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Guillaume, ma thèse fait une centaine de pages, mais tout ce que je veux te dire bien
plus, on a donc un problème... il faut que j’abrège... Simplement, cette thèse ne serait
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Abstract

The dimer model represents diatomic molecules adsorbed on the surface of a crystal.
We suppose that the lattice representing the surface of the crystal is infinite, periodic,
and satisfies a geometric condition called isoradiality, moreover we assume that the
critical weight function is assigned to edges of the lattice (weights represent the external
temperature). The model then has a “critical” behavior, i.e. it can be in 2 different
phases, solid or liquid, instead of 3 in general (it has no gaseous phase). Our three main
results on the isoradial dimer model are the following. We prove an explicit formula
for the growth rate of the partition function of the natural exhaustion of the infinite
lattice, and we show an explicit formula for the minimal free energy Gibbs measure.
The interesting feature of those two formulas lies in the fact that they only depend on
the local structure of the graph, which makes them very simple to use. We believe this
locality property to be specific of the isoradial case. Geometrically, dimer configurations
can be interpreted as discrete surfaces described by one height function. We show that
when the surfaces are chosen with respect to the minimal free energy Gibbs measure,
the height function converges to a Gaussian free field. Classical examples of isoradial
dimer models are the case of the square lattice and that of the hexagonal lattice, with
uniform measure on dimer configurations.

We introduce the triangular quadri-tile dimer model, where quadri-tilings are tilings
by quadrilaterals made of adjacent right triangles. We show that this model is the
superposition of two dimer models on isoradial graphs, and interpret it geometrically
as surfaces of dimension 2 in a space of dimension 4. We study this model in the
“critical” phase. We prove an explicit formula for the growth rate of the total partition
function, and for a measure on the space of all quadri-tilings (this requires the extension
of the result of the isoradial case to a family of non-periodic graphs). It is the first
random interface model in dimension 2 + 2 for which those kind of results can be
obtained.

Keywords: statistical mechanics, dimers, tilings, isoradial graphs, partition function,
Gibbs measure, Gaussian free field, quadri-tilings.

MSC2000: 82B20.
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Chapitre 1

Introduction

Le Modèle de dimères

Un modèle de mécanique statistique exactement soluble

La mécanique statistique a pour but d’étudier les propriétés globales d’un système
mécanique. Elle souhaite prédire les relations existant entre les observables macrosco-
piques du système, en ne connaissant que les interactions microscopiques.

Dans ce domaine, le modèle le plus célèbre est sans doute le modèle d’Ising. Le système
considéré est un aimant constitué de molécules contraintes à être sur un réseau régulier.
Chaque molécule est elle-même vue comme un aimant microscopique qui peut pointer
dans deux directions possibles. Chacune des configurations σ de molécules a une énergie
E(σ), somme de deux contributions : l’énergie d’interactions intermoléculaires, et celle
d’interaction avec un champ magnétique externe.

En 1871, Boltzmann dérive la probabilité d’apparition d’une configuration à partir
des principes thermodynamiques, dans le cas des gaz [8]. Depuis lors, sa formule est
utilisée en mécanique statistique. Dans le cas du modèle d’Ising, la probabilité d’une
configuration σ est :

e
−E(σ)

kT

Z
,

où k est la constante de Boltzmann, et T est la température. Z est la constante nor-
malisatrice, appelée fonction de partition. Son importance est capitale pour la raison
suivante : Z vue comme une fonction des paramètres du modèle permet de dériver les
observables macroscopiques du système, telle la magnétisation dans le cas Ising [1].

Rares sont les modèles de mécanique statistique où la fonction de partition peut être
calculée exactement. Deux des plus importants sont :

- Le modèle d’Ising 2 dimensionnel avec interactions entre plus proche voisins, et
champ magnétique externe nul : le calcul a été fait par Onsager [38].
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- Le modèle de dimères : le calcul a été fait par Kasteleyn [19], et indépendamment
par Temperley et Fisher [42].

Ainsi, le fait que le modèle de dimères soit un des rares qui permette d’obtenir des
résultats exacts constitue une des motivations principales pour son étude.

Ses origines

Dans la littérature physique, le modèle de dimères est apparu pour la première fois en
1937 dans un article de Fowler et Rushbrooke [13]. Il sert à modéliser la répartition de
molécules diatomiques à la surface d’un cristal. Les physiciens ont observé que les points
favorables pour la répartition des molécules forment un réseau, et qu’une molécule
diatomique occupe deux sites voisins. Le modèle de dimères fait partie d’une classe
de problèmes plus grande, qui concerne la répartition de figures de tailles différentes
sur un réseau. D’un point de vue physique, il est aussi utilisé dans la théorie des
liquides constitués de molécules de tailles différentes [16], et dans la théorie des clusters
cellulaires de l’état liquide [6].

Les mathématiciens étudient un modèle équivalent qui est celui des 2-pavages. Deux
exemples classiques sont les pavages par dominos et par losanges-60◦ (appelés aussi
calissons). Dans le premier cas, on considère le réseau Z2. On le recouvre de tuiles
formées de deux carrés adjacents, appelées dominos, de sorte qu’il n’y ait pas de
chevauchement et qu’il ne reste pas de trou. Dans le deuxième cas, la procédure est
la même sauf que l’on considère le réseau triangulaire équilatéral T, et que les tuiles
formées de triangles adjacents sont appelées des losanges-60◦. La première référence
mathématique que nous avons trouvée à ce sujet est [9] et concerne le “problème des
calissons”, mais nous dirions que l’étude systématique du modèle débute avec Thurston
[44].

Définitions

Une définition détaillée du modèle de dimères est donnée au paragraphe 2.1, en voici
les points essentiels.

Le système considéré est un graphe G dans le plan. Une 2-tuile de G est un polygone
formé de deux faces intérieures de G adjacentes le long d’une arête. Un 2-pavage de G
est un recouvrement de G par des 2-tuiles qui ne se chevauchent pas, et qui ne laissent
pas de trou.

Une configuration de dimères du graphe dual G∗ est un couplage parfait de G∗,
c’est à dire un ensemble d’arêtes qui couvre chaque sommet exactement une fois. Les
arêtes du couplage représentent les molécules diatomiques, et le graphe G∗ le réseau sur
lequel elles se répartissent. On note M(G∗) l’ensemble des configurations de dimères
du graphe G∗.

Il existe une bijection entre les 2-pavages du graphe G, et les configurations de dimères
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du graphe dual G∗ : soit un 2-pavage de G, à chaque tuile de G correspond l’arête
duale à l’arête séparant les deux faces constituant la tuile ; l’ensemble d’arêtes ainsi
défini forme un couplage parfait de G∗. Un exemple de cette bijection est donné à la
figure 2.1. C’est grâce à cette correspondance que nous parlons de modèles équivalents.

Supposons le graphe G∗ fini. Chaque configuration M ∈ M(G∗) possède une énergie
E(M) déterminée par une fonction de poids ν, strictement positive, sur les arêtes de
G∗ :

E(M) = −
∑

e∈M

log ν(e).

Ceci nous permet de définir la mesure de Boltzmann µ1 sur M(G∗). Chaque confi-
guration M ∈ M(G∗) a une probabilité de :

µ1(M) =
e−E(M)

Z(G∗, ν)
,

où Z(G∗, ν) =
∑

M∈M(G∗) e−E(M) est la fonction de partition. Remarquons que la
température est directement incluse dans la fonction de poids.

En utilisant la bijection entre les configurations de dimères et les 2-pavages, on peut
voir ν comme une fonction de poids sur les 2-tuiles, et µ1 comme une mesure de pro-
babilité sur les 2-pavages du graphe G.

Lorsque le graphe G est planaire, Kasteleyn [20] donne une formule explicite pour
Z(G∗, ν) : c’est la racine du déterminant de la matrice d’adjacence K du graphe G∗, où
l’on change le signe de certains des coefficients ; K est appelée matrice de Kasteleyn
du graphe G∗. Kenyon [21] donne une expression explicite pour la mesure de Boltzmann
en fonction de la matrice de Kasteleyn et de son inverse.

Supposons le graphe G∗ infini. Une mesure de Gibbs est une mesure de probabilité
définie sur M(G∗) qui vérifie les propriétés suivantes : si l’on fixe un couplage parfait
dans une région annulaire de G∗, alors les couplages à l’extérieur et à l’intérieur de l’an-
neau sont indépendants ; de plus la probabilité d’un couplage à l’intérieur de l’anneau
est proportionnelle à

∏
e∈M ν(e).

Interprétation géométrique : interfaces en dimension 2+1

L’interprétation géométrique des 2-pavages nécessite la notion de fonction de hauteur.
Elle a été réalisée par Thurston [44] dans le cas des losanges et des dominos. Notons
que cette notion était déjà présente chez Blöte et Hilhorst [3], et Levitov [33].

En utilisant les groupes de Cayley et la fonction de hauteur, Thurston interprète les
pavages par losanges du réseau triangulaire T comme des surfaces dans Z3 (où les dia-
gonales des cubes sont perpendiculaires au plan), projetées dans le plan. La fonction de
hauteur associe à chaque sommet d’un pavage par losanges, la “hauteur” du sommet
lui correspondant sur la surface. La figure 2.1 convaincra le lecteur de l’interprétation

13



Chapitre 1 : Introduction

des losanges comme interfaces de cubes projetés. Thurston donne une interprétation
analogue des pavages par dominos du réseau Z2, dont la représentation géométrique est
toutefois moins intuitive.

Une question naturelle est de généraliser la notion de fonction de hauteur aux 2-pavages
de graphes généraux. Il semblerait que lorsque le dual du graphe n’est pas biparti, il
n’y ait pas de définition analogue. Dans le cas où le dual du graphe est biparti, Kenyon,
Propp et Wilson [39, 30] donnent une généralisation. Nous choisissons cependant l’ap-
proche de Kenyon, Okounkov, Sheffield [29], voir aussi [5], qui utilise la notion de flots.
La définition est donnée au paragraphe 2.2. Il existe une bijection entre les fonctions de
hauteur sur les sommets d’un graphe G, et les 2-pavages de G (une fois fixée la hauteur
d’un des sommets). Ainsi tout 2-pavage de G peut être interprété comme une surface
discrète de dimension 2 dans un espace de dimension 3 ; on parle alors d’interface en
dimension 2 + 1.

Sujet de la thèse

Un modèle d’interfaces en dimension 2 + 2

Le sujet de thèse proposé par Richard Kenyon est l’étude du modèle de quadri-
pavages. Son originalité réside dans le fait qu’il s’agisse de pavages par un ensemble
fixé de tuiles qui correspond à toute une famille de modèles de dimères. Une attention
particulière est portée à un cas particulier de ce modèle appelé modèle de quadri-
pavages triangulaire. C’est le premier exemple de modèle d’interfaces en dimension
2+2, qui est superposition de deux modèles de dimères. En effet les modèles de dimères
étudiés jusqu’alors, tels les pavages par losanges ou par dominos, sont des modèles d’in-
terfaces en dimension 2 + 1. On peut décrire cette propriété de deux autres manières :
les quadri-pavages sont caractérisés par deux fonctions de hauteur, ou encore ce sont
des surfaces de dimension 2 dans un espace de dimension 4, qui sont projetées sur le
plan. La définition et les propriétés des modèles de quadri-pavages et de quadri-pavages
triangulaire sont le sujet du chapitre 4, dont voici une brève description.

On considère l’ensemble des triangles rectangles dont l’hypoténuse a longueur 2. On
colorie en noir le sommet de l’angle droit, et en blanc les deux autres. Une quadri-tuile
(cf. figure 4.1) est obtenue à partir de deux tels triangles de deux manières : soit en les
collant le long de l’hypoténuse, soit en les collant le long de l’une des autres arêtes (s’ils
en ont une de même longueur), en identifiant les sommets noirs et blancs. Notons que
chacune des quadri-tuiles est considérée comme un quadrilatère. Un quadri-pavage
est un pavage du plan avec des quadri-tuiles, qui respecte la coloration des sommets,
voir figure 4.1.

Chaque quadri-pavage Q a la propriété d’être un 2-pavage d’un unique pavage par lo-
sanges R(Q), où les losanges ont leurs diagonales. On appelle R(Q) le pavage par
losanges-avec-diagonales sous-jacent ; le pavage par losanges sous-jacent est
le pavage par losanges correspondant, on le note R(Q). Réciproquement, tout 2-pavage
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d’un pavage par losanges-avec-diagonales est un quadri-pavage. Ainsi, les quadri-pavages
constituent un ensemble de modèles de dimères sur une famille de graphes.

Le modèle de quadri-pavages triangulaire est constitué de l’ensemble Q des quadri-
pavages dont le pavage par losanges sous-jacent est formé de losanges-60◦ uniquement
(un exemple est donné à la figure 1.1). Soit Q ∈ Q, alors Q est un 2-pavage de son pa-
vage par losanges-60◦-avec-diagonales sous-jacent L(Q). De plus, L(Q) est un 2-pavage
du réseau triangulaire équilatéral T. Ainsi le modèle de quadri-pavages triangulaire
correspond à deux modèles de dimères superposés.

Fig. 1.1 – Exemple de pavage du modèle de quadri-pavages triangulaire

Ce fait peut être interprété géométriquement. Nous montrons que chaque quadri-pavage
de Q est caractérisé par deux fonctions de hauteur, et nous obtenons l’interprétation
suivante. Un quadri-pavage Q ∈ Q est une surface S1 dans un espace de dimension 4,
projetée sur le plan. S1 peut aussi être projetée sur Z̃3 (Z̃3 est l’espace Z3 où les cubes
ont leurs diagonales), et l’on obtient une surface S2. Lorsque S2 est projetée sur le plan,
on obtient le pavage par losanges-avec-diagonales sous-jacent L(Q).

Dans une dernière partie, en utilisant le théorème de Propp [39], nous caractérisons
l’espace des quadri-pavages d’un sous-graphe fini et simplement connexe du réseau
triangulaire.
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Le modèle de dimères isoradial

Les pavages par losanges-avec-diagonales, ainsi que le réseau triangulaire T ont la pro-
priété géométrique d’être des graphes isoradiaux, c’est à dire que toutes leurs faces
sont inscriptibles dans un cercle, et tous les cercles ont le même rayon.

Lorsque G est un graphe isoradial, Kenyon [26] définit une fonction de poids spécifique
sur les arêtes de son dual G∗, appelée fonction de poids critique. On appelle modèle
de dimères isoradial un modèle de dimères sur un graphe isoradial, dont les arêtes
du dual sont munies de la fonction de poids critique.

Incités par l’originalité des résultats de Kenyon sur les graphes isoradiaux, nous avons
voulu généraliser nos travaux à cette famille de graphes. Voici une idée de ses résultats.
Soit G un graphe isoradial infini avec fonction de poids critique sur les arêtes de G∗.
Supposons de plus que G∗ est biparti, notons W l’ensemble des sommets blancs et B
l’ensemble des sommets noirs. Kenyon définit l’opérateur de Dirac complexe K et son
inverse K−1. K est représenté par une matrice K(w, b) (w ∈ W , b ∈ B) qui est une
matrice de Kasteleyn infinie. L’inverse K−1 a une propriété surprenante : il ne dépend
que de la géométrie locale du graphe G∗ (i.e. K−1(b, w) ne dépend que des angles le long
d’un chemin de w à b). De plus, Kenyon conjecture que K−1 est, dans un certain sens à
préciser, la limite de la matrice de Kasteleyn inverse. Il obtient aussi une expression très
simple pour ce qu’il appelle le “log normalisé du déterminant de K”, et conjecture que
ce serait, dans un sens à préciser aussi, la limite de fonctions de partitions normalisées.

Il nous a paru très intéressant de donner un sens à l’opérateur de Dirac complexe et à
son inverse, dans le cadre du modèle de dimères isoradial. En effet, cette propriété de
“localité”, qui permet d’avoir des résultats s’exprimant très simplement, est étonnante
et n’apparâıt pas dans les modèles de dimères sur des graphes généraux.

Les résultats principaux

Les résultats principaux se trouvent dans les chapitres 5 à 7. Nous les avons ordonnés
de la manière dont on aborde un problème de dimères. La première étape est de com-
prendre la combinatoire, i.e. la fonction de partition, qui décrit le comportement global
des configurations. La deuxième est d’obtenir une expression explicite pour une me-
sure sur les configurations, afin de pouvoir comprendre les statistiques locales. Et la
troisième consiste à utiliser l’interprétation des configurations de dimères en surfaces
discrètes, pour étudier les fluctuations des surfaces autour de leur moyenne. Il existe en-
core d’autres questions comme celle de comprendre les transitions de phase du modèle,
que nous souhaitons aborder après la thèse.

Chacun des paragraphes suivants correspond à un des chapitres 5 à 7, et est structuré
ainsi : nous donnons d’abord une description de la problématique générale et un aperçu
des résultats existants ; puis nous expliquons les résultats obtenus.
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Combinatoire du modèle de quadri-pavages triangulaire et du modèle
de dimères isoradial

Les configurations de dimères représentent des molécules diatomiques réparties à la
surface d’un cristal, ainsi il est intéressant d’étudier les modèles de dimères sur des
graphes infinis. La fonction de partition d’un tel modèle est infinie, et l’étude de la
combinatoire est abordée de la manière suivante. Soit un modèle de dimères sur un
graphe G infini, où les arêtes du dual G∗ sont munies d’une fonction de poids ν ;
prendre une exhaustion {Gn} de G constituée de graphes finis, puis calculer la limite
des fonctions de partitions des graphes G∗

n correctement normalisées, c’est à dire

lim
n→∞

1

|V (G∗
n)| log Z(G∗

n, ν), (1.1)

où V (G∗
n) dénote l’ensemble des sommets de G∗

n. Notons que cette limite dépend de
l’exhaustion choisie.

Résultats existants

• Kasteleyn [18] : calcule la limite (1.1) dans le cas d’une exhaustion du réseau Z2

par des graphes planaires, et d’une autre par des graphes toriques.

• Kasteleyn [20] : donne une formule explicite pour la fonction de partition d’un
graphe fini et simplement connexe, c’est la racine du déterminant de la matrice
de Kasteleyn (matrice d’adjacence avec signes modifiés).

• Kasteleyn [19] : observe les transitions de phase du modèle de dimères sur le
réseau hexagonal, en étudiant la régularité de la fonction de partition comme
fonction des poids sur les arêtes.

• Cohn, Kenyon, Propp [7] : entre autres, étudient précisément les transitions de
phase pour le modèle de dimères sur Z2.

• Tesler [43] : donne une formule exacte pour la fonction de partition d’un graphe
plongé sur une surface orientable ou non.

• Elkies, Kuperberg, Larsen et Propp [12] : donne une formule exacte (en fonction
de n) pour la fonction de partition d’un diamant aztèque de taille n.

• Kenyon, Okounkov, Sheffield [29] : considèrent un graphe G doublement périodique ;
donnent une formule explicite pour la limite (1.1) dans le cas d’une exhaustion
naturelle par des graphes toriques. Cette limite s’exprime comme une double
intégrale du “polynôme caractéristique”. Les zéros de ce polynôme décrivent les
phases du modèle : liquide, gazeuse, solide.

Résultats obtenus

Le chapitre 5 a pour objet la compréhension de la combinatoire du modèle de quadri-
pavages triangulaire. L’approche doit être adaptée car les quadri-pavages correspondent
aux 2-pavages d’une famille de graphes, et non d’un seul comme c’était le cas pour les
modèles étudiés jusqu’alors.
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Une quantité naturelle à introduire est la fonction de partition totale définie comme
suit. Soit ν une fonction de poids sur les quadri-tuiles du modèle de quadri-pavages
triangulaire, et soit G un sous-gaphe fini et simplement connexe du réseau triangulaire
T. La fonction de partition totale, notée Z(∂G, ν), est la somme des poids des quadri-
pavages dont le pavage sous-jacent est un pavage par losanges-60◦ de G.

Le résultat principal du chapitre 5 consiste en une formule explicite pour le taux de
croissance de Z(∂Gn, ν) lorsque {Gn} est une exhaustion particulière du réseau T, et
ν est la fonction de poids critique.

Théorème 1 Supposons que ν soit la fonction de poids critique sur les quadri-tuiles,
alors

lim
n→∞

1

12n2
log Z(∂Gn, ν) =

1

12
log 3 +

1

4
log 2 +

1

2π
L
(π

6

)
+

5

4π
L
(π

3

)
,

où {Gn} est définie au paragraphe 5.1.2 ; et L est la fonction de Lobachevsky,

L(x) = −
∫ x

0
log 2 sin t dt.

La preuve du théorème 1 est la combinaison de trois propositions. Chacune fait l’objet
d’un paragraphe (5.2, 5.3, 5.4 respectivement), et est plus forte que ce qui est nécessaire
à la preuve. Nous les citons ci-dessous étant donné qu’elles possèdent un intérêt propre,
en particulier la dernière qui décrit la combinatoire des modèles de dimères isoradiaux.

Le but du paragraphe 5.2 est de ramener le calcul de la fonction de partition totale au
calcul de fonctions de partitions pour des graphes fixés. Avant d’énoncer le résultat,
rappelons quelques notations. Soit G un sous-graphe fini et simplement connexe du
réseau triangulaire T, alors Z(G∗, 1) est le nombre de pavages par losanges-60◦ de G.
Les quadri-tuiles du modèle de quadri-pavages triangulaire sont classées en 4 catégories
I, II, III, IV (cf. figure 4.3). Ainsi, lorsque nous parlons d’une fonction de poids ν sur
les quadri-tuiles, nous voulons dire des poids a, b, c ∈ R+ associés aux quadri-tuiles
de type I, II, III et IV respectivement. Soit L un pavage par losanges-60◦ de G, et L
le pavage par losanges-avec-diagonales correspondant, alors Z(L∗, ν) est la somme des
poids des 2-pavages de L, autrement dit c’est la somme des poids des quadri-pavages
dont le pavage sous-jacent est L.

Proposition 1 Supposons que les poids a, b, c satisfont la relation suivante :

0 < a < c, b =

√
a

(
a2 + c2 − ac

c − a

)
.

Alors, Z(L∗, ν) est indépendante du pavage par losanges L du graphe G, et la fonction
de partition totale vérifie

Z(∂G, ν) = Z(L∗, ν)Z(G∗, 1).
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Idée de preuve:

- La deuxième partie de la proposition est une conséquence directe de la première.

- Il est possible de passer d’un pavage par losanges-60◦ de G à un autre par une suite
d’opérations élémentaires (opération qui consiste à “rajouter” ou “enlever” un cube,
cf. paragraphe 4.5). Ainsi, nous considérons deux pavages par losanges-60◦ L1 et L2 qui
diffèrent par une seule opération élémentaire, et cherchons une condition sur les poids
a, b, c pour que Z(L∗

1, ν) = Z(L∗
2, ν). �

Le paragraphe 5.3 concerne la calcul de la limite (1.1) pour une exhaustion {Ln}
constituée de pavages par losanges-60◦-avec-diagonales finis et planaires, lorsqu’une
fonction de poids ν est associée aux quadri-tuiles. On ne peut calculer cette limite
directement car les matrices de Kasteleyn des graphes L∗

n ne possèdent pas assez de
symétries. L’objet de la proposition 2 est d’exhiber une exhaustion {L̄n}, constituée
de pavages par losanges-60◦-avec-diagonales toriques, qui a la même limite (1.1) que
{Ln}. Les symétries du tore permettront alors de calculer la limite explicitement (cf.
paragraphe suivant). Nous nous référons au paragraphe 5.3 pour la définition précise
des exhaustions {Ln} et {L̄n}. La preuve de la proposition 2 utilise des techniques de
style combinatoire, et un argument de sous-additivité. Il est important de noter que la
limite (1.1) dans le cas d’exhaustions planaires et toriques ne cöıncide pas en général.

Proposition 2 Supposons que les poids a, b, c satisfont la condition a2 + b2 = c2, alors

lim
n→∞

1

n2
log Z(L∗

n, ν) = lim
n→∞

1

n2
log Z(L̄∗

n, ν).

Le paragraphe 5.4 a pour sujet la limite (1.1) pour le modèle de dimères isoradial.
Soit G un graphe isoradial infini, dont le dual G∗ est biparti. Supposons que G est Λ-
doublement périodique (pour un réseau bidimensionnel Λ), et supposons que la fonction
de poids critique ν est associée aux arêtes de G∗. Une exhaustion naturelle de G par
des graphes toriques est {Ḡn}, où Ḡn = G/nΛ. La proposition 3 donne une expression
explicite pour la limite (1.1) de l’exhaustion {Gn}. Le résultat est surprenant par sa
simplicité d’utilisation, en effet il ne dépend que de la géométrie locale du graphe
G. Dans le cas d’un modèle de dimères général, cette limite est difficile à calculer
explicitement et implique l’évaluation d’intégrales elliptiques. De plus, cette proposition
répond à la question de [26] qui est d’interpréter, en terme de modèle de dimères, le
“log normalisé du déterminant de l’opérateur de Dirac complexe K”.

Proposition 3

lim
n→∞

1

|V (Ḡ∗
n)| log Z(Ḡ∗

n, ν) =
1

|V (Ḡ∗
1)|

m∑

i=1

(
θi

π
log 2 sin θi +

1

π
L(θi)

)
. (1.2)

où θ1, . . . , θm sont les angles des losanges associés aux arêtes e1, . . . , em de Ḡ∗
1 (cf.

paragraphe 5.4), et L est la fonction de Lobachevsky, L(x) = −
∫ x
0 log 2 sin t dt.
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Idée de preuve:

Le terme de droite de l’équation (1.2) a été calculé par Kenyon [26]. La preuve consiste à
passer par le modèle de dimères sur les graphes toriques Ḡn, et de montrer qu’à la limite,
on obtient la même quantité. Certaines des étapes de la preuve sont proches de [26]. �

Mesure de Gibbs explicite pour le modèle de dimères isoradial et
le cas des quadri-pavages

La définition d’une mesure de Gibbs sur les configurations de dimères M(G∗) d’un
graphe G∗ infini est une extension naturelle de la définition d’une mesure de Boltz-
mann. Une telle mesure permet de connâıtre les statistiques locales du modèle, d’où
l’importance d’obtenir une expression explicite. De plus, elle permet de calculer les
corrélations asymptotiques, et ainsi de connâıtre la phase du modèle dans laquelle on
se trouve.

Résultats existants

• Kenyon [21] : donne une formule explicite pour la mesure de Boltzmann pour
un graphe G fini planaire (resp. torique), en fonction de la matrice (resp. des 4
matrices) de Kasteleyn et de son inverse.

• Kenyon, Okounkov, Sheffield [29] : donnent une formule explicite pour la famille
à deux paramètres de mesure de Gibbs d’un modèle de dimères sur un graphe
infini doublement périodique dont le dual est biparti, en fonction des matrices de
Kasteleyn et de la limite de leurs inverses.

Résultats obtenus

Soit G un graphe doublement périodique dont le dual G∗ est biparti. L’expression
explicite pour la famille à deux paramètres de mesure de Gibbs, obtenue dans [29]
utilise la limite des matrices de Kasteleyn inverses. Cette limite est en général difficile
à calculer exactement. Le théorème 2 montre que lorsque G est isoradial, et que la
fonction de poids critique est associée aux arêtes de G∗, on peut remplacer la limite
des matrices de Kasteleyn inverses par l’inverse de l’opérateur de Dirac complexe K−1.
Ceci répond à une conjecture de [26]. Rappelons que K−1(b, w) ne dépend que d’un
chemin de w à b. Utilisant cette propriété de localité, le théorème 2 donne aussi une
expression explicite pour une mesure de Gibbs sur des graphes qui ne sont pas forcément
périodiques - les pavages par losanges-avec-diagonales. Nous pensons que ce théorème
peut se généraliser à tous les graphes isoradiaux non périodiques avec fonction de poids
critique.

Théorème 2 Soit G un graphe isoradial infini dont le dual G∗ est biparti. Supposons
que la fonction de poids critique ν est associée aux arêtes de G∗, et soit K l’opérateur
de Dirac complexe indicé par les sommets de G∗. Supposons que
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1. G est périodique,

2. G est un pavage par losanges-avec-diagonales (qui n’est pas forcément périodique)

alors, il existe une unique mesure de probabilité µ sur (M(G∗), σ(A)) qui vérifie,

µ(e1, . . . , ek) =

(
k∏

i=1

K(wi, bi)

)
det

1≤i, j≤k

(
K−1(bi, wj)

)
. (1.3)

De plus, µ est une mesure de Gibbs.

Idée de preuve:

Cas périodique

- On part de l’expression explicite pour la mesure de Boltzmann du modèle de dimères
sur les graphes toriques Ḡn = G/nΛ [21], cette expression utilise les matrices de Kas-
teleyn toriques et leurs inverses.

- La proposition 3.11 donne la convergence sur une sous-suite de n des matrices de
Kasteleyn toriques des graphes Ḡ∗

n, vers l’inverse de l’opérateur de Dirac réel (intro-
duit au paragraphe 3.3). Combiné avec l’unicité de la limite donnée par le théorème
de Sheffield [41], ceci implique la convergence des mesures de Boltzmann vers (1.3) où
l’opérateur de Dirac complexe est remplacé par l’opérateur de Dirac réel.

- Nous montrons que l’expression (1.3) est la même si on considère l’opérateur de Dirac
réel ou complexe, et concluons en appliquant le théorème d’extension de Kolmogorov.
La propriété de Gibbs découle directement du fait que ce soit une extension de mesures
de Boltzmann.

Cas non périodique

L’aspect probabiliste est essentiellement le même une fois que l’on démontre en plus le
fait géométrique suivant :

Proposition 4 Tout sous-graphe P fini et simplement connexe d’un pavage par losange
du plan peut être plongé dans un pavage par losanges du plan périodique.

Une première étape consiste à montrer que l’on peut compléter P par un nombre fini
de losanges, de sorte à obtenir un polygone convexe Q dont les côtés opposés sont pa-
rallèles. On montre ensuite qu’en rajoutant un nombre fini de losanges à Q, on obtient
un hexagone “déformé” qui pave le plan périodiquement (cf. figure 6.3). �

Le paragraphe 6.2 se concentre sur les quadri-pavages. On considère d’abord le modèle
de quadri-pavages triangulaire. En utilisant le théorème 2, nous donnons une expression
explicite pour une mesure totale sur l’ensemble des quadri-pavages du plan. Nous nous
référons au paragraphe 6.2.1 pour la définition exacte des termes de la proposition
suivante.
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Proposition 5 Il existe une unique mesure de probabilité µ sur (M, σ(B)) qui vérifie :

µ(e1, . . . , em) = µL(e1, . . . , em)ν(ke1 , . . . , kem),

où L est le pavage par losanges-avec-diagonales correspondant à un pavage par losange
L qui contient les losanges le1 , . . . , lem.

Ensuite nous considérons un pavage par losanges-avec-diagonales R, et nous notons
KR l’opérateur de Dirac indicé par les sommets de R∗. Nous montrons une propriété
étonnante de l’asymptotique de l’inverse K−1

R . Lorsque |b − w| → ∞, K−1
R (b, w) ne

dépend que des deux losanges auxquels appartiennent les sommets b et w. C’est à dire
que K−1

R (b, w) ne dépend plus des angles le long d’un chemin de w à b. L’énoncé exact
est le suivant,

Théorème 3 K−1
R (b, w) est donné par,

1

2π

(
1

b − w
+

e−i(θ1+θ2)

b̄ − w̄

)
+

1

2π

(
e2iθ1 + e2iθ2

(b − w)3
+

e−i(3θ1+θ2) + e−i(θ1+3θ2)

(b̄ − w̄)3

)
+ O

(
1

|b − w|3
)

,

où θ1 et θ2 sont définis au paragraphe 6.2.2.

Nous déduisons des propriétés asymptotiques pour la mesure de Gibbs µR donnée par
le théorème 2, et pour la mesure totale µ.

Fluctuations de la hauteur du modèle de dimères isoradial

Rappelons que, grâce à la fonction de hauteur, les 2-pavages d’un graphe G peuvent être
interprétés comme des surfaces discrètes projetées sur le plan. Une question intéressante
est d’étudier les fluctuations de la surface autour de sa moyenne.

Résultats existants

• Kenyon [24, 25] : démontre que les fluctuations de la fonction de hauteur des
pavages par dominos de régions simplement connexes convergent vers un champ
libre Gaussien (lorsque la maille du réseau tend vers 0).

• Kenyon [27] : étudie les fluctuations de la hauteur pour le modèle de dimères sur
le réseau hexagonal.

Résultats obtenus

Soit G un graphe isoradial infini dont le dual est G∗ est biparti, avec la fonction de
poids critique sur les arêtes de G∗. Considérons la fonction de hauteur h sur les 2-
pavages de G (définie au paragraphe 3.5). Soit Gε le graphe G où la longueur des arêtes
est multipliée par un facteur ε. Soit h la fonction de hauteur sur les 2-pavages de Gε

(notons que h n’est pas normalisée). Définissons,

Hε : C∞
c,0(R

2) → R

ϕ 7−→ Hεϕ = ε2
∑

v∈V (Gε)

ϕ(v)h(v),
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Supposons que G est soit périodique, soit un pavage par losanges-avec-diagonales. No-
tons µ la mesure de Gibbs donnée par le théorème 2. Le théorème 4 décrit les fluc-
tuations de Hε lorsque ε → ∞. L’objet limite est un champ libre Gaussien, défini au
paragraphe 7.1 : il s’agit d’une distribution aléatoire Gaussienne dont la fonction de
covariance est donnée par l’énergie de Dirichlet.

Comme application directe du théorème 4, nous obtenons la convergence de la fonction
de hauteur des pavages du plan par dominos, losanges, et quadri-tuiles vers un champ
libre Gaussien.

Utilisant la formule asymptotique pour l’opérateur de Dirac inverse [26], et la ca-
ractérisation des phases d’un modèle de dimères de [29], nous déduisons que le modèle
de dimères isoradial est toujours dans la phase liquide. Nous pensons que le théorème
4 reste vrai pour tous les modèles de dimères dans la phase liquide.

Théorème 4 Hε converge faiblement en distribution vers 1√
π

fois un champ libre

Gaussien. C’est à dire, pour tout ϕ1, . . . , ϕk ∈ C∞
c,0(R

2), (Hεϕ1, . . . , H
εϕk) converge

en loi (quand ε → 0) vers 1√
π
(Fϕ1, . . . , Fϕk), où F est un champ libre Gaussien.

Idée de preuve:

Les étapes de la preuve sont essentiellement celles de [24], sauf le lemme 7.14 qui est
nouveau. Cependant, étant donné que nous travaillons avec un graphe isoradial général,
et non pas avec le réseau Z2, chacune des étapes a du être adaptée de manière non tri-
viale. �
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Chapter 2

The dimer model

The dimer model belongs to the field of statistical mechanics (as do the Ising model
and the percolation model). It has been introduced by statistical physicists in order to
model diatomic molecules adsorbed on the surface of a crystal [20]. This model is in
bijection with the 2-tiling model, which is a random interface model. Both approaches
are used throughout this thesis. To simplify terminology, when we speak of the dimer
model, we also refer to the corresponding 2-tiling model. The aim of the first chapter is
to define the dimer model, and some of its features in a quite general setting. We also
try to give a little insight into three papers which, in our opinion, form the groundwork
of this theory. In chronological order, they are Kasteleyn [20], Thurston [44], Kenyon
[21]. Kasteleyn solves some fundamental combinatorial questions; Thurston gives an
essential geometric interpretation; Kenyon works out a simple expression for a measure
on the model, and so opens the path for probabilistic studies of the model.

Section 2.1 consists in the description of the dimer model using the terminology of sta-
tistical mechanics. The system considered is a graph G satisfying condition (∗) below:

(∗)
The graph G is finite or infinite, planar, and simple (G has no loops and
no multiple edges); its vertices are of degree ≥ 3. G is simply connected,
i.e. it is the one-skeleton of a simply connected union of faces. When
G is infinite, it is made of finitely many different faces, up to isometry.

Configurations of the system are 2-tilings of the graph G, or equivalently perfect match-
ings - also called dimer configurations - of the dual graph G∗ of G. Assume that the
graph G is finite. Each configuration has an energy determined by a weight function
on the edges of G∗. The partition function counts the weighted sum of dimer config-
urations of the graph G∗. The probability of a dimer configuration occurring when
chosen with respect to the Boltzmann measure, is given by the exponential of minus
its energy, normalized by the partition function. A Gibbs measure is defined to be a
natural extension of the Boltzmann measure to infinite graphs. After having defined
the above terms in more details, we state Kasteleyn result for the partition function
[20], and Kenyon’s result for the Boltzmann measure [21].
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Section 2.2 is about Thurston’s discrete surface interpretation of 2-tilings via height
functions: in [44] he describes lozenge tilings as surfaces in Z3 projected to the plane.
Following [29], we use flows to generalize Thurston’s notion of height function to 2-
tilings of quite general graphs. This allows us to extend Thurston’s criteria for the
existence of a lozenge tiling of a simply connected subgraph of the triangular lattice, to
graphs which have a height function. We finish by giving Propp’s theorem [39], which
states that the space of 2-tilings of a finite simply connected graph, has a structure of
distributive lattice.

2.1 The dimer model

The dimer model represents diatomic molecules adsorbed on the surface of a crystal
(see [20] for references). The most favorable points for the adsorption of atoms on such
a surface form a two-dimensional lattice, in which a dimer, if it is of the right size,
can occupy two neighboring sites. In subsection 2.1.1, we define the equivalent 2-tiling
model, and the bijection to the dimer model. In subsection 2.1.2, we introduce the en-
ergy of configurations and the partition function, and give some insight into Kasteleyn’s
result [20]. In subsection 2.1.3, we define the Boltzmann and Gibbs measures, and state
Kenyon’s explicit expression for the Boltzmann measure [21].

2.1.1 2-tilings/dimer configurations

The system we consider is a graph G satisfying condition (∗). Configurations of the
system are 2-tilings of the graph G, and are defined as follows. A 2-tile of G is a
polygon consisting of two adjacent inner faces of G, glued together. A 2-tiling of G is
a covering of G with 2-tiles, such that there are no holes and no overlapping.

There is an alternative and equivalent way of defining the system and its configurations.
In this view, let us recall two definitions from graph theory. The dual graph of G,
denoted by G∗, is the graph whose vertices correspond to the inner faces of G (that is,
there is no vertex of G∗ corresponding to the outer face of G), two vertices of G∗ being
joined by an edge if the corresponding faces of G are adjacent. A perfect matching
of G∗ is a subset of edges of G∗ which covers each vertex exactly once. In the physics
literature, perfect matchings are referred to as dimer configurations. A dimer is a
di-atomic molecule represented by an edge of the perfect matching [20].

2-tilings of the graph G are in bijection with dimer configurations of the dual graph
G∗, as explained by the following correspondence. Denote by F ∗ the dual vertex of
a face F of G, and consider an edge F ∗

1 F ∗
2 of G∗. We say that the 2-tile of G made

of the adjacent faces F1, F2 is the 2-tile corresponding to the edge F ∗
1 F ∗

2 . Then,
2-tiles corresponding to edges of a dimer configuration of G∗ form a 2-tiling of G. Let
us denote by M(G∗) the set of perfect matchings of the graph G∗.

Here is a classical example, see figure 2.1: take G to be the equilateral triangular lattice
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T. 2-tiles of T consist of 60◦-rhombi, called lozenges (sometimes also calissons), and
2-tilings of T are referred to as lozenge tilings. By the above bijection, 2-tilings of T

correspond to perfect matchings of the dual graph T∗, also known as the honeycomb
lattice. Another classical example is given by the square lattice Z2. 2-tiles of Z2 are
rectangles, also called dominos, and 2-tilings of Z2 are referred to as domino tilings.
They are in bijection with perfect matchings of the dual graph Z2∗ (which is isomorphic
to Z2).

Figure 2.1: The equilateral triangular lattice T, a 2-tiling of T, and the corresponding
perfect matching of the honeycomb lattice.

2.1.2 Energy of configurations, and partition function

Let G be a graph satisfying (∗). Consider a positive weight function ν on the edges
of the dual graph G∗, that is an edge e of G∗ has weight ν(e). Assume that G∗

is finite and simply connected. The energy of a dimer configuration M of G∗, is
E(M) = −∑e∈M log ν(e). The weight of a dimer configuration M of G∗, denoted by
ν(M), is given by the exponential of minus its energy:

ν(M) = e−E(M) =
∏

e∈M

ν(e).

Note that by the correspondence between dimer configurations and 2-tilings, the func-
tion ν can be seen as weighting 2-tiles of G, ν(M) is then the weight of the 2-tiling
corresponding to M .

The partition function, denoted by Z(G∗, ν), is defined to be the weighted sum of
dimer configurations of G∗, weighted as above, that is

Z(G∗, ν) =
∑

M∈M(G∗)

ν(M).

27



Chapter 2: The dimer model

For example, when ν ≡ 1, Z(G∗, 1) counts the number of dimer configurations of the
graph G∗, or equivalently the number of 2-tilings of the graph G.

Kasteleyn gives an explicit formula for the partition function [20]. Here is a brief outline
of his methods and results. Suppose that the edges of the graph G∗ are oriented, and
that G∗ has n vertices u1, . . . , un. The weighted adjacency matrix associated to G∗

and ν, is the matrix A whose entry A(ui, uj) = ±ν(uiuj), if the vertices ui and uj are
adjacent, the sign being determined by the orientation of the edge uiuj ; and 0 if the
vertices ui and uj are not adjacent. The matrix A is skew-symmetric. The Pfaffian of
a skew-symmetric matrix is defined by

PfA =
∑

π

sgnσ(π)A(uπ(1), uπ(2)) . . . A(uπ(n−1), uπ(n)),

where the sum is over all partitions π of the numbers 1, . . . , n into n/2 unordered
pairs, and σ(π) is a permutation such that |uσ(π)(1)uσ(π)(2)| . . . |uσ(π)(n−1)uσ(π)(n)| is a
description of the partition π. Because of skew-symmetry, the definition is independent
of the choice of permutation σ(π).
Note that each non zero term in the expansion of PfA corresponds to the weight of
a dimer configuration, but not all terms are counted with the same sign. Kasteleyn
introduces the following definition: an orientation of the edges of the graph G∗ is said
to be admissible if all terms in the expansion of PfA have the same sign. He then
proves

Lemma 2.1 [20] Every finite, simply connected, planar, simple graph has an admissible
orientation of its edges.

A Kasteleyn matrix K̃ associated to a graph G∗ is the weighted adjacency matrix
corresponding to an admissible orientation of the graph G∗. Using the fact that, if A
is a skew-symmetric matrix, then det A = (PfA)2, Kasteleyn deduces the following,

Theorem 2.2 [20] The partition function of the graph G∗ is given by

Z(G∗, ν) =
√

det K̃ = |Pf K̃|.

When the graph G∗ is bipartite, one simplifies the expression for Z(G∗, ν) in the fol-
lowing way. Vertices of G∗ can be divided into two subsets B ∪ W , where B denotes
the black vertices, W the white ones, and vertices in B are only adjacent to vertices
in W . We suppose that |B| = |W |, for otherwise there is no perfect matching on the
graph G∗. Let K be the sub-matrix of K̃ whose line correspond to the white vertices,
and columns to the black ones. Then, K̃ can be written as

K̃ =

(
0 K

−Kt 0

)
.

We deduce,

28



Chapter 2: The dimer model

Theorem 2.3 [20] Suppose that the dual graph G∗ of the graph G is bipartite, then the
partition function of the graph G∗ is given by

Z(G∗, ν) = |detK|.

An expression using a sum of four determinants can be obtained for the partition
function of toroidal graphs [20, 43]. More generally, the partition function of graphs
embedded on surfaces of genus g can be obtained using the sum of 2g determinants. In
order to avoid repetition, and since our interest focuses more on isoradial graphs [26]
(see chapter 3), we postpone giving the formula for the toroidal partition function until
subsection 3.4.1. Although isoradial graphs are specific graphs, the expression for the
partition function is similar to that of the general case.

2.1.3 Boltzmann and Gibbs measures

Let G be a finite graph satisfying (∗). Suppose that a weight function ν is assigned to
the edges of G∗. The Boltzmann measure µ1 is a probability measure on the set of
dimer configurations M(G∗), defined by

µ1(M) =
e−E(M)

Z(G∗, ν)
=

∏
e∈M ν(e)

Z(G∗, ν)
,

for every perfect matching M ∈ M(G∗).
Assume that the dual graph G∗ is bipartite. Let K be a Kasteleyn matrix associated to
G∗, and let e1 = w1b1, . . . , ek = wkbk be a subset of edges of G∗. Kenyon [21] derives
an explicit expression for the probability µ1(e1, . . . , ek) of these edges occurring in a
dimer configuration of G∗ chosen with respect to the Boltzmann measure.

Theorem 2.4 [21]

µ1(e1, . . . , ek) =

∣∣∣∣∣

(
k∏

i=1

K(wi, bi)

)
det

1≤i,j≤k
K−1(bi, wj)

∣∣∣∣∣ .

An expression for the Boltzmann measure on the set of dimer configurations of toroidal
graphs is given in [21]. We state it in subsection 3.4.2 in the case of isoradial graphs.
The expression is similar to that of the general case.

Let G be an infinite graph satisfying (∗). Assume that a weight function ν is assigned
to the edges of G∗. A Gibbs measure is a probability measure on M(G∗) defined
as follows. If the perfect matching in an annular region of G∗ is fixed, the matchings
inside and outside of the annulus are independent, and the probability of any interior
matching M is proportional to

∏
e∈M ν(e).
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2.2 Geometric features of the dimer model

By means of the height function, Thurston interprets lozenge tilings as discrete surfaces
in Z3 projected to the plane; he gives a similar interpretation of domino tilings [44].
In subsection 2.2.1, following [29], we use flows to define height functions on 2-tilings
of quite general graphs, see also [5] for a similar approach. This leads to the surface
interpretation of 2-tilings, whereby each 2-tiling is the projection to the plane of a
discrete surface, whose “height” is given by the height function. In subsection 2.2.2, we
generalize Thurston’s necessary and sufficient condition for the existence of a 2-tiling
of a simply connected subgraph of T, to graphs which have a height function. Under
some regularity assumption, Propp shows that the set of 2-tilings of a finite simply
connected graph G has a structure of distributive lattice [39]. His theorem is stated in
subsection 2.2.3.

Let G be a graph. In the whole of this section, we make the following assumptions
and use the following notations. Suppose that the dual graph G∗ of G is bipartite, B
denotes the set of black vertices, and W the set of white ones. Orient the edges of G∗

from the white vertices to the black vertices. The bipartite coloring of the vertices of G∗

induces an orientation of the edges of G: color the dual faces of the black (resp. white)
vertices of G∗ black (resp. white); orient the boundary edges of the black faces of G
cclw (counterclockwise), the boundary edges of the white faces of G are then oriented
cw (clockwise).

2.2.1 Height functions

Assume that the graph G satisfies condition (∗). We define a set of reference flows
Ω(G∗) on the edges of G∗. Supposing that Ω(G∗) 6= ∅, and fixing a flow ω0 ∈ Ω(G∗),
we define a height function h on the vertices of every 2-tiling T of G. By means of
this height function, T can be interpreted as the projection to the plane of a discrete
surface.

Let us first introduce some notations. Consider a flow ω on the edges of G∗, and let e
be an oriented edge of G∗, denote by ω(e) the amount of flow ω which flows from the
white vertex of e to the black vertex of e (note that ω(e) may be positive or negative).
Suppose that the graph G is infinite. Define Ω(G∗) to be the set of white-to-black flows
on the edges of G∗, which have divergence 1 at every white vertex of G∗, and −1 at
every black vertex of G∗. That is, a flow ω0 belongs to Ω(G∗), if

∀ e ∈ G∗, ω0(e) ≥ 0; ∀w ∈ W,
∑

b: b∼w

ω0(wb) = 1; ∀ b ∈ B,
∑

w: w∼b

ω0(wb) = 1.

Suppose that the graph G is finite, and denote by G∗ the dual graph G∗ which contains
the dual edges of the boundary edges of G. Then we define Ω(G∗) to be the set of
white-to-black flows on the edges of G∗, which have divergence 1 at every white vertex
of G∗, and −1 at every black vertex of G∗.
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Ω(G∗) is called the set of reference flows of the graph G∗. Here are some examples
of graphs G∗ whose set Ω(G∗) 6= ∅.
Examples

1. G∗ has a perfect matching M : define ω0 to be a white-to-black flow, which flows
by 1 along every edge of M .

2. G∗ is infinite and has vertices of degree n: define ω0 to be a white-to-black flow,
which flows by 1/n along every edge of G∗.

3. G∗ is infinite and isoradial: refer to section 3.5 for the definition of a flow ω0 ∈
Ω(G∗).

Consider a graph G (finite or infinite) such that Ω(G∗) 6= ∅, and let ω0 ∈ Ω(G∗).
Consider a 2-tiling T of G. Let us define an R-valued function h on the vertices of T ,
called the height function, which depends on the reference flow ω0, and on the choice
of a vertex v0 of G∗. Denote by M the perfect matching of G∗ corresponding to T , then
M defines a white-to-black unit flow ω on the edges of G∗: flow by 1 along every edge
of M . The difference ω0 − ω is a divergence free flow, which means that the quantity
of flow which enters any vertex of G∗ equals the quantity of flow which exits that same
vertex. Choose a vertex v0 of G, and fix h(v0) = 0. For every other vertex v of T , take
an edge-path γ of G from v0 to v. If an edge uv of γ is oriented in the direction of the
path, and if we denote by e its dual edge, then h increases by ω0(e) − ω(e) along uv;
if an edge uv of γ is oriented in the opposite direction, then h decreases by the same
quantity along uv. As a consequence of the fact that ω0 − ω is a divergence free flow,
the height function h is well defined.
The following lemma gives a correspondence between height functions defined on the
vertices of an infinite graph G, and 2-tilings of G. A similar result holds when the
graph G is finite.

Lemma 2.5 Consider an infinite graph G such that Ω(G∗) 6= ∅, and let ω0 ∈ Ω(G∗).
Let h̃ be an R-valued function on the vertices of G satisfying

• h̃(v0) = 0,

• h̃(v) − h̃(u) = ω0(e) or ω0(e) − 1 for any edge uv oriented from u to v, where e
denotes the dual edge of uv.

Then, there is a bijection between functions h̃ satisfying these two conditions, and 2-
tilings of G.

Proof:

Let T be a 2-tiling of G, M be the corresponding matching, and ω be the unit white-
to-black flow defined by M . Then, the height function h satisfies the conditions of the
lemma: consider an edge uv of G oriented from u to v and denote by e its dual edge,
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then h(v) − h(u) = ω0(e) − ω(e), and by definition ω(e) = 0 or 1.
Conversely, consider an R-valued function h̃ as in the lemma. Let us construct a 2-tiling
T whose height function is h̃. Consider a black face F of G, and let e1, . . . , em be the
dual edges of its boundary edges. Then

∑m
i=1 ω0(ei) = 1, so that there is exactly one

boundary edge uv along which h̃(v)−h̃(u) is ω0(ei)−1 (where ei is the dual edge of uv).
To the face F , we associate the 2-tile of G which is crossed by the edge uv. Repeating
this procedure for all black faces of G, we obtain T . �

Let us return to the classical examples of lozenge tilings of T, and domino tilings of Z2.
The honeycomb lattice T∗ is bipartite and has vertices of degree 3, so that we define the
reference flow ω0 to be a white-to-black flow, which flows by 1/3 along every edge of G∗.
The height function of a lozenge tiling of G corresponding to the flow ω0, changes by
1/3 or −2/3 along every positively oriented edge; it is 1/3 of Thurston’s height function
on lozenge tilings [44]. The square lattice Z2∗ is bipartite and has vertices of degree 4,
so that we define the reference flow ω0 to be a white-to-black flow, which flows by 1/4
along every edge of G∗. The height function of a domino tiling of G corresponding to
the flow ω0, changes by 1/4 or −3/4 along every positively oriented edge. It is 1/4 of
Thurston’s height function on domino tilings [44].

2.2.2 2-tilability

We extend Thurston’s lozenge tilability condition, to graphs G that satisfy condition
(∗), and whose set of flows Ω(G∗) 6= ∅.
Suppose that the graph G is infinite, and consider a reference flow ω0 ∈ Ω(G∗). Let
G1 be a finite simply connected subgraph of G, and denote by ∂G1 the cycle of G1

consisting of its boundary edges. Consider the flow ω0 restricted to the edges of G∗
1

(recall that G∗
1 is the dual graph G∗

1 which contains the dual edges of the edges of ∂G1),
then ω0 ∈ Ω(G∗

1). If the region G1 is 2-tilable, then edges of ∂G1 bound 2-tiles of G1.
This allows us to compute the height function h along ∂G1: fix a vertex v0 of ∂G1,
and set h(v0) = 0. Travel around ∂G1 cclw, if an edge uv is oriented in the direction
of the path, h increases by ω0(e) along uv (where e is the dual edge of uv); else if it is
oriented in the opposite direction, it decreases by ω0(e). Denote by h(v0)

′ the value of
the height function at v0 obtained after one cclw loop around ∂G1.

Lemma 2.6
h(v0)

′ − h(v0) = |B(G1)| − |W (G1)|,
where B(G1) and W (G1) denote the set of black and white faces of G1 respectively.

Proof:

Suppose that G1 consists of a single white face. Denote by e1, . . . , em the dual edges
of the edges of ∂G1. Then, h(v0)

′ − h(v0) = −∑m
i=1 ω0(ei). By definition of the

flow ω0, this quantity is equal to −1. Similarly, if G1 consists of a single black face,
h(v0)

′−h(v0) = 1. The proof is completed by induction on the number of faces included
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in G1, and by linearity of the height function. �

As a consequence of this lemma, we obtain a necessary condition for the region G1 to
be 2-tilable.

Corollary 2.7 If G1 is 2-tilable, then h is well defined on ∂G1, that is h(v0)
′ = h(v0).

Proof:

Since each 2-tile of a 2-tiling of G1 consists of a black and of a white face, we have
|B(G1)| = |W (G1)|. �

In order to state the extension of Thurston’s condition, let us introduce the notion of
weighted distance between vertices of G1 (it is a generalization of the notion of distance
of [44]). Consider two vertices u, v of G1, and let Γ be the set of positively oriented
paths of G1 from u to v, which have no loops. Let γ ∈ Γ, then γ can be written as
γ = {u = u0, u1, . . . , um = v}; denote by ei the dual edge of the edge ui−1ui. The
weighted distance from u to v, denoted by d(u, v), is defined by

d(u, v) = min
γ∈Γ

m∑

i=1

ω0(ei). (2.1)

Assume that the graph G1 satisfies |B(G1)| = |W (G1)|, and consider the height function
h on ∂G1. The following proposition extends Thurston’s condition.

Proposition 2.8 The graph G1 is 2-tilable if and only if,

∀u, v ∈ ∂G1, h(v) − h(u) ≤ d(u, v).

Proof:

We use the following necessary and sufficient condition of Hall [34]: there exists a
perfect matching of the bipartite graph G∗

1 if and only if, for every subset S of black
vertices of G∗

1, |N(S)| ≥ |S|, where N(S) denotes the set of neighbors of vertices in S,
(N(S) consists of white vertices).

Assume there are vertices u, v ∈ ∂G1, such that h(v)−h(u) > d(u, v). Consider the path
γ ∈ Γ from u to v, for which the minimum (2.1) is attained. Without loss of generality,
we can suppose that the path γ consists of edges of G1 \∂G1 exclusively. Indeed, if the
path γ uses edges of ∂G1, say between vertices u′ and v′, then h(v′)− h(u′) = d(u′, v′),
hence there exists a sub-path of γ using edges of G1 \ ∂G1 exclusively, which satisfies
the above. Consider the cycle ∂G2 of G1 which consists of the path γ, and the part of
∂G1 which is on the right of γ. Let G2 be the subgraph of G1 whose boundary is ∂G2.
Let h(u)′ − h(u) be the height change around ∂G2, starting from u going cclw. Then,

h(u)′ − h(u) = h(v) − h(u) − d(u, v).
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Using our assumption, we obtain h(u)′ − h(u) > 0. By lemma 2.6, this implies that
|W (G2)| < |B(G2)|. Moreover, the graph G2 is simply connected, because the path
γ has no loop, and contains no edges of ∂G1; the faces of G2 adjacent to γ are white
because the path γ is positively oriented. Hence, white faces of G1 that are adjacent
to black faces of G2 are exactly the white faces of G2. Denote by S the dual vertices
of the black faces of G2, then N(S) consists of the dual vertices of the white faces of
G2. We deduce that S is a subset of black vertices of G∗

1, which satisfies |N(S)| < |S|.
By Hall’s condition, this implies that there is no perfect matching on G∗

1.

Conversely, let us assume that the graph G∗
1 has no perfect matching, then by Hall’s

condition there exists a subset of black vertices of G∗
1 such that |N(S)| < |S|. Consider

the subgraph G2 of G1 consisting of the dual faces of the black vertices of S, and of dual
faces of the white vertices of N(S). G2 can be written as the disjoint union of its simply
connected components C1, . . . , Cn. Suppose there is a simply connected component Cj

which is strictly included in G1, that is ∂Cj ∩∂G1 = ∅. Then all faces of Cj adjacent to
∂Cj are white faces. Let us compute the height change along ∂Cj starting from a vertex
v0, and going cclw. Recall that white faces of G1 are oriented cw, so that using the defi-
nition of the height function, we obtain h(v0)

′−h(v0) = −∑m
i=1 ω0(ei), where e1, . . . , em

denote the dual edges of the edges of ∂Cj . Using the definition of the reference flow
ω0, we deduce that h(v0)

′ − h(v0) ≤ 0; by lemma 2.6 this implies |W (Cj)| ≥ |B(Cj)|.
By assumption |N(S)| < |S|, so that there exists a connected component of G2, say
C1 which is adjacent to ∂G1, and which satisfies |W (C1)| < |B(C1)|. C1 cannot be the
whole of G1, because |W (G1)| = |B(G1)|. If C1 is an annulus, an argument similar to
the one above shows |W (C1)| ≥ |B(C1)|. Hence C1 is bounded by a positively oriented
path γ which runs from a vertex u to a vertex v of ∂G1, and by the part of ∂G1 which
is on the right of γ. Let us compute the height change along ∂C1, starting from u,
and going cclw. By lemma 2.6, we have h(u)′ − h(u) = |B(C1)| − |W (C1)| > 0. If
f1, . . . , fn denote the dual edges of the edges of γ, the definition of the height function
yields h(u)′ − h(u) = h(v) − h(u) −∑n

i=1 ω0(fi). Moreover, d(u, v) ≤ ∑n
i=1 ω0(fi), so

0 < h(u)′ − h(u) = h(v) − h(u) −∑n
i=1 ω0(fi) ≤ h(v) − h(u) − d(u, v). Hence, we have

found vertices u, v of ∂G1 that satisfy h(v) − h(u) > d(u, v). �

2.2.3 The space of 2-tilings

Consider a graph G whose dual graph G∗ has the following properties (apart from being
bipartite): G∗ is finite and simply connected, and it has no loops (multiple edges are
allowed), moreover every edge of G∗ belongs to at least one perfect matching of the
graph G∗. Under these assumptions, Propp proves that the set of perfect matchings
of G∗ has a structure of distributive lattice [39]. His theorem is in fact true in more
generality (for the set of d-factors), but we restrict the statement to the topic of this
chapter.
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Before stating Propp’s theorem, let us give the following definitions of [39]. An ele-
mentary cycle of G∗ is a simple cycle that encircles a single face. An alternating
cycle of G∗ relative to a perfect matching M of G∗ is an elementary cycle of G∗ in
which the edges alternately belong to M and MC . Call the cycle positive if the edges
in the cycle and M , when directed from black vertices to white vertices, circle the face
in cclw direction, and negative if they circle in the cw direction. A face twist is the
operation of removing from a prefect matching some edges that form an alternating
cycle, and inserting the complementary edges. More specifically, twisting down is the
operation that converts a positive alternating cycle into a negative alternating cycle
around the same face, and twisting up is the reverse operation. Note that twisting
converts a perfect matching into another perfect matching.
A partially ordered set (L,≤) is a lattice if for all elements x and y of L, the set {x, y}
has both a least upper bound (join), and a greatest lower bound (meet). The join and
the meet are denoted by x ∨ y and x ∧ y respectively. A lattice is distributive if for
all x, y, z ∈ L, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Theorem 2.9 [39] Let M(G∗) be the (non empty) set of perfect matchings of the graph
G∗. If we say that a perfect matching M covers a perfect matching N exactly, when
N is obtained from M by twisting down at a face other that the outer face, then the
covering relation makes M(G∗) into a distributive lattice.

The proof uses the notion of height function, which is the reason why this theorem is
stated in the section concerning geometric features of the dimer model. Applications
of this theorem are given in section 4.5.
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Isoradial dimer model

This chapter is devoted to a subclass of all dimer models, called isoradial dimer models,
introduced by R. Kenyon in [26]. The system, that is the graph G, of such a model
satisfies a geometric condition called isoradiality, and the energy of configurations is
determined by a specific weight function called the critical weight function, see section
3.1 for definitions. In this case, Kenyon conjectured that many quantities of the dimer
model can be computed in terms of the local geometry of the system [26]. Our interest
in the isoradial dimer model is motivated by the quadri-tile dimer model (chapter 4),
which was proposed by R. Kenyon as subject of this thesis. Indeed, most of the results
obtained for the quadri-tile dimer model can be generalized to the isoradial dimer model
(section 5.4, chapters 6 and 7).

Let G be an infinite isoradial graph, whose dual graph G∗ is bipartite. Sections 3.2
and 3.3 have a parallel structure. In the first one, we introduce the complex Dirac
operator K [26], and in the second we define the real Dirac operator K. Both operators
are represented by an infinite weighted adjacency matrix indexed by the vertices of
G∗. For K, edges of G∗ are un-oriented and weighted by their critical weight times a
complex number of modulus one. For K, edges of G∗ are oriented with a clockwise odd
orientation, and are weighted by their critical weight. Both weight functions yield the
same probability distribution on finite subgraphs of G∗. Then, we give the definition
and results of [26] for the inverse complex Dirac operator K−1, and prove similar
statements for the inverse real Dirac operator K−1; both inverses can be expressed in
terms of the local geometry of G∗. As we will see in section 5.4, chapters 6 and 7, the
Dirac operator is the right object to obtain explicit expressions for the dimer model on
infinite isoradial graphs with critical weights.

Suppose that the graph G is Λ-periodic (for a 2-dimensional lattice Λ). Consider the
toroidal graphs Ḡn = G/nΛ. In section 3.4, we state the expression of [20] for the
partition function of the dual graph Ḡ∗

n, and the formula of [21] for the Boltzmann
measure on M(Ḡ∗

n). Both expressions involve the restriction of the real Dirac operator
K to Ḡ∗

n. Note that the two weight functions defined for K and K do not yield the same
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probability measure on toroidal graphs, that is we cannot use the restriction of K to
Ḡ∗

n to obtain the above quantities. This explains why we introduce both operators: we
use K for the dimer model on toroidal graphs, and K because it is easier to handle since
it does not involve an orientation of the edges of G∗. In the last part of section 3.4, we
prove that the inverse of the restriction of K to Ḡ∗

n, converges to K−1 on a subsequence
of n’s.

Section 3.5 concerns height functions for 2-tilings of isoradial graphs. Recall that the
definition of a height function depends on the existence of a reference flow (subsection
2.2.1). We prove that such a flow always exists in the case of isoradial graphs, an give
an explicit construction.

3.1 Isoradial graphs and critical weight function

The following definitions are taken from [26].

3.1.1 Isoradial graphs

A graph G is said to be isoradial if it has an isoradial embedding, that is an embedding
such that all faces are inscribable in a circle, and all circumcircles have the same radius.
The common radius is taken to be 1. Moreover all circumcenters of the faces are
contained in the closure of the faces. An isoradial embedding of the dual graph G∗ of an
isoradial graph G is obtained by sending dual vertices to the center of the corresponding
faces. Note that if the circumcenters of two adjacent faces lie on their common edge,
then the dual vertices of these two faces have the same image in the plane, so that the
corresponding dual edge has length 0. From now on, when we speak of an isoradial
graph, we shall actually mean an isoradial embedding of the graph.

Examples of isoradial graphs are the square lattice Z2, the equilateral triangular lattice
T, and rhombus-with-diagonals tilings (see subsection 4.2.2).

3.1.2 Critical weight function

Recall that the energy of a dimer configuration depends on the weight function asso-
ciated to the edges of the dual graph G∗. In the case of isoradial graphs, we consider
a specific weight function ν, called the critical weight function, defined as follows.
To each edge e of G∗, we associate a unit side-length rhombus R(e) whose vertices
are the vertices of e and the vertices of its dual edge (R(e) may be degenerate). Let
R̃ = ∪e∈G∗R(e). Then, define ν(e) = 2 sin θ, where 2θ is the angle of the rhombus R(e)
at the vertex it has in common with e; θ is called the rhombus angle of the edge e.
Note that ν(e) is the length of e∗, the dual edge of e.

When the graph considered for a dimer model is isoradial, and when the energy of
configurations is determined by the critical weight function, we speak of an isoradial
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dimer model.

In the remaining of this chapter, we let G be an infinite isoradial graph satisfying con-
dition (∗). Suppose that its dual graph G∗ is bipartite, B denotes the set of black
vertices, and W the set of white ones. Assume that the critical weight function ν is
assigned to the edges of G∗.

3.2 Complex Dirac operator

This section follows [26]. In subsection 3.2.1, we define the complex Dirac operator K.
In subsection 3.2.2, we define the inverse complex Dirac operator K−1, and state an
existence and uniqueness theorem; then we give an asymptotic formula for K−1.

3.2.1 Complex Dirac operator

Results in this subsection are due to Kenyon [26], see also Mercat [36]. Define the
Hermitian matrix K indexed by the vertices of G∗ as follows. If v1 and v2 are not
adjacent, K(v1, v2) = 0. If w ∈ W and b ∈ B are adjacent vertices, then K(w, b) =
K(b, w) is the complex number of modulus ν(wb) and direction pointing from w to b.
Another useful way to say this is as follows. Let R(wb) be the rhombus associated to
the edge wb, and denote by w, x, b, y its vertices in cclw (counterclockwise) order, then
K(w, b) is i times the complex vector x − y. If w and b have the same image in the
plane, then |K(w, b)| = 2, and the direction of K(w, b) is that which is perpendicular
to the corresponding dual edge, and has sign determined by the local orientation. The
infinite matrix K defines the complex Dirac operator K: CV (G∗) → CV (G∗), by

(Kf)(v) =
∑

u∈G∗

K(v, u)f(u),

where V (G∗) denotes the set of vertices of the graph G∗. Since K maps CB to CW

and CW to CB, it really consists of two operators KWB : CW → CB, and its conjugate
transpose KBW : CB → CW . Both operators KWB and KBW contain all the informa-
tion about K, hence we restrict ourselves to the study of KBW . To simplify notations,
we denote KBW by K and also call it the complex Dirac operator.

3.2.2 Inverse complex Dirac operator

The inverse complex Dirac operator K−1 is defined to be the operator which
satisfies

1. KK−1 = Id,

2. K−1(b, w) → 0, when |b − w| → ∞.
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Kenyon [26] obtains an expression for the inverse complex Dirac operator. Before
stating his theorem, we need to define the rational functions fwv(z). Let w be a
white vertex of G∗. For every other vertex v, define fwv(z) as follows. Let w =
v0, v1, v2, . . . , vk = v be an edge-path of R̃ from w to v. Each edge vjvj+1 has exactly
one vertex of G∗ (the other is a vertex of G). Direct the edge away from this vertex if it
is white, and towards this vertex if it is black. Let eiαj be the corresponding vector in
R̃ (which may point contrary to the direction of the path). fwv is defined inductively
along the path, starting from

fww(z) = 1.

If the edge leads away from a white vertex, or towards a black vertex, then

fwvj+1(z) =
fwvj

(z)

z − eiαj
,

else, if it leads towards a white vertex, or away from a black vertex, then

fwvj+1(z) = fwvj
(z).(z − eiαj ).

The function fwv(z) is well defined (i.e. independent of the edge-path of R̃ from w
to v), because the multipliers for a path around a rhombus of R̃ come out to 1. For
a black vertex b the value K−1(b, w) will be the sum over the poles of fwb(z) of the
residue of fwb times the angle of z at the pole. However, there is an ambiguity in the
choice of angle, which is only defined up to a multiple of 2π. To make this definition
precise, angles are assigned to the poles of fwb(z). Working on the branched cover of
the plane, branched over w, so that for each black vertex b in this cover, a real angle
θ0 is assigned to the complex vector b − w, which increases by 2π when b winds once
around w. In the branched cover of the plane, a real angle in [θ0 − π + ∆, θ0 + π − ∆]
can be assigned to each pole of fwb, for some small ∆ > 0.

Theorem 3.1 [26] There exists a unique K−1 satisfying the above two properties, and
K−1 is given by

K−1(b, w) =
1

4π2i

∫

C
fwb(z) log z dz,

where C is a closed contour surrounding cclw the part of the circle {eiθ | θ ∈ [θ0 − π +
∆, θ0 + π −∆]}, which contains all the poles of fwb, and with the origin in its exterior.

Theorem 3.2 [26] Asymptotically, as |b − w| → ∞,

K−1(b, w) =
1

2π

(
1

b − w
+

fwb(0)

b̄ − w̄

)
+ O

(
1

|b − w|2
)

.

3.3 Real Dirac operator

The structure of this section is similar to that of the previous one. In subsection 3.3.1,
we define the real Dirac operator. In subsection 3.3.2, we define the inverse real Dirac
operator; we give an explicit expression for it, as well as an asymptotic formula. The
proofs use the results for the inverse complex Dirac operator.
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3.3.1 Real Dirac operator

Let us define an orientation of the edges of the graph G∗. To do this, we need to go a
little bit deeper into Kasteleyn’s work [20], see also subsection 2.1.2.
Consider an orientation of the edges of G∗. An elementary cycle C of G∗ is said to be
clockwise odd if, when travelling cw (clockwise) around the edges of C, the number
of co-oriented edges is odd. Note that since G∗ is bipartite, cycles are of even length, so
that the number of contra-oriented edges is also odd. Kasteleyn defines the orientation
of the graph G∗ to be clockwise odd if all elementary cycles of G∗ are clockwise odd.

Lemma 3.3 [20] There exists a clockwise odd orientation of the edges of G∗. Moreover,
if G∗

1 is a finite simply connected subgraph of G∗, the orientation of the edges of G∗
1 is

admissible.

Consider a clockwise odd orientation of the edges of G∗. Define K to be the infinite
adjacency matrix of the graph G∗, weighted by the critical weight function ν. That is,
if v1 and v2 are not adjacent, K(v1, v2) = 0. If w ∈ W and b ∈ B are adjacent vertices,
then K(w, b) = −K(b, w) = (−1)I(w,b)ν(wb), where I(w,b) = 0 if the edge wb is oriented
from w to b, and 1 if it is oriented from b to w. The infinite matrix K defines the real
Dirac operator K: CV (G∗) → CV (G∗), by

(Kf)(v) =
∑

u∈G∗

K(v, u)f(u),

The matrix K is also called a Kasteleyn matrix for the underlying dimer model. As
in the complex case, K consists of two operators KWB and KBW . We again restrict
ourselves to the study of KBW , denote it by K, and call it the real Dirac operator.

3.3.2 Inverse real Dirac operator

The inverse real Dirac operator K−1 is defined to be the unique operator satisfying

1. KK−1 = Id,

2. K−1(b, w) → 0, when |b − w| → ∞.

Let us define the rational functions fwx(z). They are the analogous of the rational
functions fwv(z), but are defined for vertices x ∈ G∗ (whereas the functions fwv(z)
were defined for vertices v ∈ R̃). Let w ∈ W , and let x ∈ B (resp. x ∈ W ); consider
the edge-path w = w1, b1, . . . , wk, bk = x (resp. w = w1, b1, . . . , wk, bk, wk+1 = x) of G∗

from w to x. Let R(wjbj) be the rhombus associated to the edge wjbj , and denote by
wj , xj , bj , yj its vertices in cclw order; eiαj is the complex vector yj − wj , and eiβj is
the complex vector xj − wj . In a similar way, denote by wj+1, x

′
j , bj , y

′
j the vertices of

the rhombus R(wj+1bj) in cclw order, then eiα′
j is the complex vector y′j − wj+1, and
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eiβ′
j is the complex vector x′

j − wj+1. fwx(z) is defined inductively along the path,

fww(z) = 1,

fwbj
(z) = fwwj

(z)
(−1)

I(wj,bj)ei
αj+βj

2

(z − eiαj )(z − eiβj )
,

fwwj+1(z) = fwbj
(z)(−1)

I(wj+1,bj)e−i
α′

j+β′
j

2 (z − eiα′
j )(z − eiβ′

j ).

Remark 3.4 We have the following relations between the real and the complex case.

1. ∀w ∈ W, ∀x ∈ B ∪ W , fwx(z) = fwx(0)fwx(z).

2. ∀w ∈ W, ∀ b ∈ B, such that w is adjacent to b, K(w, b) = fwb(0)K(w, b).

Proof:

1. This is a direct consequence of the definitions of the functions fwx and fwx.

2. Let R(wb) be the rhombus associated to the edge wb, and let w, x, b, y be its vertices
in cclw order. Denote by eiα the complex vector y − w, and by eiβ the complex vector
x − w. Let θ be the rhombus angle of the edge wb. By definition we have,

K(w, b) = (−1)I(w,b)2 sin θ = (−1)I(w,b)
ei α−β

2 − e−i α−β
2

i
,

K(w, b) = i(eiβ − eiα),

fwb(0) = (−1)I(w,b)e−i α+β
2 .

Combining the above three equations yields 2. �

Lemma 3.5 The function fwx is well defined.

Proof:

Showing that the function fwx is well defined amounts to proving that fwx is independent
of the edge-path of G∗ from w to x. This is equivalent to proving the following: let
w1, b1, . . . , wk, bk, wk+1 = w1 be the vertices of an elementary cycle C of G∗, where
vertices are enumerated in cclw order; if fw1w1(z) = 1 then fw1wk+1

(z) = 1. Let us use
the notations introduced in the definition of fwx (see also figure 3.1), and denote indices
cyclically, that is k + 1 ≡ 1. By remark 3.4, we have

fw1wk+1
(z) = fw1wk+1

(0)fw1wk+1
(z).

Since the function fwx is well defined, fw1wk+1
(z) = 1. Hence, it remains to prove that

fw1wk+1
(0) = 1.
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Figure 3.1: Notations

By definition of fwx, we have

fw1wk+1
(0) =

k∏

j=1

(
(−1)

(I(wj,bj)+I(wj+1,bj))ei
αj+βj

2 e−i
α′

j+β′
j

2

)
.

Moreover for every j, α′
j = βj (see figure 3.1), so that

fw1wk+1
(0) =

k∏

j=1

(
(−1)

(I(wj,bj)+I(wj+1,bj))ei
αj−βj

2 ei
α′

j−β′
j

2

)
.

Let θj (resp. θ′j) be the rhombus angle of the edge wjbj (resp. wj+1bj), then

fw1wk+1
(0) = (−1)

∑k
j=1(I(wj,bj)+I(wj+1,bj))ei

∑k
j=1(θj+θ′j). (3.1)

The cycle C corresponds to a face of the graph G∗. Let c be the circumcenter of this
face, and let τj (resp. τ ′

j) be the angle of the rhombus R(wjbj) (resp. R(wj+1bj)) at the

vertex c. Then τj = π−2θj , and τ ′
j = π−2θ′j (see figure 3.1). Since

∑k
j=1(τj +τ ′

j) = 2π,

we deduce
∑k

j=1(θj + θ′j) = π(k − 1). Hence,

ei
∑k

j=1(θj+θ′j) = −(−1)k. (3.2)

Moreover I(wj+1,bj) = 1 − I(bj ,wj+1), and (−1)
1−I(bj ,wj+1) = (−1)

I(bj ,wj+1)−1
, so

(−1)
∑k

j=1(I(wj,bj)+I(wj+1,bj)) = (−1)
∑k

j=1(I(wj,bj)+I(bj ,wj+1))−k
.
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Note that
∑k

j=1(I(wj ,bj) + I(bj ,wj+1)) is the number of co-oriented edges encountered
when travelling cclw around the cycle C. Since the orientation of the edges of G∗ is
clockwise odd, it is also counterclockwise odd, and so this number is odd. This implies

(−1)
∑k

j=1(I(wj,bj)+I(wj+1,bj)) = −(−1)−k. (3.3)

The proof is completed by combining equations (3.1), (3.2) and (3.3). �

As in the complex case, a real angle in [θ0 − π + ∆, θ0 + π−∆] can be assigned to each
pole of fwb, for some small ∆ > 0; where θ0 is the real angle assigned to the vector
b − w.

Proposition 3.6 The inverse real Dirac operator is given by

K−1(b, w) =
1

4π2i

∫

C
fwb(z) log z dz, (3.4)

where C is a closed contour surrounding cclw the part of the circle {eiθ | θ ∈ [θ0 − π +
∆, θ0 + π −∆]}, which contains all the poles of fwb, and with the origin in its exterior.

Proof:

Let F(b, w) be the right hand side of (3.4). Fix a vertex w0 ∈ W , and let us prove that∑
b∈B K(w0, b)F(b, w) = δw0(w). Denote by b1, . . . , bk the black neighbors of w0. Using

remark 3.4, we obtain for every j,

K(w0, bj) = fw0bj
(0)K(w0, bj),

fwbj
(z) = fwbj

(0)fwbj
(z).

Moreover ∀w ∈ W, ∀ b ∈ B, we have fwb(0) = fwb(0)−1 = fbw(0), so that fw0bj
(0)fwbj

(0) =
fw0bj

(0)fbjw(0) = fw0w(0). Hence, using theorem 3.1, we obtain for every j,

K(w0, bj)F(bj , w) = fw0w(0)K(w0, bj)K
−1(bj , w).

Since K(w0, b) = 0 when w0 and b are not adjacent, and since K−1 is the inverse
complex Dirac operator, we obtain

∑

b∈B

K(w0, b)F(b, w) =
k∑

j=1

K(w0, bj)F(bj , w) = fw0w(0)
k∑

j=1

K(w0, bj)K
−1(bj , w) = fw0w(0)δw0 (w) = δw0 (w).

To prove that F(b, w) → 0 as |b − w| → ∞, see proposition 3.7 below. �

Proposition 3.7 Asymptotically, as |b − w| → ∞,

K−1(b, w) =
1

2π

(
fwb(0)

b − w
+

fwb(0)

b̄ − w̄

)
+ O

(
1

|b − w|2
)

.
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Proof:

Using proposition 3.6, remark 3.4, and the asymptotic formula for K−1(b, w) of theorem
3.2, we obtain

K−1(b, w) =
1

4π2i

∫

C
fwb(z) log zdz = fwb(0)K−1(b, w),

= fwb(0)

(
1

2π

(
1

b − w
+

fwb(0)

b̄ − w̄

)
+ O

(
1

|b − w|2
))

,

=
1

2π

(
fwb(0)

b − w
+

fwb(0)

b̄ − w̄

)
+ O

(
1

|b − w|2
)

.

�

Proposition 3.8 The inverse real Dirac operator K−1 is unique.

Proof:

This follows from the uniqueness of the complex inverse Dirac operator K−1. �

3.4 Isoradial dimer model on the torus

Let Λ be a two-dimensional lattice. Suppose that the graph G is Λ-periodic, and assume
that the bipartite coloring of the vertices of G∗ is preserved by Λ-translations, that is
black vertices are mapped to black ones, and white vertices to white ones. Let us call
horizontal and vertical the directions given by two basis vectors of Λ. Define Ḡn

to be the toroidal graph G/nΛ, then the graph Ḡ∗
n is bipartite. In subsection 3.4.1,

we give Tesler’s result for the partition function of the toroidal graph Ḡ∗
n [43]. In

subsection 3.4.2, we state Kenyon’s expression for the Boltzmann measure on M(Ḡ∗
n)

[21]. In subsection 3.4.3, we prove that the inverse Kasteleyn matrices of the graph
Ḡ∗

n converge on a subsequence of n’s to the inverse real Dirac operator indexed by the
vertices of G∗.

3.4.1 Toroidal partition function

The toroidal partition function Z(Ḡ∗
n, ν) is defined to be the weighted sum of dimer

configurations of the graph Ḡ∗
n. Before giving an explicit expression for Z(Ḡ∗

n, ν), let us
orient the edges of G∗. Consider the graph Ḡ∗

1, it is a bipartite graph on the torus. Fix
a reference matching M0 of Ḡ∗

1. For every other perfect matching M of Ḡ∗
1, consider the

superposition M ∪M0 of M and M0, then M ∪M0 consists of doubled edges and cycles.
Let us define four parity classes for perfect matchings M of Ḡ∗

1: (e,e) consists of perfect
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matchings M , for which cycles of M ∪ M0 circle the torus an even number of times
horizontally and vertically; (e,o) consists of perfect matchings M , for which cycles of
M ∪M0 circle the torus and even number of times horizontally, and an odd number of
times vertically; (o,e) and (o,o) are defined in a similar way. By Tesler [43], one can
construct an orientation of the edges of Ḡ∗

1, so that the corresponding adjacency matrix
K1

1 has the following property: perfect matchings which belong to the same parity class
have the same sign in the expansion of the determinant; moreover of the four parity
classes, three have the same sign and one the opposite sign. By an appropriate choice
of sign, we can make the (e,e) class have the plus sign in det K1

1, and the other three
have minus sign. Consider a horizontal and a vertical cycle of Ḡ1. Then define K1

2

(resp. K1
3) to be the matrix K1

1 where the sign of the coefficients corresponding to edges
crossing the horizontal (resp. vertical) cycle is reversed; and define K1

4 to be the matrix
K1

1 where the sign of the coefficients corresponding to the edges crossing both cycles
are reversed. By Kasteleyn [20] (in the domino case), and Tesler [43] (in the general
case), we have the following,

Z(Ḡ∗
1, ν) =

1

2
(−det K1

1 + detK1
2 + det K1

3 + detK1
4).

The orientation of the edges of Ḡ∗
1 defines a periodic orientation of the graph G∗. For

every n, consider the graph Ḡ∗
n, and the four matrices Kn

1 , Kn
2 , Kn

3 , Kn
4 defined as above.

These matrices are called the Kasteleyn matrices of the graph Ḡ∗
n.

Theorem 3.9 [20, 43]

Z(Ḡ∗
n, ν) =

1

2
(−det Kn

1 + detKn
2 + detKn

3 + detKn
4 ).

The orientation defined on the edges of the graph G∗ is a clockwise odd orientation.
Let K be the real Dirac operator indexed by the vertices of G∗, corresponding to the
critical weight function ν, and to this clockwise odd orientation. Note that except for
edges crossing the horizontal and the vertical cycle, the coefficients of the Kasteleyn
matrices Kn

ℓ and of the real Dirac operator agree on edges they have in common.

3.4.2 Toroidal Boltzmann measure

Let µn be the Boltzmann measure on the set of dimer configurations M(Ḡ∗
n) of the

toroidal graph Ḡ∗
n. Let e1 = w1b1, . . . , ek = wkbk be a subset of edges of Ḡ∗

n which
do not cross the horizontal and the vertical cycle of Ḡn. Kenyon [21] derives an ex-
plicit expression for the probability µn(e1, . . . , ek) of these edges occurring in a dimer
configuration of Ḡ∗

n chosen with respect to the Boltzmann measure.

Theorem 3.10 [21] The probability µn(e1, . . . , ek) is given by

(
k∏

i=1

K(wi, bi)

)(
− detK

n
1

2Z(Ḡ∗
n, ν)

det
1≤i,j≤k

(
(Kn

1 )−1(bi, wj)
)

+
4∑

ℓ=2

det K
n
ℓ

2Z(Ḡ∗
n, ν)

det
1≤i,j≤k

(
(Kn

ℓ )−1(bi, wj)
)
)

.
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3.4.3 Inverse real Dirac operator and inverse Kasteleyn matrices

The inverse real Dirac operator K−1 indexed by the vertices of the graph G∗ can be
seen as the limit on a subsequence of n’s of each of the inverse Kasteleyn matrices of
the graphs Ḡ∗

n.

Proposition 3.11 For every w ∈ W , b ∈ B, we have

∀ ℓ = 1, . . . , 4, lim′
n→∞(Kn

ℓ )−1(b, w) = K−1(b, w),

where lim′ means the limit is taken along a subsequence (nj) of n’s.

Proof:

The following theorem of [29] gives the convergence on a subsequence of n’s of the
inverse Kasteleyn matrices of the graph Ḡ∗

n.

Theorem 3.12 [29] For every w ∈ W, b ∈ B,

∀ ℓ = 1, . . . , 4, lim′
n→∞(Kn

ℓ )−1(b, w) =
1

(2π)2

∫

S1×S1

Qb,w(z, u)uxzy

P (z, u)

dz

z

du

u
, (3.5)

where Qb,w and P are polynomials (Qb,w only depends on the equivalence class of w and
b), and x (resp. y) is the horizontal (resp. vertical) translation from the fundamental
domain of b to the fundamental domain of w.

Denote by F(b, w) the right hand side of (3.5). In [29], it is proved that F(b, w) converges
to 0 as |b − w| → ∞, as long as the dimer model is not in its frozen phase. Moreover,
it is proved in [28] that the isoradial dimer model is never in its frozen phase when
the weights associated to the edges of the graph G∗ are the critical weights. Hence, we
deduce that F(b, w) converges to 0 as |b − w| → ∞.
Let us prove that for every b ∈ B, w ∈ W , F(b, w) = K−1(b, w). Consider two white
vertices w1, w2 of G∗, and denote by b1, . . . , bk the neighbors of w1. Assume n is large
enough so that the graph Ḡ∗

n contains w1, w2, b1, . . . , bk, and so that the edges w1bj do
not cross the horizontal and vertical cycle of Ḡn. Then, for every ℓ = 1, . . . , 4,

∑

b∈B

Kn
ℓ (w1, b)(K

n
ℓ )−1(b, w2) =

k∑

j=1

Kn
ℓ (w1, bj)(K

n
ℓ )−1(bj , w2) = δw1w2 .

Moreover, Kn
ℓ (w1, bj) = K(w1, bj), so that taking the limit on a subsequence of n’s, and

using theorem 3.12, we obtain

k∑

j=1

K(w1, bj)F(bj , w2) = δw1w2 .

This is true for all white vertices w1, w2 ∈ G∗. Moreover, lim|b−w|→∞ F(b, w) = 0. Using
the definition of the inverse real Dirac operator, and the uniqueness proposition 3.8,
we deduce that for all b ∈ B, w ∈ W , F(b, w) = K−1(b, w). �
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3.5 Isoradial dimer model and height functions

By subsection 2.2.1, we know that the definition of a height function h on the vertices
of 2-tilings of G depends on the existence of a reference flow ω0 ∈ Ω(G∗) on the edges
of G∗. The following lemma states that such a flow always exists when G is an infinite
isoradial graph. An explicit construction is given in the proof.

Lemma 3.13 If G is an infinite isoradial graph satisfying condition (∗), then Ω(G∗) 6=
∅.

Proof:

Consider an edge wb of G∗, let R(wb) be the rhombus associated to wb, and let θwb be
the corresponding rhombus angle. Define ω0 to be a white-to-black flow, which flows
by θwb/π along every edge wb. Then ω0 ∈ Ω(G∗), indeed we have

∀w ∈ W,
∑

b: b∼w

2θwb = 2π; ∀ b ∈ B,
∑

w: w∼b

2θwb = 2π.

�
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Chapter 4

Quadri-tile dimer model

The aim of the first two chapters was to introduce the dimer model in all of its gener-
ality. To go deeper in our study, the third chapter is dedicated to the particular model
which was proposed by R. Kenyon as subject for this thesis: the quadri-tile dimer
model. In general, choosing a model amounts to choosing a graph G (the system). For
instance, when G is the square lattice Z2, or the equilateral triangular lattice T, we
obtain the domino and the lozenge dimer model respectively (see subsection 2.1.1). In
the case of the quadri-tile dimer model, the process is slightly different.

In section 4.1, we define a set of tiles which are quadrilaterals made of adjacent right
triangles. Quadri-tilings are tilings obtained from this set of tiles.

In section 4.2, we prove that quadri-tilings correspond to 2-tilings of a family of graphs
which are rhombus-with-diagonals tilings. Hence, quadri-tilings actually consist of a
family of dimer models, this is precisely the interest of the model.

Section 4.3 is about a sub-family Q of the set of all quadri-tilings, consisting of quadri-
tilings that are 2-tilings of lozenge-with-diagonals tilings. Quadri-tilings of Q corre-
spond to two superposed dimer models: let Q ∈ Q, then Q is a 2-tiling of its underlying
lozenge-with-diagonals tiling, and the corresponding lozenge tiling is a 2-tiling of the
equilateral triangular lattice T. We refer to this sub-family as the triangular quadri-tile
dimer model.

The triangular quadri-tile dimer model is interpreted geometrically in section 4.4. We
prove that quadri-tilings of Q are characterized by two height functions, that is quadri-
tilings are seen as discrete surfaces of dimension 2 in a space of dimension 4. Hence,
the triangular quadri-tile dimer model is a random interface model in dimension 2 + 2.
This is the first model of the kind obtained as superposition of 2 dimer models.

In section 4.5, using Propp’s result [39] (see also subsection 2.2.3), we describe the
space of quadri-tilings of the triangular quadri-tile dimer model restricted to a simply
connected subgraph of T.
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4.1 Quadri-tiles and quadri-tilings

Consider the set of right triangles whose hypotenuses have length two. Color the
vertex at the right angle black, and the other two vertices white. A quadri-tile is a
quadrilateral obtained from two such triangles in two different ways: either glue them
along the hypotenuse, or supposing they have a leg of the same length, glue them along
this edge matching the black (white) vertex to the black (white) one, see figure 4.1.
Both types of quadri-tiles have four vertices.

Figure 4.1: Two types of quadri-tiles (left), and a quadri-tiling (right).

A quadri-tiling of the plane is an edge-to-edge tiling of the plane by quadri-tiles that
respects the coloring of the vertices, that is black (resp. white) vertices are matched
to black (resp. white) ones. An example of quadri-tiling is given in figure 4.1. In all
that follows, we consider quadri-tilings that use finitely many different quadri-tiles, up
to isometry.

4.2 Underlying rhombus-with-diagonals tilings

In this section, we prove that each quadri-tiling is a 2-tiling of a unique rhombus-with-
diagonals tiling. Then we give two properties of rhombus-with-diagonals tilings.

4.2.1 Underlying rhombus-with-diagonals tilings

Lemma 4.1 Quadri-tilings are in one-to-one correspondence with 2-tilings of graphs
which are rhombus-with-diagonals tilings of the plane, and which use finitely many
different rhombi, up to isometry.

Proof:

Consider a rhombus-with-diagonals tiling of the plane R. Color the vertices at the
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crossing of the diagonals of the rhombi black, and the boundary vertices of the rhombi
white, then 2-tilings of R are quadri-tilings. Conversely, consider a quadri-tiling of
the plane Q. Denote by R the tiling of the plane obtained from Q by drawing, for
each quadri-tile, the edge separating the two right triangles. Let b be a black vertex of
R, denote by w1, . . . , wk the neighbors of b in cclw (counterclockwise) order. In each
right triangle, the black vertex is adjacent to two white vertices, and since the gluing
respects the coloring of the vertices, w1, . . . , wk are white vertices. Moreover, b is at
the right angle, so k = 4 and the edges w1w2, w2w3, w3w4, w4w1 are hypotenuses of
right triangles. Therefore w1, . . . , w4 form a side-length 2 rhombus, and b stands at the
crossing of its diagonals. This is true for any black vertex b of R, so R is a rhombus-
with-diagonals tiling of the plane, and Q is a 2-tiling of R. �

As a consequence of lemma 4.1, a quadri-tiling Q is a 2-tiling of a unique rhombus-with-
diagonals tiling, which we call the underlying rhombus-with-diagonals tiling, and
which we denote by R(Q).

4.2.2 Properties of rhombus-with-diagonals tilings

Consider a rhombus-with-diagonals tiling of the plane R, and denote by R the rhombus
tiling corresponding to R, that is R is the tiling R without the diagonals.

Property 4.2

1. The graph R∗ is bipartite.

2. The graph R is isoradial.

Proof:

1. Cycles corresponding to the faces of the graph R have length four, hence R has a
bipartite coloring of its vertices, say black and white. Consider a face of R, and orient
its boundary edges cclw. If the white vertex of the hypotenuse-edge comes before the
black one, assign color black to the face, else assign color white. This defines a bipartite
coloring of the faces of R, which is also a bipartite coloring of the vertices of R∗ (see
figure 4.2).

Figure 4.2: Bipartite coloring of the vertices of R (left), and corresponding bipartite
coloring of the faces of R and of the vertices of R∗ (right).
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2. Faces of R are right triangles, so that circumcenters are at the mid-point of the
hypotenuse edges. The radius of the circumcenters is equal to half the edge-length of
the rhombi, that is 1.

�

Note that the circumcenters of the faces of R are on the boundary of the faces, so that
in the isoradial embedding of the dual graph R∗, some dual edges have length 0.

4.3 Triangular quadri-tile dimer model

We explain how the triangular quadri-tile dimer model consists of two superposed dimer
models. Then, we compute the critical weights for quadri-tiles of this model.

4.3.1 Definition

Let Q be the set of quadri-tilings of the plane whose underlying tilings are lozenge-
with-diagonals tilings, Q is a sub-family of all quadri-tilings of the plane. Our interest
in Q lies in the fact that it consists of two superposed dimer models. More precisely, let
Q ∈ Q be a quadri-tiling, and let L(Q) be its underlying lozenge-with-diagonals tiling,
then Q is a 2-tiling of L(Q). Now, denote by L(Q) the lozenge tiling corresponding to
L(Q), then L(Q) is a 2-tiling of the equilateral triangular lattice T. The model which
considers quadri-tilings of Q is called the triangular quadri-tile dimer model.
Let us write M for the set of dimer configurations corresponding to quadri-tilings of
Q; if L denotes the set of lozenge-with-diagonals tiling of the plane, up to isometry,
then M can be written as M = ∪L∈LM(L∗).

Up to isometry, we classify quadri-tiles of quadri-tilings of Q in four types, denoted by
I, II, III, IV see figure 4.3.

I II III IV

Figure 4.3: Four types of quadri-tiles for quadri-tilings of Q.

4.3.2 Critical weight function

Consider a quadri-tiling Q ∈ Q. By property 4.2, the lozenge-with-diagonals tiling L(Q)
is an isoradial graph. Let us compute the critical weight function ν associated to edges
of L(Q)∗. Classify edges of L(Q)∗ in four types I, II, III, IV, where for i = I, . . . , IV, an
edge of type i corresponds to a quadri-tile of type i. Figure 4.4 represents the rhombus
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R(ei) associated to an edge ei of type i. Note that edges eIII and eIV have length zero,
so that their rhombus is degenerate, and they have the same weight. The rhombus
angle of the edge ei allows us to compute the critical weights:

ν(eI) = 1, ν(eII) =
√

3, ν(eIII) = ν(eIV) = 2.

ee

  )
e

e e

eν(    )=   ν(    )=   

2

2

3 6

R
R (  )

R (    )

e

e

ν(    )=    13

θ= π /  θ= π / θ= π / 

(e
III

I

I
II

III II I

III II

Figure 4.4: Critical weight function for L(Q)∗.

The graph T is also isoradial, and the critical weight function for T∗ associates weight√
3 to every edge.

4.4 Quadri-tilings as surfaces in dimension 2+2

We define a first height function on the vertices of every quadri-tiling Q, interpreted
as a 2-tiling of its underlying rhombus-with-diagonals tiling. When Q ∈ Q, we define
a second height function on the vertices of Q, which corresponds to the height of
its underlying lozenge-with-diagonals tiling, interpreted as a 2-tiling of the triangular
lattice T. This leads to the interpretation of Q as a 2-dimensional surface in a 4-
dimensional space.

4.4.1 First height function

Consider a quadri-tiling of the plane Q, and let R(Q) be its underlying rhombus-with-
diagonals tiling. Then Q is a 2-tiling of R(Q), and the dual graph R(Q)∗ of R(Q)
is bipartite. Fix a vertex v0 of R(Q) on a boundary edge of one of the rhombi. By
subsection 2.2.1, the definition of a height function on the vertices of Q depends on the
existence of a reference flow ω0 on the edges of R(Q)∗. Note that vertices of R(Q)∗ are
of degree 3, so that we define ω0 to be a white-to-black flow, which flows by 1/3 along
every edge of R(Q)∗; then ω0 ∈ Ω(R(Q)∗) (the set of reference flows). This defines
a height function on the vertices of Q, which we call the first height function, and
denote by hR. Consider the orientation on the edges of R(Q) induced by the bipartite
coloring of its faces, and let uv be an edge of Q oriented from u to v. If uv bounds
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a quadri-tile, then hR increases by 1/3 along uv, else if it lies across a quadri-tile, it
decreases by 2/3. An example of computation of hR is given in figure 4.5.

4.4.2 Second height function

Consider a quadri-tiling Q ∈ Q, and let L(Q) be its underlying lozenge-with-diagonals
tiling. Let us assign the first height function hL to the vertices of Q. We define a second
height function on the vertices of L(Q) (which are the same as the vertices of Q). It
is just 1/3 of Thurston’s classical height function on lozenges [44] (see also subsection
2.2.1).

The lozenge tiling L(Q) corresponding to L(Q) is a 2-tiling of the triangular lattice T.
The honeycomb lattice T∗ is bipartite and has vertices of degree 3, so that we define ω0

to be a white-to-black flow, which flows by 1/3 along every edge of T∗; then ω0 ∈ Ω(T∗).
Take v0 to be the vertex chosen for the height function hL (it is also a vertex of T).
This defines a height function on the vertices of L(Q), which we call the second height
function, and denote by h. Consider the orientation on the edges of T induced by the
bipartite coloring of its faces, and let uv be an edge of L(Q) oriented from u to v. If
uv bounds a lozenge, then h increases by 1/3 along uv, else if it lies across a lozenge,
it decreases by 2/3.
There is a natural way of defining a value for h at the vertex at the crossing of the
diagonals of the lozenges of L(Q). When going cclw around the vertices of a lozenge
ℓ of L(Q), starting from the smallest value, say α, vertices take on successive values
α, α + 1/3, α + 2/3, α + 1/3, so that we assign value α + 1/3 to the vertex at the center
of the lozenge ℓ. An example of computation of h is given in figure 4.5.

0
0

0
0

L

-2/3

1/3
-1/3

1/3
-1

-4/3-1/3

 
-1/3
1/3

2/3

horientation for 

1/3 0

0
0

0

0

0v

-2/3

-1/3

-1/3

1/3
2/3

1/3
-1/3
2/30

2/3

-1/3

0

-1
2/3

1/3

-2/3
-2/3

-1/3

-1/3

1/3
-1

0
-2/3

-1

1/3

-2/3
1

-2/3

2/3
-2/3

-1/3

-1/3

0

-2/3

Figure 4.5: Quadri-tiling of an underlying lozenge tiling with height function hL (above)
and h (below).
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4.4.3 Geometric interpretation

In Thurston’s geometric interpretation of the second height function h [44], a lozenge
tiling is seen a surface S in 1

3Z3 (where the diagonals of the cubes are orthogonal to
the plane), that has been projected orthogonally to the plane. S is determined by the
height function h. In a similar way, a quadri-tiling of the plane Q ∈ Q can be seen
as a surface S1 in a 4-dimensional space that has been projected orthogonally to the
plane. S1 can also be projected to 1

3 Z̃3 (Z̃3 is the space Z3 where cubes are drawn with
diagonals on their faces), and one obtains a surface S2. When projected to the plane,
S2 is the underlying lozenge-with-diagonals tiling L(Q).

4.5 The space of quadri-tilings

Consider a finite simply connected subgraph G of the equilateral triangular lattice T,
and let ∂G be the cycle of G consisting of its boundary edges. Denote by Q(∂G)
the set of quadri-tilings of ∂G whose underlying tilings are lozenge tilings of G. As a
consequence of theorem 2.9 [39], we obtain

Lemma 4.3 Let L be a lozenge tiling of G, and let L be the corresponding lozenge-with-
diagonals tiling. Then every quadri-tiling of L can be transformed into any other by a
finite sequence of the following moves, (in brackets is the number of possible orientations
for the graph corresponding to the move):

( )

)

)

)

(

(

(

( )x 2

3x

x 6

x 1

x 3

)6x(

Figure 4.6: Quadri-tile moves.

Proof:

Denote by L∗ the dual graph of L. Every edge of L∗ belongs to at least one perfect
matching, so that by theorem 2.9 [39], one can transform any matching of L∗ into
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any other by a finite sequence of inner face twists (see subsection 2.2.3). Using the
bijection between dimer configurations and 2-tilings, the twisting (up or down) of a
face of a perfect matching of the graph L∗ can be represented on the graph L, we then
speak of the dual representation of a face twist. The moves represented in figure 4.6
are exactly the duals of the face twists that occur in L∗. �

Up to isometry, let us refer to the moves pictured in figure 4.6 as first, second, ...,
sixth quadri-tile move, going from left to right and from top to bottom.

In [12], Elkies, Kuperberg, Larsen and Propp proved the next lemma in the case of
dominos, the same proof can be applied to the case of lozenges. The next lemma can
also be seen as a consequence of Propp’s theorem 2.9 [39] (which came one year later,
but is more general).

Lemma 4.4 Every lozenge tiling of the graph G can be transformed into any other by
a finite sequence of lozenge moves:

Figure 4.7: Lozenge moves.

Define the first lozenge tiling of figure 4.7 to be the full cube, and the second to be
the empty cube.
Note that if L is any lozenge tiling of G, then L is quadri-tilable with quadri-tiles
obtained by cutting in two every lozenge along one of its diagonals. Moreover, when
one performs a lozenge move on such a quadri-tiling, one still obtains a quadri-tiling of
Q(∂G). Let us call elementary moves the quadri-tile moves and the lozenge moves
performed on quadri-tilings as described above. Then we have:

Lemma 4.5 Every quadri-tiling of Q(∂G) can be transformed into any other by a finite
sequence of elementary moves.

Proof:

This results from lemmas 4.3, 4.4, and the above observation. �
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Chapter 5

Combinatorics of the triangular
quadri-tile and isoradial dimer
models

The first natural step in the study of a dimer model on a graph G is to understand its
combinatorics. This amounts to computing the partition function - the weighted sum
of dimer configurations of the graph G∗ - introduced in subsection 2.1.2. Let us recall
that dimer configurations represent diatomic molecules adsorbed on the surface of a
crystal. This motivates the study of dimer models on infinite graphs. The partition
function is then infinite, and the question is to understand its rate of growth. The
classical way to approach this problem is to take an exhaustion {Gn} by finite graphs
of the infinite graph G, and to take a limit of the partition functions of the graphs Gn,
normalizing them by an appropriate factor. In the case of the dimer model, this limit is
highly dependent on the choice of the exhaustion: boundary effects are very important,
and are at the heart of the phase transition phenomenon [7], [29].

The goal of this chapter is to understand the combinatorics of the triangular quadri-tile
dimer model, in the case where the critical weight function is associated to quadri-tiles.
Combinatorics of this model are complicated by the fact that quadri-tilings do not
correspond to dimer configurations of a fixed graph. A natural quantity to introduce
is the total partition function: fixing a finite simply connected subgraph G of the
equilateral triangular lattice T, it is defined to be the weighted sum of quadri-tilings
whose underlying tiling is a lozenge tiling of G. The main result of this chapter is
theorem 5.1 of section 5.1: it is an explicit formula for the growth rate of the total
partition function, in the case of a specific exhaustion. It is proved in section 5.5. The
proof is a combination of propositions 5.2, 5.4, 5.8 of sections 5.2, 5.3, 5.4. Each of
these results is stronger than what is actually needed in the proof of theorem 5.1, and
has an interest of its own.

Suppose there is a weight function ν associated to quadri-tiles of the triangular quadri-
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tile dimer model. Referring to subsection 4.3.1, this amounts to assigning weights a, b, c
to quadri-tiles of type I, II, III and IV respectively.
Consider a finite simply connected subgraph G of T. Proposition 5.2 states that, when
the weights a, b, c satisfy a simple condition, the quadri-tile partition function is the
same for all lozenge-with-diagonals tilings of G. As a consequence, the total partition
function is the product of the quadri-tile partition function, and of the lozenge partition
function.

In section 5.3, we consider two exhaustions {Ln} and {L̄n} by lozenge-with-diagonals
tilings, the first one by planar graphs, the second by toroidal graphs. Proposition 5.4
states that when the weights a, b, c satisfy another simple condition, the quadri-tile
partition functions of these two exhaustions have the same growth rate.

In section 5.4, we consider an infinite Λ-periodic isoradial graph G (for a 2-dimensional
lattice Λ), with critical weights on the edges of G∗. A natural exhaustion of G by
toroidal graphs is {Ḡn}, where Ḡn = G/nΛ. Using a result of [26], proposition 5.8 gives
an explicit formula for the growth rate of the partition function of this exhaustion.

5.1 Growth rate of the total partition function in the case
of critical weights

5.1.1 Definition of the total partition function

Let us define the total partition function for the triangular quadri-tile dimer model.
Recall that dual edges corresponding to quadri-tiles of this model are classified in four
types (see subsection 4.3.2). Let us assign weight a to edges of type I, b to those of type
II, c to those of type III and IV; this defines a weight function on quadri-tiles which we
denote by ν.
Consider the equilateral triangular lattice T, let G be a finite simply connected subgraph
of T, and let ∂G be the cycle consisting of its boundary edges. Recall that Q(∂G)
denotes the set of quadri-tilings of ∂G whose underlying tilings are lozenge tilings of G
(see section 4.5).
Define the total partition function of ∂G to be the weighted sum of quadri-tilings
of Q(∂G), that is

Z(∂G, ν) =
∑

Q∈Q(∂G)

ν(MQ),

where MQ is defined as follows: Q is a 2-tiling of its underlying lozenge-with-diagonals
tiling L(Q), and MQ is the perfect matching of L(Q)∗ corresponding to Q.

5.1.2 Statement of result

Consider the following exhaustion of T. Let G1 be the hexagon made of six adjacent
equilateral triangles, and denote by x1, . . . , x6 its boundary vertices in cclw (counter-
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clockwise) order, as in figure 5.1. Let e1 be the vector x3−x1, and e2 the vector x5−x1.
Define Gn to be the graph made of the ie1 + je2 translates of G1 for i, j = 1, . . . , n.
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Figure 5.1: The exhaustion {Gn} of T.

Theorem 5.1 Suppose that ν is the critical weight function on quadri-tiles, then

lim
n→∞

1

12n2
log Z(∂Gn, ν) =

1

12
log 3 +

1

4
log 2 +

1

2π
L
(π

6

)
+

5

4π
L
(π

3

)
,

where L is the Lobachevsky function, L(x) = −
∫ x

0
log 2 sin t dt.

Recall that the critical weight function for the triangular quadri-tile dimer model is
computed in subsection 4.3.2, it corresponds to weights a = 1, b =

√
3, c = 2. We

postpone the proof of theorem 5.1 to section 5.5.

5.2 Property of the total partition function

The setting is that of subsection 5.1.1. That is, we consider a weight function ν on
dual edges corresponding to quadri-tiles of the triangular quadri-tile dimer model, i.e.
we consider weights a, b, c on edges of type I, II, III and IV respectively.
Let G be a finite simply connected subgraph of T. Recall that Z(G∗, 1) is the number
of lozenge tilings of G; recall also that if L is a lozenge tiling of G, and if L is its
corresponding lozenge-with-diagonals tiling, then Z(L∗, ν) is the quadri-tile partition
function of the graph L∗. The total partition function satisfies the following.

Proposition 5.2 Assume that the weights a, b, c, satisfy the condition

0 < a < c, b =

√
a

(
a2 + c2 − ac

c − a

)
. (5.1)
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Then, Z(L∗, ν) is independent of the lozenge tiling L of G, and the total partition
function of ∂G satisfies

Z(∂G, ν) = Z(L∗, ν)Z(G∗, 1).

Proof:

Let us prove the second part of the statement assuming the first one. By definition of
the total partition function, and of the set Q(∂G), we have

Z(∂G, ν) =
∑

Q∈Q(∂G)

ν(MQ),

=
∑

lozenge tilings L of G

Z(L∗, ν),

= Z(L∗, ν)Z(G∗, 1), (using the first part of the statement).

Let us prove that Z(L∗, ν) is independent of the lozenge tiling L of G. By lemma 4.4 we
can reach any lozenge tiling of G from any other by a finite sequence of lozenge moves
(see section 4.5), hence it suffices to consider two lozenge tilings L1, L2 of G which differ
by a lozenge move, and prove that

Z(L∗
1, ν) = Z(L∗

2, ν). (5.2)

Let us assume that the hexagon of the lozenge move lies in the interior of G. The
argument is similar when it is adjacent to the boundary of G. Denote by E1, E2 the
lozenge tilings called the full and the empty cube respectively (see section 4.5 and figure
4.7). For i = 1, 2 let Ei be the lozenge-with-diagonals tiling corresponding to Ei, and
let E∗

i be the dual graph of Ei, which contains the dual edges of the boundary edges of
Ei. Note that the boundary edges of E1 and E2 are the same, so that their dual edges
are also the same, let us denote them by {e1, . . . , e6} in cw (clockwise) order (see figure
5.2).
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Figure 5.2: Left: E1 (dotted line), and E∗
1 (full line). Right: E2 (dotted line), and E∗

2

(full line).
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Let E be a subset of the edges {e1, . . . , e6} (which might be the empty set). For i = 1, 2
define Z(L∗

i , E, ν) to be the weighted sum of dimer configurations of L∗
i , which contain

the edges of E, but not those of {e1, . . . , e6}\E, then

Z(L∗
i , ν) =

∑

subsets E of {e1, . . . , e6}
Z(L∗

i , E, ν).

Let us prove that condition (5.1) is obtained by imposing, for every subset E, the
following:

Z(L∗
1, E, ν) = Z(L∗

2, E, ν). (5.3)

Equation (5.2) is then a consequence of (5.3).
For i = 1, 2 consider the graph (L∗

i \E∗
i )∪E. Since L∗

1 and L∗
2 only differ by one lozenge

move, these graphs are the same. Note that the edges {e1, . . . , e6} are of type III or IV,
so that in E∗

1 and E∗
2 they have weight equal to c. This implies that the above graphs

have the same edge-weights. Define CE to be the partition function of this graph. For

i = 1, 2 consider the graph Ẽi
∗

which is the graph E∗
i \{e1, . . . , ek}, from which we have

removed the edges adjacent to vertices of E (see figures 5.3 and 5.4 for examples of such

graphs). Let Z(Ẽi
∗
, E, ν) be the partition function of the graph Ẽi

∗
. Then we have

Z(L∗
i , E, ν) = Z(Ẽi

∗
, E, ν)CE.

In order to obtain condition (5.3), let us find weights a, b, c such that, for every subset
E of {e1, . . . , e6}, we have

Z(Ẽ1
∗
, E, ν) = Z(Ẽ2

∗
, E, ν). (5.4)

Case 1: E = ∅, or E = {e1, . . . , e6}.
The graphs Ẽ∗

1 and Ẽ∗
2 are isomorphic, so that condition (5.4) is verified ∀ a, b, c.

Case 2: E consists of two edges.

Let us first assume that E consists of the edges e1 and e2, then (see figure 5.3):

Z(Ẽ1
∗
, E, ν) = a(a2 + b2)2 + c3a2,

Z(Ẽ2
∗
, E, ν) = cb2(a2 + b2).

Condition (5.4) is then equivalent to

a(a2 + b2)2 + c3a2 = cb2(a2 + b2). (5.5)

When E consists of any two adjacent edges, we again obtain equation (5.5). When E

consists of edges which are opposite, the graphs Ẽ∗
1 and Ẽ∗

2 are isomorphic, so that
equation (5.4) is verified ∀ a, b, c. In all other cases there are no dimer configurations
of the graphs Ẽ∗

1 and Ẽ∗
2 .
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c

b b

a a

a
aa

c c bb

ac

a
c

b ba

a
bb

c

Figure 5.3: Left: Ẽ∗
1 . Right: Ẽ∗

2 .

Case 3: E consists of four edges.

When E consists of the edges e1, e2, e3, e4, then (see figure 5.4):

Z(Ẽ1
∗
, E, ν) = a2(a2 + b2) + c3a,

Z(Ẽ2
∗
, E, ν) = b2c2.

c

a
b c c

aa
a

c

cc

a

b
b

b

Figure 5.4: Left: Ẽ∗
1 . Right: Ẽ∗

2 .

Condition (5.4) is then equivalent to

a2(a2 + b2) + c3a = b2c2. (5.6)

When E consists of any four adjacent edges, we again obtain equation (5.6). In all
other cases there are no dimer configurations of the graphs Ẽ∗

1 and Ẽ∗
2 .

Case 4: E consists of one, three or five edges.

There are no dimer configurations of the graphs Ẽ∗
1 and Ẽ∗

2 , since both graphs have an
odd number of vertices.

Condition (5.4) is then equivalent to solving the system

a(a2 + b2)2 + c3a2 = cb2(a2 + b2),

a2(a2 + b2) + c3a = b2c2.

This system can be rewritten as

b4(a − c) + b2(2a3 − a2c) + a2(c3 + a3) = 0, (5.7)

b2(a2 − c2) + a(c3 + a3) = 0. (5.8)
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Weight functions are assumed to be positive, so that we are looking for solutions
a, b, c > 0 of (5.7) and (5.8).

Solutions of (5.7)

• Suppose a = c. Then (5.7) becomes a3(b2 + 2a2) = 0, and has no solution.

• Suppose a 6= c. Let us write B = b2, and solve (5.7) as a quadratic equation in B;
the discriminant is ∆ = (ac)2(a − 2c)2.

- Suppose a > 2c. Then
√

∆ = ac(a − 2c), and the two solutions are

B+
1 =

a(−a2 + ac − c2)

a − c
, and B−

1 = −a(c + a).

Let us look at the signs of B+
1 and B−

1 . The quantity −a2 + ac − c2 = −(a −
c)2 − ac < 0, hence the sign of B+

1 is the sign of c − a; since a − 2c > 0, we have
a− c > 0, so that B+

1 < 0. Moreover B−
1 < 0, which implies that B+

1 and B−
1 are

not solutions for B = b2.

- Suppose 2c > a. Then
√

∆ = ac(2c − a), and the two solutions are

B+
2 = B−

1 , and B−
2 = B+

1 .

B+
2 < 0 so that it is not a solution for B. The sign of B−

2 is the sign of c − a, so
that B−

2 is a solution for B when c > a.

Solutions of (5.8)

Since a + c > 0, (5.8) can be factored as b2(a − c) + a(a2 − ac + c2) = 0. When a = c
the system has no solution. When a 6= c, we obtain

b2 =
a(−a2 + ac − c2)

a − c
.

Hence, both equations have the same solutions a, b, c > 0, which are exactly those a, b, c
satisfying condition (5.1). �

5.3 Partition function for planar and toroidal graphs

In subsection 5.3.1 we consider two exhaustions of the equilateral triangular lattice T,
one by planar graphs and one by toroidal graphs. Using results of [7], we deduce that
the normalized log of the lozenge partition function of these two exhaustions converge
to the same value. In subsection 5.3.2, we consider a lozenge-with-diagonals tiling of
the plane, and prove a similar result for the normalized log of the quadri-tile partition
function. The proof is nevertheless of a different nature, since it uses combinatorial
tools.
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5.3.1 Triangular lattice case

Consider the equilateral triangular lattice T. Suppose that all edges of the dual graph
T∗ have weight 1. The exhaustion {Gn} of T by planar graphs is that of subsection
5.1.2: G1 is the hexagon made of six adjacent equilateral triangles of T, and Gn is
the graph made of the ie1 + je2 translates of G1, for every i, j = 1, . . . , n (see figure
5.1). Let us define the exhaustion {Ḡn} of T by toroidal graphs. Define Λ to be the
two-dimensional lattice whose basis vectors are e1 and e2, then Ḡn = T/nΛ. As a
consequence of results of [7], we have

Lemma 5.3

lim
n→∞

1

n2
log Z(G∗

n, 1) = lim
n→∞

1

n2
log Z(Ḡ∗

n, 1). (5.9)

Proof:

Edges of Ḡ∗
n are in three possible orientations, 0◦, 60◦, 120◦. Let us denote by fi an

edge whose orientation is i◦. Because of the symmetries of the graph Ḡ∗
n, and because

all edges have weight 1, the Boltzmann probability µn(fi) of the edge fi occurring in
a dimer configuration of the graph Ḡ∗

n is 1/3. Applying the result of [7] concerning
domino tilings to lozenge tilings yields the following. Denote by ϕ(Ḡ∗

n) the quantity
1
n2 log Z(Ḡ∗

n, 1), then ϕ(Ḡ∗
n) converges to the same value as ϕ(G′∗

n ), where {G′
n} is an

exhaustion of T by planar graphs whose boundary height function approximates a plane
of slope (limn→∞ µn(e120)− limn→∞ µn(e60), limn→∞ µn(e0)− limn→∞ µn(e120)). In our
case, this quantity is equal to (0, 0). Moreover, the exhaustion {Gn} consists of planar
graphs whose boundary height function approximates a plane of slope (0, 0); indeed the
lozenge height function is equal to 0 or 1 along the boundary (when normalizing it by
a factor 3 to be in the setting of [7]), so that we obtain (5.9). �

5.3.2 Lozenge-with-diagonals tiling case

Consider the lozenge tiling L1 of G1 called the full cube (see figure 4.7, and figure 5.5).
Define L to be the lozenge tiling of the plane which consists of copies of L1, and let L be
the corresponding lozenge-with-diagonals tiling of the plane. Assume there is a weight
function ν on the edges of the dual graph L∗, i.e. consider weights a, b, c on edges
of type I, II, III and IV respectively. Let Ln be the graph consisting of the ie1 + je2

translates of L1, for i, j = 1, . . . , n (refer to subsection 5.1.2 for the definition of e1 and
e2), then {Ln} defines an exhaustion of L by planar graphs, see figure 5.5. Let Λ be the
two-dimensional lattice whose basis vectors are e1 and e2, then {L̄n}, with L̄n = L/nΛ,
defines an exhaustion of L by toroidal graphs.

Proposition 5.4 Assume that the weights a, b, c satisfy the condition a2 + b2 = c2,
then

lim
n→∞

1

n2
log Z(L∗

n, ν) = lim
n→∞

1

n2
log Z(L̄∗

n, ν).
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L L1 4

Figure 5.5: The exhaustion {Ln} of L.

Proof:

In order to prove proposition 5.4, we need lemmas 5.5 and 5.6 below. Here is the setting
for lemma 5.5. Refer to figure 5.6 for an example of the following construction. Fix n,
and consider the finite simply connected subgraph Gn of T of subsection 5.1.2. Let L

be any lozenge tiling of Gn, and L be its corresponding lozenge-with-diagonals tiling.
The graph L can be winded on the torus, this yields a toroidal graph L̄. Note that its
dual graph L̄∗ is a bipartite graph on the torus. Denote by L∗ the dual graph L∗ which
contains the dual edges of the boundary edges of L.
Consider a quadri-tiling Q of L̄, then Q corresponds to a perfect matching M which can
be unwinded on the graph L∗. This allows us to compute the first height function hL̄

on vertices of the quadri-tiling Q unwinded in the plane: fix v0 and set hL̄(v0) = 0; take
the reference flow ω0 to be a white-to-black flow which flows by 1/3 along every edge
of L∗; the height function hL̄ is then computed in the usual way (refer to subsections
2.2.1 and 4.4.1 for more details).

Note that the height function hL̄ is not well defined on vertices of Q winded on L̄:
identified vertices may have different heights. Note also, that the height function hL̄ on
the boundary of Q is periodic, so that one defines the unnormalized slope (∆h, ∆v)
of a quadri-tiling Q of L̄, by

hL̄(v0 + ne1) − hL̄(v0) = ∆h,

hL̄(v0 + ne2) − hL̄(v0) = ∆v,

where e1 and e2 have been defined in subsection 5.1.2, and are represented in figure
5.1. To simplify the terminology, we shall call (∆h, ∆v) the slope of Q (although the
slope is usually defined as 1

n(∆h, ∆v)); ∆h (resp. ∆v) is also known as the horizontal
(resp. vertical) height change of Q.
Since ∆h is independent of the path from v0 to v0 +ne1, we choose to compute it along
the horizontal path, which we define to be the boundary edge path of L from v0 to
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v0

-2/3

-1

-2/3

-1

-5/3

-2

-8/3

-3

-8/3

-2

-2/3

-5/3

-1

=∆ 

=∆v

h
0

Figure 5.6: Example: n = 2, L =dotted lines. Perfect matching of L̄∗ unwinded on L∗,
and corresponding height function hL̄ on the boundary of L.

v0 + ne1. The vertical path, along which we measure the vertical height change, is
defined in a symmetric way. Note that both ∆h and ∆v are integers between −n and
n.
Using the bijection between 2-tilings and dimer configurations, we also speak of the
slope of a perfect matching M of L̄∗, meaning the slope of the 2-tiling corresponding
to M . Let us denote by (∆h(M), ∆v(M)) the slope of M .
Consider a weight function ν on the edges of L̄∗, (recall that ν is defined by weights
a, b, c on edges of type I, II, III and IV). Define Z(L̄∗, ν, (∆h, ∆v)) to be the weighted
sum of dimer configurations of the graph L̄∗, which have slope (∆h, ∆v).

Lemma 5.5 Assume that the weights a, b, c satisfy the condition a2 + b2 = c2, then

∀ (∆h, ∆v), Z(L̄∗, ν, (∆h, ∆v)) ≤ Z(L̄∗, ν, (0, 0)).

Proof:

Lemma 5.5 is proved using two intermediate steps.

1. ∀ (∆h, ∆v), Z(L̄∗, ν, (∆h, ∆v)) = Z(L̄∗, ν, (−∆h,−∆v)).

We say that two perfect matchings of a subgraph of L̄∗ are equivalent, if they differ by
a sequence of dual moves of the sixth quadri-tile move (see section 4.5 for definition).
This defines an equivalence relation on perfect matchings of this subgraph.
Note that all perfect matchings of an equivalence class of the graph L̄∗ have the same
slope, indeed all dual edges crossing the horizontal and vertical paths of L are of type
III and IV, and the sixth quadri-tile move only concerns edges of type I and II. Hence
the notion of slope of an equivalence class of L̄∗ is well defined.
Let ℓ be a lozenge-with-diagonals of L̄, and ℓ∗ be its dual graph (with the dual edges
of the boundary edges of ℓ). For i = 1, . . . , 3 refer to the perfect matchings mi and m′

i
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Figure 5.7: Complementary perfect matchings of ℓ∗.

of ℓ∗ as complementary (see figure 5.7), and denote by mi, m
′
i the equivalence class

of mi, m
′
i.

Consider an equivalence class M of perfect matchings of L̄∗, and let ℓ be a lozenge-with-
diagonals of L̄. Replace the equivalence class M restricted to ℓ∗ by its complementary
class. Repeating this procedure for every lozenge-with-diagonals ℓ yields an equivalence
class of perfect matchings of L̄∗, which we denote by M′.

Let us prove that if a class of perfect matchings M has slope (∆h(M), ∆v(M)), then
its complementary class M′ has slope (−∆h(M),−∆v(M)). We only give the argument
for the horizontal height change since the same argument holds for the vertical height
change. We start by making two remarks about the horizontal path: it consists of an
even number of edges, and the right triangles of L adjacent to its edges are alternately
black and white, so that the orientation of its edges alternates. Consider two perfect
matchings M of M, and M ′ of M′, unwinded on L∗. By construction of the complemen-
tary matching, the matchings M and M ′ are disjoint (with respect to edges), moreover
the superposition of M and M ′ contains all dual edges of the horizontal path. Using
the above remark, this implies ∆h(M) + ∆h(M ′) = 0, hence ∆h(M) = −∆h(M ′).
From this we deduce that there is a bijection between equivalence classes with slope
(∆h, ∆v), and those with slope (−∆h,−∆v).

Let us call weight of an equivalence class the weighted sum of its perfect matchings. By
the above construction, in order to prove Z(L̄∗, ν, (∆h, ∆v)) = Z(L̄∗, ν, (−∆h,−∆v)),
it suffices to show that the weight of an equivalence class M, equals that of its comple-
mentary class M′. Let ℓ be a lozenge-with-diagonals of L̄. Then the weight of M is equal
to the product over all ℓ ∈ L̄ of the weights of the equivalence classes of M restricted
to ℓ∗, where the c-weight of the edges of type III and IV is replaced by

√
c (because

each of these edges is counted twice). From this we deduce that, when a2 + b2 = c2, the
weight of M equals the weight of M′. Indeed, when a2 + b2 = c2, for every i = 1, . . . , 3,
the weight of the equivalence class mi equals the weight of the class m′

i (when the c
weights are replaced by

√
c).

Denote by M(∆h, ∆v) the set of dimer configurations of the graph L̄∗, which have
slope (∆h, ∆v).
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2. Definition of an injection i : M(∆h, ∆v) ×M(−∆h,−∆v) → M(0, 0) ×M(0, 0).

Consider two perfect matchings M1 of M(∆h, ∆v), and M2 of M(−∆h,−∆v). Then
the superposition M1 ∪M2 of M1 and M2 consists of doubled edges and disjoint cycles.
Our first goal is to compute the quantity (2∆h, 2∆v) = (∆h(M1)−∆h(M2), ∆v(M1)−
∆v(M2)) using cycles of M1 ∪ M2.

Remarks

1. Let C be a cycle of M1 ∪ M2, then edges of type III and IV of C belong to the
same perfect matching, that is either to M1 or to M2. As a consequence, if C
unwinded on L∗ crosses the horizontal and/or the vertical path through edges
e1, . . . , em, they all belong to the same perfect matching.

2. Consider the cycles of M1∪M2 unwinded on L∗. Orient them from top to bottom
if they wind around the torus, or cclw else. Let C be such a cycle, then edges
of M1 and M2 alternate in C, so that all edges of M1 are oriented from white to
black, or from black to white; the reverse holds for edges of M2.

If uv is an edge of the horizontal path and M is a perfect matching of L̄∗, unwinded
on L∗, denote by ∆h(M)(uv) the height change of M along uv. Let C be a cycle
of M1 ∪ M2, define the contribution of C to 2∆h to be the sum of the quantities
∆h(M1)(uv) − ∆h(M2)(uv) over edges uv of the horizontal path which are crossed by
the unwinded cycle C. In a similar way we define the contribution of C to 2∆v.
Define the oriented winding number of a cycle C to be the triple (s, t, δ), where s
(resp. t) denotes the number of times the cycle winds around the torus vertically (resp.
horizontally). When s = 0 or t = 0, set δ = 0. If s 6= 0 and t 6= 0, consider the cycle
C unwinded on the graph L∗, and consider the part of C which starts from the lower
horizontal boundary and exits at the vertical boundary. If it exits at the left boundary,
set δ = 1, else if it exits at the right boundary, set δ = −1.

• The contribution to (2∆h, 2∆v) of a cycle whose oriented winding number is (s, t, δ)
is ±(s, δt).

Assume that the oriented winding number of a cycle C is (0, 0, 0), and that C is
unwinded on L∗. When travelling along the horizontal path, if one enters the cycle
C through an edge uv, one has to exit C through an edge u′v′. By remark 1, the
dual edges e and e′ of uv and u′v′ belong to the same perfect matching. By remark 2,
this implies that the edges uv and u′v′ are oriented in the opposite direction. Hence
∆h(M1)(uv) + ∆h(M1)(u

′v′) = 0, and ∆h(M2)(uv) + ∆h(M2)(u
′v′) = 0. The same

holds for the vertical height change, and so C contributes (0, 0) to (2∆h, 2∆v).

Assume that the oriented winding number of C is (s, t, δ), and that C is unwinded
on L∗. Let us assume s 6= 0 and t 6= 0, if s = 0 or t = 0, the argument is similar
although simpler. When travelling along the horizontal path, one crosses the cycle C,
s times through edges u1v1, . . . , usvs (more precisely, one crosses C, s + 2k times, but
then by the same argument as when C has oriented winding number (0, 0, 0), the 2k
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times contribute (0, 0) to (2∆h, 2∆v)). When travelling along the vertical path, one
crosses the cycle C, t times through edges u′

1v
′
1, . . . , u

′
tv

′
t. By remark 1, the dual edges

e1, . . . , es of u1v1, . . . , usvs and the dual edges f1, . . . , ft of u′
1v

′
1, . . . , u

′
tv

′
t belong to the

same perfect matching, say M2. By remark 2, all edges ei and fj are oriented from
white to black, or from black to white. Let us assume we are in the first case. Then if
δ = 1, we obtain

s∑

i=1

∆h(M1)(uivi) = s/3, and
s∑

i=1

∆h(M2)(uivi) = −2s/3,

t∑

j=1

∆v(M1)(u
′
jv

′
j) = t/3, and

t∑

j=1

∆v(M2)(u
′
jv

′
j) = −2t/3.

So that the contribution of the cycle C to (2∆h, 2∆v) is (s, t). In a similar way, when
δ = −1, we obtain that the contribution of the cycle C to (2∆h, 2∆v) is (s,−t). We
summarize cases δ = −1 and δ = 1 by saying that C contributes (s, δt) to (2∆h, 2∆v).
When the edges ei and fj go from a black vertex to a white one, C contributes −(s, δt)
to (2∆h, 2∆v).

Assume there is a cycle of M1∪M2 whose oriented winding number is (s, t, δ) 6= (0, 0, 0),
then since cycles are disjoint, all cycles of M1∪M2 must have the same oriented winding
number. This means that up to a sign, all cycles of M1 ∪ M2 contribute the same
quantity to (2∆h, 2∆v). Moreover, if an edge uv of the horizontal path is crossed by
no cycle of M1 ∪ M2, or if it is the dual edge of a doubled edge of M1 ∪ M2, then
∆h(M1)(uv) = ∆h(M2)(uv), so that in both cases it contributes 0 to 2∆h. The same
argument holds for the vertical path. Hence, the only contribution to (2∆h, 2∆v) comes
from cycles of M1 ∪ M2.

To simplify notations, let us suppose ∆h and ∆v are positive. Then all cycles of M1∪M2

have oriented winding number (s, t, 1), and (2∆h, 2∆v) = k(s, t) for some positive k.
The couple (s, t) is also known as the homology class of a cycle, and since cycles are
simple curves, (s, t) has the property that the greatest common divisor between s and
t is 1. From this we deduce that k is even. Let us write (2∆h, 2∆v) = 2m(s, t), where
2m = k. Then, there are at least 2m cycles of M1 ∪ M2 which have oriented winding
number (s, t, 1), denote them by C1, . . . , C2m. Color edges of the matching M1 red, and
edges of the matching M2 blue. Consider the first m cycles C1, . . . , Cm and exchange
the red and the blue edges of these cycles. In this way, we obtain a red matching M ′

1,
and a blue matching M ′

2. Exchanging the color of one of the cycles decreases ∆h(M1)
by s (resp. ∆v(M1) by t), and increases ∆h(M2) by s (resp. ∆v(M2) by t), hence M ′

1

and M ′
2 have slope (0, 0). This procedure is reversible, so that the following application

is an injection

i : M(∆h, ∆v) ×M(−∆h,−∆v) −→ M(0, 0) ×M(0, 0)
(M1, M2) 7→ (M ′

1, M
′
2).

3. Proof of lemma 5.5
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Using the first step of the proof, we obtain

Z(L̄∗, ν, (∆h, ∆v))2 = Z(L̄∗, ν, (∆h, ∆v))Z(L̄∗, ν, (−∆h,−∆v)),

=
∑

M1∈M(∆h,∆v)

∑

M2∈M(−∆h,−∆v)

ν(M1)ν(M2).

By construction of the injection i, we have M1 ∪ M2 = M ′
1 ∪ M ′

2, hence

Z(L̄∗, ν, (∆h, ∆v))2 =
∑

(M ′
1,M ′

2)=i(M1,M2)

ν(M ′
1)ν(M ′

2),

≤
∑

M ′
1∈M(0,0)

∑

M ′
2∈M(0,0)

ν(M ′
1)ν(M ′

2),

= Z(L̄∗, ν, (0, 0))2.

�

Let us place ourselves in the context of proposition 5.4. L1 is the lozenge tiling of G1

called the full cube, and L1 is its corresponding lozenge-with-diagonals tiling. Ln is
the tiling consisting of the ie1 + je2 copies of L1, for i, j = 1, . . . , n. L is the lozenge-
with-diagonals tiling of the plane made of copies of L1; and L̄n = L/nΛ, where Λ is
the lattice whose basis vectors are e1 and e2.

Lemma 5.6 ∀n, ∀m >> n, we have

1.
1

m2
log Z(L̄∗

m, ν) ≥ 1

n2
log Z(L∗

n, ν) + O
( n

m

)
.

2. Assume moreover that the weights a, b, c satisfy the condition a2 + b2 = c2, then
1

m2
log Z(L∗

m, ν) ≥ 1

n2
log Z(L̄∗

n, ν) + O

(
1

n

)
.

Proof:

Proof of 1.

Let m >> n, then m can be written as pn + k, for p ∈ N, and 0 ≤ k ≤ n − 1. Let us
split the graph Lm as in figure 5.8: Lm consists of p2 copies of the graph Ln, and of
the remaining graph V . Fix a quadri-tiling of V , for example fix a quadri-tiling of L1,
and take a copy of this quadri-tiling on each copy of L1 in V , see figure 5.8.
Consider any quadri-tiling on each of the p2 copies of the graph Ln. In this way, we
obtain a quadri-tiling of Lm, which is also a quadri-tiling of L̄m. Hence,

Z(L̄∗
m, ν) ≥ Z(L∗

n, ν)p2
,

and we conclude

1

m2
log Z(L̄∗

m, ν) ≥ p2

m2
log Z(L∗

n, ν) =
1

n2
log Z(L∗

n, ν) + O
( n

m

)
.
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L

L

V

m

n

m= n= p= k=2 3 17

Figure 5.8: Splitting of the graph Lm.

Proof of 2.

The toroidal partition function of the graph L̄∗
n can be written as

Z(L̄∗
n, ν) =

∑

(∆h,∆v)

Z(L̄∗
n, ν, (∆h, ∆v)).

Using lemma 5.5, this yields

Z(L̄∗
n, ν) ≤ |(∆h, ∆v)|Z(L̄∗

n, ν, (0, 0)), (5.10)

where |(∆h, ∆v)| denotes the number of possible slopes for perfect matchings of the
graph L̄∗

n. Both ∆h and ∆v are integers between −n and n, so that |(∆h, ∆v)| ≤ (2n)2.
Denote by Z(L̄∗

n, ν, (0, 0), (c1, c2)) the weighted sum of dimer configurations of the graph
L̄∗

n, which have slope (0, 0), and boundary condition c1 (resp. c2) for the height function
hL̄n along the horizontal path (resp. vertical path). At each step of the horizontal
path, the height function hL̄n can take 2 possible values, so that |c1| ≤ 22n. The same
argument holds for c2, hence |(c1, c2)| ≤ 24n. Let us denote by (c̄1, c̄2) the boundary
conditions for hL̄n which maximize Z(L̄∗

n, ν, (0, 0), (c1, c2)). Then,

Z(L̄∗
n, ν, (0, 0)) =

∑

(c1,c2)

Z(L̄∗
n, ν, (0, 0), (c1, c2)),

≤ |(c1, c2)| max
(c1,c2)

Z(L̄∗
n, ν, (0, 0), (c1, c2)),

≤ 24nZ(L̄∗
n, ν, (0, 0), (c̄1, c̄2)). (5.11)
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Combining equations (5.10) and (5.11) yields,

Z(L̄∗
n, ν) ≤ n224n+2Z(L̄∗

n, ν, (0, 0), (c̄1, c̄2)). (5.12)

Let m >> n, then m − 4n can be written as pn + k, for p ∈ N, and 0 ≤ k ≤ n − 1.
Let us split the graph Lm as in figure 5.9. Lm consists of a graph U made of p2 copies
of the graph Ln, surrounded by a graph V1 in shape of an annulus, and of a graph V2

which consists of the right and bottom remaining parts.
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Figure 5.9: Splitting of the graph Lm (the graph V1 is not at the right scale).

Recall that if G is a finite graph, ∂G denotes the cycle consisting of its boundary edges.
Refer to figure 5.9 for notations and for an example. Fix a quadri-tiling of L1, and
take a copy of this quadri-tiling on each copy of L1 in V2. Consider the vertex v0

as in figure 5.9, fix hL̄m(v0) = 0, and compute hL̄m along ∂V2. Then ∂V2 has planar
boundary conditions for hL̄m , that is each edge of ∂V2 actually bounds a quadri-tile. As
a consequence ∂Lm has planar boundary conditions for hL̄m along its right and bottom
part. Let us impose planar boundary conditions along the left and top part of ∂Lm.
Since black and white faces of Lm alternate along ∂Lm, hL̄m is equal to 0, 1/3,−1/3
along ∂Lm, depending on the choice of bipartite coloring for the faces of Lm.
Let vU

0 be as in figure 5.9, and fix hL̄m(vU
0 ) = 0. Consider the boundary condition

(c̄1, c̄2) on each of the p2 copies of the graph Ln. This yields a boundary condition for
hL̄m on ∂U , and so a boundary condition on ∂V1.
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Our goal is now to prove that V1 with the above boundary condition for hL̄m is 2-tilable.
The proof uses the extension of Thurston’s tilability necessary and sufficient condition
(see subsection 2.2.2). Let us split V1 in two as in figure 5.9, in doing so we obtain
two simply connected regions V11 and V12. Denote by S1 and S2 the two paths which
have been added in order to obtain V11 and V12. Let us fix the height function along
S1 and S2 by imposing that edges of these two paths bound quadri-tiles. Since black
and white vertices alternate along S1 and S2, the height function hL̄m equals to 1/3, 0
or −1/3, 0 along S1 and S2. Let us prove that V11 is 2-tilable, a similar argument holds
for V12. By Thurston’s condition we need to check that ∀u, v ∈ ∂V11, we have

hL̄m(v) − hL̄m(u) ≤ d(u, v), (5.13)

where d denotes the weighted distance, (refer to subsection 2.2.2 for definitions).

• If u, v ∈ ∂Lm ∩∂V11, or u, v ∈ ∂U ∩∂V11, then condition (5.13) holds because the
graphs Lm and U are 2-tilable.

• If u 6= v ∈ S1 or S2, then hL̄m(v) − hL̄m(u) ≤ 1/3 ≤ d(u, v), so that condition
(5.13) holds.

• If u ∈ ∂Lm ∩ ∂V11, and v ∈ ∂U ∩ ∂V11. Consider a positively oriented path γ
from u to v whose weighted length in the distance d(u, v). Then, by construction
of the splitting of Lm, γ crosses at least 2n copies of the graph L1. Moreover, the
minimal distance of a path crossing a graph L1 is 1/3, hence we deduce,

d(u, v) ≥ 1

3
2n.

Each copy of the graph Ln with boundary conditions (c̄1, c̄2) is 2-tilable, so that
its boundary height function satisfies Thurston’s condition. The vertex v belongs
to one of the graphs Ln. Denote by u′ the corner of Ln which is on the same
boundary path as v and lies closest to v, then d(u′, v) ≤ n/2. By definition of
the boundary condition (c̄1, c̄2), hL̄m(u′) = 0, applying Thurston’s condition to
u′, v yields hL̄m(v) ≤ n/2. Since u ∈ ∂Lm ∩ ∂V11, hL̄m(u) ≥ −1/3, we obtain for
n ≥ 2,

hL̄m(v) − hL̄m(u) ≤ n

2
+

1

3
≤ 2n

3
≤ d(u, v).

• Suppose u ∈ S2, and v belongs to the top part of ∂U ∩ ∂V11. Denote by v′

the right most vertex of ∂U ∩ ∂V11, then hL̄m(v′) = 0. Since U \ V1 is tilable,
hL̄m(v) − hL̄m(v′) ≤ d(v′, v); moreover d(v′, v) ≤ d(u, v). Combining this yields
hL̄m(v) − hL̄m(u) ≤ d(u, v).

The remaining cases are obtained by similar arguments, and we conclude that the graph
V1 is 2-tilable. Let us consider any quadri-tiling with boundary conditions (c̄1, c̄2) on
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each of the p2 copies of Ln in U . This yields a quadri-tiling of U which can be completed
in order to obtain a quadri-tiling of Lm with planar boundary conditions. Hence,

Z(L∗
m, ν) ≥ Z(L̄∗

n, ν, (0, 0), (c̄1, c̄2))
p2

, so

1

m2
log Z(L∗

m, ν) ≥ p2

m2
log Z(L̄∗

n, ν, (0, 0), (c̄1, c̄2))
p2

,

≥ p2

m2

(
log(n−22−4n−2) + log Z(L̄∗

n, ν)
)
, (by equation (5.12))

≥ 1

n2
log Z(L̄∗

n, ν) + O

(
1

n

)
.

�

Let us conclude the proof of proposition 5.4. Using the first part of lemma 5.6, we
obtain

∀n, lim inf
m→∞

1

m2
log Z(L̄∗

m, ν) ≥ 1

n2
log Z(L∗

n, ν),

so

lim inf
m→∞

1

m2
log Z(L̄∗

m, ν) ≥ lim sup
n→∞

1

n2
log Z(L∗

n, ν).

In a similar way, using the second part of lemma 5.6, we obtain

lim inf
m→∞

1

m2
log Z(L∗

m, ν) ≥ lim sup
n→∞

1

n2
log Z(L̄∗

n, ν).

We deduce that

lim
m→∞

1

m2
log Z(L̄∗

m, ν) = lim
m→∞

1

m2
log Z(L∗

m, ν).

�

5.4 Growth rate of the partition function of isoradial dimer
models

Let Λ be a 2-dimensional lattice, and let G be an infinite Λ-periodic isoradial graph
satisfying condition (∗). Suppose that its dual graph G∗ is bipartite, B denotes the set
of black vertices, W the set of white ones. Assume that the bipartite coloring of the
vertices of G∗ is preserved by translation by Λ. Consider the critical weight function ν
on the edges of G∗. Since G is periodic, a natural exhaustion of G by toroidal graphs
is {Ḡn}, where Ḡn = G/nΛ. Using a result of [26], we give an explicit formula for the
limit (as n → ∞) of the normalized log of the partition function Z(Ḡ∗

n, ν) of the graphs
Ḡ∗

n. In general, the computation of this limit involves elliptic integrals [20, 42, 7], hence
it is very satisfying to have such a simple formula in the case of isoradial graphs with
critical weights.
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5.4.1 Statement of result

Let K be the complex Dirac operator indexed by the vertices of G∗. Kenyon defines the
log of the normalized determinant of the Dirac operator [26], denoted log det1 K
as follows:

for every edge wibi of G∗,
∂ log det1K

∂(K(wi, bi))
=

1

|V (Ḡ∗
1)|

K−1(bi, wi), (5.14)

where V (Ḡ∗
1) is the set of vertices of the graph Ḡ∗

1. The definition is completed by an
initial condition for log det1 K (see [26]). Solving the PDE yields,

Theorem 5.7 [26]

log det1K =
2

|V (Ḡ∗
1)|

m∑

i=1

(
θi

π
log 2 sin θi +

1

π
L(θi)

)
, (5.15)

where θ1, . . . , θm are the rhombus angles of the edges e1, . . . , em of Ḡ∗
1, and L is the

Lobachevsky function, L(x) = −
∫ x
0 log 2 sin t dt.

Equation (5.14) is taken as a definition for log det1 K because, as the graph G∗ is
infinite, no direct meaning can be given to 1

|V (G∗)| log |detK|, which would be the
natural way of defining it. The next proposition yields an interpretation of log det1 K
as the limit (as n → ∞) of 2

|V (Ḡ∗
n)| log Z(Ḡ∗

n, ν); this answers the question of [26] of

defining log det1 K via an exhaustion of G∗ by finite graphs.

Proposition 5.8

lim
n→∞

1

|V (Ḡ∗
n)| log Z(Ḡ∗

n, ν) =
1

|V (Ḡ∗
1)|

m∑

i=1

(
θi

π
log 2 sin θi +

1

π
L(θi)

)
. (5.16)

where θ1, . . . , θm are the rhombus angles of the edges e1, . . . , em of Ḡ∗
1, and L is the

Lobachevsky function, L(x) = −
∫ x
0 log 2 sin t dt.

Moreover, proposition 5.8 yields an easy way of computing the limit of the normalized
log of the partition function of the graphs Ḡ∗

n: indeed the right hand side of (5.16) only
involves the geometry of Ḡ∗

1, and not the combinatorics of G∗. In general, this limit is
hard to compute, involving elliptic integrals. We only expect such a simple formula to
hold in the case of isoradial graphs with critical weights.

5.4.2 Proof of proposition 5.8

Some steps of the proof are close to [26].
Refer to section 3.4 for more details on the following definitions. Consider an orientation
of the edges of G∗ defined as in subsection 3.4.1, and let K be the real Dirac operator
indexed by the vertices of G∗, corresponding to this orientation. Let Kn

1 , Kn
2 , Kn

3 , Kn
4 be
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the Kasteleyn matrices of the graph Ḡ∗
n. By linear algebra, for every ℓ = 1, . . . , 4, and

for every edge wibi of Ḡ∗
n, we have

∂ detKn
ℓ

∂(Kn
ℓ (wi, bi))

= (det Kn
ℓ )((Kn

ℓ )−1(bi, wi)).

Denote by e1 = w1b1, . . . , em = wmbm the edges of Ḡ∗
1, and let θ1, . . . , θm be the

corresponding rhombus angles. Since the graph Ḡ∗
n is invariant under Λ-translates,

we know that for every Λ-translate wt
ib

t
i of the edge wibi, the coefficient Kn

ℓ (wt
i , b

t
i) =

±Kn
ℓ (wi, bi). The minus sign only occurs when ℓ = 2, 3, 4, (recall that in the definition

of Kn
2 , . . . ,Kn

4 , the sign of the entries which cross the horizontal and/or the vertical
cycle of Ḡn is reversed), but then (Kn

ℓ )−1(bt
i, w

t
i) = ±(Kn

ℓ )−1(bi, wi). Hence, for every
ℓ = 1, . . . , 4, and for every i = 1, . . . , m,

∂ det Kn
ℓ

∂θi
=

∑

wt
ib

t
i translates of wibi

∂ detKn
ℓ

∂(Kn
ℓ (wt

i , b
t
i))

∂(Kn
ℓ (wt

i , b
t
i))

∂θi
,

= n2(det Kn
ℓ )((Kn

ℓ )−1(bi, wi))
∂Kn

ℓ (wi, bi)

∂θi
, (5.17)

where the edges e1, . . . , em do not cross the horizontal and the vertical path of Ḡn.
Define the function ϕn(θ1, . . . , θm) by

ϕn(θ1, . . . , θm) =
1

|V (Ḡ∗
n)| log Z(Ḡ∗

n, ν).

By theorem 3.9, we have Z(Ḡ∗
n, ν) = 1

2(−det Kn
1 +detKn

2 +detKn
3 +det Kn

4 ). Moreover,
for every ℓ = 1, . . . , 4, Kn

ℓ (wi, bi) = K(wi, bi), so that using (5.17), we obtain for every
i = 1, . . . , m,

∂ϕn

∂θi

(θ1, . . . , θm) =
1

|V (Ḡ∗
1)|

(
∂K(wi, bi)

∂θi

)( − detK
n
1

2Z(Ḡ∗
n, ν)

(Kn
1 )−1(bi, wi) +

4∑

ℓ=2

det K
n
ℓ

2Z(Ḡ∗
n, ν)

(Kn
ℓ )−1(bi, wi)

)
.

(5.18)

The next part of the argument can be found in [21]. The second bracket of equa-
tion (5.18) is a weighted average of the four quantities (Kn

ℓ )−1(bi, wi), with weights
±1

2 detKn
ℓ /Z(Ḡ∗

n, ν). These weights are all in the interval (−1, 1) since for every
ℓ = 1, . . . , 4, 2Z(Ḡ∗

n, ν) > |detKn
ℓ |. Indeed, Z(Ḡ∗

n, ν) counts the weighted sum of
dimer configurations of Ḡ∗

n, whereas |detKn
ℓ | counts some configurations with negative

sign. Since the weights sum to 1, the weighted average converges to the same value
as each (Kn

ℓ )−1(bi, wi). By proposition 3.11, for every ℓ = 1, . . . , 4, (Kn
ℓ )−1(bi, wi) con-

verges to K−1(bi, wi) on a subsequence (nj) of n’s. Hence, for every ε > 0, there exists
n0 such that for n ≥ n0, n ∈ (nj), equation (5.18) can be written as

∂ϕn

∂θi
(θ1, . . . , θm) =

1

|V (Ḡ∗
1)|

∂K(wi, bi)

∂θi
K−1(bi, wi) + ε.
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A direct computation using the definition of K, and proposition 3.6 yields,

∂ϕn

∂θi
(θ1, . . . , θm) =

1

|V (Ḡ∗
1)|

θi

π
cotan θi + ε.

By [26], there is a continuous way to deform the graph G∗ so that all rhombus angles
tend to 0 or π/2. The same transformation can be applied to Ḡ∗

n, for every n. Denote
by θ0

i the angle θi after such a deformation. Let M be the number of angles θ0
1, . . . , θ

0
m

which are equal to π/2. By the argument of [26], for n ≥ n0, n ∈ (nj), we obtain

ϕn(θ1, . . . , θm) =
1

|V (Ḡ∗
1)|

m∑

i=1

(
θi

π
log 2 sin θi +

1

π
L(θi)

)
− M

2|V (Ḡ∗
1)| log 2 + ϕn(θ0

1 , . . . , θ0
m) + ε. (5.19)

Let us compute ϕn(θ0
1, . . . , θ

0
m). Suppose the above deformation is applied to the graph

G∗, then edges corresponding to rhombus angles 0 have weight 0, and those correspond-
ing to rhombus angles π/2 have weight 2. Removing the 0 weight edges, the deformed
graph consists of independent copies of Z. Applying the deformation to Ḡ∗

1, we obtain
graphs Z/m1Z, . . . , Z/mpZ, for even m1, . . . , mp, where each Z/mjZ consists of weight
2 edges. We can compute,

Z(Ḡ∗
n, ν) = (2

nm1
2 2)n . . . (2

nmp
2 2)n = 2n2 M

2 2np.

Hence, for every ε > 0, there exists n1, such that for every n ≥ n1, we have

ϕn(θ0
1, . . . , θ

0
m) =

M

2|V (Ḡ∗
1)|

log 2 + ε. (5.20)

Combining equations (5.19) and (5.20) yields, for every n ≥ max{n0, n1}, n ∈ (nj),

ϕn(θ1, . . . , θm) =
1

|V (Ḡ∗
1)|

m∑

i=1

(
θi

π
log 2 sin θi +

1

π
L(θi)

)
+ 2ε.

This implies,

lim′
n→∞ϕn(θ1, . . . , θm) =

1

|V (Ḡ∗
1)|

m∑

i=1

(
θi

π
log 2 sin θi +

1

π
L(θi)

)
.

where the limit is taken on the subsequence (nj). Using theorem 3.5 of [29], we deduce
that ϕn(θ1, . . . , θm) converges (as n → ∞) to the same limit as the above subsequence.

�

5.5 Proof of theorem 5.1

Let us place ourselves in the context of theorem 5.1. When ν is the critical weight
function, the weights a, b, c satisfy condition (5.1) of proposition 5.2. This implies that
the total partition function satisfies,

∀n, Z(∂Gn, ν) = Z(L∗, ν)Z(G∗
n, 1),
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where L is the lozenge-with-diagonals tiling corresponding to any lozenge tiling L of the
graph Gn, Z(L∗, ν) is the quadri-tile partition function of the graph L∗, and Z(G∗

n, 1)
is the lozenge partition function of the graph G∗

n.
Let us take L to be the lozenge tiling Ln introduced in subsection 5.3.2: L1 is the
lozenge tiling called the full cube, and Ln consists of the ie1 + je2 copies of L1, for every
i, j = 1, . . . , n. Then,

∀n, Z(∂Gn, ν) = Z(L∗
n, ν)Z(G∗

n, 1),

which implies

lim
n→∞

1

12n2
log Z(∂Gn, ν) = lim

n→∞
1

12n2
log Z(L∗

n, ν) + lim
n→∞

1

12n2
log Z(G∗

n, 1).

The critical weights satisfy the condition a2 + b2 = c2 of proposition 5.4, hence

lim
n→∞

1

12n2
log Z(L∗

n, ν) = lim
n→∞

1

12n2
log Z(L̄∗

n, ν). (5.21)

Since the graph Ln is isoradial, and since the weight function associated to edges of
L∗

n is the critical one, we can compute the right hand side of equation (5.21) with the
formula of proposition 5.8. The calculation yields

lim
n→∞

1

12n2
log Z(L∗

n, ν) =
1

12

{
6

(
1

6
log 1 +

1

π
L
( π

6

)
+

1

3
log

√
3 +

1

π
L
( π

3

)
+

1

2
log 2 +

1

π
L
( π

2

))}
,

=
1

12
log 3 +

1

4
log 2 + +

1

2π
L
( π

6

)
+

1

2π
L
( π

3

)
, (since L

(
π
2

)
= 0). (5.22)

By lemma 5.3, we have

lim
n→∞

1

12n2
log Z(G∗

n, 1) = lim
n→∞

1

12n2
log Z(Ḡ∗

n, 1). (5.23)

The graph Gn is isoradial. Let us compute limn→∞ 1
12n2 Z(Ḡ∗

n,
√

3) with the formula of
proposition 5.8 (the critical weight function for the honeycomb lattice T∗ is computed
in subsection 4.3.2, it assigns weight

√
3 to every edge of T∗). The calculations yield,

lim
n→∞

1

12n2
log Z(Ḡ∗

n,
√

3) =
1

12

{
9

(
1

3
log

√
3 +

1

π
L
(π

3

))}
=

1

8
log 3 +

3

4π
L
(π

3

)
.

The number of edges in a perfect matching of Ḡ∗
n is 3n2, so that

lim
n→∞

1

12n2
log Z(Ḡ∗

n, 1) = lim
n→∞

1

12n2
log Z(Ḡ∗

n,
√

3) +
3n2

12n2
log

(
1√
3

)
=

3

4π
L
(π

3

)
. (5.24)

Combining equations (5.22) and (5.24) yields,

lim
n→∞

1

12n2
log Z(∂Gn, ν) =

1

12
log 3 +

1

4
log 2 +

1

2π
L
(π

6

)
+

5

4π
L
(π

3

)
.

�
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Chapter 6

Explicit Gibbs measure for
isoradial dimer models and the
case of quadri-tilings

The definition of a Gibbs measure is given in subsection 2.1.3: it is a probability
measure on dimer configurations of infinite graphs, which is a natural extension of the
Boltzmann measure of finite graphs. A Gibbs measure gives information about local
statistics, i.e. about the probability of having a certain set of edges occurring in a dimer
configuration. By [29], a dimer model can be in three different phases: solid, gaseous,
or liquid; and the determination of the phase is given by the asymptotic edge-to-edge-
correlation. This motivates why, after having understood the combinatorics of a dimer
model, the second natural step is to obtain an explicit expression for a Gibbs measure.

In [29], Kenyon, Okounkov, Sheffield give an explicit expression for the 2-parameter
family of Gibbs measures on doubly periodic graphs which have bipartite duals. This
expression involves the limit of the inverse Kasteleyn matrices, a quantity hard to
compute in general. In section 6.1 theorem 6.1 states that, when the graph is isoradial
with critical weights on the edges of G∗, the limiting inverse Kasteleyn matrices can
be replaced by the inverse complex Dirac operator K−1 indexed by the vertices of G∗.
This answers the question of interpreting the complex Dirac operator in terms of the
dimer model on isoradial graphs [26]. Let us recall that K−1(b, w) only depends on the
angles of an edge-path from w to b. Using this locality property, theorem 6.1 also gives
an expression for a Gibbs measure on graphs that are not necessarily periodic - they
are rhombus-with-diagonals tilings. The proof uses a geometric property of rhombus
tilings proved in proposition 6.7: every simply connected subgraph of a rhombus tiling
can be embedded in a periodic rhombus tiling of the plane. We believe theorem 6.1 to
remain true for all isoradial graphs which have bipartite dual graphs. The asymptotic
formula for K−1 [26] (see also theorem 3.2) combined with the phase description of [29]
yields that an isoradial dimer model is always in the liquid phase.
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Section 6.2 is about quadri-tilings. First we consider the triangular quadri-tile dimer
model with critical weights (see section 4.3 for definitions). Recall that is corresponds
to two superposed isoradial dimer models: a quadri-tiling Q ∈ Q is a 2-tiling of its
underlying lozenge-with-diagonals tiling L(Q), and L(Q) is a 2-tiling of the equilateral
triangular lattice T. Proposition 6.14 gives an explicit expression for a measure on the
set of all dimer configurations M, whose marginals are the Gibbs measures for each of
the two dimer models, given by theorem 6.1. Now, let R be a rhombus-with-diagonals
tiling of the plane, and let KR be the complex Dirac operator indexed by the vertices of
R∗. Theorem 6.15 states that when |b−w| → ∞, then K−1

R (b, w) only depends on the
rhombi to which b and w belong. This is a surprising fact since in general K−1

R (b, w)
depends on the angles of an edge-path from w to b. This allows us to deduce asymptotic
properties of the Gibbs measure µR on M(R∗), and of the total measure on M.

6.1 Explicit Gibbs measure for the isoradial dimer model

In the whole of this section, we let G be an infinite isoradial graph satisfying (∗).
Suppose that its dual graph G∗ is bipartite, B denotes the set of black vertices, and
W the set of white ones. Recall that M(G∗) denotes the set of dimer configurations
of G∗. Assume the critical weight function ν is assigned to the edges of G∗. Let K be
the complex Dirac operator indexed by the vertices of G∗, and let K−1 be the inverse
complex Dirac operator, (see section 3.2 for definitions).
Subsection 6.1.1 consists in the statement of theorem 6.1: it gives an explicit expression
for a Gibbs measure on M(G∗) as a function of K and K−1, in the case where G is either
periodic or is a rhombus-with-diagonals tiling. The proof of theorem 6.1 in the periodic
case is given in subsection 6.1.2. In subsection 6.1.3, we prove a geometry property of
rhombus tilings. This property is needed for the proof of theorem 6.1 in the case of an
aperiodic rhombus-with-diagonals tiling, which is the subject of subsection 6.1.4.

6.1.1 Explicit Gibbs measure

If e1 = w1b1, . . . , ek = wkbk is a subset of edges of G∗, define the cylinder set
{e1, . . . , ek} of G∗ to be the set of dimer configurations of G∗ which contain the edges
e1, . . . , ek. Let A be the field consisting of the empty set and of the finite disjoint unions
of cylinders. Denote by σ(A) the σ-field generated by A.

Theorem 6.1 Assume one of the following

1. G is periodic,

2. G is a rhombus-with-diagonals tiling of the plane (which might not be periodic),

then there exists a unique probability measure µ on (M(G∗), σ(A)) that satisfies

µ(e1, . . . , ek) =

(
k∏

i=1

K(wi, bi)

)
det

1≤i, j≤k

(
K−1(bi, wj)

)
. (6.1)
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Moreover µ is a Gibbs measure.

The conclusion of theorem 6.1 using assumption 1. (resp. assumption 2.) is proved in
subsection 6.1.2 (resp. subsection 6.1.4).

Remark 6.2

1. Let G1 be a finite simply connected subgraph of G, and let K1 be the sub-matrix
of K indexed by the vertices of G∗

1. Then by [26], the probability that a subset of
edges {w1b1, . . . , wkbk} of G∗

1 occurs in a dimer configuration chosen with respect
to the Boltzmann measure µ1, is given by

(
k∏

i=1

K1(wi, bi)

)
det

1≤i, j≤k

(
(K1)−1(bi, wj)

)
.

In that respect, our definition of the measure µ is a natural extension of the
Boltzmann measure to M(G∗).

2. We believe theorem 6.1 to be true for all infinite isoradial graphs satisfying condi-
tion (∗). Removing the periodicity assumption for a general graph implies solving
a geometric problem of the kind of subsection 6.1.3 in a more general setting.

Example of computation: the probability of a single edge

Let e = wb be an edge of G∗, then by theorem 6.1 the probability of the edge e occurring
in a dimer configuration of the graph G∗ is given by

µ(e) = K(w, b)K−1(b, w).

Let w, x, b, y be the vertices of the rhombus R(wb) in cclw (counterclockwise) order.
Denote by eiα the complex vector y − w, and by eiβ the complex vector x − w; let θ
be the rhombus angle of the edge wb. By definition of the complex Dirac operator, we
have

K(w, b) = i(eiβ − eiα). (6.2)

Moreover, w, x, b is an edge path of R̃ from w to b, hence using the definition of fwb(z)
we obtain,

K−1(b, w) =
1

4π2i

∫

C

log z

(z − eiα)(z − eiβ)
dz =

1

2π

(
2iθ

eiα − eiβ

)
. (6.3)

From equations (6.2) and (6.3), we deduce

µ(e) = θ/π. (6.4)
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6.1.2 Proof of theorem 6.1 under assumption 1.

Under assumption 1, theorem 6.1 is a direct consequence of lemmas 6.3, 6.5 and 6.6
below. We refer the reader to section 3.4 for details of definitions of this subsection. Let
Λ be the 2-dimensional lattice which acts periodically on G. Suppose that the bipartite
coloring of the vertices of G∗ is preserved by translations by Λ (this is possible by
eventually replacing Λ by 2Λ). Define an orientation of the edges of G∗ as in subsection
3.4.1, and let K be the real Dirac operator indexed by the vertices of G∗, corresponding
to this orientation. Consider the toroidal graph Ḡn = G/nΛ, then its dual graph Ḡ∗

n is
bipartite. Let µn be the Boltzmann measure on the set of dimer configurations M(Ḡ∗

n)
of Ḡ∗

n. Let e1 = w1b1, . . . , ek = wkbk be a subset of edges of G∗, and suppose that n is
large enough so that these edges are contained in Ḡ∗

n.

Lemma 6.3

lim
n→∞

µn(e1, . . . , ek) =

(
k∏

i=1

K(wi, bi)

)
det

1≤i,j≤k
(K−1(bi, wj)). (6.5)

Proof:

Let Kn
1 , . . . ,Kn

4 be the Kasteleyn matrices of the graph Ḡ∗
n. Suppose that n is large

enough so that the edges e1, . . . , ek are contained in Ḡ∗
n, and so that they do not cross

the horizontal and vertical cycle of Ḡn. Then we have the following theorem of Kenyon
[21] (see also subsection 3.4.2).

Theorem 6.4 [21] The probability µn(e1, . . . , ek) of the edges e1, . . . , ek occurring in a
dimer configuration of Ḡ∗

n is given by

(
k∏

i=1

K(wi, bi)

)(
− det K

n
1

2Z(Ḡ∗
n, ν)

det
1≤i,j≤k

(
(Kn

1 )−1(bi, wj)
)

+

4∑

ℓ=2

det K
n
ℓ

2Z(Ḡ∗
n, ν)

det
1≤i,j≤k

(
(Kn

ℓ )−1(bi, wj)
)
)

. (6.6)

The next part of the argument can be found in [21] (it is also used in the proof of
proposition 5.8). The second bracket of equation (6.6) is a weighted average of the four
quantities det1≤i,j≤k

(
(Kn

ℓ )−1(bi, wj)
)
, with weights ±1

2 det Kn
ℓ /Z(Ḡ∗

n, ν). These weights
are all in the interval (−1, 1) since, for every ℓ = 1, . . . , 4, 2Z(Ḡ∗

n, ν) > |detKn
ℓ |. In-

deed, Z(Ḡ∗
n, ν) counts the weighted sum of dimer configurations of Ḡ∗

n, whereas |detKn
ℓ |

counts some configurations with negative sign. Since the weights sum to 1, the weighted
average converges to the same value as each det1≤i,j≤k

(
(Kn

ℓ )−1(bi, wj)
)
.

By proposition 3.11, for every ℓ = 1, . . . , 4, det1≤i,j≤k

(
(Kn

ℓ )−1(bi, wj)
)

converges to
det1≤i,j≤k

(
K−1(bi, wj)

)
on a subsequence of n’s. Hence µn(e1, . . . , ek) converges to the

right hand side of (6.5) on a subsequence of n’s. By Sheffield’s theorem [40], this is the
unique limit of the Boltzmann measures µn, so that we have convergence for every n.

�
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Lemma 6.5 There exists a unique probability measure µ on (M(G∗), σ(A)) that sat-
isfies

µ(e1, . . . , ek) =

(
k∏

i=1

K(wi, bi)

)
det

1≤i, j≤k

(
K−1(bi, wj)

)
. (6.7)

Moreover, µ is a Gibbs measure.

Proof:

The edges of the graph G∗ form a countable set. For every i ∈ N, define fi : M(G∗) →
{0, 1} by

fi(M) =

{
1 if the edge ei belongs to M ,
0 else.

Fix k ∈ N, and a k-tuple (s1, . . . , sk) of distinct elements of N. Let H ∈ B{0, 1}k, where
B{0, 1}k denotes the Borel σ-field of {0, 1}k, and define a cylinder of rank k by

A(s1,...,sk)(H) = {M ∈ M(G∗)|(fs1(M), . . . , fsk
(M)) ∈ H}.

Then A(s1,...,sk)(H) can be written as a disjoint union of cylinder sets,

A(s1,...,sk)(H) =
m⋃

i=1

{eti1 , . . . , etiℓi
},

(recall that for every i, {eti1 , . . . , etiℓi
} denotes the set of dimer configurations of G∗

containing the edges eti1 , . . . , etiℓi
). Define

µ(s1,...,sk)(H) =
m∑

i=1






ℓi∏

j=1

K(wtij , btij )


 det

1≤j,k≤ℓi

(K−1(btij , wtik))


 .

Then, by lemma 6.3, µ(s1,...,sk)(H) = limn→∞ µn(A(s1,...,sk)(H)). From this we deduce
that for every k, and for every k-tuple (s1, . . . , sk), µ(s1,...,sk) is a probability measure

on B{0, 1}k. Moreover, we deduce that the system of measures {µ(s1,...,sk) : (s1, . . . , sk)
is a k-tuple of distinct elements of N} satisfy Kolmogorov’s two consistency conditions.
Applying Kolmogorov’s extension theorem, we obtain the existence of a unique measure
µ, which satisfies (6.7).

Using the fact that the measure µ of a cylinder set is the limit of the Boltzmann mea-
sures, we deduce that the measure µ is a Gibbs measure. �

Lemma 6.6 For every subset of edges e1 = w1b1, . . . , ek = wkbk of G∗, we have:

(
k∏

i=1

K(wi, bi)

)
det

1≤i, j≤k

(
K−1(bi, wj)

)
=

(
k∏

i=1

K(wi, bi)

)
det

1≤i, j≤k

(
K−1(bi, wj)

)
.
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Proof:
By definition of the determinant, we have

(
k∏

i=1

K(wi, bi)

)
det

1≤i, j≤k

(
K
−1(bi, wj)

)
=
∑

σ∈Sn

sgn σ

(
k∏

i=1

K(wi, bi)

)
K
−1(b1, wσ(1)) . . . K−1(bk, wσ(k)),

where Sn is the set of permutations of n elements. A permutation σ ∈ Sn can be
written as a product of disjoint cycles, so let us treat the case of each cycle separately.
Refer to subsection 3.3.2 for the definition of the function fwx below.

• Suppose that in the product there is a 1-cycle, that is a point j such that σ(j) = j.
Then, using remark 3.4 and proposition 3.6, we obtain

K(wj , bj) = fwjbj
(0)K(wj , bj),

K−1(bj , wj) = fwjbj
(0)K−1(bj , wj).

Moreover, fwjbj
(0) = fwjbj

(0)−1, hence

K(wj , bj)K
−1(bj , wj) = K(wj , bj)K

−1(bj , wj). (6.8)

• Suppose that in the product there is an ℓ-cycle, with ℓ 6= 1. To simplify notations,
let us assume σ(1) = 2, . . . , σ(ℓ) = 1, and let us prove the following (indices are written
cyclically, i.e. ℓ + 1 ≡ 1),

ℓ∏

j=1

K(wj , bj)K
−1(bj , wj+1) =

ℓ∏

j=1

K(wj , bj)K
−1(bj , wj+1). (6.9)

Again, using remark 3.4 and proposition 3.6, we obtain

ℓ∏

j=1

K(wj , bj)K
−1(bj , wj+1) =

ℓ∏

j=1

K(wj , bj)K
−1(bj , wj+1)fwjbj

(0)fwj+1bj
(0)−1.

Using the definition of the function fwx, and the fact that it is well defined yields

ℓ∏

j=1

fwjbj
(0)fwj+1bj

(0)−1 =
ℓ∏

j=1

fwjbj
(0)fbjwj+1(0) =

ℓ∏

j=1

fwjwj+1(0) = fw1w1(0) = 1.

This proves equation (6.9). Combining equations (6.8), (6.9), and the fact that every
permutation is a product of cycles, we obtain lemma 6.6. �

�
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6.1.3 Geometric property of rhombus tilings

Consider a rhombus-with-diagonals tiling of the plane R. When R is periodic, it satisfies
assumption 1. of theorem 6.1, and the proof is that of subsection 6.1.2. A new difficulty
comes in when R is not periodic. In order to prove theorem 6.1, we need the following
geometric property of rhombus tilings, stated in proposition 6.7 below. The proof of
this proposition is the object of this subsection. Note that all rhombus-with-diagonals
tilings are assumed to use finitely many different rhombi, up to isometry.

Proposition 6.7 Let R be a rhombus tiling of the plane, then any finite simply con-
nected subgraph P of R can be embedded in a periodic rhombus tiling S of the plane.

Proof:

Proposition 6.7 is a direct consequence of lemmas 6.8, 6.9, 6.11 below. �

The notion of train-track has been introduced by Mercat [35], see also Kenyon and
Schlenker [26, 31]. A train-track of a rhombus tiling is a path of rhombi (each rhombus
being adjacent along an edge to the previous rhombus) which does not turn: on entering
a rhombus, it exits across the opposite edge. Train-tracks are assumed to be maximal
in the sense that they extend in both directions as far as possible. Thus train-tracks
of rhombus tilings of the plane are bi-infinite. Each rhombus in a train-track has an
edge parallel to a fixed unit vector e, called the transversal direction of the train-
track. Let us denote by te the train-track of transversal direction e. In an oriented
train-track (i.e. the edges of the two parallel boundary paths of the train-track have
the same given orientation), we choose the direction of e so that when the train-track
runs in the direction given by the orientation, e points from the right to the left. The
vector e is called the oriented transversal direction of the oriented train-track. A
train-track cannot cross itself, and two different train-tracks can cross at most once. A
finite simply connected subgraph P of a rhombus tiling of the plane R is train-track-
convex, if every train-track of R that intersects P crosses the boundary of P twice
exactly.

Lemma 6.8 Let R be a rhombus tiling of the plane, then any finite simply connected
subgraph P of R can be completed by a finite number of rhombi of R in order to become
train-track-convex.

Proof:

Let e1, . . . , em be the boundary edges of P. Every rhombus of P belongs to two train-
tracks of R, each of which can be continued in both directions up to the boundary of
P. In both directions the intersection of each of the train-tracks and the boundary of
P is an edge parallel to the transversal direction of the train-track. Thus, to take into
account all train-tracks of R that intersect P, it suffices to consider for every i the train-
track tei

associated to the boundary edge ei of P. Consider the following algorithm (see
figure 6.1).
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Set Q1 = P.
For i = 1, . . . , m, do the following:
Consider the train-track tei

, and let 2ni be the number of times tei
intersects

the boundary of Qi.

- If ni > 1: there are ni −1 portions of tei
that are outside of Qi, denote

them by tei
1, . . . , tei

ni−1. Then, since Qi is simply connected, for every
j, R \ (Qi ∪ tei

j) is made of two disjoint sub-graphs of R, one of which
is finite (it might be empty in the case where one of the two parallel
boundary paths of tei

j is part of the boundary path of Qi). Denote by
gei

j the simply connected subgraph of R made of the finite subgraph of
R \ (Qi ∪ tei

j) and of tei
j . Denote by bei

j the portion of the boundary
of Qi which bounds gei

j . Replace Qi by Qi+1 = Qi ∪ (∪ni−1
j=1 gei

j). By
this construction tei

intersects the boundary of Qi+1 exactly twice, and
Qi+1 is simply connected.

- If ni = 1: set Qi+1 = Qi.

Qi

t j

tei

e i

Qi+1

ge i

j

Figure 6.1: One step of the algorithm.

Let us show that at every step the train-tracks of R that intersect Qi and Qi+1 are the
same. By construction, boundary edges of Qi+1 are boundary edges of Qi and of tei

j ,
for every j. Let f be an edge on the boundary of Qi+1, but not of Qi, that is f is on
the boundary of tei

j for some j, thus tf crosses gei
j . Since two train-tracks cross at

most once, tf has to intersect bei

j , which means tf also crosses Qi. From this we also
conclude that if a train-track intersects the boundary of Qi twice, then it also intersects
the boundary of Qi+1 twice.

Thus all train-tracks that intersect Qm+1 cross its boundary exactly twice, and Qm+1

contains P. �
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Lemma 6.9 Let R be a rhombus tiling of the plane. Then any finite simply connected
train-track-convex subgraph P of R can be completed by a finite number of rhombi in
order to become a convex polygon Q, whose opposite boundary edges are parallel.

Proof:

Let e1, . . . , em be the boundary edges of P oriented cclw. Since P is train-track-convex,
the train-tracks te1 , . . . , tem intersect the boundary of P twice, so that there are pairs
of parallel boundary edges. Let us assume that the transversal directions of the train-
tracks are all distinct (if this is not the case, one can always perturb the graph a little so
that it happens). Let us also denote by te1 , . . . , tem the portions of the bi-infinite train-
tracks of R in P. In what follows, indices will be denoted cyclically, that is ej = em+j .
Write xj (resp. yj) for the initial (resp. end) vertex of an edge ej .
Let ei, ei+1 be two adjacent boundary edges of P. Consider the translate et

i+1 of ei+1

so that the initial vertex of et
i+1 is adjacent to the initial vertex of ei. Then we define

the turning angle from ei to ei+1 (also called exterior angle) to be the angle êiet
i+1,

and we denote it by θei,ei+1 . If ei, ej are two boundary edges, then the turning angle

from ei to ej is defined by
∑j−1

α=i θeα,eα+1 , and is denoted by θei,ej
.

Property 6.10

1.
∑m

α=1 θeα,eα+1 = 2π.

2. If ei, ej are two boundary edges, and if γ = {f1, . . . , fn} is an oriented edge-path
in P from yi to xj, then θei,ej

= θei,f1 +
∑n−1

α=1 θfα,fα+1 + θfn,ej
.

3. If ei is a boundary edge of P, and ek is the second boundary edge at which tei

intersects the boundary of P, then θei,ek
= π. Thus ek and ei are oriented in the

opposite direction, and we denote ek by ei
−1.

4. P is convex, if and only if every train-track of P crosses every other train-track
of P.

We first end the proof of lemma 6.9, and then prove properties 1. to 4.
Note that properties 1. and 2. are true for any finite simply connected subgraph of R.
The number of train-tracks intersecting P is n = m/2, so that if every train-track
crosses every other train-track, the total number of crossings is n(n − 1)/2. Consider
the following algorithm (see figure 6.2 for an example).

Set Q1 = P, n1 = the number of train-tracks that cross in Q1.
For i = 1, 2, . . . do the following:

1. If ni = n(n − 1)/2: then by property 4, Qi is convex.

2. If ni < n(n − 1)/2: then by property 4, θeji
,eji+1 < 0 for some ji ∈

{1, . . . , m}. Add the rhombus ℓji
of parallel directions eji

, eji+1 along
the boundary of Qi. Set Qi+1 = Qi ∪ ℓji

, and rename the boundary
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edges e1, . . . , em in cclw order. Then the number of train-tracks that
cross in Qi+1 is ni + 1, set ni+1 = ni + 1. Note that if property 4. is
true for Qi, it stays true for Qi+1, and note that the same train-tracks
intersect Qi and Qi+1.

P

Q

Figure 6.2: Example of application of the algorithm.

For the algorithm to be able to add the rhombus ℓji
at every step, we need to check

that:

∀ i, θeji−1,eji+1 > −π, and θeji
,eji+2 > −π. (6.10)

Assume we have proved that for any finite simply connected train-track-convex sub-
graph P of R we have:

∀ i, j, θei,ej
> −π. (6.11)

Then properties 1. and 2. imply that if (6.11) is true for Qi it stays true for Qi+1,
moreover (6.11) implies (6.10). So let us prove (6.11) by induction on the number of
rhombi contained in P. If P is a rhombus, then (6.11) is clear. Now assume P is made
of k rhombi. Consider the train-tracks in P adjacent to the boundary (every boundary
edge e of P belongs to a rhombus of P which has parallel directions e and f ; for every
boundary edge e, the train-track of transversal direction f is the train-track adjacent
to the boundary). Denote the train-tracks adjacent to the boundary by t1, . . . , tp in
cclw order, and write fβ for the oriented transversal direction of tβ (when the boundary
edge-path of P is oriented cclw). Consider two adjacent boundary edges ei, ei+1 of P

that don’t belong to the same boundary train-track. That is ei belongs to tβ , and

ei+1 to tβ+1. Then either f̂βfβ+1 < 0 or f̂βfβ+1 > 0, in the second case tβ and tβ+1

cross and their intersection is a rhombus ℓβ of P. ℓβ has boundary edges ei, ei+1, and

fβ+1 = ei
−1, fβ

−1 = ei+1
−1. Now property 1. implies that

∑p−1
β=1 f̂βfβ+1 = 2π, so that

there always exists β0 such that ̂fβ0fβ0+1 > 0. Removing ℓβ0 from P and using the
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assumption that P is train-track convex, we obtain a graph P′ made of k − 1 rhombi
which is train-track-convex. By induction, θe,f > −π for every boundary edge of P′,
and using property 2, we conclude that this stays true for P.

Denote by Q the convex polygon obtained from P by the algorithm, and assume that
opposite boundary edges are not parallel. Then there are indices i and j such that ei

comes before ej , and e−1
j comes before e−1

i . This implies that θei,ej
= −θej

−1,ei
−1 , so

that one of the two angles is negative, which means Q can not be convex. Thus we
have a contradiction, and we conclude that opposite boundary edges of Q are parallel.

Proof of properties 1. to 4.

1. and 2. are straightforward.

3. When computing θei,ek
along the boundary edge-path of tei

we obtain π, so by
property 2. we deduce that θei,ek

= π in P.

4. Pis convex if and only if, for every i, θei,ei+1 > 0, which is equivalent to saying
that, for every i 6= j, θei,ej

> 0. Therefore property 4. is equivalent to proving
that θei,ej

> 0, for every i 6= j, if and only if every train-track of P crosses every
other train-track of P.
Assume there are two distinct train-tracks teℓ

and tek
that don’t cross in P.

Then, in cclw order around the boundary of P, we have either eℓ, ek
−1, ek, eℓ

−1,
or eℓ, ek, ek

−1, eℓ
−1. It suffices to solve the second case, the first case being similar.

By property 1, θeℓ,ek
+ θek,ek

−1 + θek
−1,eℓ

−1 + θeℓ
−1,eℓ

= 2π. Moreover by property
3, θek,ek

−1 = θeℓ
−1,eℓ

= π, which implies θeℓ,ek
= −θek

−1,eℓ
−1 . Since all train-tracks

have different transversal directions, either θeℓ,ek
or θek

−1,eℓ
−1 is negative.

Now take two boundary edges ei, ej of P (with i 6= j, and ej 6= ei
−1), and

assume the train-tracks tei
, tej

cross inside P. Then in cclw order around the
boundary of P, we have either ei, ej

−1, ei
−1, ej , or ei, ej , ei

−1, ej
−1. It suffices to

solve the second case since the first case can be deduced from the second one. The
intersection of tei

and tej
is a rhombus ℓ. Let ẽ−1

j (resp. ẽ−1
i ) be the boundary edge

of ℓ parallel and closest to ej (resp. ei), oriented in the opposite direction, then
θẽ−1

j ,ẽ−1
i

< 0. Let γj (resp. γi) be the boundary edge-path of tej
(resp. tei

) from

yj to x̃j (resp. from ỹi to xi), and let Q be the subgraph of R whose boundary is
ei, ei+1, . . . , ej , γj , ẽ

−1
j , ẽ−1

i , γi. Since tei
and tej

intersect the boundary of P twice,
they also intersect the boundary of Q twice. Moreover tei

and tej
don’t cross in

Q, so that θei,ej
= −θẽ−1

j ,ẽ−1
i

> 0.

� �

Lemma 6.11 Any convex 2n-gon Q whose opposite boundary edges are parallel and of
the same length can be embedded in a periodic tiling of the plane by Q and rhombi.
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Proof:

Let e1, . . . , en, e1
−1, . . . , en

−1 be the boundary edges of the polygon Q oriented cclw.
If n ≤ 3, then Q is either a rhombus or a hexagon, and it is straightforward that the
plane can be tiled periodically with Q.

If n > 4, for k = 1, . . . , n−3, do the following (see figure 6.3): along en−k add the finite
train-track t̃en−k

of transversal direction en−k, going away from Q, whose boundary
edges starting from the boundary of Q are:

e1, e2, e1︸ ︷︷ ︸, e3, e2, e1︸ ︷︷ ︸, . . . , en−k−2, . . . , e1︸ ︷︷ ︸ .

Q’

e
1e

e3

e6

4
e

e5

-1

2

-1 e3
-1

e -1

3e2

ee 3
2

e 1

e5

-1

-1
-1

-1

e2
1

ee4

Q
-1e 1 e2

-1e3
e 1 e2 e

1

e
1

e 6
-1

5

e4
-1

ee 1

Figure 6.3: Fundamental domain of a periodic tiling of the plane by dodecagons and
rhombi.

Since the polygon Q is convex, the rhombi that are added are well defined, moreover
the intersection of t̃ei

and the boundary of Q is the edge ei, and t̃ei
doesn’t cross t̃ej

,
when i 6= j. So we obtain a new polygon Q′ made of Q and rhombi, whose boundary
edge-path is γ1, . . . , γ6, (when starting from the edge en

−1 of Q), where:

γ1 = en
−1, e1, e2, e1︸ ︷︷ ︸, e3, e2, e1︸ ︷︷ ︸, . . . , en−3, . . . , e1︸ ︷︷ ︸,

γ2 = en−2, . . . , e1,

γ3 = en−1,

γ4 = e1
−1, . . . , en−3

−1

︸ ︷︷ ︸, . . . , e1
−1, e2

−1

︸ ︷︷ ︸, e1
−1, en,

γ5 = e1
−1, . . . , en−2

−1,

γ6 = en−1
−1.
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Noting that γ4 = γ1
−1, γ5 = γ2

−1, γ6 = γ3
−1, and using the fact that the plane can

be tiled periodically with hexagons which have parallel opposite boundary edges, we
deduce that the plane can be tiled with Q′, that is it can be tiled periodically by Q and
rhombi. �

6.1.4 Proof of theorem 6.1 under assumption 2.

Let R be a non periodic rhombus-with-diagonals tiling of the plane, and let R be its
corresponding rhombus tiling. Denote by K the complex Dirac operator indexed by
the vertices of the dual graph R∗.
Consider a subset of edges e1, . . . , ek of R∗, and let P be a simply connected subgraph
of R such that P ∗ contains these edges (P ∗ is the dual graph of the rhombus-with-
diagonals tiling P corresponding to P). By proposition 6.7, there exists a periodic
rhombus tiling of the plane S that contains P. Let us assign the critical weight function
to edges of S∗. Denote by Λ the lattice which acts periodically on S, and suppose
that the dual graph S̄∗

n of the toroidal graph S̄n = S/nΛ is bipartite. Let µn
S be the

Boltzmann measure on dimer configurations M(S̄∗
n) of S̄∗

n. Then we have,

Lemma 6.12

lim
n→∞

µn
S(e1, . . . , ek) =

(
k∏

i=1

K(wi, bi)

)
det

1≤i,j≤k
(K−1(bi, wj)).

Proof:

Denote by KS the Dirac operator indexed by the vertices of S∗. Then combining
lemmas 6.3 and 6.6 yields

lim
n→∞

µn
S(e1, . . . , ek) =

(
k∏

i=1

KS(wi, bi)

)
det

1≤i,j≤k
(K−1

S (bi, wj)).

Since P is simply connected, for every i, j = 1, . . . , k, it contains a path of R̃ (the
set of rhombi associated to edges of R∗) from wj to bi. Moreover by theorem 3.1,
K−1(bi, wj) only depends on such a path, hence K−1

S (bi, wj) = K−1(bi, wj). We also
have ∀ i = 1, . . . , k, KS(wi, bi) = K(wi, bi), so that we deduce lemma 6.12. �

The next part of the proof is close to the proof of lemma 6.5. Let us use the same
notations. Fix k ∈ N, and a k-tuple (s1, . . . , sk) of distinct elements of N. Let H ∈
B{0, 1}k, and A(s1,...,sk)(H) be the corresponding cylinder of rank k; recall that it can
be written as

A(s1,...,sk)(H) =

m⋃

i=1

{eti1 , . . . , etiℓi
}.
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Define

µ(s1,...,sk)(H) =

m∑

i=1






ℓi∏

j=1

K(wtij , btij )


 det

1≤j,k≤ℓi

(K−1(btij , wtik))


 .

Let P be a finite simply connected subgraph of R such that, for every i = 1, . . . , m,
P ∗ contains the edges eti1 , . . . , etiℓi

. Let S be a periodic rhombus tiling of the plane
that contains P (given by proposition 6.7). Then, by lemma 6.12, µ(s1,...,sk)(H) =
limn→∞ µn

S(A(s1,...,sk)(H)). From this we deduce that for every k, and for every k-tuple

(s1, . . . , sk), µ(s1,...,sk) is a probability measure on B{0, 1}k. Moreover, we deduce that
the system of measures {µ(s1,...,sk) : (s1, . . . , sk) is a k-tuple of distinct elements of N}
satisfy Kolmogorov’s two consistency conditions. Applying Kolmogorov’s extension
theorem, we obtain the existence of a unique measure µ, which satisfies (6.1). �

6.2 The case of quadri-tilings

In subsection 6.2.1, we give an explicit expression for a total measure on the set of all
quadri-tilings of the triangular quadri-tile dimer model, whose marginals are the quadri-
tiling Gibbs measure and the lozenge Gibbs measure. In subsection 6.2.2, we consider
a rhombus-with-diagonals tiling R, and the complex Dirac operator KR indexed by
the vertices of R∗. We derive a very simple asymptotic formula for K−1

R , and deduce
asymptotic properties of the quadri-tiling Gibbs measure and of the total measure.

6.2.1 Total measure for the triangular quadri-tile dimer model

Let L be any lozenge-with-diagonals tiling of the plane, and suppose that the critical
weight function is associated to edges of L∗. Let µL be the Gibbs measure on M(L∗)
given by theorem 6.1.
Consider the equilateral triangular lattice T, then T is a periodic isoradial graph whose
dual graph T∗ (the honeycomb lattice) is bipartite. Assume that the critical weight
function is associated to edges of T∗, and let ν be the Gibbs measure on M(T∗) given
by theorem 6.1 (this measure is the same as the one given in [21]).
Recall that M is the set of dimer configurations corresponding to quadri-tilings of the
triangular quadri-tile dimer model (see section 4.3). In this subsection, we start by
defining a σ-algebra σ(B) on M. Then we give an explicit expression for a probability
measure µ on (M, σ(B)), whose marginals are the measures µL and ν.

Recall that L is the set of lozenge-with-diagonals tilings of the plane, up to isometry.
Define L∗ to be the graph (which is not planar) obtained by superposing the dual graphs
L∗ of lozenge-with-diagonals tilings L ∈ L. Although some edges of L∗ have length 0,
we think of them as edges of the one skeleton of the graph, so that to every edge of
L∗ there corresponds a unique quadri-tile in a lozenge-with-diagonals tiling of L. Let
e be an edge of L∗, and let qe be the corresponding quadri-tile, then qe is made of two
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adjacent right triangles. If the two triangles share the hypotenuse edge, they belong to
two adjacent lozenges; else if they share a leg, they belong to the same lozenge. Let us
call these lozenge(s) the lozenge(s) associated to the edge e, and denote it/them
by le (that is le consists of either one or two lozenges). Let ke be the edge(s) of T∗

corresponding to the lozenge(s) le.
Consider a dimer configuration M ∈ M, then M is in bijection with a quadri-tiling
which we denote by QM . Let L(QM ) be the underlying lozenge-with-diagonals tiling
of QM , and recall that L(QM ) denotes the corresponding lozenge tiling.
Let e1, . . . , em be a subset of edges of L∗, and k1, . . . , kn be a subset of edges of T∗. We
define the cylinder set {e1, . . . , em, k1, . . . , kn} of M by,

{M ∈ M|M contains e1, . . . , em, and L(QM )∗ contains k1, . . . , kn}.

Remark 6.13

1. If the edges ke1 , . . . , kem are not included in the set of edges k1, . . . , kn, then

{e1, . . . , em, k1, . . . , kn} = ∅.

2. Every cylinder set of M can be expressed as a finite disjoint union of cylinders
whose edges are edges of L∗ exclusively.

3. Every cylinder whose edges are edges of L∗ can be expressed as a finite disjoint
union of cylinders, each of which has the property that the lozenges associated to
its edges form a connected path of lozenges.

Let us call connected cylinder any cylinder which has the property of the third point
of remark 6.13. Consider B the field consisting of the empty set and of finite disjoint
unions of connected cylinders. Denote by σ(B) the σ-field generated by B.
Let e1, . . . , em be a subset of edges of L∗ which has the property that {e1, . . . , em} is a
connected cylinder.

Proposition 6.14 There exists a unique probability measure µ on (M, σ(B)) that sat-
isfies

µ(e1, . . . , em) = µL(e1, . . . , em)ν(ke1 , . . . , kem), (6.12)

where L is the lozenge-with-diagonals tiling corresponding to any lozenge tiling L which
contains the lozenges le1 , . . . , lem.

Proof:

Expression (6.12) is well defined, i.e. independent of the lozenge tiling L which contains
the lozenges le1 , . . . , lem . Indeed, by definition of a connected cylinder set, the lozenges
associated to the edges e1, . . . , em form a connected path of lozenges, say γ. Let L be a
lozenge tiling that contains γ, and denote by KL the complex Dirac operator indexed
by the vertices of the graph L∗. Then K−1

L (bi, wj) is independent of the lozenge tiling
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L which contains γ, indeed K−1
L (bi, wj) only depends on an edge-path of R̃ from wj to

bi, and since L contains γ which is connected, we can choose the edge-path to be the
same for all lozenge-with-diagonals tilings L. We then use the fact that ν and µL are
probability measures to prove the two conditions of Kolmogorov’s extension theorem.

�

6.2.2 Asymptotics of the quadri-tile Gibbs measure and of the total
measure

Let R be a rhombus tiling of the plane which uses finitely many different rhombi up to
isometry, and let R be the corresponding rhombus-with-diagonals tiling. Consider the
complex Dirac operator KR indexed by the vertices of the dual graph R∗. We establish
that asymptotically (as |b−w| → ∞), K−1

R (b, w) only depends on the rhombi to which
the vertices b and w belong, and else is independent of the graph R. Let µR be the
Gibbs measure on M(R∗) given by theorem 6.1, and let µ be the total measure on M.
Then, from the asymptotic property of K−1

R , we deduce asymptotic properties of the
measures µR and µ.

Refer to figure 6.4 for the following notations. Let ℓ′1, ℓ′2 be two disjoint side-length
two rhombi in the plane, and let ℓ1, ℓ2 be the corresponding rhombi with diagonals.
Assume ℓ1 and ℓ2 have a fixed black and white bipartite coloring of their faces. Let r1

and r2 be the dual graphs of ℓ1 and ℓ2 (r1 and r2 are rectangles), with the corresponding
bipartite coloring of the vertices. Let w be a white vertex of r1, and b a black vertex of
r2, then w (resp. b) belongs to a boundary edge e1 of ℓ1 (resp. e2 of ℓ2). By property
4.2, to the bipartite coloring of the faces of ℓ1 and ℓ2, there corresponds a bipartite
coloring of the vertices of ℓ′1 and ℓ′2. Let x1 (resp. x2) be the black vertex of the edge e1

(resp. e2). Orient the edge wx1 from w to x1, and let eiθ1 be the corresponding vector.
Orient the edge x2b from x2 to b, and let eiθ2 be the corresponding vector. Assume ℓ′1
and ℓ′2 belong to a rhombus tiling of the plane R. Moreover, suppose that the bipartite
coloring of the vertices of R∗ is compatible with the bipartite coloring of the vertices
of r1 and r2.
Then we have the following asymptotics for the inverse complex Dirac operator K−1

R

indexed by the vertices of R∗.

Theorem 6.15 K−1
R (b, w) is given by

1

2π

(
1

b − w
+

e−i(θ1+θ2)

b̄ − w̄

)
+

1

2π

(
e2iθ1 + e2iθ2

(b − w)3
+

e−i(3θ1+θ2) + e−i(θ1+3θ2)

(b̄ − w̄)3

)
+ O

(
1

|b − w|3
)

,

where θ1 and θ2 are defined above.

Proof:

Let us define an edge-path from w to b in R̃. Consider the bipartite coloring of the
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1

x2

b

2θi

1l

1
e

2
r

2

w
x

ei θ

r1 l

Figure 6.4: Rhombi with diagonals ℓ1, ℓ2 and their dual graphs r1, r2.

vertices of R (given by property 4.2) associated to the bipartite coloring of the vertices
of R∗. We define the graph N as follows. Vertices of N are black vertices of R, and two
vertices of N are connected by an edge if they belong to the same rhombus in R. N

is connected because R is. Each face of N is inscribable in a circle of radius two. The
circumcenter of a face of N is the intersection of the rhombi in R, to which the edges
on the boundary cycle of the face belong. Thus the circumcenter is in the closure of
the face, and so faces of N are convex. Note that the vertices x1 and x2 are vertices of
the graph N.

Denote by (x, y) the line segment from a vertex x to a vertex y of N. An edge uv of N

is called a forward-edge for the segment (x, y) if < v − u, y − x >≥ 0. An edge-path
v1, . . . , vk of N is called a forward-path for the segment (x, y), if all the edges vivi+1 are
forward-edges for (x, y). Similarly to what has been done in [26], let us define a forward-
path of N for the segment (x1, x2), from x1 to x2 (see figure 6.5). Let F1, . . . , Fℓ be the
faces of N whose interior intersect (x1, x2) (if some edge of N lies exactly on (x1, x2),
perturb the segment (x1, x2) slightly, using instead a segment (x1 + ε1, x2 + ε2) for
two generic infinitesimal translations (ε1, ε2)). Note that the number of such faces is
finite because the rhombus tiling of the plane R has only finitely many different rhombi.
Then for j = 1, . . . , ℓ− 1, Fj ∩Fj+1 is an edge ej+1 of N crossing (x1, x2). Set v1 = x1,
vℓ = x2, and for j = 1, . . . , ℓ−2, define vj+1 to be the vertex of ej+1 such that the edge
ej+1 oriented towards vj+1 is a forward-edge for (x1, x2). Then, for j = 1, . . . , ℓ − 1,
the vertices vj and vj+1 belong to the face Fj . Take an edge-path from vj to vj+1 on
the boundary cycle of Fj , such that it is a forward-path for (x1, x2). Such a path exists
because faces of N are convex. Thus, we have built a forward-path of N for (x1, x2),
from x1 to x2. Denote by u1 = x1, u2, . . . , uk−1, uk = x2 the vertices of this path.

Let us now define an edge-path of R̃ from w to b. Note that the edges wx1 and x2b
are edges of R̃. For j = 1, . . . , k − 1, define the following edge-path of R̃ from uj

to uj+1 (see figure 6.6). Remember that ujuj+1 is the diagonal of a rhombus of R,
say ℓ′j . Let rj be the dual graph of ℓj . Let u1

j be the black vertex in rj adjacent to

uj , let u2
j be the crossing of the diagonals of ℓj , and let u3

j be the white vertex in

rj adjacent to uj+1. Then the path uj , u
1
j , u

2
j , u

3
j , uj+1 is an edge-path of R̃. Thus
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Figure 6.5: forward-path from x1 to x2 for the segment (x1, x2).

w, x1 = u1, u
1
1, u

2
1, u

3
1, u2, . . . , uk−1, u

1
k−1, u

2
k−1, u

3
k−1, uk = x2, b is an edge-path of R̃,

from w to b. Orient the edges in the path towards the black vertices of R∗, and away
from the white vertices of R∗.

3

2j j+1

j j

j

1

u u

u u

u

Figure 6.6: Edge-path of R̃ from uj to uj+1.

Let eiβ1
j , eiβ2

j , eiα1
j , eiα2

j be the vectors corresponding respectively to the edges uju
1
j ,

u3
juj+1, u2

ju
1
j , u3

ju
2
j . Without loss of generality, suppose that x2−x1 is real and positive.

Then for j = 1, . . . , k − 1, and ℓ = 1, 2, we have:

cos βℓ
j − cos αℓ

j =
< uj+1 − uj , x2 − x1 >

2|x2 − x1|
.

Since u1, . . . , uk is a forward-path for (x1, x2), this quantity is positive, thus cosβℓ
j ≥

cos αℓ
j .

Moreover, since there is only a finite number of different rhombi in R, k = O(|b−w|). For
the same reason, there is a finite number of angles βℓ

j , and they are all in [−π+∆, π+∆],

for some small ∆ > 0 (in the general case where the angle of the vector x2 − x1 is θ0,
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the angles βℓ
j would be in the interval [θ0 − π + ∆, θ0 + π + ∆]). Thus by theorem 4.3

of [26], we have:

K−1
R (b, w) =

1

2π

(
1

b − w
+

γ

b̄ − w̄

)
+

1

2π

(
ξ2

(b − w)3
+

γξ̄2

(b̄ − w̄)3

)
+ O

(
1

|b − w|3
)

, (6.13)

where γ = e−i(θ1+θ2)
k−1∏

j=1

2∏

ℓ=1

ei(−βℓ
j+αℓ

j), and ξ2 = e2iθ1 + e2iθ2 +
k−1∑

j=1

2∑

ℓ=1

e2iβℓ
j − e2iαℓ

j .

Note that this theorem is stated in subsection 3.2.2 where, to simplify notations, we
have omitted the second order term. This term appears in [26], and we state in (6.13),
since it implies precision of the second order for theorem 6.15.
For j = 1, . . . , k− 1, we have α2

j ≡ (β1
j + π) mod[2π], and β2

j ≡ (α1
j + π) mod[2π], thus:

2∏

ℓ=1

ei(−βℓ
j+αℓ

j) = ei(−β1
j +α1

j )ei(−α1
j−π+β1

j +π) = 1,

2∑

ℓ=1

e2iβℓ
j − e2iαℓ

j = e2iβ1
j − e2iα1

j + e2i(α1
j+π) − e2i(β1

j +π) = 0.

Therefore γ = e−i(θ1+θ2), ξ2 = e2iθ1 + e2iθ2 , which proves the theorem. �

Let R be a rhombus tiling of the plane, and let R be the corresponding rhombus-with-
diagonals tiling. Recall that µR is the Gibbs measure on M(R∗) given by theorem 6.1.
Consider a subset of edges e1 = w1b1, . . . , ek = wkbk of R∗.

Corollary 6.16 When ∀ j 6= i, |wj − bi| → ∞, µR(e1, . . . , ek) only depends on the
rhombi of R to which the vertices bi and wj belong, and else is independent of the
structure of the graph R.

Proof:

This is a consequence of the explicit formula for µR(e1, . . . , ek) of theorem 6.1, and of
the asymptotic formula for the inverse complex Dirac operator K−1

R of theorem 6.15.
�

Recall that the non planar graph L∗ is obtained by superposing the dual graphs L∗ of
all lozenge-with-diagonals tilings L ∈ L. Let e1 = w1b1, . . . , ek = wkbk be a subset of
edges of L∗, and define LE to be the set of lozenge-with-diagonals tilings of the plane
that contain the lozenges associated to the edges e1, . . . , ek.

Corollary 6.17 When ∀ j 6= i, |wj−bi| → ∞, µL(e1, . . . , ek) is independent of L ∈ LE.

Proof:

As in subsection 6.2.1, we choose an embedding of L∗ so that every edge of L∗ uniquely
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determines the lozenge(s) it belongs to. Corollary 6.17 is then a restatement of corollary
6.16. �

Recall that µ is the total measure for the triangular quadri-tile dimer model, given by
proposition 6.14. Let le1 , . . . , lek

be the lozenges associated to the edges e1, . . . , ek of
L∗, and let ke1 , . . . , kek

be the corresponding edges of T∗.

Corollary 6.18 When ∀ j 6= i, |wj − bi| → ∞, and for every L ∈ LE, we have
µ(e1, . . . , ek) = µL(e1, . . . , ek)ν(ke1 , . . . , kek

).

Proof:

This is a consequence of the explicit formula for µ(e1, . . . , ek) of proposition 6.14, and
of corollary 6.17. �
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Height fluctuations for isoradial
dimer models

Consider an infinite isoradial graph G whose dual graph G∗ is bipartite. Suppose that
the critical weight function is assigned to edges of G∗. Consider the height function h
on 2-tilings of G given in section 3.5, then 2-tilings of G can be interpreted as discrete
surfaces that are projected to the plane. Assume that G is either periodic, or is a
rhombus-with-diagonals tiling of the plane, and let µ be the Gibbs measure of theorem
6.1, on the set of dimer configurations M(G∗) of G∗. An interesting question is to
understand the fluctuations of the discrete surfaces, when the dimer configurations are
chosen with respect to the measure µ (theorem 7.2).

In section 7.1, we define the Gaussian free field in the plane: it is a Gaussian random
distribution whose covariance function is given by the Dirichlet energy.
Let us multiply the edge-lengths of the graph G by a real factor ε, this yields a new
graph Gε. Let h be the unnormalized height function on 2-tilings of Gε. Theorem 7.2
of section 7.2 states that the height function h converges weakly in distribution to a
Gaussian free field. Section 7.3 consists in the proof of theorem 7.2.
A direct application of theorem 7.2 yields the convergence of the height function of
domino tilings, lozenge tilings and quadri-tilings of the plane to a Gaussian free field.
Recall from chapter 6 that an isoradial dimer model is always in the liquid phase. We
believe the result of theorem 7.2 to hold for all dimer models in the liquid phase.

7.1 Gaussian free field in the plane

In this section, we define the Gaussian free field in the plane. It is a random distribution
whose covariance function is given by the Dirichlet energy.
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7.1.1 Green’s function of the plane, and Dirichlet energy

The Green’s function of the plane, denoted by g, is the kernel of the Laplace
equation in the plane, it satisfies ∆xg(x, y) = δx(y), where δx is the Dirac distribution
at x. Up to an additive constant, g is given by

g(x, y) = − 1

2π
log |x − y|.

Define the following bilinear form

G : C∞
c,0(R

2) × C∞
c,0(R

2) −→ R

(ϕ1, ϕ2) 7−→ G(ϕ1, ϕ2) =

∫

R2

∫

R2

g(x, y)ϕ1(x)ϕ2(y)dx dy.

G(ϕ, ϕ) is called the Dirichlet energy of ϕ. Let us consider the topology induced by
the L∞ norm on C∞

c,0(R
2).

Lemma 7.1 G is a continuous, positive definite, bilinear form.

Proof:

G is continuous

This is a consequence of the fact that for every ϕ1, ϕ2 ∈ C∞
c,0(R

2), the function g(x, y)
is integrable.

G is positive definite

For i = 1, 2, denote by Ki = supp(ϕi), and let fi(x) =
∫

R2 g(x, y)ϕi(y)dy. Let us prove
that

G(ϕ1, ϕ2) =

∫

R2

∇f1(x).∇f2(x)dx. (7.1)

For any R > 0, Green’s formula implies

∫

B(0,R)

∇f1(x).∇f2(x)dx = −
∫

B(0,R)

△f1(x)f2(x)dx +

∫

S(0,R)

f2(x)∇f1(x).n(x)ds. (7.2)

Assume R is large enough so that K1, K2 ⊂ B(0, R). The first term of the right hand
side of (7.2) satisfies

−
∫

B(0,R)

△f1(x)f2(x)dx = −
∫

B(0,R)

△x

(∫

K1

g(x, y)ϕ1(y)dy

)(∫

K2

g(x, y)ϕ2(y)dy

)
dx,

=

∫

K1

∫

K2

g(x, y)ϕ1(x)ϕ2(y)dy dx = G(ϕ1, ϕ2).
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In order to evaluate the second term of the right hand side of (7.2), let us compute

∇f1(x).n(x) = − 1

2π

∫

K1

ϕ1(y)∇ log |x − y|.n(x)dy,

= − 1

2π

∫

K1

ϕ1(y)
|x|

|x − y|2 dy,

= − 1

2π

∫

K1

ϕ1(y)

( |x|
|x − y|2 − 1

|x|

)
dy − 1

2π

∫

K1

ϕ1(y)
1

|x|dy,

= − 1

2π

∫

K1

ϕ1(y)

( |x|
|x − y|2 − 1

|x|

)
dy (since ϕ1 is a mean 0 function).

∀x ∈ S(0, R), ∀ y ∈ K1, we have |x|
|x−y|2 − 1

|x| = O
(

1
R2

)
, hence |∇f1(x).n(x)| = O

(
1

R2

)
;

∀x ∈ S(0, R), we also have |f2(x)| = O(log R), thus the second term of the right hand

side of (7.2) is O
(

log R
R

)
. Taking the limit as R → ∞ in (7.2), we obtain (7.1).

Let us assume G(ϕ1, ϕ1) = 0. By equality (7.1) this is equivalent to
∫

R2 |∇f1(x)|2dx =
0, hence ∇f1 ≡ (0, 0). Since ϕ1(x) = △f1(x) = div(∇f1(x)), we deduce ϕ1 ≡ 0. �

7.1.2 Random distributions

The following definitions are taken from [17]. A random function F associates to
every function ϕ ∈ C∞

c,0(R
2) a real random variable Fϕ. For ϕ1, . . . , ϕk ∈ C∞

c,0(R
2),

we suppose that the joint probabilities an ≤ Fϕn < bn, 1 ≤ n ≤ k are given, and
we ask that they satisfy the compatibility relation. A random function F is linear if
∀ϕ1, ϕ2 ∈ C∞

c,0(R
2),

F (αϕ1 + βϕ2) = αFϕ1 + βFϕ2.

It is continuous if convergence of the functions ϕnj
to ϕj (1 ≤ j ≤ k) implies

lim
n→∞

(Fϕn1 , . . . , Fϕnk
) = (Fϕ1, . . . , Fϕk),

that is, if P (x) (resp. Pn(x)) is the probability measure corresponding to the random
variable (Fϕ1, . . . , Fϕk) (resp. (Fϕn1 , . . . , Fϕnk

)), then for any bounded continuous
function f

lim
n→∞

∫
f(x1, . . . , xk)dPn(x) =

∫
f(x1, . . . , xk)dP (x).

A random distribution F is a random function which is linear and continuous. It is
said to be Gaussian if for every linearly independent functions ϕ1, . . . , ϕk ∈ C∞

c,0(R
2),

the random vector (Fϕ1, . . . , Fϕk) is Gaussian.

Two random distributions F and G are said to be independent if for any functions
ϕ1, . . . , ϕk ∈ C∞

c,0(R
2), the random vectors (Fϕ1, . . . , Fϕk) and (Gϕ1, . . . , Gϕk) are

independent.
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7.1.3 Gaussian free field in the plane

Theorem 7.2 [4] If G : C∞
c,0(R

2) × C∞
c,0(R

2) → R is a bilinear, continuous, positive
definite form, then there exists a Gaussian random distribution F , whose covariance
function is given by

E(Fϕ1Fϕ2) = G(ϕ1, ϕ2).

Using lemma 7.1, and theorem 7.2, we define a Gaussian free field in the plane to
be a Gaussian random distribution whose covariance function is

E(Fϕ1Fϕ2) = − 1

2π

∫

R2

∫

R2

log |x − y|ϕ1(x)ϕ2(y) dx dy.

See also [14, 41] for other ways of the defining the Gaussian free field.

7.2 Gaussian fluctuations for the height function of the
isoradial dimer model

For the remaining of this chapter, we let G be an infinite isoradial graph satisfying (∗).
Suppose that G is either periodic, or is a rhombus-with-diagonals tiling of the plane
(which might not be periodic), and ask that its dual graph G∗ is bipartite. Assume
the critical weight function ν is assigned to the edges of G∗. Let K be the complex
Dirac operator indexed by the vertices of G∗, and let K−1 be the inverse complex Dirac
operator, (see section 3.2 for definitions). Consider the Gibbs measure µ on the set of
dimer configurations M(G∗) of the graph G∗, given by theorem 6.1.

Recall the definition of the reference flow ω0 ∈ Ω(G∗), in the case of isoradial graphs:
for every edge wb of G∗, if θwb is the rhombus angle of the edge wb, then ω0 flows by
θwb/π from w to b. This flow ω0 defines a height function h on vertices of 2-tilings of G
(see section 3.5). Denote by Gε the graph G whose edge-lengths have been multiplied
by ε, and define

Hε : C∞
c,0(R

2) → R

ϕ 7−→ Hεϕ = ε2
∑

v∈V (Gε)

ϕ(v)h(v),

where V (Gε) denotes the set of vertices of the graph Gε, and the height function h is
unnormalized. The next theorem states the convergence of Hε to 1√

π
times a Gaussian

free field. It is proved in section 7.3.

Theorem 7.3 Consider a graph G satisfying the above assumptions, then Hε converges
weakly in distribution to 1√

π
times a Gaussian free field, that is for every ϕ1, . . . , ϕk ∈

C∞
c,0(R

2), (Hεϕ1, . . . , H
εϕk) converges in law (as ε → 0) to 1√

π
(Fϕ1, . . . , Fϕk), where

F is a Gaussian free field.
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7.3 Proof of theorem 7.3

Since the random vector (Fϕ1, . . . , Fϕk) is Gaussian, to prove convergence of (Hεϕ1, . . . ,
Hεϕk) to (Fϕ1, . . . , Fϕk), it suffices to prove convergence of the moments of (Hεϕ1, . . . ,
Hεϕk) to those of (Fϕ1, . . . , Fϕk); that is we need to show that for every k-tuple of
positive integers (m1, . . . , mk), we have

lim
ε→0

Eµ[(Hεϕ1)
m1 . . . (Hεϕk)

mk ] = E[(Fϕ1)
m1 . . . (Fϕk)

mk ]. (7.3)

In subsection 7.3.1, we prove two properties of the height function h. Then, in sub-
section 7.3.2, we prove a formula for the limit (as ε → 0) of the kth moment of h. In
subsection 7.3.3, we use this formula to prove convergence of E[(Hεϕ)k] to E[(Fϕ)k].One
obtains equation (7.3) by choosing ϕ to be a suitable linear combination of the ϕi’s.

Consider the orientation of the edges of G induced by the bipartite coloring of the
vertices of G∗: edges around the black faces of G are oriented cclw, edges around the
white faces of G are then oriented cw.

7.3.1 Properties of the height function

Let u, v be two vertices of G, and let γ be an edge-path of G from u to v. First,
consider edges of γ which are oriented in the direction of the path, that is edges which
have a black face of G on the left, and denote by f1, . . . , fn their dual edges. Hence
an edge fj consists of a black vertex on the left of γ, and of a white one on the right.
Similarly, consider edges of γ which are oriented in the opposite direction, and denote
by e1, . . . , em their dual edges, hence an edge ei consists of a white vertex on the left
of γ, and of a black one on the right. Let Ie be the indicator function of M(G∗):
Ie(M) = 1 if the edge e belongs to the dimer configuration M of G∗, and 0 else.

Lemma 7.4

h(v) − h(u) =

m∑

j=1

(Iej
− µ(ej)) +

n∑

j=1

(−Ifj
+ µ(fj)).

Proof:

Let ej be the dual edge of an edge ujvj of γ oriented from vj to uj . Denote by θj the
rhombus angle of the edge ej , then by lemma 2.5,

h(vj) − h(uj) =





− θj

π + 1 if the edge ej belongs to the dimer configuration of G∗,

− θj

π else.

Hence h(vj) − h(uj) = (− θj

π + 1)Iej
− θj

π (1 − Iej
) = Iej

− θj

π . Moreover, we know from
equation (6.4) that µ(ej) = θj/π, so

h(vj) − h(uj) = Iej
− µ(ej).
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Similarly, when fj is the dual edge of an edge u′
jv

′
j of γ oriented from u′

j to v′j , we
obtain h(v′j) − h(u′

j) = −Ifj
+ µ(fj), and we conclude

h(v)−h(u) =
m∑

j=1

h(vj)−h(uj)+
n∑

j=1

h(v′j)−h(u′
j) =

m∑

j=1

(Iej
−µ(ej))+

n∑

j=1

(−Ifj
+µ(fj)).

�

Lemma 7.5
Eµ[h(v) − h(u)] = 0.

Proof:

By lemma 7.4 we have

Eµ[h(v) − h(u)] =

m∑

j=1

Eµ[Iej
− µ(ej)] +

n∑

j=1

Eµ[−Ifj
+ µ(fj)]

=
m∑

j=1

(µ(ej) − µ(ej)) +
n∑

j=1

(−µ(fj) + µ(fj)) = 0.

�

7.3.2 Moment formula

Let u1, . . . , uk, v1, . . . , vk be distinct points of R2, and let γ1, . . . , γk be pairwise disjoint
paths such that γj runs from uj to vj . Let uε

j , v
ε
j be black vertices of Gε lying within

O(ε) of uj and vj respectively. Then, we have

Proposition 7.6 For every k ∈ N, k ≥ 2

lim
ε→0

Eµ[(h(vε
1)−h(uε

1)) . . . (h(vε
k)−h(uε

k))] =
(−i)k

(2π)k

∑

ε=0,1

(−1)kε




∫

γ1

. . .

∫

γk

det
i,j∈[1,k]

i6=j

(
1

zε
i − zε

j

)
dzε

1 . . . dzε
k


 ,

(7.4)

where z0
i = zi and z1

i = z̄i.

Proof:
Let γε

1, . . . , γ
ε
k be pairwise disjoint paths of Gε, such that γε

j runs from uε
j to vε

j and

approximates γj within O(ε). For every j, denote by fjs the dual edge of the sth edge
of the path γε

j , which is oriented in the direction of the path: fjs consists of a black
vertex on the left of γε

j , and of a white one on the right. Denote by ejt the dual edge
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of the tth edge of the path γε
j , which is oriented in the opposite direction: ejt consists

of a black vertex on the right of γε
j , and of a white one on the left. Using lemma 7.4,

we obtain

Eµ[(h(vε
1) − h(uε

1)) . . . (h(vε
k) − h(uε

k))] =

= Eµ


∑

t1

(Ie1t1
− µ(e1t1 )) −

∑

s1

(If1s1
− µ(f1s1 ))


 . . .


∑

tk

(Iektk
− µ(ektk

)) −
∑

sk

(Ifksk
− µ(fksk

))


 ,

=
∑

t1,...,tk

Eµ[Ie1t1
− µ(e1t1 )] . . . [Iektk

− µ(ektk
)] − . . . + (−1)k

∑

s1,...,sk

Eµ[If1s1
− µ(f1s1 )] . . . [Ifksk

− µ(fksk
)],

=
∑

δ1,...,δk∈{0,1}

∑

t
δ1
1 ,...,t

δk
k

(−1)δ1+...+δk Eµ[Ie
1t

δ1
1

− µ(e
1t

δ1
1

)] . . . [Ie
kt

δk
k

− µ(e
kt

δk
k

)], (7.5)

where t
δj

j =

{
tj if δj = 0
sj if δj = 1

, e
jt

δj
j

= e
δj

jt
δj
j

=

{
ejtj if δj = 0
fjsj

if δj = 1
.

For the time being, let us drop the second subscript. Write ej = wjbj and fj = w′
jb

′
j ,

the letters w, b are used respectively for the white and the black vertex. Moreover, let

us introduce the notation w
δj

j , where w
δj

j = wj if δj = 0, and w
δj

j = w′
j if δj = 1,

similarly we introduce the notation b
δj

j . Hence we can write a generic term of (7.5) as

(−1)δ1+...+δkEµ[(I
w

δ1
1 b

δ1
1

− µ(wδ1
1 bδ1

1 )) . . . (I
w

δk
k

b
δk
k

− µ(wδk

k bδk

k ))].

Lemma 7.7 [21]

(−1)δ1+...+δkEµ[(I
w

δ1
1 b

δ1
1

− µ(wδ1
1 bδ1

1 )) . . . (I
w

δk
k

b
δk
k

− µ(wδk

k bδk

k ))] =

= (−1)δ1+...+δkaE

∣∣∣∣∣∣∣∣∣∣

0 K−1(bδ1
1 , wδ2

2 ) . . . K−1(bδ1
1 , wδk

k )

K−1(bδ2
2 , wδ1

1 ) 0
...

... K−1(b
δk−1

k−1 , wδk

k )

K−1(bδk

k , wδ1
1 ) . . . K−1(bδk

k , w
δk−1

k−1 ) 0

∣∣∣∣∣∣∣∣∣∣

,

(7.6)

where aE =

k∏

j=1

K(w
δj

j , b
δj

j ), and K is the complex Dirac operator indexed by the vertices

of G∗.

A typical term in the expansion of (7.6) is

(−1)δ1+...+δkaE sgn σK−1(bδ1
1 , w

δσ(1)

σ(1) ) . . .K−1(bδk

k , w
δσ(k)

σ(k) ), (7.7)

where σ ∈ S̃k, and S̃k is the set of permutations of k elements, with no fixed points.
To simplify notations, let us assume σ is a k-cycle, hence (7.7) becomes

(−1)δ1+...+δkaE sgn σK−1(bδ1
1 , wδ2

2 ) . . . K−1(bδk

k , wδ1
1 ). (7.8)
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Lemma 7.8 When ε is small, and for every δ1, . . . , δk ∈ {0, 1},

εkaE = (−i)k(−1)δ1+...+δkdzδ1
1 . . . dzδk

k . (7.9)

Proof:

Let ujvj be an edge of the path γε
j where uj precedes vj . We can write

ujvj = εℓ(ujvj)e
iθj , (7.10)

where ℓ(ujvj) is the length of the edge ujvj in G, and θj is the direction from uj to
vj . Let us first consider the case of an edge ujvj oriented in the direction of the path,
that is the dual edge w′

jb
′
j of ujvj has its black vertex on the left of γε

j . By definition

of the complex Dirac operator, we have K(w′
j , b

′
j) = ℓ(ujvj)e

iθjei π
2 . Next we consider

the case of an edge ujvj oriented in the opposite direction, that is its dual edge wjbj

has its black vertex on the right of γε
j . Again, using the definition of the complex Dirac

operator, we obtain K(wj , bj) = ℓ(ujvj)e
iθje−i π

2 . We summarize the two cases by the
following equation

K(w
δj

j , b
δj

j ) = (−i)(−1)δjℓ(ujvj)e
iθj . (7.11)

When ε is small we replace ujvj by dz
δj

j . Thus combining equations (7.10) and (7.11)
we obtain equation (7.9). �

Lemma 7.9 When ε is small and up to a term of order O(ε), equation (7.8) equals

(−i)k

(2π)k

∑

ε1,...,εk∈{0,1}

[f
w

δ2
2 b

δ1
1

(0)]ε1 . . . [f
w

δ1
1 b

δk
k

(0)]εk Fε1 (bδ1
1 , wδ2

2 ) . . . Fεk
(b

δk
k

, wδ1
1 )dzδ1

1 . . . dzδk

k , (7.12)

where F0(z, w) =
1

z − w
, F1(z, w) = F0(z̄, w̄), and the functions fwb are defined in

section 3.2.

Proof:

Let us drop the superscripts δi. Plugging relation (7.9) in (7.8), we obtain

(7.8) = (−i)ksgnσK−1(b1, w2) . . .K−1(bk, w1)
1

εk
dz1 . . . dzk. (7.13)

Moreover, for every i 6= j, lim
ε→0

|bi − wj |
ε

= ∞, so that by theorem 3.2 we have

K−1(bi, wj) =
ε

2π
(F0(bi, wj) + fwjbi

(0)F1(bi, wj)) + O(ε2). (7.14)

Equation (7.12) is then (7.13) where the elements K−1(bi, wj) have been replaced by
(7.14) and expanded out. �
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In what follows, all that we say is true whether the edge w
δj

j b
δj

j has its black vertex
on the right or on the left of the path γε

j , that is whether δj = 0 or 1. So to simplify

notations, let us write {tj} instead of {δj ∈ {0, 1}, tδj

j }, hence {tj} is the set of indices
which run along the path γε

j . Keeping in mind that our aim is to take the limit as
ε → 0, we replace the vertices bj and wj in the argument of the function Fεj

by one
common vertex denoted by zj . Define

H(ε1, . . . , εk)=

=
∑

t1,...,tk

[fw2t2
b1t1

(0)]ε1 . . . [fw1t1
bktk

(0)]εk Fε1 (z1t1 , z2t2 ) . . . Fεk
(zktk

, z1t1)dz1t1 . . . dzktk
.

Lemma 7.10

1. If (ε1, . . . , εk) = (0, . . . , 0), then

lim
ε→0

H(0, . . . , 0) =

∫

γ1

. . .

∫

γk

F0(z1, z2) . . . F0(zk, z1)dz1 . . . dzk.

2. If (ε1, . . . , εk) = (1, . . . , 1), then

lim
ε→0

H(1, . . . , 1) = (−1)k

∫

γ1

. . .

∫

γk

F0(z̄1, z̄2) . . . F0(z̄k, z̄1)dz̄1 . . . dz̄k.

3. Assume there exists i 6= j ∈ {1, . . . , k} such that εi = 0, εj = 1, then

lim
ε→0

|H(ε1, . . . , εk)| = 0.

Proof:

Here are some preliminary notations. Dropping the second subscript, we consider an
edge ujvj of one of the paths γε

i , where uj precedes vj . Let us denote by wjbj the dual
edge of the edge ujvj , and let εeiαj = vj − wj , εeiβj = bj − vj . With these notations,
we have dzj = ε(eiαj − eiβj ) (see figure 7.1).

w
j

j
u bj

ei j

ei j

vj

γ
i

α

β

Figure 7.1: Notations
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Moreover, define

J(ε1, . . . , εk) = [fw2b1(0)]ε1 . . . [fw1bk
(0)]εkdz1 . . . dzk.

Proof of 1.

J(0, . . . , 0) = dz1 . . . dzk,

so that
H(0, . . . , 0) =

∑

t1,...,tk

F0(z1t1 , z2t2) . . . F0(zktk , z1t1)dz1t1 . . . dzktk .

Since the paths γj are disjoint, the function F0(z1, z2) . . . F0(zk, z1) is integrable, and
taking the limit as ε → 0, we obtain 1.

Proof of 2.

J(1, . . . , 1) = fw2b1(0) . . . fw1bk
(0) dz1 . . . dzk.

Fix a vertex v of G∗. Then, by definition of the function fwv,

J(1, . . . , 1) = fw2v(0)fvb1(0) . . . fw1v(0)fvbk
(0) dz1 . . . dzk,

= fw1v(0)fvb1(0) . . . fwkv(0)fvbk
(0) dz1 . . . dzk,

= fw1b1(0) . . . fwkbk
(0) dz1 . . . dzk.

For every j, we have fwjbj
(0) = e−i(βj+αj). Moreover, recall that dzj = ε(eiαj − eiβj ),

so that −dz̄j = e−i(βj+αj)dzj , and we deduce

J(1, . . . , 1) = (−1)kdz̄1 . . . dz̄k.

This implies,

H(1, . . . , 1) = (−1)k
∑

t1,...,tk

F0(z̄1t1 , z̄2t2) . . . F0(z̄ktk , z̄1t1)dz̄1t1 . . . dz̄ktk .

Taking the limit as ε → 0, we obtain 2.

Proof of 3.

Consider 0 < ℓ < k, and assume ε1 = . . . = εℓ−1 = 0, εℓ = . . . = εk = 1. Let us prove
that limε→0 |H(0, . . . , 0, 1, . . . , 1)| = 0. Note that up to a permutation of indices, the
argument is the same for the other cases.

J(0, . . . , 0, 1, . . . , 1) = fwℓ+1bℓ
(0) . . . fw1bk

(0) dz1 . . . dzk.

As above, let v be a vertex of G∗. Then,

J(0, . . . , 0, 1, . . . , 1) = (fvbℓ
(0)dzℓ)(fw1v(0)dz1)dz2 . . . dzℓ−1dz̄ℓ+1 . . . dz̄k.
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Introducing the following notation

H1 = F (z2t2 , z3t3) . . . F (zℓ−2tℓ−2
, zℓ−1tℓ−1

)F (z̄ℓ+1tℓ+1
, z̄ℓ+2tℓ+2

) . . . F (z̄k−1tk−1
, z̄ktk),

H2 = F (z1t1 , z2t2)F (z̄ktk , z̄1t1),

H3 = F (zℓ−1tℓ−1
, zℓtℓ)F (z̄ℓtℓ , z̄ℓ+1tℓ+1

),

we obtain H(0, . . . , 0, 1, . . . , 1) =

=
∑

t2,...,t̂ℓ,...,tk

H1


∑

t1

H2fw1t1
v(0)dz1t1




∑

tℓ

H3fvbℓtℓ
(0)dzℓtℓ


 dz2t2 . . . dzℓ−1tℓ−1

dz̄ℓ+1tℓ+1
. . . dz̄ktk

.

Let us prove ∑

tℓ

fvbℓtℓ
(0)dzℓtℓ = O(ε). (7.15)

Dropping the second subscript, let u1, v1 = u2, v2 = u3, . . . , vm−1 = um, vm be the
edge-path γε

ℓ . Denote by ξ the quantity fvu1(0), then

fvbj
(0) = ξei(β1−α1) . . . ei(βj−1−αj−1)e−iαj .

Since dzj = ε(eiαj − eiβj ), we obtain

fvbj
(0)dzj = εξ

[(
ei(β1−α1) . . . ei(βj−1−αj−1)

)
−
(
ei(β1−α1) . . . ei(βj−1−αj−1)ei(βj−αj)

)]
,

hence

∑

tℓ

fvbℓtℓ
(0)dzℓtℓ

=
m∑

j=1

fvbj
(0)dzj ,

= εξ[1 − ei(β1−α1) +
m∑

j=2

ei(β1−α1) . . . ei(βj−1−αj−1)) − (ei(β1−α1) . . . ei(βj−1−αj−1)ei(βj−αj )],

= εξ[1 − (ei(β1−α1) . . . ei(βm−αm)], (telescopic sum).

We deduce |∑tℓ
fvbℓtℓ

(0)dzℓtℓ | ≤ 2ε, and (7.15) is proved.
In a similar way we prove

∑
t1

fw1t1v(0)dz1t1 = O(ε).

Using Taylor expansion in ε for H2 and H3, we deduce that
(∑

t1
H2fw1t1v(0)dz1t1

)
and(∑

tℓ
H3fvbℓtℓ

(0)dzℓtℓ

)
are O(ε). Since the function H1 is integrable, we conclude that

H(0, . . . , 0, 1, . . . , 1) is O(ε2) and so 3. is proved. �

Rewriting the second subscript, and summing equation (7.8) over the paths γε
1, . . . , γ

ε
k,

we obtain (by lemma 7.9 and 7.10):

lim
ε→0

sgn σ
∑

δ1,...,δk∈{0,1}

∑

t
δ1
1 ...t

δk
k

(−1)δ1+...+δkaEK−1(b
1t

δ1
1

, w
2t

δ2
2

) . . .K−1(b
kt

δk
k

, w
1t

δ1
1

) =

=
(−i)k

(2π)k
sgnσ

∑

ε=0,1

(−1)εk

(∫

γ1

. . .

∫

γk

F0(z
ε
1, z

ε
2) . . . F0(z

ε
k, z

ε
1)dzε

1 . . . dzε
k

)
,

(7.16)
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where z0
i = zi and z1

i = z̄i. When σ is a product of disjoint cycles, we can treat each
cycle separately and the result is the product of terms like (7.16). Thus when we sum
over all permutations with no fixed points, we obtain equation (7.4) of proposition 7.6.

�

Proposition 7.11

- When k is odd, lim
ε→0

Eµ[(h(vε
1) − h(uε

1)) . . . (h(vε
k) − h(uε

k))] = 0.

- When k is even, lim
ε→0

Eµ[(h(vε
1) − h(uε

1)) . . . (h(vε
k) − h(uε

k))] =

=

(
1

π

)k/2 ∑

τ∈Tk

g(uτ(1), vτ(1), uτ(2), vτ(2)) . . . g(uτ(k−1), vτ(k−1), uτ(k), vτ(k)),

where g(u, v, u′, v′) = g(v, v′)+g(u, u′)−g(v, u′)−g(u, v′), g is the Green’s function
of the plane, and Tk is the set of all (k − 1)!! pairings of {1, . . . , k}.

Proof:

Let us cite the following lemma from [24].

Lemma 7.12 [24] Let M be the k × k matrix M = (mij), with mii = 0, and mij =
1

xi−xj
, when i 6= j. Then when k is odd, det M = 0, and when k is even

det M =
∑

τ∈Tk

1

(xτ(1) − xτ(2))2 . . . (xτ(k−1) − xτ(k))2
.

Combining proposition 7.6 and lemma 7.12, when k = 2, we obtain

lim
ε→0

Eµ[(h(vε
1) − h(uε

1))(h(vε
2) − h(uε

2))] =

= − 1

4π2

(∫

γ1

∫

γ2

1

(z1 − z2)2
dz1dz2 +

∫

γ1

∫

γ2

1

(z̄1 − z̄2)2
dz̄1dz̄2

)
,

= − 1

2π2
log

∣∣∣∣
(v1 − v2)(u1 − u2)

(v1 − u2)(u1 − v2)

∣∣∣∣ ,

=
1

π
g(u1, v1, u2, v2).

The case of a general even k is an easy but notationally cumbersome extension of the
case k = 2. �
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7.3.3 Proof of theorem 7.3

Proposition 7.13

lim
ε→0

Eµ[(Hεϕ)k] =
1

πk
E[(Fϕ)k] =

{
0 when k is odd,

(k − 1)!!
1

πk/2
G(ϕ, ϕ)k/2 when k is even.

(7.17)

Proof:

The second equality is just the kth moment of a mean 0, variance 1√
π
G(ϕ, ϕ), Gaussian

variable. So let us prove equality between the first and the last term.
Consider u1, . . . , uk distinct points of R2, and for every j, let uε

j be a vertex of Gε lying
within O(ε) of uj . Define

Hε
uj

ϕ =
∑

vε∈Gε

ε2ϕ(vε)(h(vε) − h(uε
j)) =

∑

vε∈Kε

ε2ϕ(vε)(h(vε) − h(uε
j)),

where Kε = Gε ∩ K, and K = supp(ϕ), then since we sum over a finite number of
vertices,

Eµ[Hε
u1

ϕ . . . Hε
uk

ϕ] = Eµ


 ∑

vε
1∈Kε

ε2ϕ(vε
1)(h(vε

1) − h(uε
1)) . . .

∑

vε
k
∈Kε

ε2ϕ(vε
k)(h(vε

k) − h(uε
k))


 ,

=
∑

vε
1∈Kε

. . .
∑

vε
k
∈Kε

(ε2)kϕ(vε
1) . . . ϕ(vε

k) Eµ[(h(vε
1) − h(uε

1)) . . . (h(vε
k) − h(uε

k))].(7.18)

Lemma 7.14 As ε → 0, the Riemann sum (7.18) converges to
∫

. . .

∫
ϕ(v1) . . . ϕ(vk) lim

ε→0
Eµ[(h(vε

1) − h(uε
1)) . . . (h(vε

k) − h(uε
k))]dv1 . . . dvk,

where limε→0 Eµ[(h(vε
1) − h(uε

1)) . . . (h(vε
k) − h(uε

k))] is given by proposition 7.11.

Proof:

In what follows, all that we say is true whether δj = 0 or 1, so to simplify notations,

as before, let us write {tj} instead of {δj ∈ {0, 1}, tδj

j }, hence {tj} is the set of indices

which run along the path γε
j . Combining equations (7.5), (7.7) and (7.9) yields,

Eµ[h(vε
1) − h(uε

1)] . . . [h(vε
k) − h(uε

k)] =

= (−i)k
∑

t1,...,tk

∑

σ∈S̃k

sgnσK−1(b1t1 , wσ(1)tσ(1)
) . . . K−1(bktk

, wσ(k)tσ(k)
)

1

εk
dz1t1 . . . dzktk

. (7.19)

It suffices to consider the case where σ is a k-cycle, other cases are treated similarly.
Indices are denoted cyclically (i.e. k + 1 ≡ 1). There is a singularity in (7.19) as soon
as vε

j = vε
j+1 for some indices j. Hence, we need to prove that for ε small enough,

∑

vε
1

. . .
∑

vε
k

(ε2)k|ϕ(vε
1) . . . ϕ(vε

k)|
∑

t1,...,tk

|K−1(b1t1 , w2t2 ) . . . K−1(bktk
, w1t1 )| 1

εk
dz1t1 . . . dzktk

, (7.20)
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is o(1), when the sum is over vertices vε
1, . . . , v

ε
k that satisfy

|vε
1 − vε

2| ≤ δ, . . . , |vε
m − vε

m+1| ≤ δ, |vε
m+1 − vε

m+2| > δ, . . . , |vε
k − vε

1| > δ,

for some 1 ≤ m < k − 1. Let 0 < β < 1, up to a renaming of indices, this amounts to
considering vertices vε

1, . . . , v
ε
k in Θ1 ∩ Θ2 ∩ Θ3, where

Θ1 = {vε
1, . . . , v

ε
m | {1 ≤ i ≤ m, 0 ≤ |vε

i − vε
i+1| ≤ εβ},

Θ2 = {vε
m+1, . . . , v

ε
n |m + 1 ≤ j ≤ n, εβ ≤ |vε

j − vε
j+1| ≤ δ},

Θ3 = {vε
n+1, . . . , v

ε
k |n + 1 ≤ ℓ ≤ k, |vε

ℓ − vε
ℓ+1| > δ},

for some 1 ≤ m < n < k − 1.
Since u1, . . . , uk are distinct vertices of R2, and since equation (7.20) does not depend
on the path γε

j from uε
j to vε

j , let us choose the paths γε
1, . . . , γ

ε
k as follows. Note that it

suffices to consider the part of the path γε
j where the vertices bjtj and wjtj are within

distance δ from vε
j . Let us write |tj | ≤ δ to denote indices tj which refer to vertices of

γε
j that are at distance at most δ from vε

j . Take γε
j to approximate a straight line within

O(ε), from vε
j to vε

j + δ. Moreover, ask that if one continues the lines of γε
j and γε

j+1

away from uε
j and uε

j+1, they intersect and form an angle θj . Let us use the definition
of the paths γε

j , and consider the three following cases. Whenever it is not confusing,
we shall drop the second subscript. C denotes a generic constant, A ∼ B means A and
B are of the same order.

• vε
1, . . . , v

ε
m ∈ Θ1.

By remark 7.15 below, we have |K−1(bi, wi+1)| ≤ C. This implies,

∑

|t1|≤δ,...,|tm|≤δ

|K−1(b1t1 , w2t2) . . .K−1(bmtm , wm+1tm+1)|
1

εm
dz1t1 . . . dzmtm ≤

(
Cδ

ε

)m

.

• vε
n+1, . . . , v

ε
k ∈ Θ3.

By definition of the paths γε
ℓ , |bℓ − wℓ+1| > δ, so that limε→0

|bℓ−wℓ+1|
ε = ∞. Using

theorem 3.2 yields 1
ε |K−1(bℓ, wℓ+1)| = O

(
1

|bℓ−wℓ+1|

)
≤ C

δ . Hence,

∑

|tn+1|≤δ,...,|tk|≤δ

|K−1(bn+1tn+1 , wn+2tn+2 ) . . . K−1(bktk
, w1t1 )| 1

εk−n
dzn+1tn+1 . . . dzktk

≤
(

C

δ

)k−n

.

• vε
m+1, . . . , v

ε
n ∈ Θ2.

Let εβ ≤ L ≤ δ, and define the annulus, A(vε
j , L) = {v ∈ Gε|L ≤ |v − vε

j | ≤ L + ε}.
By definition of the paths γε

j , if vε
j ∈ A(vε

j+1, L), we have limε→0
|bj−wj+1|

ε = ∞ (since
β < 1). Using theorem 3.2 yields

1

ε
|K−1(bj , wj+1)| = O

(
1

|bj − wj+1|

)
≤ 1

min{wj+1∈γε
j+1} |bj − wj+1|

=
C

xj + CL
sin θj ,
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where xj is the distance from vε
j to bj . Let us replace sin θj by C. Hence, if for

m + 1 ≤ j ≤ n, vε
j ∈ A(vj+1, Lj), we obtain

∑

|tm+1|≤δ,...,|tn|≤δ

|K−1(bm+1tm+1 , wm+2tm+2 ) . . . K−1(bntn , wn+1tn+1 )| 1

εn−m
dzm+1tm+1 . . . dzntn ≤

≤
∑

|tm+1|≤δ,...,|tn|≤δ

C

xm+1tm+1 + CLm+1
. . .

C

xntn + CLn

dxm+1tm+1 . . . dxntn ,

∼ C

n∏

j=m+1

log

(
δ + CLj

CLj

)
.

Let Ξ be the sum (7.20) over vertices vε
1, . . . , v

ε
k ∈ Θ1 ∩ Θ2 ∩ Θ3. Denote by M =

supv∈R2 |ϕ(v)|. Then, Ξ ≤ Ξ1Ξ2Ξ3, where

Ξ1 = CMm


 ∑

vε
1 ,...,vε

m∈Θ1

ε2m

(
δ

ε

)m

 ,

Ξ2 =




∑

vε
n+1,...,vε

k
∈Θ2

ε2(k−n)|ϕ(vε
n+1)| . . . |ϕ(vε

k)|
(

1

δ

)k−n


 ,

Ξ3 = CMn−m




δ∑

Lm+1=0

. . .

δ∑

Ln=0

εn−mLm+1 . . . Ln log

(
δ + CLm+1

Lm+1

)
. . . log

(
δ + CLn

Ln

)
dLm+1 . . . dLn


 .

Moreover,

Ξ1 ≤ CMmδmεm(2β−1),

Ξ2 ≤
(

1

δ

)k−n ∑

vε
n+1,...,vε

k
∈R2

ε2(k−n)|ϕ(vε
n+1)| . . . |ϕ(vε

k)| ≤ Mk−n

(
1

δ

)k−n

,

Ξ3 ∼ CMn−m(δ log δ)n−m.

Hence, Ξ ≤ CMkδ2n−kεm(2β−1). Let us take β = 2/3 < 1, then m(2β − 1) > 0. If

2n − k ≥ 1, then Ξ = o(1). If 2n − k ≤ 0, take ε ≤ δ
k−2n+1
m(2β−1) , and Ξ = o(1).

Remark 7.15 Let G∗ be a bipartite isoradial graph, and let K−1 be the corresponding
inverse Dirac operator, then for every black vertex b and every white vertex w of G∗,
we have ∣∣K−1(b, w)

∣∣ ≤ C
for some constant C which only depends on the graph G∗.

Proof:

By theorem 3.1, K−1 is given by

K−1(b, w) =
1

4π2i

∫

C
fwb(z) log z dz,
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Refer to theorem 3.1 for the definition of C. Without loss of generality suppose θ0 = 0.
As in [26], let us homotope the curve C to the curve from −∞ to the origin and back
to −∞ along the two sides of the negative real axis. On the two sides of this ray, log z
differs by 2πi, hence

K−1(b, w) =
1

2π

∫ 0

−∞
fwb(t) dt, where fwb(t) =

1

(t − eiθ1)(t − eiθ2)

k∏

j=1

(t − eiαj )

(t − eiβj )
.

Refer to [26] for the choice of path from w to b, that is for the definition of the angles
θ1, θ2, αj , βj . These angles have the property that for all j, cos αj ≤ cos βj , so

∣∣∣∣
t − eiθj

t − eiβj

∣∣∣∣ ≤ 1.

For every eiθ ∈ {eiθ | θ ∈ [θ0 − π + ∆, θ0 + π − ∆]}, and for every t < 0, we have
|t − eiθ|2 ≥ |t − ei(π+∆)|2 = |t + ei∆|2. Moreover for every t ∈ R, we have |t + ei∆|2 ≥
sin2 ∆, and |t + ei∆|2 ≥ (t + 1)2, thus

∫ 0

−∞
|fwb(t)|dt ≤

∫ −2

−∞

1

(t + 1)2
dt +

∫ 0

−2

1

sin2 ∆
dt = 1 +

2

sin2 ∆
.

Hence
∣∣K−1(b, w)

∣∣ ≤ C, where C = 1
2π

(
1 + 2

sin2 ∆

)
. �

�

We end the proof of proposition 7.13 with the following

Lemma 7.16

1.

∫
. . .

∫
ϕ(v1) . . . ϕ(vk) lim

ε→0
Eµ[(h(vε

1) − h(uε
1)) . . . (h(vε

k) − h(uε
k))]dz1 . . . dzk =

=

{
0 when k is odd,

(k − 1)!!
1

πk/2
G(ϕ, ϕ)k/2 when k is even.

2. limε→0 Eµ[Hε
u1

ϕ . . .Hε
uk

ϕ] = limε→0 Eµ[(Hεϕ)k].

Proof:

1. is deduced from the formula of proposition 7.11, and from the fact that ϕ is a mean
0 function. 2. is a consequence of the fact that ϕ is a mean 0 function, and of estimates
of the kind of those of lemma 7.14. �

�
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Résumé

Le modèle de dimères modélise la répartition de molécules diatomiques à la surface
d’un cristal. Nous nous plaçons dans le cas où le réseau représentant la surface du
cristal est infini périodique et vérifie une condition géométrique appelée isoradialité,
nous supposons que les arêtes du réseau sont munies de la fonction de poids critique
(les poids modélisent la température extérieure). Le modèle a alors un comportement
“critique”, au sens où il n’a que 2 phases possibles, solide ou liquide, au lieu de 3
en général (il n’a pas de phase gazeuse). Les trois résultats principaux sur le modèle
de dimères isoradial sont les suivants. Nous prouvons une formule explicite pour le
taux de croissance de la fonction de partition de l’exhaustion naturelle du réseau infini.
Puis, nous démontrons une formule explicite pour la mesure de Gibbs d’énergie libre
minimale. L’originalité et l’intérêt de ces deux formules résident dans le fait qu’elles ne
dépendent que de la géométrie locale du graphe et sont donc très simples d’utilisation.
Nous pensons que cette propriété de localité est caractéristique du cas isoradial. D’autre
part, les configurations de dimères ont une interprétation géométrique en tant que
surfaces discrètes décrites par une fonction de hauteur. Nous montrons que lorsque les
surfaces sont distribuées selon la mesure de Gibbs d’énergie libre minimale, la fonction
de hauteur converge vers un champ libre Gaussien. Comme cas particulier de modèles
de dimères isoradiaux, nous retrouvons les cas classiques de réseau Z2 et hexagonal
avec mesure uniforme.

Nous introduisons le modèle de quadri-pavages triangulaires, où les quadri-pavages sont
des pavages par quadrilatères obtenus à partir de triangles rectangles. Nous montrons
que ce modèle est superposition de deux modèles de dimères sur des graphes isoradiaux,
et l’interprétons géométriquement comme surfaces de dimension 2 dans un espace de
dimension 4. Nous étudions ce modèle dans sa phase “critique”. Nous montrons une
formule explicite pour le taux de croissance de la fonction de partition totale et pour
une mesure sur l’espace de tous les quadri-pavages (ceci nécessite d’étendre le résultat
du cas isoradial à une famille de graphes non périodiques). C’est le premier modèle
d’interfaces aléatoires en dimension 2+2 sur lequel des résultats de ce type ont pu être
obtenus.

Mots Clés : mécanique statistique, dimères, pavages, graphes isoradiaux, fonction de
partition, mesure de Gibbs, champ libre Gaussien, quadri-pavages.
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