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Outline

Q@ Without magnetic fields: symmetry and symmetry breaking in
interpolation inequalities

> Gagliardo-Nirenberg-Sobolev inequalities on the sphere

> Keller-Lieb-Thirring inequalities on the sphere

> Caffarelli-Kohn-Nirenberg inequalities

@ With magnetic fields in dimensions 2 and 3
> Interpolation inequalities and spectral estimates
> Estimates, numerics; an open question on constant magnetic fields

Q@ Magnetic rings: the case of St

> A one-dimensional magnetic interpolation inequality

> Consequences: Keller-Lieb-Thirring estimates, Aharonov-Bohm
magnetic fields and a new Hardy inequality in R?

@ Aharonov-Bohm magnetic fields in R?

> Aharonov-Bohm effect

> Interpolation and Keller-Lieb-Thirring inequalities in R?
> Aharonov-Symmetry and symmetry breaking
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Symmetry in non-magnetic interpolation inequalities

agnetic interpolation in the Euclidean space
Magnetic rings: the one-dimensional periodic case
Symmetry in Aharonov-Bohm magnetic fields

A joint research program (mostly) with...

M.J. Esteban, Ceremade, Université Paris-Dauphine
> symmetry, interpolation, Keller-Lieb-Thirring,
magnetic fields

M. Loss, Georgia Institute of Technology (Atlanta)
> symmetry, interpolation, Keller-Lieb-Thirring,
magnetic fields

A. Laptev, Imperial College London
> Keller-Lieb-Thirring, magnetic fields

N

D. Bonheure, Université Libre de Bruxelles
> Aharonov-Bohm magnetic fields
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Definitions in presence of a magnetic field

The magnetic covariant derivative / magnetic gradient
Va =V +iA
The magnetic Dirichlet energy: if 1) = ue'>, then
/Rd [Va|? dx = /R |V [? dx + /R VS + AP [¢]? dx
The magnetic Sobolev space
HA(RY) := { € L*(RY) : Vatp € L2(RY)}
The magnetic Laplacian

~Aptp =AY — 2iA -V + |APp — i (divA)yp
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Magnetic interpolation, ground state of the nonlinear
Schrodinger equation and symmetry

For any p € (2,2*), the magnetic interpolation inequality

IV Al + 0 16 20me) = (@) 620y ¥ € HA(RY)
is a consequence of the Gagliardo-Nirenberg inequality

V2 (me) + @ 1011 2ray > pan(@) 015 p@ey V¢ € HH(RY)
and of the diamagnetic inequality

IVa ¥ lEa@e = IVUllfag . v=1v|
An optimal function solves
A tay =[Pty

If A is invariant under rotation, is there a (complex valued) ground
state (minimum of the energy) which is depending only on |x| ?
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Symmetry in non-magnetic interpolation inequalities [nterpolationfontthelsphere

Ma tic int lat the Euclidea 5 s g R
~ agnetic interpolation in ,‘k uclidean space Keller-Lieb-Thirring inequalities on the sphere
SlaghetclineRtbelonecimensionaperiocicicase CKN inequalities, symmetry breaking and weighted nonlinear flows
Symmetry in Aharonov-Bohm magnetic fields q b &1 Y € g

Symmetry and symmetry breaking
in interpolation inequalities
without magnetic field

@ Gagliardo-Nirenberg-Sobolev inequalities on the sphere
@ Keller-Lieb-Thirring inequalities on the sphere

@ Caffarelli-Kohn-Nirenberg inequalities on R?
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Keller-Lieb-Thirring inequalities on the sphere
Vlagnetic rin e mnuu i : : )
v i) PAreCte o CKN inequalities, symmetry breaking and weighted nonlinear flows

A result of uniqueness on a classical example

On the sphere S9, let us consider the positive solutions of
—Au+Au=uvP?
pefl,2)u(2,2"]ifd >3, 2" =22

pe(l,2)U(2,+0)ifd=1,2

If X< d, u= AY/(=2 js the unique solution l

[Gidas & Spruck, 1981], [Bidaut-Véron & Véron, 1991]
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Symmetry in non-magnetic interpolation inequalities

Magnetic interpolation in the Euclidean space IizapelEiien am die e

Keller-Lieb-Thirring inequalities on the sphere

Magnetic rings: the one-dimensional periodic case CKN inequalitice. symmetry breaking and weighted nonfinear flows

Symmetry in Aharonov-Bohm magnetic fields

Bifurcation point of view and symmetry breaking

sk

L : L L L L
2 4 6 8 10

Figure: (p —2)A — (p — 2) () with d =3

IV ullfasey + Mulfagey = 1) lullEoge

Taylor expansion of u =14 e as € — 0 with — Ap; = d ¢

w(A) <A ifand only if A > p;iZ
> The inequality holds with p(A) =\ = f; [Bakry & Emery, 1985]
[Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]
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Interpolation on the sphere
Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

f\r

The Bakry Emery method on the sphere

Entropy functional
2 2 A
Elo) = 55 {fsd p? di— (fsap du)"] if p#2

Elp] = [ p log (W) dp

Fisher information functional

1
Lolol = Jou VPP ? dp
[Bakry & Emery, 1985] carré du champ method: use the heat flow

o _
ot
and observe that $£&,[p] = — Z,[p]
d
(Tl -d&kl) <0 = L= d&l)

with p = |ulP, if p < 27 := 2d°41
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SymmTt‘ry in non- magnizflc interpolation inequalities s e e e
§ ; R T - Keller-Lieb-Thirring inequalities on the sphere
Gymmetey in Aharanov. Bohm mognetic fialde CKN inequalities, symmetry breaking and weighted nonlinear flows

The evolution under the fast diffusion flow

To overcome the limitation p < 2%, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

o _
ot
[Demange], [JD, Esteban, Kowalczyk, Loss|: for any p € [1,2*]

Kolel = 5 (Tolel — d&5lal) <0

m

(p, m) admissible region, d =5
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Symmetry in non-magnetic interpolation inequalities Interpolation on the sphere

Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows
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Interpolation on the sphere
Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Optimal |nequaI|t|es

With p(A) = A = =% [Bakry & Emery, 1985]
[Beckner, 1993], [Bldaut Véron & Véron, 1991, Corollary 6.1]

d
1Valitaen > 5= (Hunip(gd) ~llulaen) Ve HYST)
@d>3,pe[l,2)orpe

(2,
@Qd=lord=2pe]l,2
@Qp=-2=2d/(d-2)=

)
€ (2,00)
1th d = 1 [Exner, Harrell, Loss, 1998]

2
) o

I\)'—SQ.
Q.

1 1 o
Vil +5 ([ i) 23l YucHE)
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Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space
Magnetic rings: the one-dimensional periodic case
Symmetry in Aharonov-Bohm magnetic fields

Interpolation on the sphere
Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Keller-Lieb-Thirring inequalities on
the sphere

@ The Keller-Lieb-Tirring inequality is equivalent to an interpolation
inequality of Gagliardo-Nirenberg-Sobolev type

@ We measure a quantitative deviation with respect to the
semi-classical regime due to finite size effects

Joint work with M.J. Esteban and A. Laptev
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Symmetry \'n non—magnetic '\nterpo\ation inequalities
Magr

Interpolation on the sphere
interpolation in the Euclidean p \ce P P

Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

1agnetic \ <

An |ntroduct|on to (Keller) Lieb-Thirring inequalities in RY

(MAk)k>1: eigenvalues of the Schrédinger operator H = —A — V on R?
@ Euclidean case [Keller, 1961]

s, [ vt
Rd
[Lieb-Thirring, 1976]

44
Dot MY <Ly g [ v

v>1/2ifd=1,v>0if d=2and v > 01if d > 3 [Weidl], [Cwikel],
[Rosenbljum], [Aizenman], [Laptev-Weidl|, [Helffer], [Robert],
[JD-Felmer-Loss-Paturel], [JD-Laptev-Loss]...[Frank, Hundertmark,
Jex, Nam]

@ Compact manifolds: log Sobolev case: [Federbusch], [Rothaus];
case v = 0 (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak];
[Lieb], [Levin], [Ouabaz-Poupaud]... [Ilyin]

> How does one take into account the finite size_effects on.S? 2
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Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space
Magnetic rings mensional p ca

Symmetry in Aharonov-Bohm magnetic fields

Holder duality and link with interpolation inequalities

Interpolation on the sphere
Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Let p= . Consider the Schrodinger energy

/ Yl - / VIsP 2 [ 196 = il
Sd sd Sd

> —A(w) ||U||i2(sd) if o= ||V llLose)
@ We deduce from ||Vu||L2 oy T A ||u||L2 = (A )||u||Lq(Sd that

HVUHLZ(S'J) — p(A )||“||Lq(sd) > =A ||“||L2(Sd)

TN TA)
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Symmetry in non-magnetic interpolation inequalities b o e aiEe

Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

A Keller-Lieb-Thirring inequality on the sphere

Letd>1,pe [max{l,d/Q},—i—oo) and fiy 1= % (p—1)

Theorem (JD-Esteban-Laptev)

There exists a convex increasing function X s.t. A(pu) = p if p € [O, u*]
and A(p) > g1 if o € (pe, +00) and, for any p < d/2,

M(=A = V) < A([Vlpsey) ¥V € LP(SY)

This estimate is optimal

For large values of j, we have

APt =1Ly, (kga ) (1+0(1))

If p=d/2 and d > 3, the inequality holds with \(1) = p iff u € [0, 4]
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Symmetry in non-magnetic interpolation inequalities b o e aiEe

Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

A Keller-Lieb-Thirring inequality: second formulation

Letd>1,vy=p—d/2

Corollary (JD-Esteban-Laptev)

|)\1(—A—V)|V§L17d/ VI as = Vil g g = 0
sd

if either v > max{0,1 — d/2} ory=1/2 and d =1

However, if u=||V|| < i, then we have

L7+2 (s9) —
(A — V)|r+E g/ Vvt

Sd
for any v > max{0,1 — d/2} and this estimate is optimal

Li’ 4 is the optimal constant in the Euclidean one bound state ineq.

M(—A - ) <L /¢”*2d
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; Keller-Lieb-Thirring inequalities on the sphere
Vlagnetic rings: the on Mm nsional periodic cas - i )
e i GR G T E] [ Cretic f & CKN inequalities, symmetry breaking and weighted nonlinear flows
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Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space
Magnetic rings: the one-dimensional periodic case
Symmetry in Aharonov-Bohm magnetic fields

Interpolation on the sphere
Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Caffarelli-Kohn-Nirenberg,
symmetry and symmetry breaking
results, and weighted nonlinear flows

Joint work with M.J. Esteban and M. Loss
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Interpolation on the sphere
Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space
Magnetic rings mensional p ca

Symmetry in Aharonov-Bohm magnetic fields

Critical CafFareII|-Kohn—N|renberg inequality

Let D, p 1= { veLP(RY |x|7Pdx) : [x|7?|Vv| € L? (R, dx) }

p 2/p 2
</ V] dx) < Cop Vv dx YveED,,
R Rd

s |x[PP [x[22

holds under conditions on a and b

= 2d (critical case)
P=d=2+2(b-a)
> An optimal function among radial functions:
vi(x) = (1 + \X|(p_2)(a°_a))_p%2 and C*, = M
=P x 7 V|3

N0

Question: Cyp = Cj ) (symmetry) or Cyp > C} |, (symmetry breaking)
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Symmetry in non-magnet
Vlagnetic interpolation
dimensi iodic case

Symmetry in Aharonov-Bohr etic field

Critical CKN: range of the parameters

ic interpalation inequalties LTSRS EONIGRM S e
A spac Keller-Lieb-Thirring inequalities on the sphere

CKN inequalities, symmetry breaking and weighted nonlinear flows

Figure: d =3 b b=a+

. p 2/p 2
/ |VL dx gca,,/ @dx
Rrd |x|PP " Jre |x[22 P

—1 a= %
/ 0 .
b=a
2d
T d-2+2(b-a)
a<aci=(d—2)/2 M'in (1961)]
a<b<a+1lifd>3, [Glaser, Martin, Grosse, Thirring (1976)]
a+tl/2<b<a+lifd=1 [Caffarelli, Kohn, Nirenberg (1984)]
and a<b<a+1<1, [F. Catrina, Z.-Q. Wang (2001)]

p=2/(b—a)ifd=2
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Symmetry in non-magnetic interpolation inequalities b o e aiEe

Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve b/
d(ac—a)
b a) .= +a—ac

rs(2) 2/(ac—a)2+d—1

/ 0

[Smets], [Smets, Willem], [Catrina, Wang], [Felli, Schneider]

\V4 2 P 2/p
Vl—>C;b/ | ‘;L dx — (/ |VL dx)
" Jre |X] Rre |x[0P

is linearly instable at v = v,
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Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space
Magnetic rings: the one-dimensional periodic case
Symmetry in Aharonov-Bohm magnetic fields

Interpolation on the sphere
Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Symmetry versus symmetry breaking:
the sharp result in the critical case

[JD, Esteban, Loss (2016)]

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and
b > bgs(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric
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Symmetry in non-magnetic mterpo\aﬁﬁ? ‘l(:\ejq‘:mll)t]\(e‘s (amelEfen o fie aicre
SF Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

etic interpolation in thi
ngs: the one-dimensional periodic case

r
nmetry in Aharonov-Bohm magnetic field:

The symmetry proof in one slide
_ v 1 v V)

s’ s

@ A change of variables: v(|x|*"!x) = w(x), Dav = (a §

d
[ v[20.0- n(rd) < KanP”D V||L2d n(Rd) ||V||Lp+1d n(RY) VveH, .4 n(R )

@ Concavity of the Rényi entropy power' with
Ea:—DzDazoﬂ(u"—i—" 1 )—|— VAV uand%zﬁau’"

g[“ (fRdu d“)
>(1-m)(o—1) [p

#2 feu (a* (1= 3

+2 [r ((n 2) (a%s — a2) |VP|? + c(n, m,d) %) umdu

@ Elliptic regularity and the Emden-Fowler transformation: justifying

—0
Jos u|DaP 2 dpa |?
um ‘ﬁaP— B T amdi ’ du
9P = %) um

" P’ A, P
PY — s aZ(n-1)s?

the integrations by parts
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Interpolation on the sphere
Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

f\rum

The variational problem on the cylinder

> With the Emden-Fowler transformation
X
v(r,w)=r""*¢(s,w) with r=|x|, s=—logr and w=—
B
the variational problem becomes

Osp ot Vaup +/\ ®
Ao u(A) = min 185013 2(c) + IVwpllE2 I3
peH!(C) HwHLp(C)

is a concave increasing function

Restricted to symmetric functions, the variational problem becomes

ux(N) == min HasspHiQ(Rd) A H(pHiQ(Rd) = p (1) A*
pEHN(R) ||50||ip(]1gd)

Symmetry means p(A) = pi(A)
Symmetry breaking means p(A) < py(A)
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Symmetry in non-magnetic interpolation inequalities
agnetic interpolation in the Euclidean space

Vlagnetic rings -dimensional periodic case
Symmetry in Aharonov-Bohm m agnetic fields

Interpolation on the sphere
Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Numerical results

40f

© . asymptotic

________ symmetric

non-symmetric
10
A()t

I
20 40 60 80 100

Parametric plot of the branch of optimal functions for p = 2.8, d = 5.
Non-symmetric solutions bifurcate from symmetric ones at a bifurcation
point N1 computed by V. Felli and M. Schneider. The branch behaves for
large values of A as shown by F. Catrina and Z.-Q. Wang
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Symmetry in non-magnetic interpolation inequalities b o e aiEe

Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Three references

@ Lecture notes on Symmetry and nonlinear diffusion flows...
a course on entropy methods (see webpage)

@ [JD, Maria J. Esteban, and Michael Loss| Symmetry and
symmetry breaking: rigidity and flows in elliptic PDEs

... the elliptic point of view: Proc. Int. Cong. of Math., Rio de
Janeiro, 3: 2279-2304, 2018.

@ [JD, Maria J. Esteban, and Michael Loss| Interpolation
inequalities, nonlinear flows, boundary terms, optimality and
linearization... the parabolic point of view

Journal of elliptic and parabolic equations, 2: 267-295, 2016.
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Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space
Magnetic rings: the one-dimensional periodic case
Symmetry in Aharonov-Bohm magnetic fields

Three interpolation inequalities and their dual forms
Proofs for general magnetic fields

Estimates in dimension d = 2 for constant magnetic fields
Numerical results and the symmetry issue

Magnetic interpolation inequalities
in the Euclidean space

> Three interpolation inequalities and their dual forms

> Estimates in dimension d = 2 for constant magnetic fields
o Lower estimates
o Upper estimates and numerical results

@ A linear stability result (numerical) and an open question

@ Warning: assumptions are not repeated
Q@ Estimates are given only in the case p > 2 but similar estimates

hold in the other cases

Joint work with M.J. Esteban, A. Laptev and M. Loss
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Three interpolation inequalities and their dual forms
Magnetic interpolation in the Euclidean space Proofs for general magnetic fields

Estimates in dimension d = 2 for constant magnetic fields

Numerical results and the symmetry issue

Magnetic Laplacian and spectral gap

In dimensions d = 2 and d = 3: the magnetic Laplacian is
—ApY =AY — 2iA- Vi +|APY — i (divA)p
where the magnetic potential (resp. field) is A (resp. B = curl A) and
HA(RY) := {¢ € L3(RY) : Vap € LA(RY)}, Va:=V+iA
Spectral gap inequality
IV ey > ALB] 6]y ¥ € HAGR?)

@ A depends only on B = curl A

@ Assumption: equality holds for some 1 € Hx(RY)

@ If B is a constant magnetic field, A[B] = |B|

@ If d =2, spec(—Aa) = {(2/ + 1) |B| : j € N} is generated by the
Landau levels. The Lowest Landau Level corresponds to j =0
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Symmetry in non-magnetic interpolation inequalitie Three interpolation inequalities and their dual forms
Magnetlc mterpolatlon in the Euclidean space Proofs for general magnetic fields
Magnetic rings: the one-dimensional p riodic ca Estimates in dimension d = 2 for constant magnetic fields
Symmetry in /'\immrir Bohm magnetic fie ik Numerical results and the symmetry issue

Magnetic interpolation inequalities

||VA1/’iii2(Rd) ta ||¢||iz(ugd) > p(c) W)iiip(u{d) Vy e Hi&(Rd)
for any o € (—A[B], +00) and any p € (2,2*),

IVaY 1 Faggay + B [0l aey = v8(B) 191 F2gey V¥ € HA(RY)
for any 8 € (0,+00) and any p € (1,2)

2 > 2| WP d 2
Va6 oy =7 [ 117 log e+ €8(0) 192 e
R4 iiipiiLZ R9)

(limit case corresponding to p = 2) for any v € (0, +00)

IVl 2 gy 10122 g

c minueH1(Rd)\{0} |iu|iip(md) if pe (2,2*)
P iivuiiiQ(Rd)J’_iiuiiip(Rd) if pe (1 2)

min 1(Rd
ueH(R)\{0} 14l 2 e

po(1) = Cp if p e (2,2%), (1) = Cp if p € (1,2)
o(y) =7 log (w€?/v) if p=2
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Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space
Magnetic rings: the one-dimensional periodic case
Symmetry in Aharonov-Bohm magnetic fields

Technical assumptions

Three interpolation inequalities and their dual forms
Proofs for general magnetic fields

Estimates in dimension d = 2 for constant magnetic fields
Numerical results and the symmetry issue

AcLy (RY),a>2ifd=2ora=3ifd=3and

li d—2 A 2 70"X|d _ if 2. 0%
Jim o9 [ A e d =0 i pe@2.2)
. PR
lim

2 —rr|><|2 — : _
M Togo /Rd |A(x)|% e dx=0 if p=2

lim ad—2/ AP dx if pe(L2)
o—+o0 Ix|<1/c

These estimates can be found in [Esteban, Lions, 1989)
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Three interpolation inequalities and their dual forms

Magnetic interpolation in the Euclidean space Proofs for general magnetic fields

Estimates in dimension d = 2 for constant magnetic fields
Numerical results and the symmetry issue

A statement

Theorem

p € (2,2*): pp is monotone increasing on (—A[B], +o0c), concave and

. . d=2_
aa(llr/r\][B]h #e(@) =0 and alToo He(a)a?

Tla

p € (1,2): vg is monotone increasing on (0, +0o0), concave and

lim ve(8) =A[B] and lim wvg(8)3 7 etn = C,

50, B—+oo
&g is continuous on (0, +00), concave, &g(0) = A[B] and

&a(7) = $7 log (2£)(1+0(1)) as v— +oo

Constant magnetic fields: equality is achieved
Nonconstant magnetic fields: only partial answers are known
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Symmetry in non-magnetic interpolation inequalities Three interpolation inequalities and their dual forms

agnetic interpolation in the Euclidean space Proofs for general magnetic fields
Magnetic rings: the one-dimensional periodic case Estimates in dimension d = 2 for constant magnetic fields
Symmetry in Aharonov-Bohm magnetic fields Numerical results and the symmetry issue

2 4 6 8 10

Figure: Case d =2, p=3, B=1: plot of a —~ (277)%_1 us(a)
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Symmetry in non-magnetic interpolation inequalities Three interpolation inequalities and their dual forms

agnetic interpolation in the Euclidean space Proofs for general magnetic fields
Magnetic rings: the one-dimensional periodic case Estimates in dimension d = 2 for constant magnetic fields
Symmetry in Aharonov-Bohm magnetic fields Numerical results and the symmetry issue

Figure: Case d =2, p=1.4, B=1: plot of 8 — vg(3)
2
The horizontal axis is measured in units of (27)' "% 3
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Three interpolation inequalities and their dual forms
Magnetic interpolation in the Euclidean space Proofs for general magnetic fields

Estimates in dimension d = 2 for constant magnetic fields
Numerical results and the symmetry issue

Magnetic Keller-Lieb-Thirring inequalities

Aa,v is the principal eigenvalue of —Ap + V
ag : (0,400) = (—=A, +00) is the inverse function of o — pg(«)

Corollary

(i) For any q = p/(p — 2) € (d/2,+oc) and any potential V € LI (RY)
v > —ag(||V]|Lawe))
2(q+1) _2(g+1)
lim,—o, ag(p) = A and lim,_, o ag(p) pa—2-2a = — Cg>7*¢
(ii) For any g = p/(2 — p) € (1,400) and any 0 < W1 € LI(RY)
Mw 2 e (W)
(iii) For any v > 0 and any W > 0 s.t. e=W/7 € L}(RY)

Maw 2 € (7) — 7 log ([Jpa e /7 dx) -
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Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space
Magnetic rings: the one-dimensional periodic case
Symmetry in Aharonov-Bohm magnetic fields

Proofs

12N Ge



Three interpolation inequalities and their dual forms
Magnetic interpolation in the Euclidean space Proofs for general magnetic fields
Estimates in dimension d = 2 for constant magnetic fields
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Interpolation without magnetic field...

Assume that p > 2 and let C, denote the best constant in
IV ullEagey + llullfagey = CollulFogey ¥ u € H'(R)
By scaling, if we test the inequality by u( -/ )\), we find that

IV Ul ey +22 ulZagrey > Cp X7 9070 lul ey Vu e HYRY) YA>0

An optimization on A > 0 shows that the best constant in the
scale-invariant inequality

2—d(1-
”VUHLZ 24) IIUIILz(Rd '>s, lullfpre YueH(RY)

is given by

(p—2)

Sp= 55 2p—d(p-2)' "% (d(p-2)%

Cp
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. and with magnetic field

Proposition

Let d =2 or3. Forany p € (2,+0), anya > —-A=—A[B] <0

. (p—2)
pe(a) > pinterp(@) := z
p C, oA 2 o = A2 Zzpd—(gfz))

Sp(a+ M)A~ ifa e [-A, 22edE2)]

Diamagnetic inequality: [|V|¢[[|l 2rey < [[Va¥ |2 (re)
Non-magnetic inequality with A = %+ € [0,1]

IVa¥lFa ey + o [¢1F2gRa > t (\|VA1/’||i2(Rd) —A ||7/1||iz(uzd)>
a+ ANt
-1 (nwnu(Rd) . )

d(p—2)
>C (1= 05 (a+ tN) 5 [,
and optimize on t € [max{0, —a/A},1]
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Constant magnetic field, d = 2...

Magnetic interpolation in the Euclidean space

Assume that B = (0, B) is constant, d = 2 and choose

A = gXQ, A, = —gXl Vx = (X1,X2) S Rz

[Loss, Thaller, 1997] Consider a constant magnetic field with field
strength B in two dimensions. For every c € [0,1], we have

/|VA¢|2dXZ(1—C2)/ |w|2dx+cB/ V% dx
R2 R2 R2

and equality holds with 1 = ue™® and u > 0 if and only if

2 2
(— 820, 1?) = = (A+ VS)
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. a computation (d = 2, constant magnetic field)

Magnetic interpolation in the Euclidean space

[ Vaipax= [ [Vur ot [ A+ vSE 2o
R2 R2 R2

:(1—c2)/ |Vu|2dx+/ (|Vul® + |A+ VS|> u?) dx
R2 R2

> [g22¢|Vu| [A+V S| udx
with equality only if ¢|Vu| =|A+VS|u

2|Vul|A+VS|u=|Vi?[|[A+ VS| > (Vi?)" - (A+VS)

where (Vu2)J' = (f O u?, 81u2)

Equality case: (—02u?, O1u?) =~ (A+VS) for y =2u?/c
Integration by parts yields

/ (S |Vuf + |A+ VS]>v?) dx > Bc/ u? dx
R2 R2
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a lower estimate (d = 2, constant magnetic field)

Proposition

Consider a constant magnetic field with field strength B in two
dimensions. Given any p € (2,+00), and any o« > —B, we have
1-2 2
pe(a) > Cp (1= c?)* (a+cB)r =: prr(a)
with
vnP+p—1-n i

c=c(p,n) = = €(0,1)

p—1 n+vn?+p—1

and 1= o (p — 2)/(2 B)
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Upper estimate (1): d = 2, constant magnetic field

For every integer k € N we introduce the special symmetry class

Nk
b(x) = (2H2) vlx) Vx= (%) € B2 (C)
[Esteban, Lions, 1989]: if ¢ € Ck, then
1 2 e 2 e k _ Br\2, 2
P T2|VA/¢J| dx:/0 [V] rdr+/0 (77{) [v|*rdr
J N D
and optimality is achieved in Cy

Test function v,(r) = e~ r/29); an optimization on o > 0 provides an
explicit expression of pGauss(@) such that

Proposition

If p> 2, then
NB(O‘) < ,U'Gauss(a) Va> —/\[B]

This estimate is not optimal because v, does not solve the
Euler-Lagrange equations
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Upper estimate (2): d = 2, constant magnetic field

A more numerical point of view. The Euler-Lagrange equation in Cy is

Vl ) +oo %_1
—v”——+(87r2+a)v:HEL(a) (/ |V|pfdf) v[P=2v
r 0

We can restrict the problem to positive solutions such that

+00 1_%
peL(a) = </ [v|P rdr>
0

and then we have to solve the reduced problem

/

v 2 _
— —+(‘%r2+o¢)v:|v|” 2y
r

J. Dolbeault Magnetic ground state & symmetry



Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space
Magnetic rings: the one-dimensional periodic case
Symmetry in Aharonov-Bohm magnetic fields

Three interpolation inequalities and their dual forms
Proofs for general magnetic fields

Estimates in dimension d = 2 for constant magnetic fields
Numerical results and the symmetry issue

Numerical results
and the symmetry issue
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Figure: Cased=2,p=3,B=1

Upper estimates: a — pgauss(@), pen(a)

Lower estimates: & +— finterp(), p17(cx)

The exact value associated with ug lies in the grey area.
Plots represent the curves log,o(¢t/peL)
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Asymptotics (1): Lowest Landau Level

Proposition

Let d = 2 and consider a constant magnetic field with field strength B. If
Yo is @ minimizer for pg(a) such that ||1q || ewey = 1, then there exists
a non trivial p, € LLL such that

a gy, [V = Pl ey =0

Let 1o € Hy(R?) be an optimal function such that ||¢a||rs@re) = 1
and let us decompose it as ¥, = Yo + Xa, Where ¢, € LLL and y, is
in the orthogonal of LLL

pe(a) > (a+B) [|@allfoge +(+3B) [Xalfame) = (a+3B) [Xallizre) ~ 2B [Xall
as o — (= B)y because [[Vxallf2gay = 3B [Xallf2(ge)
Since lim,_,(—py, pe(a) =0, limq_(_p), [[XallL2®e) = 0 and
pe(a) = (a+B) [|9alFage) + [IVa XallFome T [ Xalfamey = 5 1Va XallTze)

concludes the proof
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Asymptotics (2): semi-classical regime

Let us consider the small magnetic field regime. We assume that the
magnetic potential is given by

2
A1 = gXQ, A2 = —gXl Vx = (X1,X2) e R

if d = 2. In dimension d = 3, we choose A = Z(—x,, x1,0) and observe
that the constant magnetic field is B = (0,0, B), while the spectral
gap is A[B] = B.

Proposition

Let d = 2 or 3 and consider a constant magnetic field B of intensity B
with magnetic potential A
For any p € (2,2*) and any fixed o and p > 0, we have

d_d—2
P2

lim peg(a) =Chra

e—04

Consider any function 1 € Hj(R?) and let 1(x) = x(v/Z x),
VEA(x/+/2) = A(x) with our conventions on A
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Numerical stability of radial optimal functions

Let us denote by 1 an optimal function in (Cp) such that

! 2 _
—uf = 22 (B 4 a) o = vl v
and consider the test function
Ye =P + € ei9 v

where v = v(r) and e'? = (x; +ix)/r
As € — 04, the leading order term is

“+oo
27 {/ |v'|2dx—|—/ ((%—%)2—1—04) [v|? dx—g/ [olP~2 V2 rdr| &
R2 R2 0

and we have to solve the eigenvalue problem

/

" v
v = ((

N =

2 _
B P T
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Figure: Case p =3 and B = 1: plot of the eigenvalue i as a function of a A
careful investigation shows that p is always positive, including in the limiting
case as o — (—B), thus proving the numerical stability of the optimal
function in Cp with respect to perturbations in C;

J. Dolbeault
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An open question of symmetry

@ [Bonheure, Nys, Van Schaftingen, 2016] for a fixed o > 0 and

for B small enough, the optimal functions are radially symmetric
functions, i.e., belong to Cp

This regime is equivalent to the regime as o — 400 for a given B, at
least if the magnetic field is constant

@ Numerically our upper and lower bounds are (in dimension d = 2,
for a constant magnetic field) numerically extremely close

@ The optimal function in Cy is linearly stable with respect to
perturbations in C;

> Prove that the optimality case is achieved among radial function if
d =2 and B is a constant magnetic field
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Symmetry in non-magnetic interpolation inequalities P q .
Y Y g P 1 Magnetic interpolation on the circle

Magnetic interpolation in the Euclidean space s
S A A F Proof: how to eliminate the phase
Magnetic rings: the one-dimensional periodic case - B . .
! © Consequences: Keller-Lieb-Thirring and Hardy inequalities
Symmetry in Aharonov-Bohm magnetic fields

Magnetic rings

> A magnetic interpolation inequality on S': with p > 2

[l + ia?/’Hi?(sl) +a ||w||iZ(S1 > pap(a) ||¢Hin(sl)

> Consequences
o A Keller-Lieb-Thirring inequality
e A new Hardy inequality for Aharonov-Bohm magnetic fields in R?

Joint work with M.J. Esteban, A. Laptev and M. Loss
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Magnetic interpolation on the circle
Proof: how to eliminate the phase

Magneticliines Athelonegdimensiohaliperiodicicase Gonsequences:IKellerLiebshirring andibardylinequalities

Magnetic flux, a reduction

Assume that a: R — R is a 2w-periodic function such that its
restriction to (—m, ] &~ St is in L(S!) and define the space

Xo = {9 € Gux(R) : ¢ +ia¢ € LA(Sh)}

@ A standard change of gauge (see e.g. [Ilyin, Laptev, Loss, Zelik,
2016])

b(s) €D y(s)
where 3 := ffﬂ a(s) do is the magnetic fluz, reduces the problem to
a is a constant function
@ For any k € Z, ¢ by s — e*)(s) shows that pa () = pikrap(@)
ac[0,1]
Qs p() = p1-ap(a) because
W +iau? = +i (1= a)x = [0 —iav]"if x(s) = e y(s)
ael0,1/2]
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Wipgicits Wi dio CReelmHel paieels e Gonsequences:IKellerLiebshirring andibardylinequalities

Optimal interpolation

We want to characterize the optimal constant in the inequality
[0 + i a[Fay + @ 10l 2@ry > tap(@) [$1Fos)
written for any p > 2, a € (0,1/2], a € (—a%,+0), ¥ € X,

o St iavP +alyl) do
= n
PeEX.\{0} ||7/}||ip(g1)

Ua,p(a) :

p=—2=2d/(d —2) with d =1 [Exner, Harrell, Loss, 1998]
p = +oo [Galunov, Olienik, 1995] [Ilyin, Laptev, Loss, Zelik, 2016]
limg__ 2 tap(c) = 0 [JD, Esteban, Laptev, Loss, 2016]

Using a Fourier series 1(s) = Y, ., ¥k €, we obtain that

1+ i@ ey = 3 (a kP [0k > @ [9]Eace

k€eZ

¥ 9+ i a oy + all$lfee is coercive for any a > — a?
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An interpolation result for the magnetic ring

Theorem

Forany p>2,a€R, and a > — a°, pu, p() is achieved and

(i) ifa€[0,1/2] and 2> (p +2) + a(p — 2) < 1, then p, p(a) = a° + «
and equality is achieved only by the constant functions

(i) if a €[0,1/2] and a° (p + 2) + a(p — 2) > 1, then p, p(a) < a° + «
and equality is not achieved by the constant functions

If > —a?, ar p, p(a) is monotone increasing on (0,1/2)

-0z 01 o1 02 03 04 02 a 05 08 10 12 12

Figure: a — pa p(a) with p =4 and (left) a = 0.45 or (right) a = 0.2
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Reformulations of the interpolation problem (1/3)

Any minimizer ¢ € X, of u, p(«) satisfies the Euler-Lagrange equation

2
(ot a)o =l 20, Ho=-(g+ia) v ()

up to a multiplication by a constant and v(s) = 1(s) e satisfies the
condition '
v(s +27m) = e? ™ y(s) VseR

Hence

Hapla) = min  QoalV]
where Y, := {v € C(R) : v/ € L*(S"), (*) holds} and

[ V/”LZ(Sl) +af VHi2(§1)

Qp,a[V] =

| V”Lp(sl
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Reformulations of the interpolation problem (2/3)

With v = ue’® the boundary condition becomes

u(r) = u(=m), ¢(x) =2m(a+ k) + ¢(—m) (**)
for some k € Z, and ||v'||2, (s) ||u'||L2(S1) + ||u<;5’||Lz &)
Hence
/122y + 14 @[T 2eny + o llullf s
o () = &) &) &)

(u.6)€2:\ {0} 1l o sy

where Z, := {(u,¢) € C(R)? : «/, u¢’ € L2(S), (**) holds}
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Reformulations of the interpolation problem (3/3)

We use the Euler-Lagrange equations
—u" + | Putau=|uP?u and (¢ u?) =0

Integrating the second equation, and assuming that u never vanishes,
we find a constant L such that ¢/ = L/u?. Taking (*) into account, we
deduce from

L/ i ¢ ds =2m (a+ k)

that 4 ( k)2
T do a-+
e
L2(sh) 2 |lu 1||i2(s1)
Hence P 5 g
a—+ s
os) = 00) = 2 — [
[|u 1”%,2(81) g u?
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Let us define

—1y-2
1oy + 22 0 2y + @ flul2ager

Qa,p,a[ul =

Hu‘lip(gl)

For any a € (0,1/2), p>2, a > —a?,

pap(a) = min  Qapalu]

ueH(SY)\{0}

is achieved by a function u > 0
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Proofs

@ The existence proof is done on the original formulation of the
problem using the diamagnetic inequality
@ To prove that || # 0, we use 9(s) e'® = vy(s) + i va(s), solves

p_ .
v/ +av=(+v) Ty, j=1,2

and the Wronskian w = (v; v — v v») is constant so that ¢(s) =0 is
incompatible with the twisted boundary condition
@ ifa®(p+2)+a(p—2)<1,then p,p(a) = a> + a because

[/ [[F 261y +4° ||U71||fzz(sl)+04 lullfasry = (1—42%) |0/ |2ty + [l ullFosry
42 ([0 o) + 3 0 )
@ ifa®(p+2)+a(p—2)>1, the test function u. := 1+ ewy
Qapalcl =2 +a+ (1-a*(p+2)— a(p—2))e® + o(c?)

proves the linear instability of the constants and j, ,(a) < a* +.«
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1o/ 12 21,22 1™ 2 0l 2

3

Qa,p,a[u] =

Tl e,

fap(a) = uelePSilr;\{o} Qa.p,alu]

« = = « ) = inf «
Qpalu] = Qaopalu],  Vp(a) VEH[ljl(gl)\{O}Qp, [v]

Proposition

Vp>2 a>—a we have pap(a) < piip(a) < vp(a) = pyyop(e)

05

04

osf

oz

o1l

05 10 15 20 25 30

Figure: p=4, =0, a=0.40, 0.41,...0.49; v’ + uP"1 =0
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Consequences: Keller-Lieb-Thirring
inequalities and Hardy inequalities
for Aharonov-Bohm magnetic fields
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Magnetic rings: the one-dimensional periodic case Consequences: Keller-Lieb-Thirring and Hardy inequalities

A Keller-Lieb-Thirring inequality

Magnetic Schrodinger operator H, — ¢ = — (% + ia)2 v —p

@ The function « — p, () is monotone increasing, concave, and
therefore has an inverse, denoted by «, , : Rt — (—a?, +00), which is
monotone increasing, and convex

Corollary

Let p>2,a€[0,1/2], gq= p/(p— 2) and assume that ¢ is a
non-negative function in LI(S'). Then

A(Ha — ) > — Qap (”SOHLQ(Sl))

and o, p(p) = p — a* iff42> + u(p — 2) < 1 (optimal ¢ is constant)

Equality is achieved
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Aharonov-Bohm magnetic fields

On the two-dimensional Euclidean space R?, let us introduce the polar
coordinates (r,9) € [0, +oc) x St of x € R? and consider a magnetic
potential a in a transversal (Poincaré) gauge, or Poincaré gauge

(a,e,) =0 and (a,ey) = ay(r,9)

Magnetic Schrédinger energy

—+o0
|(1V+a)\ll|2dx_/ / <|a\u| + = |819\|l+1r319\ll2)rd19dr
R2 -7

Aharonov-Bohm magnetic fields: ay(r,9) = a/r for some constant
a € R (a is the magnetic fluz), with magnetic field b = curla

/Rzl(iwa)wzdxzf/Rz"o(’;/";')de VoeLld(SY), qe(l,4o0)

=7 =7(a¢lras)) ?
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Hardy inequalities

[Hoffmann-Ostenhof, Laptev, 2015] proved Hardy’s inequality

/ |V\Il|2dx27-/ ILONMIRN
RY RY

[x|?

where the constant 7 depends on the value of [|¢||pqg¢-1) and d > 3

Aharonov-Bohm vector potential in dimension d = 2

X2 —Xi
a(x)_a<x|2,|x|2>, X:(Xl,Xz)ERZ, aeR

and recall the inequality [Laptev, Weidl, 1999]

I
' V[ dx > mi —k2/ L
IRz|(/V+a) | X_Zne”z](a ) o X X
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A new Hardy inequality

/|(iV+a)\U\2dx27/ MW\zdx Vo e LI(SY), ge(1,+0)
R2 R2

Corollary

Let p>2,a€][0,1/2], g = p/(p— 2) and assume that ¢ is a
non-negative function in LI(S*). Then the inequality holds with T > 0
given by

aap (7 l¢llLas)) =0

Moreover, T = & /||p||Last) if 4 @ + [|@llLast) (P —2) < 1

4

For any a € (0,1/2), by taking ¢ constant, small enough in order that
42 + [|¢|lna@) (p — 2) < 1, we recover the inequality

2
/\(iv+a)w\2dxza2/ %dx
R2 R [X|
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Hoélder’s inequality

19" + i a1 2(s0y — / o[ do > |9 + i a1 Fasey — 11917 0(se)

—T

where p1 = |||l pa(ss) and % + % = 1: choose p,p(a) = 1

10" + i alfasey — £ l101F ey = — 91120
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Proofs (Hardy inequality)

Let 7 > 0, x = (r,9) € R? be polar coordinates in R?

|(Iv+a)\|/|2—7' 5 [W)?
x|

// |aw|2 |a§w+/a\U|2 f|w\2)dﬂdr
st r

zAl(Hrw)/ /7|W\2d19dr
——aapTH@Hqud)/ /—Wdﬂ

@ If 7 =0, then a,p(7 [|¢llLas)) = @ap(0) = —a°
Q@ a,p(7 [|¢llLagsey) > 0 for 7 large
= 3Jl7>0 such that o, (7 [|¢llLese)) =0
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Magnetic interpolation on the circle
Proof: how to eliminate the phase

Magnetic rings: the one-dimensional periodic case Consequences: Keller-Lieb-Thirring and Hardy inequalities

Comments

> The region a (p + 2) + a(p — 2) < 1 is exactly the set where the
constant functions are linearly stable critical points

> The proof of the rigidity result is based

- neither on the carré du champ method, at least directly

- nor on a Fourier representation of the operator as it was the case in
earlier proofs (p = 400, or p > 2 and a = 0)

> Magnetic rings: see [Bonnaillie-Noél, Hérau, Raymond, 2017]

> Deducing Hardy’s inequality applied with Aharonov-Bohm magnetic
fields from a Keller-Lieb- Thirring inequality is an extension of
[Hoffmann-Ostenhof, Laptev, 2015] to the magnetic case

> Our results are not limited to the semi-classical regime

J. Dolbeault Magnetic ground state & symmetry



Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space
Magnetic rings: the one-dimensional periodic case
Symmetry in Aharonov-Bohm magnetic fields

Aharonov-Bohm effect
Interpolation and Keller-Lieb-Thirring inequalities
Symmetry and symmetry breaking

Symmetry in Aharonov-Bohm
magnetic fields

@ Aharonov-Bohm effect

@ Interpolation and Keller-Lieb-Thirring inequalities in R?
> Statements
> Constants and numerics

@ Symmetry and symmetry breaking

Joint work with D. Bonheure, M.J. Esteban, A. Laptev, & M. Loss
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Aharonov-Bohm effect

A major difference between classical mechanics and quantum
mechanics is that particles are described by a non-local object, the
wave function. In 1959 Y. Aharonov and D. Bohm proposed a series
of experiments intended to put in evidence such phenomena which are
nowadays called Aharonov-Bohm effects

One of the proposed experiments relies on a long, thin solenoid which
produces a magnetic field such that the region in which the magnetic
field is non-zero can be approximated by a line in dimension d = 3
and by a point in dimension d = 2

> [Physics today, 2009] “The notion, introduced 50 years ago, that
electrons could be affected by electromagnetic potentials without
coming in contact with actual force fields was received with a
skepticism that has spawned a flourishing of experimental tests and
expansions of the original idea.” Problem solved by considering
appropriate weak solutions !

> Is the wave function a physical object or is its modulus ? Decisive
experiments have been done only 20 years ago
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The interpolation inequality

Aharonov-Bohm effect
Interpolation and Keller-Lieb-Thirring inequalities
Symmetry and symmetry breaking

Let us consider an Aharonov-Bohm vector potential
a
A(x) = W (x2,—x1), x=(x,x)eR*\ {0}, acR

Magnetic Hardy inequality [Laptev, Weidl, 1999]
2
/ |Vav[? dx > min(a— k)2/ YI° 4
R? kez R

> |x[?

where Va1 := Vb + i A, so that, with ¢ = || e

[onvk o= [ @100+ @52 108 + 5 (@5 + AR 17| ox
R2 R2 r

Magnetic interpolation inequality

2 [y WP\
/RZ|VA1/J| dx—l—)\/Rz|X2dx>u(/\)</Rz|X|2dx)

> Symmetrization: [Erdés, 1996], [Boulenger, Lenzmann|, [Lenzmann,
Sok]
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A magnetic Hardy-Sobolev inequality

Theorem

Let a € [0,1/2] and p > 2. For any \ > — a°, there is an optimal,
monotone increasing, concave function X\ — () which is such that

. " 2 g 2/p
/\vAw\zdx+A/ Mzdxzu(A)U ‘Z’de)
R2 Jr2 x| R |

IFX<A =4 1,,_2212 — a% equality is achieved by

Y(x) = (x| + [x]72) 72 ¥xeR2, with a=22\A+ta

If A > Ao with

N 8(\//34—32 (p—2)2 (p+2) (39—2)+2)—4p(p+4) 2
¢ (p—2) (p+2)

there is symmetry breaking: optimal functions are not radially symmetric

J. Dolbeault Magnetic ground state & symmetry



Aharonov-Bohm effect
Interpolation and Keller-Lieb-Thirring inequalities

Symmetry in Aharonov-Bohm magnetic fields SYRTCRY Eit] e (Rl

A magnetic Keller-Lieb-Thirring estimate

Let g € (1, +00) and denote by LI(R?) the space defined using the
weighted norm [|g], = (fas [¢]9 [x[2(=D dx)/*

Theorem

Let a € (0,1/2), g € (1,00) and ¢ € LI(R?): p s N(p) is a convex
monotone increasing function such that lim A\(u) = —min(a — k)? and
p—0+ kEZ

M(-aa =) > = (ll9ll,)

There is an explicit i, > 0 such that the equality case is achieved for any
B < px by

_ -2
$(x) = (IxI*+ |xI7*) > VxeR?, with o= ”T M) + 22
There is an explicit e > p« such that the equality case is achieved only
by non-radial functions if ;t > fie
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Constants are explicit...

@ For a=1/2, we shall see that pe = sy = —1/4

@ The function A — p(A) is the inverse of p +— A(p) and
pe =h(A) and pe=h(X)

with

)1+§ 2ﬁr(3i_2 ’

(P=2)T(;5 +3)

h()) = g @m) 7 (A + 22
p—2

J. Dolbeault Magnetic ground state & symmetry



Symmetry in non-magnetic interpolation inequalities

Gt Mt el i i St aores Aharonov-Bohmeffect -
M A A o T Interpolation and Keller-Lieb-Thirring inequalities
agnetic rings: the one-dimensional periodic case ot oty ety Tl -
Symmetry in Aharonov-Bohm magnetic fields Y Y Y Y €

~——
~—
~

-~

Figure: Case p =14
Symmetry breaking region: A > \e(a)
Symmetry breaking region: A < A,

0.005
0.004
0.003
0.002

0.001

Figure: The curve a — Ae(a) — As(a)
o e
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Lemma

Let a€[0,1/2] and o) = ue®™ € C* N Hy such that || >0

1 1 a°
2 > 2, = 2, - _ 4
/]RZ |Va | dx > /R2 (|3ru| + p |0gu|” + = do’) dx

Equality holds if and only if 9,S = 0 and

a 1

0pS=a— 2
0 TP Jee u=2do

When u does not depend on 0, equality is achieved iff S is constant

| A\

Lemma

For all a € [0,1/2] and ¢ € HY(S!) with u = |2

/ |0gtp — iavp|? do > (1—432)/ |69u\2da+32/ v do
S? S? s2

J. Dolbeault Magnetic ground state & symmetry

, we have




Symmetry in non-magnetic interpolation inequalities

Magnetic interpc m on in the Euclidean w ce
Vlagnetic rings: the one-dimensional period

Symmetry in Aharonov Bohm magnetlc flelds

Proof (1/3): the inequality with a non-optimal constant

Aharonov-Bohm effect
Interpolation and Keller-Lieb-Thirring inequalities
Symmetry and symmetry breaking

Diamagnetic inequality: [[Va ¢llpzgey = [[Vull2gey, u = [¢]
2
/ Va2 dx—l-)\/ |1/1||2 dx
R2

>t <||VA Y famey - 32/ [x[2 dx>
2 A+ @t [ &
+(1-t) (IIVU|L2(R2) + ﬁ/R e

With a2 = ’\f"’tt, t € (0,1) such that A + a®t > 0: existence of a

positive constant pi(A)
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Proof (2/3): optimal estimate in the symmetry range

With a € [0,1/2], ¢ € H(R?) and u = |¢}|

1
/ |VA1/J|2dX2/ |0, ul? dx+(1—4az)/ —2|8gu|2 dx+a2/ u? dx
R2 R2 R2 r

R2
The relaxed inequality

2
p b
/(|a,u|2+1—,—;‘32|89u|2) dx+()\+a2)/ lu |2 dx > pira(N) /%dx
R? || R |X|

is rewritten on the cylinder C := R x S! using the Emden-Fowler
transformation as

/ (|85w\2 +(1- 432) |89W|2) dy + (A + 2% / lw|? dy
c

> (27m)p ! pra(A </|W|”dy>

If ()\ + az) (p2 — 4) <4 (1 — 432) <= X\ < )\,, the minimizer is
symmetric
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Proof (3/3): symmetry breaking range

) p 2/p
Eanlt] == /RQ|VA1/J|2dx+)\/ ||¢|2 dx — (/Rz||zﬁ||2dx>

p=(2r Je lwlP d}’)l_z/p, wi(s) = Cu (cosh(ws))_ﬁ
= — logr and Z/)E(I‘7 0) = (W*(S) + 550(5a 9)) el € x(s,0)
Eanlve] =€ Qlp, x] + o(e?)

Qle,x] = /CWf(\85x|2+|39x— al> — 2% dy—4a/cw*s089xdy
+/ (10s” + 000> + (A + 2°) ©*) dy
C
~(p-1) / w2 o dy

@(Sae) - %7 X(S 9) Ce cosSPI:Est). Q[%X] <0=A> A

cosh(w s) P~
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These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Conferences/
> Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list /
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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