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Outline

@ From assigned Gauss curvature problems with conical singularities
to weighted Liouville-type equations in R?

@_ Known results on weighted Liouville-type equations in R?
@ Multiplicity results for radially symmetric solutions
@ More numerical observations and conjectures
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1. From assignhed Gauss curvature problems
with conical singularities to weighted
Liouville-type equations in R
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The assighed Gauss curvature problem

Au+ K(z)e* =0 in R?
K a given function on R?

If u is a solution, then the metric g = e |dz|? is conformal to the flat
metric |dz|* and such that K is the Gaussian curvature of the new metric g

@ Analysis of gravitating systems
@ statistical mechanics description of the vorticity in fluid mechanics
@ self-dual gauge field vortices

K is negative: uniquenessKis positive: either uniqueness or multiplicity of

solutions holds
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The assighed Gauss curvature with conical singularities

For a given Riemann surface (M, g), we aim at determining the range of
the parameters A, p € R one can solve

Agu+ ) e ! 2mp (6 — — f
u I —_ _ — p—
7 Jy e2do, M) P M)

@ A, is the Laplace-Beltrami operator

@ do, Is the volume element corresponding to the metric g
@ feC(M)with [, fdo, =0

@ ¢p Is the Dirac measure with singularity at P € M

In case M has a non-empty boundary, both Dirichlet or Neumann
boundary conditions on 9M are of interest

Two basic examples:
@ 2-sphere M = §?

Q_ the flat 2-torus M = C/(&1Z + £27), with periodic cell domain
generated by &; and & (vortex-like configurations in periodic settings)
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A brief review of the Onsager vortex problem (p = 0)

Closed surfaces (0M = ()), no singularity (p = 0): solvability depends of
the topological properties of M

Q

Q

[Y.Y.Li],[ C.-C. Chen, C.-S. Lin ]: if p = 0, the solutions of are
uniformly bounded for any A € R \ 47N

forany A € (4x(m — 1),4mm), m € N*, Leray-Schauder degree of the
corresponding Fredholm operator is

(=x(M) +1) --- (=x(M) +m —1)
(m—1)!

d>\:1ifm:1, d)\: |fm22

where x (M) is the Euler characteristics of M

Q_ for the flat 2-torus, dy = 1 also when \ € 47N: there is a solution for

every A € R

@_ For the standard 2-sphere, d, = 0 for all A > 8, but still, there is a

solution for any A € R\ 47N (multiplicity results)
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Case with a Dirac measure (p £ 0)

The Leray-Schauder degree, given by dy = —x (M) + 2, is available only
when p > 1 and X\ € (47, 87)

@ On S?: the solvability is very delicate [ Troyanov ]
@ On the flat 2-torus with A = 47 and p = 2, consider

62u

fM e*" doy

[ C.-S. Lin, C. L. Wang ]: no solution in the case of a rectangular
lattice (i.e. &1 = a, & =1 b, a, b > 0), but there is a solution for a

rhombus lattice (i.e. & = a, & = ae™3, a > 0)

Agu—|—47r( —5()) =0 InM:C/(£12+£QZ)

As usual for such difficulties... lack of compactness for the solution set
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Weighted Liouville-type equations in R*: first derivation

Consider the square 2-torus ~ Q = (—1,1)? C R? and suppose that
P =0 € Q. Let u. be the solution of (existence is ok)

e2Ue 1 g2 C
Auz + A — — 92 _ = in
te (J‘Q iz m\) ”p<w<e2+|x|2>2 m\)

ue doubly periodic on 952

2
where ¢, := |, W(€2i|x|2)2 dr —lase — 0. Letu. = v +u.- g

Au =2 2 Ce in €
p— T _——
PA\TE@+ P2 19

u doubly periodic on 9Q, [, u dx =

which takes the form u. o(z) = & log(e? + |z|?) + ¢ (z), for some suitable
function . (uniformly bounded in C%%-norm, with respect to £ > 0)
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Then v, = u. — u. o satisfies

A )\ 62(u€,0+v€) 1 O _ Q
Ve T (fQ ez(us,o-l—vs) dr ‘Q‘)

The function e¢“=¢ is bounded from above and from below away from zero

in CfY o (2\ {0})... u. is bounded uniformly in G, *(\ {0}) for A ¢ 47N

Closeto0 € Q ? w, := v, + % log A — % log (fQ g2Ue dgg) and W, := e2¥-

([ —Aw. = (€2 + |z|2)P W.(x) e?¥s — ﬁ in B,.(0)

Jp.0 & dz <\
fQ e2ue dy T

/ (2 + |z|*)? We(x) e*™s dx = A
\ B;-(0)

By contradiction: lim,, .., &, = 0, lim,, oo ,, = O,
We,, (Tn) = maxg () We, — +00
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Let s,, := max {e,, |2, exp(—g?qixprg))} — 0, R, := W, (x, + s, x),

By, := B, /s, (0), Up(x) := we, (x5, + 55, 7) +2 (1 + p) log s,

( 2

2\ P
—AUn:<‘Z—n + 55—“—|—x)) RnGZU”+0(1) in B,

Un(0) = we, (xn) +2(1 + p) log sn

A

_/\

2
tn ooy o

Sn

_|_

2\ P
) R, ?Un dx < )

Sn

By definition of s,,, we know that limsup,, . s» exp(“"fn—(w”)) > 1. We do

2(1+p)

not know whether this limit is finite or not. If it is finite (conjectured), by

Harnack’s estimates

U, — U in 02 -

loc Sn Sn,

(R, ™ Lc_e0,1], = -z € B0,1)CR
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(

~AUy = (€2, + |20 + 2|*)P Wy €2V in R?

< Uoso(0) = rrﬁ%XUoo >0

/ (€2 + oo + x|?)P Wao €2V daz < A
\ JR2

If .o = 0, classification results give

Weo Too + x|?? €2V dx = 47 (1 + p)
R2

... impossible if A < 47 (1 + p). If e > 0, then (a much harder question)

2

—AU = (1+ |z|*)?e?Y  inR?

/ (14 |2]?)P eV dx < A
\ JR?
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Weighted Liouville-type equations in R“: second derivation

Consider on R? the solutions of

(

—Au = (1+|z]>)N e** inR?

/ (14 |z e* dx = A
\ JRR2

Let ¥ : S? — R? be the stereographic projection with respect to the north
pole, N := (0,0, 1). With x = 3(y)

v(y) = u(x) — % log <(1 n |:32)N+2) — log 2

e?? 21 (N + 2)
BN g = g (A\=2r(N+2))dv ons’

If A\ =27 (N + 2), we find that v is a bounded solution on S? with p =0
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Main result

Theorem 1. Forallk > 2 and N > k(k + 1) — 2, there are at least 2(k — 2) + 2
distinct radial solutions of the weighted Liouville-type equation in R? with

A = 27 (N + 2), one of them being the function u’y (1) := % log ((1245%;\2,)”) with

r=|z|.

U\

5 10 15 20 25 30

Bifurcation diagram for the weighted Liouville-type equation in R? with A = 2w (N + 2)
(right). Non trivial branches bifurcate from N, = 4, 10, 18, 28,. ..
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2. Known results on weighted Liouville-type
equations in R?
[ Mostly C.-S. Lin et al. ]
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Radially symmetric solutions

[ C.-S. Lin et al. ]: the solution set can be parametrized by a parameter
a € R

(w4 (14 r2)Ne2ue =0 in (0, +00)

r

ue(0) =a, wu (0)=0, /(1+r2)N62““rdr<+oo
0

For every a € R, there exists a unique solution u, such that

lim (uq(r) + a(a) logr) = B(a),

r—00

ala) = / (1+7r*)Ne* e rdr and p(a) = / (1 + r?)Ne?Ue  log r dr
0 0
Forany N > 0

lim a(a) =2(N+1) and lim «(a) =2 min{l, N}

a— — o0 a—-+o0o
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Uniqueness

Pohozaev’s identity shows that a(a) € (2,2(N + 1)). For integrability
reasons, we also know that a(a) > N + 1, and so

max{2, N +1} < a(a) <2(N+1) VaeR

[ C.-S. Lin ]: there is a unique a such that a(a) = a if a € (2N, 2(N + 1)),
N >1landforalla e (2,2(N 4+ 1)) if N < 1. On the other hand, it is easy
to verify that for all IV, the function

un(r) = = lo
N () 9 g 1+ r2)N+2 a(a) = N +2

1 ( 2(N + 2) > for a=ay = 1log(2(N +2))
(
Since N +2 < 2N < 2(N + 1) forall N > 2, by continuity of a — «(a), it
appears that there exists at least two different values of a such that
a(a) = a, forany a € (mingegr a(a), 2N)
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Curve a — «a(a) for N = 7. Recall that

ala) = / (14 r2)Ne2va prdy
0
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35¢

Curve a — a(a) for N =1, 2,... 8
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Theorem 2. [ K.-S. Cheng and C.-S. Lin ], [ C.-S. Lin] Let N be any positive real number

(iy i N <1, then the curve a — «(a) is monotone decreasing. Moreover, there
exists a radially symmetric solution u if and only if o € (2,2(IN + 1)), and such a
solution is unique

(iy N > 1,thenforallcc € (2N,2(N + 1)), there exists a unique a € R such that
a(a) = a. In other words, for such «, there is a unique radial solution

(i) IfN > 2, thenmingecr a(a) < 2N, and for all € (minger a(a), 2N), there
exists at least two radial solutions

M

35
30
5
Y
30 20  -10

10 0 30
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Non radially symmetric solutions

Q

Q

To any solution u,,, we can associate a function v, on S?, such that
fSQ e?V do, = 1for A = 27 a(a)

At level « = N + 2, v, is a bounded solution on S? (with f =0, p = 0)

of
e 1 1
Au+>\( — )—27T (5 ——):f
g [y €2ido, M P\ T M

which is axially symmetric with respect to the unit vector (0,0, 1)
pointing towards the north pole N of S?

Since vi = v,+ is the unique constant solution, if we know the
N N

existence of more than one solution at level a« = N + 2, then there is
an axially symmetric solution on S? which is not constant, and that
can be thus rotated in order to be axially symmetric with respect to
any vector e € S? \ {N,S}. Let us denote by v. such a solution

Applying the stereographic projection to v., we find a solution u,
which is not radially symmetric
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Linearization

G+ Ea 4 2(1+72)NePie o, =0, 7€ (0,+00)

wa(0) =1, ¢,(0)=0

The number of critical points of a« — a(a) is also connected with the
number of zeroes of ¢, in the range (mingcr a(a), 2N)

©0a(r) ~ —a/(a)logr +b'(a) + o(1)

@, IS a bounded function if and only if a € R is a critical point of the
function «

As a special case, for all N, if min,cr a(a) is achieved for some finite a,
then ¢, is bounded
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3. Multiplicity results for radially symmetric
solutions
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Curve a — «a(a) for N =1, 3,... 19
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Curve a — a(a) — 4N for N =1, 3,... 19
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@_ For given N, critical levels of the curve a — a(a) determine the
multiplicity of the radial solutions at a given level

@_ The number of zeroes of the solutions of the linearized problem can
change only at critical points of «

@ In the special case o = N + 2, a bifurcation argument provides us
with a very precise multiplicity result
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Study of the linearized problem

Emden-Fowler transformation in the linearized equation
t=1logr, wu(t):=@u(r)

The equation is then transformed into

W (#) + 22 (1 + 2N e2uae) yy (#) =0, t € (—00, +00)

a

When a = a};, the equation for wy, := w,x reads

(N+2)
2 (cosh t)2 wy(t) =0, te&(—o0,+00)

wy" (t) +
With one more change of variables, w(t) = ¥(s), s = tanh ¢, we find

Legendre’s equation

) N+2
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Legendre polynomials

Legendre polynomial of order k € N* if N +2 = k(k + 1)

Legendre’s equation has bounded solutions if and only if there is a
positive integer k such that 1 + 2k = /1 + 4(N + 2), that is, if and only if

N(N) = —1+\/1—2|—4(N+2)

is a positive integer: wy, (t) = Px(s) for all integer £ > 2 with s = tanh ¢
Lemma 3. [ Landau-Lifschitz ] Take N > 1. Then, there are bounded solutions if and
only if YI(IN) is a positive integer: N = Ny := k(k + 1) — 2, k € N*. In such a case,
iaz, has exactly YU(IN') zeroes in the interval (—oo, +00)
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Lemmad4. Forany N > 0,aq9 > 0and R > 0, if p,, has k zeroes in (0, R) and

©a, (R) # 0, then there exists ane > (0 such that ,, also has exactly k zeroes in

(0, R) foranya € (ag — €,ag + €)

Corollary 5. Forany N € [Ng, Ni11), k € N, k > 1, solutions w3, have exactly

k + 1 zeroes in the interval (—oo, +00)

Lemma 6. Take N > 1 and consideray, as € R suchthata'(a1) = o'(a1) = 0 and
a'(a) # 0ifa € (a1, az). Then, foralla € (a1, as), the functions p, have the same
number of zeroes.

In(a) == [7(1 4 r?)Ne2tay? r dr governs the dynamics of the zeroes of
@, at infinity as follows. Let r(a) := max{r > 0 : ¢,(r) =0}

Lemma 7. Leta > 0 be such that, for ( = £1,lim,_,5 ¢(a—a)>0 7(a) = 0o. Then
there exists € > 0 such that, on (a — €,a) if( = —1,on(a,a +¢) if( = +1,

9(0) = — st Jo (LN €2 ol dr
dr

— Jny(a) < 0ifJy(a) #0
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Corollary 8. Leta be a critical point of cv. There exists € > 0, small enough, such that
the following properties hold.

(iy fJn(a) > 0andif, foranya € (a — €, a), all functions y, are unbounded and
have k zeroes in (0, +00), then g is bounded and has k zeroes, and for any
a € (a, a—+¢€), pq is unbounded and has either k or k + 1 zeroes in (0, +00).

(iy ifJn(a) < O0andif, foranya € (a — €, a), all functions y, are unbounded and
have k zeroes in (0, +00), then g is bounded and has either k or k — 1 zeroes,
and forany a € (a, a + €), @, has the same number of zeroes as ;.

Proposition 9. Let us define j(k) := Jn(a}, ) forany integer k > 2. Then, j(k) = 0
if k is odd, and j (k) > 0 if k even.

Proof.
1

i(k) = %k(kntl)/ Pu(s)® ds

—1

Now, when k is odd, P is also odd and so, j (k) = 0. On the contrary, Gaunt’s formula
shows that j(k) > Oif k is even ]
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A multiplicity result at level o = N + 2

Let u be a radial solution of the weighted Liouville-type equation in R? with
a = N + 2. We may reformulate this problem in terms of
f:=u—u% € DH?(R?) as a solution to

X 2f A 2 o
A —1)=01mIn R dr =
f+(1+|x|2)2(€ ) | : / rT =T
with p = 2(N + 2)

Lemma 10 (Kelvin's transformation). The function x +— f( #) is also a solution

Theorem 11. For any k > 2, there are two continuous half-branches, C,j andC, , of
solutions (4, f) bifurcating from the branch of trivial solutions at, and only at,

(ur = 2k(k + 1), 0), and solutions in C;- are such that + f(0) > 0

Branches are disjoint, unbounded and characterized by the number of zeroes. In C i, the
solutions have exactly k zeroes. If k is odd, the branch C,;F is the image of C ,f by the
Kelvin transform. If k is even, the half-branches C ,f are invariant under the Kelvin
transform. Finally, C ,f fork > 3 and C2_ are locally bounded in i
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Sketch of the proof

Step 1: branches of solutions

@_ There is local bifurcation from the trivial line {(u,0)} at the points
(ur :=2(Ng + 2),0), and there is no other bifurcation point in this
trivial branch

Q@ On C,f, the number of zeroes of the solutions is constant, namely

equal to k. Non-trivial branches with different k cannot intersect or
join two different points of bifurcation in the trivial branch

@ For any k > 2, the half-branches C;© are therefore unbounded and we

can distinguish them as follows: if (i, f) € C;7, resp. (u, f) € C; , then
f(0) > 0, resp. f(0) <0
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Step 2: Symmetry under Kelvin transform

Q_ If £ is odd, the solutions in the branches C,f have an odd number of
zeroes in (0, +o0) and so, they cannot be invariant under the Kelvin
transform, because they take values of different sign at 0 and near
+o00. Since ux = 2(Ny, + 2) is a simple bifurcation point, the only
possibility is that the branches C,f transform into each other through

the Kelvin transform. Otherwise, there would be at least four
half-branches bifurcating from (ux,0), which is impossible.

@_ If k is even, the solutions of C;- have an even number of zeroes. So,

they take values of the same sign at 0 and near +oc. If they were not
invariant under the Kelvin transform, we would find two new

branches, C*, bifurcating from (1, 0), which is again impossible.
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Step 3: Asymptotic behaviour of the branches

@_ Non trivial branches of radial solutions are contained in the region
{i > 8}, thatis N > 2, and there exists a unique a(/N) € R such that
a(a) > 2N forall a < a(N). For N > 2, since
N+2<2N <2(N+1),ifala) =N +2,then a > a(N). Hence
f(0) =u(0) —ux(0) > a(N) —un(0) with u = u,

@_ As a consequence, the branches C, are locally bounded for
1 € [8,+00) for any k > 2. By Step 2, C is also locally bounded for

1 € [8,+00). Since non trivial branches do not intersect, C;-, k > 3,
are all locally bounded for p € [8, +00)

Corollary 12. Forallk > 2, forall pn > pyp, = 2k(k + 1), there at least2(k — 2) + 2
distinct radial solutions, one of them being the zero solution.

Multiplicity results for the assigned Gauss curvature problem in R2 —p.33/4



Bifurcation diagrams

The bifurcation diagram obtained for f (left) is easily transformed into a
bifurcation diagram for the solutions of the weighted Liouville-type
equation in R? (right) with A\ = 27(N + 2) through the transformation

u = f + u}. Inthe case of equation the weighted Liouville-type equation
in R?, branches bifurcate from the set of trivial solutions

C := {(N, £ log(2(N +2))}, in the representation (N, a = u(0)).

§ VNN

Bifurcation diagram in the representation (N, f(0)) for f (left) and (N, a) for equation
the weighted Liouville-type equation in R? with A = 27 (N + 2) (right). Non trivial
branches bifurcate from N, = 4, 10, 18, 28,. ..

s

w

N

=

\

5 10 15 20 25 30
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The asymptote of C;__,

Based on numerical evidence, it is reasonable to conjecture that, in
contrast, the branch C,_, admits a vertical asymptote in the sense that as
s — +o00, then N converges to 2, which is the only admissible value. So
for (1(s), fs) € C5, fs should develop a concentration phenomenon at the
origin, and as s — +oo, we should have: a — 400, N — 2, and

a f|(;|>2)2 e?ls —~ 81 6,—(, weakly in the sense of measures

Multiplicity results for the assigned Gauss curvature problem in RQ —p.35/4



Non radially symmetric solutions

To any solution u # u% such that [.,(1+ |z|?)" e*“ dz = 2w (N + 2), we
can associate a punctured sphere of non radially symmetric solutions, u.
with e € %\ {N, S}, satisfying also [,,,(1 + |z]?)" e*"e dz = 27 (N + 2) for
alle € S?\ {N,S}. And so, for N > Ny, there are at least 2(k — 2) + 1

punctured spheres of non radially symmetric solutions at level
A =2m(N +2)
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4. More numerical observations and conjectures
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Curves a — a(a)

’% ‘I‘O ‘1‘5

~40 20

Curves a +— «(a) for various values of N: N = 25 (left) and N = 1, 2, 3,...12 (right).
The point (a’y, N + 2) corresponding to the explicit solution is represented by a gray dot
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1%

.
N\

5

Curves a — «aa) for N = Ny, k =2,3,4,5 (left) anda — a(a) — 2N for N =1,
3,95,...19 (right). The function N — o — 2N is monotone decreasing

As a function of N > 0, we observe that ay = inf,cr a(a) < 2N if and
only if N > Ny, where N, is numerically found of the order of 1.27 4+ 0.02
Proposition 13. There exists Ny € (1, 2) such that, for all N € (N, 00),

ay = minger a(a) < 2N, andforall o € (an, 2N), there exists at least two
solutions

NN N
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Local minima as a function of vV

0.32
0.31

2.5
\\\\\\\\\ 0.29
0.28

5 2

0.27
0 0.26

5 T\ 1 ‘
-1
0.25

N W o O

12.5 15 17.5 20

—

Points of local minimum (left) and corresponding critical values (divided by 4N, right) of c,

as a function of N.

On the basis of our numerical results, we may also conjecture that for

No < N <10 and a € (ay,2N), there exist exactly two radially symmetric
solutions of the weighted Liouville-type equation in R2. This conjecture is
supported by the bifurcation analysis concerning the specific value
a=N+2¢€ (an,2N) for N > 2and N # 4. Note that for N = 4,

ay = N + 2 should hold. As N increases, the curves a — «(a) appear to
have more and more critical points:the number of solutions increases
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The function a — Jy(a)

0.
3.5}
0. N
0 2.5
2,
1.5}
~10 —5 ‘ 0 1
-0.2¢ 0.5
-0.47 10 20 30 40 50

The functiona — Jy(a) for N = 1,3, 5,...11 (left) and the curve N +— ¢(N), where,
at N fixed, c(IN) is the first positive zero of a — J (a); the dotted line corresponds to
N +— % log(2(N + 2)). These two curves are tangentat N = 10 = N3 and
N = 28 = N5 (right)

Conjectures

Q_ There exists a function N +— ¢(IN') on (0, +00) such that Jx(a) = 0 if and only
ifa = c(N) and Jy(a) > 0ifandonly ifa < c(N).

Q  rorany N > 2,a%y < c¢(N), with equality if and only if N = Noj 41,1 > 1
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These conjectures are observed numerically with a very high accuracy for
k=3,57,9 11

0.3
0.2¢

0.1}

20 40 60 80 100 120

The curve N — Jn(a’y) is nonnegative and achieves its minimum value, 0, (resp. local
maxima) for N = Nojr 1,1 > 1 (resp. N = No;)

j(k) == Jn(ay, ) = 0if kis odd and j(k) > 0 if k is even
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To investigate whether a critical point of « is a local minimum, we may
look at the functional

—+ o0
Kn(a) := / (14 r2)N e a (g + 202) rdr
0
where 1, solves the ordinary differential equation

¢g+w7é—|—2(1+r2)N62ua (g +2902) =0, re€(0,+00)

$a(0) =0, 1h,(0) =0

We have indeed o' (a) = 2 K (a). No simple criterion for the positivity of
K (a) is known, but our numerical results at level « = N + 2 combine
very well with our main results
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The curve N — K (a%y) changes sign, but is always nonnegative when o' (N) = 0.
When N = Noj, 1 > 1, Kn(a’y) is positive
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5. Conclusion
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Concluding remarks

\

5 10 15 20 25 30

@ A set of solutions with a rich structure, by far richer than for N =0

@ Even at level A = 27 (N + 2), bifurcation diagram is not completely
understood

@ For X\ # 27 (N + 2), multiplicity is essentially an open question
@_ There are plenty of non radially symmetric solutions: classification ?
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