relates a version of the double Ising model and the
bipartite dimer model on the graph GQ, with one Ising model living on the primal graph
G and the second on the dual graph G∗. Using Kramers and Wannier’s duality relation,
the first part of Theorem 4.3 can be derived from his results in the case of genus 0 and
1. Nevertheless, our goal was to keep track of XOR-loop configurations, an information
which is lost in the mappings used in [Dub11b]. Rather, Dubédat keeps track of the order-
disorder variables in the vein of [KC71]. Using results of the paper [Dub11a], this allows
him to derive critical correlators in the plane. For simply connected regions, this result
has been independently obtained by Chelkak, Hongler and Izyurov [CHI12].

• The superscript 0 in the dimer partition function and the dimer Boltzmann measure in-
dicates that each component of the pairs of non-intersecting polygon configurations, is
restricted to having 0 homology class.
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4.2.3 XOR-Ising loops as level lines of the height function

In this section we consider the infinite volume, critical case: we suppose that the graph G is
infinite, isoradial and that the two independent Ising models are assigned the critical Ising
coupling constants of Equation (1.6). Using Mappings I and II, one finds that weights of the
corresponding dimer model on the decorated, bipartite graph GQ are the critical dimer weights
of Equation (1.7).

From our papers [8] and [4], we have the existence of infinite volume Gibbs measures P∞dimer for
the critical dimer model on GQ, and P∞d-Ising for the critical double-Ising model. Using the locality
of the Gibbs measures, the fact that they are obtained as weak limit of Boltzmann measures on
the torus, and Theorem 4.3, we deduce that the second part of Theorem 4.3 still holds in the
critical, infinite volume case:

Theorem 4.4. [5] For any finite subset of edges Ek = {e1, · · · , ek} of G:

P∞d-Ising[Ek ⊂ XOR] = P∞dimer[Ek ⊂ Poly1].

Dimer configurations of the bipartite graph GQ can, like all bipartite dimer models, be interpreted
as discrete random surfaces, via a height function, see Section 1.2.4. Using the definition of
height function of the paper [8], we then prove in Lemma 22 of [5], that Poly1 configurations
of the dimer model on GQ are the level lines of a restriction of the height function h on dimer
configurations of GQ. Using Theorem 4.4, we deduce:

Theorem 4.5. [5] At criticality, XOR-loop configurations have the same law as level lines of a
restriction of the height function of dimer configurations of GQ.

In [Wil11], Wilson presents extensive numerical simulations on loops of the critical XOR-Ising
model on the honeycomb lattice, on the base of which he conjectures the following:

Conjecture 1 (Wilson [Wil11]). The scaling limit of the XOR-loop configurations are the level
lines of the Gaussian free field corresponding to levels that are odd multiples of

√
π

2 .

Note that similar conjectures, involving SLE rather than the Gaussian free field, are obtained
through conformal field theory [IR11, PS11].

The results of our paper bring some elements in the direction of the proof of the conjecture of
Wilson. Indeed in [9], I have proved that the height function of critical dimer models, interpreted
as a random generalized function, converges weakly in law to 1√

π
times a Gaussian free field.

This also holds for the restriction of the height function. Wrapping up, we know that loops of the
XOR-Ising model have the same law as level lines of a restricted height function on the discrete
level, we know that this height function converges to a Gaussian free field. Unfortunately, when
establishing this convergence we consider the height function as a random generalized function,
thus loosing information on the convergence of the level lines to those of the Gaussian free field.
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Chapter 5

A polymer model

[1] E. Bolthausen, F. Caravenna, B. de Tilière. The quenched critical point of a
diluted disordered polymer model. Stochastic Process. Appl. 119 (2009), 1479–
1504.

The issue addressed in this paper is the determination of the quenched critical point for the
localization/delocalization phase transition of a polymer interacting with an attractive wall
through a diluted disordered potential. The model we consider was first introduced by Bodineau
and Giacomin in [BG04], as a reduced model for the so-called copolymer near a selective interface
model [BdH97], with the hope that it could have the same behavior as the full copolymer model,
in the limit of weak coupling constants. The main result of this paper shows that this is not the
case.

5.1 Setting: a diluted disordered polymer model

Let S = (Sn)n≥0 be the simple symmetric random walk on Z, and denote by P its law. For
N ∈ N, denote by P+

N ( · ) the law of the random walk conditioned to stay non-negative up to
time N . The trajectories ((n, Sn))0≤n≤N under P+

N model the configurations of a polymer chain
of length N above an impenetrable wall.

The interaction of the polymer with the wall is tuned by two parameters β ≥ 0 and p ∈ [0, 1].
For fixed β and p, we introduce a sequence ωβ,p = (ωβ,pn )n≥1 of i.i.d. random variables, taking
values in {0, β} and with law P given by:

P(ωβ,p1 = β) = p, P(ωβ,p1 = 0) = 1− p. (5.1)

We are ready to define the model: for a fixed realization ωβ,p and N ∈ N, we introduce the
probability measure PN,ωβ,p defined by

dPN,ωβ,p
dP+

N

(S) =
1

ZN,ωβ,p
exp

(
N∑
n=1

ωβ,pn I{Sn=0}

)
, (5.2)

where ZN,ωβ,p is the normalizing constant known as the the partition function.
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We focus on the regime of large β and small p, i.e. ωβ,p represents a random sequence of charges
sitting on the wall, represented by the x-axis, which are rare, but of strong intensity, and which
attract the polymer, see Figure 5.1.

Figure 5.1: A typical path of the polymer measure Pβ,pN,ω.

We are interested in the behavior of the polymer measure PN,ωβ,p in the limit of large N : in
particular, we want to understand if the attractive effect of the environment ωβ,p is strong enough
to pin the polymer at the wall (localization), or if it is still more convenient for the polymer to
wander away from it (delocalization), as it happens when there are no charges. We are facing a
competition between energy and entropy.

The classical way of detecting the transition between the two regimes just sketched is to study
the free energy of the model, defined as:

f(ωβ,p) = lim
N→∞

1

N
logZN,ωβ,p . (5.3)

The existence of this limit, both P(dωβ,p)–a.s. and in L1(P), and the fact that f(ωβ,p) is non-
random are proven in [Gia07] via super-additivity arguments. Analyzing the behavior of the free
energy yields that it is non-negative, and allows for the following partition of the phase space:

• the localized region L := {(β, p) : f(ωβ,p) > 0}

• the delocalized region D := {(β, p) : f(ωβ,p) = 0}.

By a standard coupling on the environment, for every β ≥ 0 there exists a critical value pc(β) ∈
[0, 1] such that the model is localized for p > pc(β) and delocalized for p ≤ pc(β). The main
goal of the paper [1] is to study the asymptotic behavior of pc(β) as β →∞.

5.2 Main result

Some bounds on pc(β) can be obtained quite easily, as is shown in [BG04]. These are stated in
the following lemma.

Lemma 5.1. [BG04] The following relations holds:

− lim inf
β→∞

1

β
log pc(β) ≤ 1

− lim sup
β→∞

1

β
log pc(β) ≥ 2

3
.

The upper bound is that of the annealed model, obtained by averaging over the environment;
it is proved using Jensen’s inequality. The lower bound uses a lower bound on the partition
function, obtained by summing over all trajectories that touch the wall whenever there is a
non-zero charge.
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We can summarize Lemma 5.1 by stating that for β large we have

pc(β) � e−cred β where
2

3
≤ cred ≤ 1,

where the subscript red stands for reduced model, see the discussion below. The main result of
this paper is that in fact cred = 2

3 . More precisely:

Theorem 5.1. [1] For every c > 2
3 there exists β0 = β0(c) such that

∀β ≥ β0, f(ωβ,e
−c β

) = 0

i.e. forall β ≥ β0, (β, e−c β) ∈ D. Therefore

− lim
β→∞

1

β
log pc(β) =

2

3
.

Remark 5.1.

• Recall that the model PN,ωβ,p was first introduced in [BG04] as a simplified version, or
reduced model, of the so-called copolymer near a selective interface model [BdH97] (see
also [Gia07] for a more recent overview). It is known that the copolymer model undergoes
a localization/delocalization phase transition. An interesting object is the critical line
separating the two phases, in particular in the limit of weak coupling constants, where it
becomes a straight line with positive slope ccop.

A lot of effort has been put in finding the exact value of ccop. This is motivated by the fact
that ccop appears to be a universal quantity: it is independent of the law of the environment
[GT05] and it determines the phase transition of a continuous copolymer model, arising as
the scaling limit of the discrete one [BdH97]. At the time where our paper was written, it
was only known that 2

3 ≤ ccop ≤ 1. Notice that 2
3 and 1 are exactly the same bounds that

were previously known for cred, and this is not a case: the definition of the model PN,ωβ,p
has been inspired by the strategy behind the proof of ccop ≥ 2

3 [BG04].

The reason for introducing the reduced model was to have a more tractable model, which
could possibly have the same behavior as the full copolymer model in the limit of weak
coupling constants, i.e. for which possibly cred = ccop. However, the numerical results
obtained in [CGG06] provide strong indications for the fact that ccop > 2

3 . Since the
publication of our paper, this has indeed been proved to be the case by Bolthausen, den
Hollander and Opoku [BHO11]. Our result thus shows that the reduced model does not
catch the full complexity of the copolymer model, i.e. the ‘missing free energy’ comes from
a different strategy than the one which is at the basis of the lower bound ccop ≥ 2

3 .

• Theorem 5.1 also provides a non-trivial example of a linear chain pinning model where,
for large β, the quenched critical point is different from the annealed one. The proof
we present relies on quenched arguments, based on a rigorous renormalization procedure
(somewhat in the spirit of [Mon00]). The idea is to remove from the environment (ωβ,pn )n
the positive charges that are well-spaced (and therefore give no sensible contribution to the
partition function) and to cluster together the positive charges that are very close. This
procedure produces a new environment sequence (T (ω)n)n≥1, which has fewer charges but
of stronger intensity. The key point is that replacing ωβ,p by T (ω) in the partition function
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yields an upper bound on the free energy. Then, by iterating the map T several times, we
obtain environment sequences for which the free energy can be estimated and shown to be
arbitrarily small. A more detailed description of this approach, is given in Section 5.3.

• The same result has been obtained independently and at the same time by Toninelli [Ton08]
with a simpler (though more indirect) argument, avoiding the renormalization technique.
We however believe that our more direct approach gives a better understanding of the
behavior of the system.

5.3 Strategy of the proof: a renormalization procedure

In this section, we explain the strategy behind the proof of Theorem 5.1. To this purpose, we
introduce some notations, and a preliminary transformation of the partition function ZN,ωβ,p .

5.3.1 Notations

Suppose that ω = (ωn)n≥1 is an i.i.d. sequence of non-negative random variables with marginal
law µ:

P(ω1 ∈ dx) = µ(dx),

representing an environment of non-negative charges, and consider a fixed realization ω of the
environment. Then, define the sequence (tn)n≥0 = (tn(ω))n≥0 as representing the location of
the positive charges:

t0(ω) := 0 tn(ω) := min
{
k > tn−1(ω) : ωk > 0

}
. (5.4)

We also introduce the sequence (ηn)n≥1 = (ηn(ω))n≥1 giving the intensities of the positive
charges, that is:

ηn(ω) := ωtn(ω), n ≥ 1. (5.5)

For C > 0, and ‘reasonable’1 sequences ω, define the following ‘partition function’:

Zn,ω(C) :=
n∑
k=1

∑
j1,...,jk−1∈N

0=:j0<j1<...<jk−1<jk:=N

k∏
`=1

eηj` · C

(tj`(ω)− tj`−1
(ω))3/2

,

and the corresponding free energy:

f(ω,C) := lim
n→∞

1

tn(ω)
logZn,ω(C).

1All sequences ω that we shall consider are such that the following partition function and free energy are well
defined.
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5.3.2 Preliminary transformation

Consider ω = ωβ,p to be a fixed realization of our initial environment. Its marginal law can be
written as µβ,p := (1 − p)δ{0} + pδ{β}, and in this case the intensity of the positive charges is
identically equal to β.

Using estimates from renewal theory, see [Gia07], one shows that for some C > 0:

f(ωβ,p) ≤ f(ωβ,p, C),

so that to prove Theorem 5.1, it suffices to prove that for every C > 0, and every c > 2
3 , there

exists β0 = β0(C, c) such that:

∀β ≥ β0, f(ωβ,e
−cβ

, C) = 0.

To simplify notation, let us denote ωβ,e−cβ as ωβ .

5.3.3 The renormalization procedure

The proof of Theorem 5.1 is achieved through an inductive argument. The steps of the induction
are labeled by {β, β + 1, β + 2, . . .}, and we call them level β,level β + 1,. . .

Each induction step consists of a renormalization procedure that acts both on the environment
ω, and on the partition function Zn(ω,C), and produces an upper bound on the free energy
f(ω,C). Let us be more precise.

Renormalizing the environment. At the starting point (level β) the environment ωβ is
i.i.d. with marginal law:

µβ = (1− e−cβ)δ{0} + e−cβδ{β},

supported on {0} ∪ {β}. More generally, at level b ≥ β the environment ωb will be i.i.d. with
marginal law µb supported on {0}∪{b, b+1, . . .}. If we are at level b, we define a renormalization
map Tb acting on ωb that produces a renormalized environment ωb+1 := Tb(ω

b) as follows.

We first need to define isolated charges, good charges and bad blocks at level b. To this purpose,
we fix the threshold Lb :=

⌊
e

2
3

(b+Kb)
⌋
, where Kb is defined explicitly. A positive charge is said

to be an isolated charge if both its neighboring positive charges are at distance greater than Lb.
Among the isolated charges, we call good charges those that have intensity exactly equal to b,
i.e. the least possible intensity. Finally, a group of adjacent positive charges is said to be a
bad block if all the distances between neighboring charges inside the group are smaller than Lb.
Note that a charge is either isolated, or it belongs to a bad block (see Figure 5.2 for a graphical
illustration).

Figure 5.2: Good charges, isolated charges and bad blocks at level b.

Then the renormalized environment ωb+1 is obtained from ωb in the following way: each bad
block is clustered into one single larger charge, each good charge is erased, the isolated charges
that are not good are left unchanged and finally the distances between charges are suitably
shortened. We prove that the new environment ωb+1 constructed in this way is still i.i.d. and we
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obtain an explicit expression for the marginal law of ωb+1
1 , denoted by µb+1 := Tb(µ

b). Observe
that by construction µb+1 is supported on {0} ∪ {b+ 1, b+ 2, . . .}.
Renormalizing the partition function. The idea behind the definition of good charges
and bad blocks is the following:

- if a charge is good, it is not worth for the polymer to visit it, because this would entail a
substantial entropy loss;

- on the other hand, if a charge belongs to a bad block and the polymer visits it, it is
extremely convenient for the polymer to visit all the charges in the block.

The work then consists in making these rough considerations precise. If we replace the en-
vironment ωb with the renormalized one ωb+1 = Tb(ω

b), we get an upper bound on the par-
tition function. More precisely, if we also denote by Tb the transformation acting on C > 0,
Tb(C) := C ·(1+B e−Kb C) (where B is some absolute constant), then we show that the partition
function satisfies, for every N ∈ N,

Zn(ωb, C) ≤ (const.)ZN
(
ωb+1, Tb(C)

)
, (5.6)

for a suitable n = n(ω,N) such that n ≥ N and tn(ωb) ≥ tN (ωb+1). Taking ‘ 1
tn

log’ on both
sides of (5.6), and letting n→∞, we then obtain for every b ≥ β,

f
(
ωb, C) ≤ f

(
ωb+1, Tb(C)

)
.

By iteration we have for b ≥ β,

f
(
ωβ, C) ≤ f

(
ωb, Cb

)
, where Cb :=

(
Tb−1 · Tb−2 · · ·Tβ

)
(C) . (5.7)

Completing the proof. The last step is to get a control on the law µb and on the constant
Cb, in order to extract explicit bounds from (5.7). By easy estimates, we show that Cb ≤ 2C
for every b, so that this yields no problem. The crucial point is rather in estimating the law µb:
we prove (when β is large but fixed) an explicit stochastic domination of µb, which allows to
show that

lim
b→∞

f
(
ωb, Cb) = 0 .

By (5.7) this implies that f
(
ωβ, C) = 0, and Theorem 5.1 is proved.
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Perspectives

As a conclusion, I would like to mention work in progress and a few perspectives.

6.1 Double Ising model in dimension two

In the paper [11], described in Section 3.1, I constructed an explicit mapping from cycle-rooted
spanning forests to the double critical Ising model on the torus, via Fisher’s mapping and
characteristic polynomials. This provides an unexpected relation, on the level of configurations,
between two well known models of statistical mechanics. The drawback is that the construction
is rather complicated, and reaching other observables than the partition function seems difficult.

Since then, thanks to the work of Wu and Lin [WL75], Dubédat [Dub11b], and the paper written
in collaboration with C. Boutillier [5], presented in Section 4.2, we know that the double Ising
model on the graph G is also related to the dimer model defined on the decorated, bipartite
graph GQ.

In the remainder of this section, we consider this bipartite dimer model on the graph GQ, when
the Ising graph G, is finite, planar and isoradial. Note that the setting of finite, planar graphs is
on the one side simpler than toroidal ones, because the topology of the plane is easier than that
of the torus; on the other hand it is not, because it requires to handle boundary conditions.

Double-Ising model, spanning forests (Work in progress).

• At criticality. I am trying to explicitly construct the dimer model on the graph GQ

from spanning trees on the graph G, with appropriate boundary conditions. I think that I
am close to a solution. As a consequence the partition function of the double Ising model
would be equal to the partition function of the corresponding spanning trees, thus proving
a pendent for planar regions of the result for toroidal graphs [3, 11]. I believe that using
this method, other observables can be reached, in particular I am working on expressing
the square of Ising spin-correlations using spanning trees and related objects. Quite re-
markably, the latter have recently been computed in [CHI12] for finite, simply connected
regions, and in [Dub11b] for the whole plane. In the first paper, the authors use a variant
of Smirnov’s observable [Smi10] in a double cover of the plane. In the second paper, the
author proves that spin correlations are equal to monomer correlations in the dimer model,
which he had computed in the paper [Dub11a]. My goal is not to compute them yet another
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time. I would like to shed a different light, by proving how square of Ising spin correlations
are related, on the level of configurations, to objects naturally arising from spanning trees.
Indeed spanning trees are one of the models of statistical mechanics where random walks
and discrete holomorphic functions arise the most naturally. Our method might provide
a natural way of understanding, from configurations, how the winding numbers arise in
Smirnov’s observable [Smi10].

• Away from criticality. I am working on tackling the same questions. Things seem to
be more complicated on the combinatorial level, but maybe tractable. In the subcritical
regime, spanning trees seem to be replaced by spanning forests, which are naturally related
to massive random walk. This would be in agreement with the work of [BDC12], where
the authors relate the correlation length of the Ising model to the large deviation behavior
of a massive random walk, by using the random-cluster representation of the Ising model,
and a massive version of Smirnov’s observable. The connection with massive random walk
was first observed by Messikh [Mes06].

If things work out as I hope, then combining the two would relate in an explicit way, the critical
Ising model to random walk, and the sub-critical Ising model to massive random walk, thus
explaining the phase transition in the Ising model by the recurrent or transient behavior of the
random walks.

Extension to random-cluster model

The two-dimensional Ising model has a random-cluster model representation for q = 2, see
[FK72] and also [Gri06]. Since it is possible to construct the double critical Ising model from
spanning trees, it should be possible to construct its random cluster representation from spanning
trees as well. I would like to understand how this could be done, in the hope of being able to
generalize it other values of q. I think it would be interesting to identify the pendent of spanning
trees when q 6= 2. What kind of statistical mechanics model would it be ? Has it been studied
in another context ?

Conformal invariance of the height function

In collaboration with Cédric Boutillier

Consider the bipartite dimer model on the graph GQ, approximating a simply connected domain.
We would like to prove conformal invariance of the corresponding height function, in the scaling
limit. Results of this type, for simply connected domains, have been obtained by Kenyon
[Ken00, Ken01, Ken08]. Nevertheless, boundary conditions arising from the double Ising model
do not enter the framework of previously known results, and seem to be non-trivial to handle.

6.2 Statistical mechanics on isoradial graphs

We have seen that the critical bipartite dimer model, the critical Fisher dimer model and span-
ning trees have very special features when defined on isoradial graphs: the inverse Kasteleyn
operator of the first two models [Ken02, 4] and the Green’s function of the third [Ken02] have
local expressions. Recall that one would expect the combinatorics of the whole graph to con-
tribute.
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Non-critical models on isoradial graphs

In collaboration with Cédric Boutillier, maybe also Christian Mercat

We believe that the locality property is, in part due to the geometry of the isoradial graphs,
and in part to the Y − ∆ transformation used to determine the weights (the use of the Y −
∆ transformation is clear for the Ising model [Bax86], although not so much for the other
ones). Recall that the weights are Z-invariant if the partition function only changes by a global
constant when a Y − ∆ transformation of the graph is performed. In particular, this implies
that probabilities do not get affected if a local transformation of the graph is performed. This
is, we believe, one of the deep reasons underlying the locality property.

If what we think is correct, locality should remain true when the weights are Z-invariant and
non-critical. Such weights exist for Ising and for the corresponding bipartite dimer model [Bax86]
on the graph GQ. We aim at proving local expressions for the inverse Kasteleyn matrix of this
bipartite dimer model.

The main difficulties that we have to face are the following. A crucial role is played by Mercat’s
discrete exponential functions [Mer04, Ken02]. Following the work of Kenyon and Okounkov
[KO06], it seems clear that these functions are specific to the critical case, since they are related
to Harnack curves of genus 0. In order to generalize the discrete exponential functions, one
would need to find a way of parametrizing Harnack curves of higher genus. This brings us close
to algebraic geometry, where we reach our limits. But we do hope, that by explicitly solving
specific cases, we might be able to generalize.

Dimer model on non-bipartite isoradial graphs

Consider the dimer model on an isoradial graph G. When the underlying graph is not bipartite,
the Kasteleyn operator cannot be naturally related to the Dirac operator. This was one of the
key requirement of the paper [Ken02]. We would like to understand if the bipartite dimer critical
weights are also critical in some sense in the non-bipartite case. We would also like to compute
the inverse Kasteleyn matrix. This seems like a difficult problem, because there are very few
tools available for non-bipartite dimer models.

6.3 One last thought

Recently, when at a conference on the Gaussian free field in Marseille, Nathalie Eisenbaum men-
tioned non-Gaussian processes constructed from non-symmetric covariance matrices (if I recall
correctly). If these processes are well defined, is it possible to find models of statistical mechan-
ics where such processes arise? One candidate would be oriented spanning trees with different
weights on the two possible orientation of the edges. Considering the corresponding dimer model
given by [Tem74], [KPW00], is there some regime where the height function converges to such
a non-Gaussian process? I think this would be fun.

We might ask this question to the PhD student we are taking with Cédric Boutillier.
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