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Definitions in presence of a magnetic field

The magnetic covariant derivative / magnetic gradient

∇A := ∇+ i A

The magnetic Dirichlet energy: if ψ = u e iS , then

ˆ
Rd

|∇A ψ|2 dx =

ˆ
Rd

|∇ψ|2 dx +

ˆ
Rd

|∇S + A|2 |ψ|2 dx

The magnetic Sobolev space

H1
A(Rd) :=

{
ψ ∈ L2(Rd) : ∇A ψ ∈ L2(Rd)

}
The magnetic Laplacian

−∆A ψ = −∆ψ − 2 i A · ∇ψ + |A|2ψ − i (divA)ψ
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Magnetic interpolation, ground state of the nonlinear
Schrödinger equation and symmetry

For any p ∈ (2, 2∗), the magnetic interpolation inequality

‖∇Aψ‖2
L2(Rd ) + α ‖ψ‖2

L2(Rd ) ≥ µ(α) ‖ψ‖2
Lp(Rd ) ∀ψ ∈ H1

A(Rd)

is a consequence of the Gagliardo-Nirenberg inequality

‖∇ψ‖2
L2(Rd ) + α ‖ψ‖2

L2(Rd ) ≥ µGN(α) ‖ψ‖2
Lp(Rd ) ∀ψ ∈ H1(Rd)

and of the diamagnetic inequality

‖∇A ψ‖2
L2(Rd ) ≥ ‖∇u‖2

L2(Rd ) , u = |ψ|

An optimal function solves

−∆A ψ + αψ = |ψ|p−2 ψ

If A is invariant under rotation, is there a (complex valued) ground
state (minimum of the energy) which is depending only on |x | ?
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Symmetry and symmetry breaking
in interpolation inequalities

without magnetic field
Gagliardo-Nirenberg-Sobolev inequalities on the sphere

Keller-Lieb-Thirring inequalities on the sphere

Caffarelli-Kohn-Nirenberg inequalities on R2
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A result of uniqueness on a classical example

On the sphere Sd , let us consider the positive solutions of

−∆u + λ u = up−1

p ∈ [1, 2) ∪ (2, 2∗] if d ≥ 3, 2∗ = 2 d
d−2

p ∈ [1, 2) ∪ (2,+∞) if d = 1, 2

Theorem

If λ ≤ d , u ≡ λ1/(p−2) is the unique solution

[Gidas & Spruck, 1981], [Bidaut-Véron & Véron, 1991]
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Bifurcation point of view and symmetry breaking
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Figure: (p − 2)λ 7→ (p − 2)µ(λ) with d = 3

‖∇u‖2
L2(Sd ) + λ ‖u‖2

L2(Sd ) ≥ µ(λ) ‖u‖2
Lp(Sd )

Taylor expansion of u = 1 + εϕ1 as ε→ 0 with −∆ϕ1 = d ϕ1

µ(λ) < λ if and only if λ > d
p−2

B The inequality holds with µ(λ) = λ = d
p−2 [Bakry & Emery, 1985]

[Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]
J. Dolbeault Magnetic ground state & symmetry
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The Bakry-Emery method on the sphere

Entropy functional

Ep[ρ] := 1
p−2

[´
Sd ρ

2
p dµ−

(´
Sd ρ dµ

) 2
p

]
if p 6= 2

E2[ρ] :=
´
Sd ρ log

(
ρ

‖ρ‖
L1(Sd )

)
dµ

Fisher information functional

Ip[ρ] :=
´
Sd |∇ρ

1
p |2 dµ

[Bakry & Emery, 1985] carré du champ method: use the heat flow

∂ρ

∂t
= ∆ρ

and observe that d
dt Ep[ρ] = −Ip[ρ]

d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0 =⇒ Ip[ρ] ≥ d Ep[ρ]

with ρ = |u|p, if p ≤ 2# := 2 d2+1
(d−1)2
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The evolution under the fast diffusion flow

To overcome the limitation p ≤ 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

∂ρ

∂t
= ∆ρm

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any p ∈ [1, 2∗]

Kp[ρ] :=
d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0
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(p,m) admissible region, d = 5
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Optimal inequalities

With µ(λ) = λ = d
p−2 : [Bakry & Emery, 1985]

[Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]

‖∇u‖2
L2(Sd ) ≥

d

p − 2

(
‖u‖2

Lp(Sd ) − ‖u‖2
L2(Sd )

)
∀ u ∈ H1(Sd)

d ≥ 3, p ∈ [1, 2) or p ∈ (2, 2 d
d−2 )

d = 1 or d = 2, p ∈ [1, 2) or p ∈ (2,∞)
p = − 2 = 2 d/(d − 2) = −2 with d = 1 [Exner, Harrell, Loss, 1998]

‖∇u‖2
L2(Sd ) +

1

4

(ˆ
Sd

1

u2
dµ

)−1

≥ 1

4
‖u‖2

L2(Sd ) ∀ u ∈ H1
+(Sd)
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Keller-Lieb-Thirring inequalities on
the sphere

The Keller-Lieb-Tirring inequality is equivalent to an interpolation
inequality of Gagliardo-Nirenberg-Sobolev type

We measure a quantitative deviation with respect to the
semi-classical regime due to finite size effects

Joint work with M.J. Esteban and A. Laptev
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An introduction to (Keller)-Lieb-Thirring inequalities in Rd

(λk)k≥1: eigenvalues of the Schrödinger operator H = −∆− V on Rd

Euclidean case [Keller, 1961]

|λ1|γ ≤ L1
γ,d

ˆ
Rd

V
γ+ d

2
+

[Lieb-Thirring, 1976]∑
k≥1 |λk |γ ≤ Lγ,d

´
Rd V

γ+ d
2

+

γ ≥ 1/2 if d = 1, γ > 0 if d = 2 and γ ≥ 0 if d ≥ 3 [Weidl], [Cwikel],
[Rosenbljum], [Aizenman], [Laptev-Weidl], [Helffer], [Robert],
[JD-Felmer-Loss-Paturel], [JD-Laptev-Loss]...[Frank, Hundertmark,
Jex, Nam]

Compact manifolds: log Sobolev case: [Federbusch], [Rothaus];
case γ = 0 (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak];
[Lieb], [Levin], [Ouabaz-Poupaud]... [Ilyin]

B How does one take into account the finite size effects on Sd ?
J. Dolbeault Magnetic ground state & symmetry
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Hölder duality and link with interpolation inequalities

Let p = q
q−2 . Consider the Schrödinger energy

ˆ
Sd
|∇u|2 −

ˆ
Sd
V |u|2 ≥

ˆ
Sd
|∇u|2 − µ ‖u‖2

Lq(Sd )

≥ −λ(µ) ‖u‖2
L2(Sd ) if µ = ‖V+‖Lp(Sd )

We deduce from ‖∇u‖2
L2(Sd ) + λ ‖u‖2

L2(Sd ) ≥ µ(λ) ‖u‖2
Lq(Sd ) that

‖∇u‖2
L2(Sd ) − µ(λ) ‖u‖2

Lq(Sd ) ≥ −λ ‖u‖2
L2(Sd )
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A Keller-Lieb-Thirring inequality on the sphere

Let d ≥ 1, p ∈
[

max{1, d/2},+∞
)

and µ∗ := d
2 (p − 1)

Theorem (JD-Esteban-Laptev)

There exists a convex increasing function λ s.t. λ(µ) = µ if µ ∈
[
0, µ∗

]
and λ(µ) > µ if µ ∈

(
µ∗,+∞

)
and, for any p < d/2,

|λ1(−∆− V )| ≤ λ
(
‖V ‖Lp(Sd )

)
∀V ∈ Lp(Sd)

This estimate is optimal

For large values of µ, we have

λ(µ)p−
d
2 = L1

p− d
2 ,d

(κq,d µ)p (1 + o(1))

If p = d/2 and d ≥ 3, the inequality holds with λ(µ) = µ iff µ ∈ [0, µ∗]

J. Dolbeault Magnetic ground state & symmetry
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A Keller-Lieb-Thirring inequality: second formulation

Let d ≥ 1, γ = p − d/2

Corollary (JD-Esteban-Laptev)

|λ1(−∆− V )|γ . L1
γ,d

ˆ
Sd
V γ+ d

2 as µ = ‖V ‖
Lγ+ d

2 (Sd )
→∞

if either γ > max{0, 1− d/2} or γ = 1/2 and d = 1

However, if µ = ‖V ‖
Lγ+ d

2 (Sd )
≤ µ∗, then we have

|λ1(−∆− V )|γ+ d
2 ≤
ˆ
Sd
V γ+ d

2

for any γ ≥ max{0, 1− d/2} and this estimate is optimal

L1
γ,d is the optimal constant in the Euclidean one bound state ineq.

|λ1(−∆− φ)|γ ≤ L1
γ,d

ˆ
Rd

φ
γ+ d

2
+ dx

J. Dolbeault Magnetic ground state & symmetry
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Caffarelli-Kohn-Nirenberg,
symmetry and symmetry breaking

results, and weighted nonlinear flows

Joint work with M.J. Esteban and M. Loss
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Critical Caffarelli-Kohn-Nirenberg inequality

Let Da,b :=
{
v ∈ Lp

(
Rd , |x |−b dx

)
: |x |−a |∇v | ∈ L2

(
Rd , dx

)}
(ˆ

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

ˆ
Rd

|∇v |2
|x |2 a

dx ∀ v ∈ Da,b

holds under conditions on a and b

p =
2 d

d − 2 + 2 (b − a)
(critical case)

B An optimal function among radial functions:

v?(x) =
(

1 + |x |(p−2) (ac−a)
)− 2

p−2

and C?a,b =
‖ |x |−b v? ‖2

p

‖ |x |−a∇v? ‖2
2

Question: Ca,b = C?a,b (symmetry) or Ca,b > C?a,b (symmetry breaking) ?
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Critical CKN: range of the parameters

Figure: d = 3(ˆ
Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

ˆ
Rd

|∇v |2
|x |2 a

dx

a

b

0

1

−1

b = a

b= a+ 1

a = d−2
2

p

p =
2 d

d − 2 + 2 (b − a)
a < ac := (d − 2)/2
a ≤ b ≤ a + 1 if d ≥ 3,
a + 1/2 < b ≤ a + 1 if d = 1
and a < b ≤ a + 1 < 1,

p = 2/(b − a) if d = 2

[Il’in (1961)]
[Glaser, Martin, Grosse, Thirring (1976)]

[Caffarelli, Kohn, Nirenberg (1984)]
[F. Catrina, Z.-Q. Wang (2001)]
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Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve

bFS(a) :=
d (ac − a)

2
√

(ac − a)2 + d − 1
+ a− ac

a

b

0

[Smets], [Smets, Willem], [Catrina, Wang], [Felli, Schneider]

v 7→ C?a,b

ˆ
Rd

|∇v |2
|x |2 a

dx −
(ˆ

Rd

|v |p
|x |b p

dx

)2/p

is linearly instable at v = v?
J. Dolbeault Magnetic ground state & symmetry



Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space

Magnetic rings: the one-dimensional periodic case
Symmetry in Aharonov-Bohm magnetic fields

Interpolation on the sphere
Keller-Lieb-Thirring inequalities on the sphere
CKN inequalities, symmetry breaking and weighted nonlinear flows

Symmetry versus symmetry breaking:
the sharp result in the critical case

[JD, Esteban, Loss (2016)]

a

b

0

Theorem

Let d ≥ 2 and p < 2∗. If either a ∈ [0, ac) and b > 0, or a < 0 and
b ≥ bFS(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

B
J. Dolbeault Magnetic ground state & symmetry
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The symmetry proof in one slide

A change of variables: v(|x |α−1 x) = w(x), Dαv =
(
α ∂v
∂s ,

1
s ∇ωv

)
‖v‖L2p,d−n(Rd ) ≤ Kα,n,p ‖Dαv‖ϑL2,d−n(Rd ) ‖v‖1−ϑ

Lp+1,d−n(Rd )
∀ v ∈ Hp

d−n,d−n(Rd)

Concavity of the Rényi entropy power: with
Lα = −D∗α Dα = α2

(
u′′ + n−1

s u′
)

+ 1
s2 ∆ω u and ∂u

∂t = Lαum

− d
dt G[u(t, ·)]

(´
Rd u

m dµ
)1−σ

≥ (1−m) (σ − 1)
´
Rd u

m
∣∣∣LαP−

´
Rd u |DαP|2 dµ´

Rd um dµ

∣∣∣2 dµ
+ 2
´
Rd

(
α4
(
1− 1

n

) ∣∣∣P′′ − P′

s − ∆ω P
α2 (n−1) s2

∣∣∣2 + 2α2

s2

∣∣∇ωP′ − ∇ωP
s

∣∣2) um dµ

+ 2
´
Rd

(
(n − 2)

(
α2
FS − α2

)
|∇ωP|2 + c(n,m, d) |∇ωP|4

P2

)
um dµ

Elliptic regularity and the Emden-Fowler transformation: justifying
the integrations by parts

J. Dolbeault Magnetic ground state & symmetry
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The variational problem on the cylinder

B With the Emden-Fowler transformation

v(r , ω) = r a−ac ϕ(s, ω) with r = |x | , s = − log r and ω =
x

r

the variational problem becomes

Λ 7→ µ(Λ) := min
ϕ∈H1(C)

‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C)

‖ϕ‖2
Lp(C)

is a concave increasing function

Restricted to symmetric functions, the variational problem becomes

µ?(Λ) := min
ϕ∈H1(R)

‖∂sϕ‖2
L2(Rd ) + Λ ‖ϕ‖2

L2(Rd )

‖ϕ‖2
Lp(Rd )

= µ?(1) Λα

Symmetry means µ(Λ) = µ?(Λ)

Symmetry breaking means µ(Λ) < µ?(Λ)
J. Dolbeault Magnetic ground state & symmetry
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Numerical results
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non-symmetric

asymptotic

bifurcation

µ

Λα

µ(Λ)

�(Λ) = µ�(1) Λ
α

Parametric plot of the branch of optimal functions for p = 2.8, d = 5.

Non-symmetric solutions bifurcate from symmetric ones at a bifurcation

point Λ1 computed by V. Felli and M. Schneider. The branch behaves for

large values of Λ as shown by F. Catrina and Z.-Q. Wang
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Three references

Lecture notes on Symmetry and nonlinear diffusion flows...
a course on entropy methods (see webpage)

[JD, Maria J. Esteban, and Michael Loss] Symmetry and
symmetry breaking: rigidity and flows in elliptic PDEs
... the elliptic point of view: Proc. Int. Cong. of Math., Rio de
Janeiro, 3: 2279-2304, 2018.

[JD, Maria J. Esteban, and Michael Loss] Interpolation
inequalities, nonlinear flows, boundary terms, optimality and
linearization... the parabolic point of view
Journal of elliptic and parabolic equations, 2: 267-295, 2016.
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Magnetic interpolation inequalities
in the Euclidean space

B Three interpolation inequalities and their dual forms

B Estimates in dimension d = 2 for constant magnetic fields

Lower estimates

Upper estimates and numerical results

A linear stability result (numerical) and an open question

Warning: assumptions are not repeated
Estimates are given only in the case p > 2 but similar estimates

hold in the other cases

Joint work with M.J. Esteban, A. Laptev and M. Loss
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Magnetic Laplacian and spectral gap

In dimensions d = 2 and d = 3: the magnetic Laplacian is

−∆A ψ = −∆ψ − 2 i A · ∇ψ + |A|2ψ − i (divA)ψ

where the magnetic potential (resp. field) is A (resp. B = curlA) and

H1
A(Rd) :=

{
ψ ∈ L2(Rd) : ∇Aψ ∈ L2(Rd)

}
, ∇A := ∇+ i A

Spectral gap inequality

‖∇Aψ‖2
L2(Rd ) ≥ Λ[B] ‖ψ‖2

L2(Rd ) ∀ψ ∈ H1
A(Rd)

Λ depends only on B = curlA
Assumption: equality holds for some ψ ∈ H1

A(Rd)
If B is a constant magnetic field, Λ[B] = |B|
If d = 2, spec(−∆A) = {(2j + 1) |B| : j ∈ N} is generated by the

Landau levels. The Lowest Landau Level corresponds to j = 0
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Magnetic interpolation inequalities

‖∇Aψ‖2
L2(Rd ) + α ‖ψ‖2

L2(Rd ) ≥ µB(α) ‖ψ‖2
Lp(Rd ) ∀ψ ∈ H1

A(Rd)

for any α ∈ (−Λ[B],+∞) and any p ∈ (2, 2∗),

‖∇Aψ‖2
L2(Rd ) + β ‖ψ‖2

Lp(Rd ) ≥ νB(β) ‖ψ‖2
L2(Rd ) ∀ψ ∈ H1

A(Rd)

for any β ∈ (0,+∞) and any p ∈ (1, 2)

‖∇Aψ‖2
L2(Rd ) ≥ γ

ˆ
Rd

|ψ|2 log

(
|ψ|2

‖ψ‖2
L2(Rd )

)
dx + ξB(γ) ‖ψ‖2

L2(Rd )

(limit case corresponding to p = 2) for any γ ∈ (0,+∞)

Cp :=


minu∈H1(Rd )\{0}

‖∇u‖2
L2(Rd )

+‖u‖2
L2(Rd )

‖u‖2
Lp (Rd )

if p ∈ (2, 2∗)

minu∈H1(Rd )\{0}
‖∇u‖2

L2(Rd )
+‖u‖2

Lp (Rd )

‖u‖2
L2(Rd )

if p ∈ (1, 2)

µ0(1) = Cp if p ∈ (2, 2∗), ν0(1) = Cp if p ∈ (1, 2)
ξ0(γ) = γ log

(
π e2/γ

)
if p = 2
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Technical assumptions

A ∈ Lαloc(Rd), α > 2 if d = 2 or α = 3 if d = 3 and

lim
σ→+∞

σd−2

ˆ
Rd

|A(x)|2 e−σ |x| dx = 0 if p ∈ (2, 2∗)

lim
σ→+∞

σ
d
2−1

log σ

ˆ
Rd

|A(x)|2 e−σ |x|2 dx = 0 if p = 2

lim
σ→+∞

σd−2

ˆ
|x|<1/σ

|A(x)|2 dx if p ∈ (1, 2)

These estimates can be found in [Esteban, Lions, 1989]
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A statement

Theorem

p ∈ (2, 2∗): µB is monotone increasing on (−Λ[B],+∞), concave and

lim
α→(−Λ[B])+

µB(α) = 0 and lim
α→+∞

µB(α)α
d−2

2 −
d
p = Cp

p ∈ (1, 2): νB is monotone increasing on (0,+∞), concave and

lim
β→0+

νB(β) = Λ[B] and lim
β→+∞

νB(β)β−
2 p

2 p+d (2−p) = Cp

ξB is continuous on (0,+∞), concave, ξB(0) = Λ[B] and

ξB(γ) = d
2 γ log

(
π e2

γ

)
(1 + o(1)) as γ → +∞

Constant magnetic fields: equality is achieved
Nonconstant magnetic fields: only partial answers are known
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Figure: Case d = 2, p = 3, B = 1: plot of α 7→ (2π)
2
p
−1
µB(α)
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Figure: Case d = 2, p = 1.4, B = 1: plot of β 7→ νB(β)

The horizontal axis is measured in units of (2π)1− 2
p β
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Magnetic Keller-Lieb-Thirring inequalities

λA,V is the principal eigenvalue of −∆A + V
αB : (0,+∞)→ (−Λ,+∞) is the inverse function of α 7→ µB(α)

Corollary

(i) For any q = p/(p − 2) ∈ (d/2,+∞) and any potential V ∈ Lq
+(Rd)

λA,V ≥ −αB(‖V ‖Lq(Rd ))

limµ→0+ αB(µ) = Λ and limµ→+∞ αB(µ)µ
2 (q+1)

d−2−2 q = −C
2 (q+1)

d−2−2 q
p

(ii) For any q = p/(2− p) ∈ (1,+∞) and any 0 <W−1 ∈ Lq(Rd)

λA,W ≥ νB
(
‖W−1‖−1

Lq(Rd )

)
(iii) For any γ > 0 and any W ≥ 0 s.t. e−W/γ ∈ L1(Rd)

λA,W ≥ ξB (γ)− γ log
(´

Rd e
−W/γ dx

) B
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Proofs
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Interpolation without magnetic field...

Assume that p > 2 and let Cp denote the best constant in

‖∇u‖2
L2(Rd ) + ‖u‖2

L2(Rd ) ≥ Cp ‖u‖2
Lp(Rd ) ∀ u ∈ H1(Rd)

By scaling, if we test the inequality by u
(
· /λ
)
, we find that

‖∇u‖2
L2(Rd )+λ

2 ‖u‖2
L2(Rd ) ≥ Cp λ

2− d (1− 2
p ) ‖u‖2

Lp(Rd ) ∀ u ∈ H1(Rd) ∀λ > 0

An optimization on λ > 0 shows that the best constant in the
scale-invariant inequality

‖∇u‖d (1− 2
p )

L2(Rd )
‖u‖2−d (1− 2

p )

L2(Rd )
≥ Sp ‖u‖2

Lp(Rd ) ∀ u ∈ H1(Rd)

is given by

Sp = 1
2 p (2 p − d (p − 2))1−d p−2

2 p (d (p − 2))
d (p−2)

2 p Cp
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... and with magnetic field

Proposition

Let d = 2 or 3. For any p ∈ (2,+∞), any α > −Λ = −Λ[B] < 0

µB(α) ≥ µinterp(α) :=

 Sp (α + Λ) Λ−d
p−2
2 p ifα ∈

[
−Λ, Λ (2 p−d (p−2))

d (p−2)

]
Cp α

1−d p−2
2 p ifα ≥ Λ (2 p−d (p−2))

d (p−2)

Diamagnetic inequality: ‖∇|ψ|‖L2(Rd ) ≤ ‖∇Aψ‖L2(Rd )

Non-magnetic inequality with λ = α+Λ t
1−t , t ∈ [0, 1]

‖∇Aψ‖2
L2(Rd ) + α ‖ψ‖2

L2(Rd ) ≥ t
(
‖∇Aψ‖2

L2(Rd ) − Λ ‖ψ‖2
L2(Rd )

)
+ (1− t)

(
‖∇|ψ|‖L2(Rd ) +

α + Λ t

1− t
‖ψ‖2

L2(Rd )

)
≥ Cp (1− t)

d (p−2)
2 p (α + t Λ)1−d p−2

2 p ‖ψ‖2
Lp(Rd )

and optimize on t ∈ [max{0,−α/Λ}, 1]
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The special case of constant
magnetic field in dimension d = 2
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Constant magnetic field, d = 2...

Assume that B = (0,B) is constant, d = 2 and choose

A1 = B
2 x2 , A2 = −B

2 x1 ∀ x = (x1, x2) ∈ R2

Proposition

[Loss, Thaller, 1997] Consider a constant magnetic field with field
strength B in two dimensions. For every c ∈ [0, 1], we have

ˆ
R2

|∇Aψ|2 dx ≥
(
1− c2

) ˆ
R2

|∇ψ|2 dx + c B

ˆ
R2

ψ2 dx

and equality holds with ψ = u e iS and u > 0 if and only if

(
− ∂2u

2, ∂1u
2
)

=
2 u2

c
(A +∇S)
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... a computation (d = 2, constant magnetic field)

ˆ
R2

|∇Aψ|2 dx =

ˆ
R2

|∇u|2 dx +

ˆ
R2

|A +∇S |2 u2 dx

=
(
1− c2

)ˆ
R2

|∇u|2 dx +

ˆ
R2

(
c2 |∇u|2 + |A +∇S |2 u2

)
dx︸ ︷︷ ︸

≥
´
R2 2 c |∇u| |A+∇S| u dx

with equality only if c |∇u| = |A +∇S | u

2 |∇u| |A +∇S | u = |∇u2| |A +∇S | ≥
(
∇u2

)⊥ · (A +∇S)

where
(
∇u2

)⊥
:=
(
− ∂2u

2, ∂1u
2
)

Equality case:
(
− ∂2u

2, ∂1u
2
)

= γ (A +∇S) for γ = 2 u2/c
Integration by parts yieldsˆ

R2

(
c2 |∇u|2 + |A +∇S |2 u2

)
dx ≥ B c

ˆ
R2

u2 dx
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... a lower estimate (d = 2, constant magnetic field)

Proposition

Consider a constant magnetic field with field strength B in two
dimensions. Given any p ∈ (2,+∞), and any α > −B, we have

µB(α) ≥ Cp

(
1− c2

)1− 2
p (α + c B)

2
p =: µLT(α)

with

c = c(p, η) =

√
η2 + p − 1− η

p − 1
=

1

η +
√
η2 + p − 1

∈ (0, 1)

and η = α (p − 2)/(2B)
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Upper estimate (1): d = 2, constant magnetic field

For every integer k ∈ N we introduce the special symmetry class

ψ(x) =
(

x2+ i x1

|x|

)k
v(|x |) ∀ x = (x1, x2) ∈ R2 (Ck)

[Esteban, Lions, 1989]: if ψ ∈ Ck , then

1

2π

ˆ
R2

|∇Aψ|2 dx =

ˆ +∞

0

|v ′|2 r dr +

ˆ +∞

0

(
k
r − B r

2

)2 |v |2 r dr

and optimality is achieved in Ck
Test function vσ(r) = e− r2/(2σ): an optimization on σ > 0 provides an
explicit expression of µGauss(α) such that

Proposition

If p > 2, then
µB(α) ≤ µGauss(α) ∀α > −Λ[B]

This estimate is not optimal because vσ does not solve the
Euler-Lagrange equations
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Upper estimate (2): d = 2, constant magnetic field

A more numerical point of view. The Euler-Lagrange equation in C0 is

− v ′′ − v ′

r
+
(

B2

4 r2 + α
)
v = µEL(α)

(ˆ +∞

0

|v |p r dr
) 2

p−1

|v |p−2 v

We can restrict the problem to positive solutions such that

µEL(α) =

(ˆ +∞

0

|v |p r dr
)1− 2

p

and then we have to solve the reduced problem

− v ′′ − v ′

r
+
(

B2

4 r2 + α
)
v = |v |p−2 v
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Numerical results
and the symmetry issue
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Figure: Case d = 2, p = 3, B = 1
Upper estimates: α 7→ µGauss(α), µEL(α)
Lower estimates: α 7→ µinterp(α), µLT(α)
The exact value associated with µB lies in the grey area.
Plots represent the curves log10(µ/µEL) B

J. Dolbeault Magnetic ground state & symmetry



Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space

Magnetic rings: the one-dimensional periodic case
Symmetry in Aharonov-Bohm magnetic fields

Three interpolation inequalities and their dual forms
Proofs for general magnetic fields
Estimates in dimension d = 2 for constant magnetic fields
Numerical results and the symmetry issue

Asymptotics (1): Lowest Landau Level

Proposition

Let d = 2 and consider a constant magnetic field with field strength B. If
ψα is a minimizer for µB(α) such that ‖ψα‖Lp(Rd ) = 1, then there exists
a non trivial ϕα ∈ LLL such that

lim
α→(−B)+

‖ψα − ϕα‖H1
A(R2) = 0

Let ψα ∈ H1
A(R2) be an optimal function such that ‖ψα‖Lp(Rd ) = 1

and let us decompose it as ψα = ϕα + χα, where ϕα ∈ LLL and χα is
in the orthogonal of LLL

µB(α) ≥ (α+B) ‖ϕα‖2
L2(Rd )+(α+3B) ‖χα‖2

L2(Rd ) ≥ (α+3B) ‖χα‖2
L2(Rd ) ∼ 2B ‖χα‖2

L2(Rd )

as α→ (−B)+ because ‖∇χα‖2
L2(Rd ) ≥ 3B ‖χα‖2

L2(Rd )

Since limα→(−B)+
µB(α) = 0, limα→(−B)+

‖χα‖L2(Rd ) = 0 and

µB(α) = (α+B) ‖ϕα‖2
L2(Rd )+ ‖∇A χα‖2

L2(Rd )+α ‖χα‖2
L2(Rd ) ≥ 2

3 ‖∇A χα‖2
L2(Rd )

concludes the proof
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Asymptotics (2): semi-classical regime

Let us consider the small magnetic field regime. We assume that the
magnetic potential is given by

A1 = B
2 x2 , A2 = −B

2 x1 ∀ x = (x1, x2) ∈ R2

if d = 2. In dimension d = 3, we choose A = B
2 (−x2, x1, 0) and observe

that the constant magnetic field is B = (0, 0,B), while the spectral
gap is Λ[B] = B.

Proposition

Let d = 2 or 3 and consider a constant magnetic field B of intensity B
with magnetic potential A
For any p ∈ (2, 2∗) and any fixed α and µ > 0, we have

lim
ε→0+

µεB(α) = Cp α
d
p−

d−2
2

Consider any function ψ ∈ H1
A(Rd) and let ψ(x) = χ(

√
ε x),√

εA
(
x/
√
ε
)

= A(x) with our conventions on A
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Numerical stability of radial optimal functions

Let us denote by ψ0 an optimal function in (C0) such that

−ψ′′0 −
ψ′0
r

+
(

B2

4 r2 + α
)
ψ0 = |ψ0|p−2 ψ0

and consider the test function

ψε = ψ0 + ε e i θ v

where v = v(r) and e i θ = (x1 + i x2)/r
As ε→ 0+, the leading order term is

2π

[ˆ
R2

|v ′|2 dx +

ˆ
R2

((
1
r − B r

2

)2
+ α

)
|v |2 dx − p

2

ˆ +∞

0

|ψ0|p−2 v2 r dr

]
ε2

and we have to solve the eigenvalue problem

− v ′′ − v ′

r
+
((

1
r − B r

2

)2
+ α

)
v − p

2 |ψ0|p−2 v = µ v
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Figure: Case p = 3 and B = 1: plot of the eigenvalue µ as a function of α A
careful investigation shows that µ is always positive, including in the limiting
case as α→ (−B)+, thus proving the numerical stability of the optimal
function in C0 with respect to perturbations in C1
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An open question of symmetry

[Bonheure, Nys, Van Schaftingen, 2016] for a fixed α > 0 and
for B small enough, the optimal functions are radially symmetric
functions, i.e., belong to C0

This regime is equivalent to the regime as α→ +∞ for a given B, at
least if the magnetic field is constant

Numerically our upper and lower bounds are (in dimension d = 2,
for a constant magnetic field) numerically extremely close

The optimal function in C0 is linearly stable with respect to
perturbations in C1

B Prove that the optimality case is achieved among radial function if
d = 2 and B is a constant magnetic field
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Magnetic rings

B A magnetic interpolation inequality on S1: with p > 2

‖ψ′ + i aψ‖2
L2(S1) + α ‖ψ‖2

L2(S1) ≥ µa,p(α) ‖ψ‖2
Lp(S1)

B Consequences

A Keller-Lieb-Thirring inequality

A new Hardy inequality for Aharonov-Bohm magnetic fields in R2

Joint work with M.J. Esteban, A. Laptev and M. Loss
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Magnetic flux, a reduction

Assume that a : R→ R is a 2π-periodic function such that its
restriction to (−π, π] ≈ S1 is in L1(S1) and define the space

Xa :=
{
ψ ∈ Cper(R) : ψ′ + i aψ ∈ L2(S1)

}
A standard change of gauge (see e.g. [Ilyin, Laptev, Loss, Zelik,

2016])

ψ(s) 7→ e i
´ s
−π(a(s)−ā) dσ ψ(s)

where ā :=
´ π
−π a(s) dσ is the magnetic flux, reduces the problem to

a is a constant function

For any k ∈ Z, ψ by s 7→ e iks ψ(s) shows that µa,p(α) = µk+a,p(α)

a ∈ [0, 1]

µa,p(α) = µ1−a,p(α) because

|ψ′ + i aψ|2 = |χ′ + i (1− a)χ|2 =
∣∣ψ′ − i aψ

∣∣2 if χ(s) = e−is ψ(s)

a ∈ [0, 1/2]
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Optimal interpolation

We want to characterize the optimal constant in the inequality

‖ψ′ + i aψ‖2
L2(S1) + α ‖ψ‖2

L2(S1) ≥ µa,p(α) ‖ψ‖2
Lp(S1)

written for any p > 2, a ∈ (0, 1/2], α ∈ (−a2,+∞), ψ ∈ Xa

µa,p(α) := inf
ψ∈Xa\{0}

´ π
−π
(
|ψ′ + i aψ|2 + α |ψ|2

)
dσ

‖ψ‖2
Lp(S1)

p = − 2 = 2 d/(d − 2) with d = 1 [Exner, Harrell, Loss, 1998]
p = +∞ [Galunov, Olienik, 1995] [Ilyin, Laptev, Loss, Zelik, 2016]
limα→− a2 µa,p(α) = 0 [JD, Esteban, Laptev, Loss, 2016]

Using a Fourier series ψ(s) =
∑

k∈Z ψk e
iks , we obtain that

‖ψ′ + i aψ‖2
L2(S1) =

∑
k∈Z

(a + k)2 |ψk |2 ≥ a2 ‖ψ‖2
L2(S1)

ψ 7→ ‖ψ′ + i aψ‖2
L2(S1) + α ‖ψ‖2

L2(S1) is coercive for any α > − a2
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An interpolation result for the magnetic ring

Theorem

For any p > 2, a ∈ R, and α > − a2, µa,p(α) is achieved and
(i) if a ∈ [0, 1/2] and a2 (p + 2) + α (p − 2) ≤ 1, then µa,p(α) = a2 + α
and equality is achieved only by the constant functions
(ii) if a ∈ [0, 1/2] and a2 (p + 2) + α (p − 2) > 1, then µa,p(α) < a2 + α
and equality is not achieved by the constant functions
If α > − a2, a 7→ µa,p(α) is monotone increasing on (0, 1/2)
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Figure: α 7→ µa,p(α) with p = 4 and (left) a = 0.45 or (right) a = 0.2
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The proof: how to eliminate the
phase
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Reformulations of the interpolation problem (1/3)

Any minimizer ψ ∈ Xa of µa,p(α) satisfies the Euler-Lagrange equation

(Ha + α)ψ = |ψ|p−2 ψ , Haψ = −
(

d

ds
+ i a

)2

ψ (*)

up to a multiplication by a constant and v(s) = ψ(s) e ias satisfies the
condition

v(s + 2π) = e2iπa v(s) ∀ s ∈ R

Hence
µa,p(α) = min

v∈Ya\{0}
Qp,α[v ]

where Ya :=
{
v ∈ C (R) : v ′ ∈ L2(S1) , (*) holds

}
and

Qp,α[v ] :=
‖v ′‖2

L2(S1) + α ‖v‖2
L2(S1)

‖v‖2
Lp(S1)
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Reformulations of the interpolation problem (2/3)

With v = u e iφ the boundary condition becomes

u(π) = u(−π) , φ(π) = 2π (a + k) + φ(−π) (**)

for some k ∈ Z, and ‖v ′‖2
L2(S1) = ‖u′‖2

L2(S1) + ‖u φ′‖2
L2(S1)

Hence

µa,p(α) = min
(u,φ)∈Za\{0}

‖u′‖2
L2(S1) + ‖u φ′‖2

L2(S1) + α ‖u‖2
L2(S1)

‖u‖2
Lp(S1)

where Za :=
{

(u, φ) ∈ C (R)2 : u′, u φ′ ∈ L2(S1) , (**) holds
}
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Reformulations of the interpolation problem (3/3)

We use the Euler-Lagrange equations

− u′′ + |φ′|2 u + α u = |u|p−2 u and (φ′ u2)′ = 0

Integrating the second equation, and assuming that u never vanishes,
we find a constant L such that φ′ = L/u2. Taking (*) into account, we
deduce from

L

ˆ π

−π

ds

u2
=

ˆ π

−π
φ′ ds = 2π (a + k)

that

‖u φ′‖2
L2(S1) = L2

ˆ π

−π

dσ

u2
=

(a + k)2

‖u−1‖2
L2(S1)

Hence

φ(s)− φ(0) =
a + k

‖u−1‖2
L2(S1)

ˆ s

−π

ds

u2
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Let us define

Qa,p,α[u] :=
‖u′‖2

L2(S1) + a2 ‖u−1‖−2
L2(S1) + α ‖u‖2

L2(S1)

‖u‖2
Lp(S1)

Lemma

For any a ∈ (0, 1/2), p > 2, α > − a2,

µa,p(α) = min
u∈H1(S1)\{0}

Qa,p,α[u]

is achieved by a function u > 0
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Proofs

The existence proof is done on the original formulation of the
problem using the diamagnetic inequality

To prove that |ψ| 6= 0, we use ψ(s) e ias = v1(s) + i v2(s), solves

− v ′′j + α vj = (v2
1 + v2

2 )
p
2−1 vj , j = 1 , 2

and the Wronskian w = (v1 v
′
2 − v ′1 v2) is constant so that ψ(s) = 0 is

incompatible with the twisted boundary condition
if a2 (p + 2) + α (p − 2) ≤ 1, then µa,p(α) = a2 + α because

‖u′‖2
L2(S1)+a2 ‖u−1‖−2

L2(S1)+α ‖u‖2
L2(S1) = (1−4 a2) ‖u′‖2

L2(S1)+α ‖u‖2
L2(S1)

+ 4 a2
(
‖u′‖2

L2(S1) + 1
4 ‖u−1‖2

L2(S1)

)
if a2 (p + 2) + α (p − 2) > 1, the test function uε := 1 + εw1

Qa,p,α[uε] = a2 + α +
(
1− a2 (p + 2)− α (p − 2)

)
ε2 + o(ε2)

proves the linear instability of the constants and µa,p(α) < a2 + α
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Qa,p,α[u] :=
‖u′‖2

L2(S1)
+a2 ‖u−1‖−2

L2(S1)
+α ‖u‖2

L2(S1)

‖u‖2
Lp (S1)

,

µa,p(α) = min
u∈H1(S1)\{0}

Qa,p,α[u]

Qp,α[u] = Qa=0,p,α[u] , νp(α) := inf
v∈H1

0(S1)\{0}
Qp,α[v ]

Proposition

∀ p > 2, α > − a2, we have µa,p(α) < µ1/2,p(α) ≤ νp(α) = µ1/2,p(α)
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Figure: p = 4, α = 0, a = 0.40, 0.41,. . . 0.49; u′′ + up−1 = 0
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Consequences: Keller-Lieb-Thirring
inequalities and Hardy inequalities
for Aharonov-Bohm magnetic fields
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A Keller-Lieb-Thirring inequality

Magnetic Schrödinger operator Ha − ϕ = −
(

d
ds + i a

)2
ψ − ϕ

The function α 7→ µa,p(α) is monotone increasing, concave, and
therefore has an inverse, denoted by αa,p : R+ → (−a2,+∞), which is
monotone increasing, and convex

Corollary

Let p > 2, a ∈ [0, 1/2], q = p/(p − 2) and assume that ϕ is a
non-negative function in Lq(S1). Then

λ1(Ha − ϕ) ≥ −αa,p

(
‖ϕ‖Lq(S1)

)
and αa,p(µ) = µ− a2 iff 4 a2 + µ (p − 2) ≤ 1 (optimal ϕ is constant)

Equality is achieved
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Aharonov-Bohm magnetic fields

On the two-dimensional Euclidean space R2, let us introduce the polar
coordinates (r , ϑ) ∈ [0,+∞)× S1 of x ∈ R2 and consider a magnetic
potential a in a transversal (Poincaré) gauge, or Poincaré gauge

(a, er ) = 0 and (a, eϑ) = aϑ(r , ϑ)

Magnetic Schrödinger energy
ˆ
R2

|(i ∇+a) Ψ|2 dx =

ˆ +∞

0

ˆ π

−π

(
|∂rΨ|2 +

1

r2
| ∂ϑΨ + i r aϑ Ψ|2

)
r dϑ dr

Aharonov-Bohm magnetic fields: aϑ(r , ϑ) = a/r for some constant
a ∈ R (a is the magnetic flux), with magnetic field b = curl a
ˆ
R2

|(i ∇+a) Ψ|2 dx ≥ τ
ˆ
R2

ϕ(x/|x|)
|x|2 |Ψ|2 dx ∀ϕ ∈ Lq(S1) , q ∈ (1,+∞)

=⇒ τ = τ
(
a, ‖ϕ‖Lq(S1)

)
?
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Hardy inequalities

[Hoffmann-Ostenhof, Laptev, 2015] proved Hardy’s inequality

ˆ
Rd

|∇Ψ|2 dx ≥ τ
ˆ
Rd

ϕ(x/|x|)
|x|2 |Ψ|2 dx

where the constant τ depends on the value of ‖ϕ‖Lq(Sd−1) and d ≥ 3

Aharonov-Bohm vector potential in dimension d = 2

a(x) = a

(
x2

|x|2 ,
−x1

|x|2
)
, x = (x1, x2) ∈ R2 , a ∈ R

and recall the inequality [Laptev, Weidl, 1999]

ˆ
R2

|(i ∇+ a) Ψ|2 dx ≥ min
k∈Z

(a− k)2

ˆ
R2

|Ψ|
|x|2 dx
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A new Hardy inequality

ˆ
R2

|(i ∇+a) Ψ|2 dx ≥ τ
ˆ
R2

ϕ(x/|x|)
|x|2 |Ψ|2 dx ∀ϕ ∈ Lq(S1) , q ∈ (1,+∞)

Corollary

Let p > 2, a ∈ [0, 1/2], q = p/(p − 2) and assume that ϕ is a
non-negative function in Lq(S1). Then the inequality holds with τ > 0
given by

αa,p

(
τ ‖ϕ‖Lq(S1)

)
= 0

Moreover, τ = a2/‖ϕ‖Lq(S1) if 4 a2 + ‖ϕ‖Lq(S1) (p − 2) ≤ 1

For any a ∈ (0, 1/2), by taking ϕ constant, small enough in order that
4 a2 + ‖ϕ‖Lq(S1) (p − 2) ≤ 1, we recover the inequalityˆ

R2

|(i ∇+ a) Ψ|2 dx ≥ a2

ˆ
R2

|Ψ|2
|x|2 dx
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Proofs (Keller-Lieb-Thirring inequality)

B
Hölder’s inequality

‖ψ′ + i aψ‖2
L2(Sd ) −

ˆ π

−π
ϕ |ψ|2 dσ ≥ ‖ψ′ + i aψ‖2

L2(Sd ) − µ ‖ψ‖2
Lp(Sd )

where µ = ‖ϕ‖Lq(Sd ) and 1
q + 2

p = 1: choose µa,p(α) = µ

‖ψ′ + i aψ‖2
L2(Sd ) − µ ‖ψ‖2

Lp(Sd ) ≥ −α ‖ψ‖2
L2(Sd )
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Proofs (Hardy inequality)

Let τ ≥ 0, x = (r , ϑ) ∈ R2 be polar coordinates in R2

ˆ
R2

(
|(i ∇+ a) Ψ|2 − τ ϕ

|x |2 |Ψ|
2

)
dx

=

ˆ ∞
0

ˆ
S1

(
r |∂rΨ|2︸ ︷︷ ︸
≥0

+
1

r
|∂ϑΨ + i aΨ|2 − τ ϕ

r
|Ψ|2

)
dϑdr

≥ λ1 (Ha − τ ϕ)

ˆ ∞
0

ˆ
S1

1

r
|Ψ|2 dϑ dr

≥ −αa,p(τ ‖ϕ‖Lq(Sd ))

ˆ ∞
0

ˆ
S1

1

r
|Ψ|2 dϑ

If τ = 0, then αa,p(τ ‖ϕ‖Lq(Sd )) = αa,p(0) = − a2

αa,p(τ ‖ϕ‖Lq(Sd )) > 0 for τ large
=⇒ ∃ ! τ > 0 such that αa,p(τ ‖ϕ‖Lq(Sd )) = 0
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Comments

B The region a2 (p + 2) + α (p − 2) < 1 is exactly the set where the
constant functions are linearly stable critical points

B The proof of the rigidity result is based
- neither on the carré du champ method, at least directly
- nor on a Fourier representation of the operator as it was the case in
earlier proofs (p = +∞, or p > 2 and α = 0)

B Magnetic rings: see [Bonnaillie-Noël, Hérau, Raymond, 2017]

B Deducing Hardy’s inequality applied with Aharonov-Bohm magnetic
fields from a Keller-Lieb-Thirring inequality is an extension of
[Hoffmann-Ostenhof, Laptev, 2015] to the magnetic case

B Our results are not limited to the semi-classical regime
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Symmetry in Aharonov-Bohm
magnetic fields

Aharonov-Bohm effect

Interpolation and Keller-Lieb-Thirring inequalities in R2

B Statements
B Constants and numerics

Symmetry and symmetry breaking

Joint work with D. Bonheure, M.J. Esteban, A. Laptev, & M. Loss
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Aharonov-Bohm effect

A major difference between classical mechanics and quantum
mechanics is that particles are described by a non-local object, the
wave function. In 1959 Y. Aharonov and D. Bohm proposed a series
of experiments intended to put in evidence such phenomena which are
nowadays called Aharonov-Bohm effects

One of the proposed experiments relies on a long, thin solenoid which
produces a magnetic field such that the region in which the magnetic
field is non-zero can be approximated by a line in dimension d = 3
and by a point in dimension d = 2

B [Physics today, 2009] “The notion, introduced 50 years ago, that
electrons could be affected by electromagnetic potentials without
coming in contact with actual force fields was received with a
skepticism that has spawned a flourishing of experimental tests and
expansions of the original idea.” Problem solved by considering
appropriate weak solutions !
B Is the wave function a physical object or is its modulus ? Decisive
experiments have been done only 20 years ago
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The interpolation inequality

Let us consider an Aharonov-Bohm vector potential

A(x) =
a

|x |2 (x2,− x1) , x = (x1, x2) ∈ R2 \ {0} , a ∈ R

Magnetic Hardy inequality [Laptev, Weidl, 1999]ˆ
R2

|∇A ψ|2 dx ≥ min
k∈Z

(a− k)2

ˆ
R2

|ψ|2
|x |2 dx

where ∇A ψ := ∇ψ + i Aψ, so that, with ψ = |ψ| e iSˆ
R2

|∇A ψ|2 dx =

ˆ
R2

[
(∂r |ψ|)2 + (∂rS)2 |ψ|2 +

1

r2
(∂θS + A)2 |ψ|2

]
dx

Magnetic interpolation inequality
ˆ
R2

|∇A ψ|2 dx + λ

ˆ
R2

|ψ|2
|x |2 dx ≥ µ(λ)

(ˆ
R2

|ψ|p
|x |2 dx

)2/p

B Symmetrization: [Erdös, 1996], [Boulenger, Lenzmann], [Lenzmann,
Sok]
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A magnetic Hardy-Sobolev inequality

Theorem

Let a ∈ [0, 1/2] and p > 2. For any λ > − a2, there is an optimal,
monotone increasing, concave function λ 7→ µ(λ) which is such that

ˆ
R2

|∇A ψ|2 dx + λ

ˆ
R2

|ψ|2
|x |2 dx ≥ µ(λ)

(ˆ
R2

|ψ|p
|x |2 dx

)2/p

If λ ≤ λ? = 4 1−4 a2

p2−4 − a2 equality is achieved by

ψ(x) = (|x |α + |x |−α)
− 2

p−2 ∀ x ∈ R2 , with α = p−2
2

√
λ+ a2

If λ > λ• with

λ• :=
8
(√

p4−a2 (p−2)2 (p+2) (3 p−2)+2
)
−4 p (p+4)

(p−2)3 (p+2) − a2

there is symmetry breaking: optimal functions are not radially symmetric
J. Dolbeault Magnetic ground state & symmetry



Symmetry in non-magnetic interpolation inequalities
Magnetic interpolation in the Euclidean space

Magnetic rings: the one-dimensional periodic case
Symmetry in Aharonov-Bohm magnetic fields

Aharonov-Bohm effect
Interpolation and Keller-Lieb-Thirring inequalities
Symmetry and symmetry breaking

A magnetic Keller-Lieb-Thirring estimate

Let q ∈ (1,+∞) and denote by Lq
?(R2) the space defined using the

weighted norm |||φ|||q :=
(´

R2 |φ|q |x |2 (q−1) dx
)1/q

Theorem

Let a ∈ (0, 1/2), q ∈ (1,∞) and φ ∈ Lq
?(R2): µ 7→ λ(µ) is a convex

monotone increasing function such that lim
µ→0+

λ(µ) = −min
k∈Z

(a− k)2 and

λ1(−∆A − φ) ≥ −λ
(
|||φ|||q

)
There is an explicit µ? > 0 such that the equality case is achieved for any
µ ≤ µ? by

φ(x) =
(
|x |α + |x |−α

)−2 ∀ x ∈ R2 , with α =
p − 2

2

√
λ(µ) + a2

There is an explicit µ• > µ? such that the equality case is achieved only
by non-radial functions if µ > µ•
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Constants are explicit...

For a = 1/2, we shall see that µ• = µ? = −1/4

The function λ 7→ µ(λ) is the inverse of µ 7→ λ(µ) and

µ? = h (λ?) and µ• = h (λ•)

with

h(λ) :=
p

2
(2π)1− 2

p
(
λ+ a2

)1+ 2
p

(
2
√
π Γ
(

p
p−2

)
(p − 2) Γ

(
p

p−2 + 1
2

))1− 2
p
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Figure: Case p = 4
Symmetry breaking region: λ > λ•(a)
Symmetry breaking region: λ < λ?
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Figure: The curve a 7→ λ•(a)− λ?(a)
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Lemma

Let a ∈ [0, 1/2] and ψ = u e iS ∈ C 1 ∩H1
A such that |ψ| > 0

ˆ
R2

|∇A ψ|2 dx ≥
ˆ
R2

(
|∂ru|2 +

1

r2
|∂θu|2 +

1

r2

a2´
S2 u−2 dσ

)
dx

Equality holds if and only if ∂rS ≡ 0 and

∂θS = a− a

u2

1´
S2 u−2 dσ

When u does not depend on θ, equality is achieved iff S is constant

Lemma

For all a ∈ [0, 1/2] and ψ ∈ H1(S1) with u = |ψ|, we have

ˆ
S2

|∂θψ − i aψ|2 dσ ≥
(
1− 4 a2

) ˆ
S2

|∂θu|2 dσ + a2

ˆ
S2

u2 dσ
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Proof (1/3): the inequality with a non-optimal constant

Diamagnetic inequality: ‖∇A ψ‖L2(R2) ≥ ‖∇u‖L2(R2), u = |ψ|

ˆ
R2

|∇A ψ|2 dx + λ

ˆ
R2

|ψ|2
|x |2 dx

≥ t

(
‖∇A ψ‖2

L2(R2) − a2

ˆ
R2

u2

|x |2 dx

)
+ (1− t)

(
‖∇u‖2

L2(R2) +
λ+ a2 t

1− t

ˆ
R2

u2

|x |2 dx

)
With a2 = λ+a2 t

1−t , t ∈ (0, 1) such that λ+ a2 t > 0: existence of a
positive constant µ(λ)
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Proof (2/3): optimal estimate in the symmetry range

With a ∈ [0, 1/2], ψ ∈ H1(R2) and u = |ψ|ˆ
R2

|∇A ψ|2 dx ≥
ˆ
R2

|∂ru|2 dx +
(
1− 4 a2

) ˆ
R2

1

r2
|∂θu|2 dx + a2

ˆ
R2

u2 dx

The relaxed inequality

ˆ
R2

(
|∂ru|2 + 1− 4 a2

r2 |∂θu|2
)
dx +

(
λ+ a2

) ˆ
R2

|u|2
|x |2 dx ≥ µrel(λ)

(ˆ
R2

|u|p
|x |2 dx

) 2
p

.

is rewritten on the cylinder C := R× S1 using the Emden-Fowler
transformation asˆ

C

(
|∂sw |2 +

(
1− 4 a2

)
|∂θw |2

)
dy +

(
λ+ a2

)ˆ
C
|w |2 dy

≥ (2π)
2
p−1 µrel(λ)

(ˆ
C
|w |p dy

) 2
p

If
(
λ+ a2

) (
p2 − 4

)
≤ 4

(
1− 4 a2

)
⇐⇒ λ ≤ λ?, the minimizer is

symmetric
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Proof (3/3): symmetry breaking range

Ea,λ[ψ] :=

ˆ
R2

|∇A ψ|2 dx + λ

ˆ
R2

|ψ|2
|x |2 dx − µ

(ˆ
R2

|ψ|p
|x |2 dx

)2/p

µ =
(
2π
´
C |w?|p dy

)1−2/p
, w?(s) = ζ?

(
cosh(ω s)

)− 2
p−2

s = − log r and ψε(r , θ) :=
(
w?(s) + εϕ(s, θ)

)
e i ε χ(s,θ)

Ea,λ[ψε] = ε2Q[ϕ, χ] + o(ε2)

Q[ϕ, χ] =

ˆ
C
w2
?

(
|∂sχ|2 + |∂θχ− a|2 − a2

)
dy − 4 a

ˆ
C
w? ϕ∂θχ dy

+

ˆ
C

(
|∂sϕ|2 + |∂θϕ|2 +

(
λ+ a2

)
ϕ2
)
dy

− (p − 1)

ˆ
C
|w?|p−2 |ϕ|2 dy

ϕ(s, θ) = cos θ

cosh(ω s)
p

p−2
, χ(s, θ) = ζ

ζ?
sin θ

cosh(ω s) : Q[ϕ, χ] < 0 =⇒ λ > λ•
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