Hypocoercivity in kinetic equations

Jean Dolbeault

 $http://www.ceremade.dauphine.fr/\sim dolbeaul$

Ceremade, Université Paris-Dauphine

July 7, 2022

Workshop on Frontiers in Nonlocal Nonlinear PDEs Anacapri 5-8 July, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Outline

• Introduction to hypocoercivity

- \rhd Decay and convergence rates based on $\varphi\text{-entropies}$
- \rhd H^1 Hypocoercivity, entropy methods and carré du champ

• L² Hypocoercivity

- \triangleright The diffusion limit
- \triangleright Mode-by-mode analysis in Fourier variables

• Functional inequalities and applications

- \vartriangleright Towards a systematic classification
- \rhd Some examples and extensions

イロト イポト イヨト イヨト

Introduction to hypocoercivity

We are interested in *kinetic equations* acting on a distribution function $f(t, x, v) \ge 0$ with time t, position x and velocity v

A typical example: Vlasov-Fokker-Planck equation with external potential ψ

$$\partial_t f + \underbrace{v \cdot \nabla_x f - \nabla_x \psi \cdot \nabla_v f}_{\mathsf{T}f} = \underbrace{\Delta_v f + \nabla_v (v f)}_{\mathsf{L}f}$$

 \triangleright *Homogeneous case:* no dependence in *x*: Fokker-Planck equation, exponential rate of convergence to a stationary solution

$$\mathscr{M}(v) = \frac{e^{-\frac{1}{2}|v|^2}}{(2\pi)^{d/2}}$$

 \triangleright **Inhomogeneous case:** rate of convergence to a stationary solution ? rate of decay if there is no stationary solution ?

Fokker-Planck equation and φ -entropies

The Fokker-Planck equation

$$\partial_t f = \Delta_v f + \nabla_v (v f)$$

acts on a probability distribution function $f(t, v) \ge 0$ which depends here on time t and velocity v (but not on x)

$$\mathscr{M}(v) = \frac{e^{-\frac{1}{2}|v|^2}}{(2\pi)^{d/2}}$$

Use φ -entropies... cf. Anton's lecture. With $p \in [1, 2]$, for any $t \ge 0$,

$$\|f(t,v) - \mathscr{M}(v)\|_{\mathrm{L}^p(\mathbb{R}^d,\mathscr{M}^{-1}dv)}^2 \le \mathscr{C}_0 e^{-2t}$$

 \blacksquare Beckner's inequalities with Gaussian measure $d\mu = \mathscr{M}(v) \, dv$

$$\|h\|_{\mathcal{L}^{2}(\mathbb{R}^{d},d\mu)}^{2} - \|h\|_{\mathcal{L}^{q}(\mathbb{R}^{d},d\mu)}^{2} \leq (2-q) \|\nabla h\|_{\mathcal{L}^{2}(\mathbb{R}^{d},d\mu)}^{2}$$

applied to $h = (f/\mathscr{M})^p$, $q = 2/p \in (1, 2]$ • q = 2: Gaussian logarithmic Sobolev inequality (Gross, 1975) $\int_{\mathbb{R}^d} h^2 \log \left(h^2 / \|h\|_{\mathrm{L}^q(\mathbb{R}^d, d\mu)}^2 \right) d\mu \leq \|\nabla h\|_{\mathrm{L}^2(\mathbb{R}^d, d\mu)}^2$

J. Dolbeault Hypocoercivity in kinetic equations

Vlasov-Fokker-Planck equation: methods

Vlasov-Fokker-Planck equation with external potential ψ

$$\partial_t f + v \cdot \nabla_x f - \nabla_x \psi \cdot \nabla_v f = \Delta_v f + \nabla_v (v f)$$

 \rhd Harmonic potential case: $\psi(x) = \frac{\kappa}{2} \, |x|^2$

Decomposition on Hermite functions and spectral results
Green's function as in Kolmogorov's computation (Kolmogorov, 1934)

$$G(t,x,v) = \frac{\exp\left(-\frac{\gamma(t)|x|^2 + \alpha(t)|v|^2 + \beta(t)|x \cdot v}{4|\alpha(t)|\gamma(t) - \beta^2(t)}\right)}{(2\pi)^d \left(4\alpha(t)\gamma(t) - \beta^2(t)\right)^{d/2}}$$

• Hypoelliptic methods (Hörmander, 1965)

• H^1 hypocoercivity (Villani, 2001 & 2005)

O L^2 hypocoercivity (Mouhot, Neumann, 2006), (Hérau, 2006), (JD, Mouhot, Schmeiser 2009 & 2015)

• H^{-1} hypocoercivity (Armstrong, Mourrat, 2019), (Brigati, 2021), (Cao, Lu, Wang, 2020), (Albritton-Armstrong-Mourrat-Novack, 2021)

Introduction to hypocoercivity L² Hypocoercivity Functional inequalities and applications

Introduction H^I hypocoercivity

A toy model

$$\frac{du}{dt} = (\mathsf{L} - \mathsf{T}) \, u \,, \quad \mathsf{L} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \,, \quad \mathsf{T} = \begin{pmatrix} 0 & -k \\ k & 0 \end{pmatrix} \,, \quad k \neq 0$$

$$u = (u_1, u_2)$$
 and $|u|^2 = u_1^2 + u_2^2$

Non-monotone decay, a well known picture: see for instance (Filbet, Mouhot, Pareschi, 2006)

- H-theorem: $\frac{d}{dt}|u|^2 = -2u_2^2$
- macroscopic limit: $\frac{du_1}{dt} = -k^2 u_1$
- generalized entropy: $H(u) = |u|^2 \frac{\delta k}{1+k^2} u_1 u_2$

$$\begin{aligned} \frac{d\mathsf{H}}{dt} &= -\left(2 - \frac{\delta k^2}{1 + k^2}\right) u_2^2 - \frac{\delta k^2}{1 + k^2} u_1^2 + \frac{\delta k}{1 + k^2} u_1 u_2 \\ &\leq -(2 - \delta) u_2^2 - \frac{\delta \Lambda}{1 + \Lambda} u_1^2 + \frac{\delta}{2} u_1 u_2 \end{aligned}$$

J. Dolbeault

Hypocoercivity in kinetic equations

イロト イヨト イヨト ・ヨ

 $\begin{array}{c} \textbf{Introduction to hypocoercivity}\\ \text{L}^2 \text{ Hypocoercivity}\\ \textbf{unctional inequalities and applications} \end{array}$

Introduction H¹ hypocoercivity

Plots for the toy problem

J. Dolbeault

Hypocoercivity in kinetic equations

φ -entropies and hypocoercivity (H¹ framework)

 \rhd Adapt $\varphi\text{-entropies}$ to kinetic equations

 \triangleright Villani's strategy: derive H¹ estimates (using a twisted Fisher information) and then use standard interpolation inequalities to establish decay rates for the entropy

・ロト ・四ト ・ヨト ・

The kinetic Fokker-Planck equation, or Vlasov-Fokker-Planck equation

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f - \nabla_x \psi \cdot \nabla_v f = \Delta_v f + \nabla_v \cdot (v f)$$

with $\psi(x)=|x|^2/2$ and $\|f\|_{\mathrm{L}^1(\mathbb{R}^d\times\mathbb{R}^d)}=1$ has a unique nonnegative stationary solution

$$\mathfrak{M}(x,v) = (2\pi)^{-d} e^{-\frac{1}{2}(|x|^2 + |v|^2)}$$

and $g = f/\mathfrak{M}$ solves the kinetic Ornstein-Uhlenbeck equation

$$rac{\partial g}{\partial t} + \mathsf{T}g = \mathsf{L}g$$

with transport operator T and Ornstein-Uhlenbeck operator L

$$\mathsf{T}g := v \cdot \nabla_x g - x \cdot \nabla_v g$$
 and $\mathsf{L}g := \Delta_v g - v \cdot \nabla_v g$

The function $h = g^{p/2}$ solves $\frac{\partial h}{\partial t} + \mathsf{T}h = \mathsf{L}h + \frac{2-p}{p} \frac{|\nabla_v h|^2}{h}$

・ロト ・ 日本・ ・ 日本・

Sharp rates for the kinetic Fokker-Planck equation

Let
$$\psi(x) = |x|^2/2$$
, $d\mu := \mathfrak{M} dx dv$, $\mathcal{E}[g] := \iint_{\mathbb{R}^d \times \mathbb{R}^d} \varphi_p(g) d\mu$

Proposition

Let $p \in [1,2]$ and consider a nonnegative solution of the kinetic Fokker-Planck equation. There is a constant C > 0 such that

$$\mathcal{E}[g(t,\cdot,\cdot)] \leq \mathcal{C} \, e^{-t} \quad \forall \, t \geq 0$$

and the rate e^{-t} is sharp as $t \to +\infty$

(Villani), (Arnold, Erb): a twisted Fisher information functional

$$\mathcal{J}_{\lambda}[h] = (1-\lambda) \int_{\mathbb{R}^d} |\nabla_v h|^2 \, d\mu + (1-\lambda) \int_{\mathbb{R}^d} |\nabla_x h|^2 \, d\mu + \lambda \int_{\mathbb{R}^d} |\nabla_x h + \nabla_v h|^2 \, d\mu$$

With $\lambda = 1/2$, we find $\frac{d}{dt} \mathcal{J}_{1/2}[h(t, \cdot)] \leq -\mathcal{J}_{1/2}[h(t, \cdot)]$

・ロト ・四ト ・ヨト ・ヨ

 $\begin{array}{c} {\rm Introduction \ to \ hypocoercivity} \\ {\rm L}^2 \ {\rm Hypocoercivity} \\ {\rm Functional \ inequalities \ and \ applications} \end{array}$

 $\begin{array}{c} {\rm Introduction} \\ {\rm H}^{\rm I} \ {\rm hypocoercivity} \end{array} \end{array}$

Improved rates (in the large entropy regime)

Rewrite the decay of the Fisher information functional as

$$-\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^d} X^{\perp} \cdot \mathfrak{M}_0 X \, d\mu = \int_{\mathbb{R}^d} X^{\perp} \cdot \mathfrak{M}_1 X \, d\mu + \int_{\mathbb{R}^d} Y^{\perp} \cdot \mathfrak{M}_2 Y \, d\mu$$

where $X = (\nabla_v h, \nabla_x h)$, $Y = (\mathsf{H}_{vv}, \mathsf{H}_{xv}, Fvv, Fxv)$

$$\mathfrak{M}_{0} = \begin{pmatrix} 1 & \lambda \\ \lambda & \nu \end{pmatrix} \otimes \operatorname{Id}_{\mathbb{R}^{d}}, \quad \mathfrak{M}_{1} = \begin{pmatrix} 1-\lambda & \frac{1+\lambda-\nu}{2} \\ \frac{1+\lambda-\nu}{2} & \lambda \end{pmatrix} \otimes \operatorname{Id}_{\mathbb{R}^{d}}$$

$$\mathfrak{M}_{2} = \begin{pmatrix} 1 & \lambda & -\frac{\kappa}{2} & -\frac{\kappa\lambda}{2} \\ \lambda & \nu & -\frac{\kappa\lambda}{2} & -\frac{\kappa\nu}{2} \\ -\frac{\kappa}{2} & -\frac{\kappa\lambda}{2} & 2\kappa & 2\kappa\lambda \\ -\frac{\kappa\lambda}{2} & -\frac{\kappa\nu}{2} & 2\kappa\lambda & 2\kappa\nu \end{pmatrix} \otimes \operatorname{Id}_{\mathbb{R}^{d} \times \mathbb{R}^{d}}$$

With constant coefficients

$$\lambda_{\star}(\lambda,\nu) = \max\left\{\min_{X} \frac{X^{\perp} \cdot \mathfrak{M}_{1} X}{X^{\perp} \cdot \mathfrak{M}_{0} X} : (\lambda,\nu) \in \mathbb{R}^{2} \text{ s.t. } \mathfrak{M}_{2} \ge 0\right\}$$

J. Dolbeault Hypocoercivity in kinetic equations

For $(\lambda, \nu) = (1/2)$, $\lambda_{\star} = 1/2$ and the eigenvalues of $\mathfrak{M}_2(\frac{1}{2}, 1)$ are given as a function of $\kappa = 8(2-p)/p \in [0, 8]$ are all nonnegative

J. Dolbeault Hypocoercivity in kinetic equations

An improvement based on an adapted

(Arnold, JD)... Improvement for $\varphi\text{-entropies:}$

$$\mathfrak{I} \ge \Phi(\mathcal{E}) \sim \mathcal{E} + \kappa \, \mathcal{E}^2 \quad \text{as} \quad \mathcal{E} \to 0_+$$

with $\Phi(0) = 0$, $\Phi'(0) = 1$, $\Phi'' > 0$. Kinetic analog: (JD, Li, 2018)

Theorem

Let $p \in (1,2)$ and h be a solution of the kinetic Ornstein-Uhlenbeck equation. Then there exists a function $\lambda : \mathbb{R}^+ \to [1/2, 1)$ such that $\lambda(0) = \lim_{t \to +\infty} \lambda(t) = 1/2$ and a function $\rho > 1$ s.t.

$$\frac{d}{dt}\mathcal{J}_{\lambda(t)}[h(t,\cdot)] \le -\rho(t)\,\mathcal{J}_{\lambda(t)}[h(t,\cdot)]$$

As a consequence, for any $t \ge 0$ we have the global estimate

$$\mathcal{J}_{\lambda(t)}[h(t,\cdot)] \le \mathcal{J}_{1/2}[h_0] \exp\left(-\int_0^t \rho(s) \, ds\right)$$

 L^2 Hypocoercivity

- \rhd Abstract statement, diffusion limit
- \rhd Mode-by-mode analysis in Fourier variables
- \rhd Refined decay rates in the whole space

Collaboration with... C. Mouhot and C. Schmeiser E. Bouin, S. Mischler, C. Mouhot and C. Schmeiser A. Arnold, C. Schmeiser, and T. Wöhrer

An abstract evolution equation

Let us consider the equation

 $\frac{dF}{dt} + \mathsf{T}F = \mathsf{L}F$

In the framework of kinetic equations, T and L are respectively the transport and the collision operators

We assume that T and L are respectively anti-Hermitian and Hermitian operators defined on the complex Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)^*$ denotes the adjoint with respect to $\langle \cdot, \cdot \rangle$

 Π is the orthogonal projection onto the null space of L

The estimate

$$\frac{1}{2} \frac{d}{dt} \|F\|^2 = \langle \mathsf{L}F, F \rangle \le -\lambda_m \, \|(1 - \Pi)F\|^2$$

is not enough to conclude that $||F(t, \cdot)||^2$ decays exponentially \Leftarrow *microscopic coercivity*

Introduction to hypocoercivity L^2 Hypocoercivity Functional inequalities and applications

• Formal macroscopic / diffusion limit

 $F = F(t, x, v), \mathsf{T} = v \cdot \nabla_x, \mathsf{L}$ good collision operator. Scaled evolution equation

$$\varepsilon \, \frac{dF}{dt} + \mathsf{T}F = \frac{1}{\varepsilon} \, \mathsf{L}F$$

on the Hilbert space \mathcal{H} . $F_{\varepsilon} = F_0 + \varepsilon F_1 + \varepsilon^2 F_2 + \mathcal{O}(\varepsilon^3)$ as $\varepsilon \to 0_+$

$$\begin{split} \varepsilon^{-1} : & \mathsf{L} F_0 = 0 \,, \\ \varepsilon^0 : & \mathsf{T} F_0 = \mathsf{L} F_1 \,, \\ \varepsilon^1 : & \frac{dF_0}{dt} + \mathsf{T} F_1 = \mathsf{L} F_2 \end{split}$$

The first equation reads as $u = F_0 = \Pi F_0$ The second equation is simply solved by $F_1 = -(\mathsf{T}\Pi) F_0$ After projection, the $O(\varepsilon)$ equation is $\frac{d}{dt}(\Pi F_0) - \Pi \mathsf{T}(\mathsf{T}\Pi) F_0 = \Pi \mathsf{L} F_2 = 0$

$$\partial_t u + (\mathsf{T}\Pi)^* (\mathsf{T}\Pi) u = 0$$

is such that $\frac{d}{dt} \|u\|^2 = -2 \|(\mathsf{TII}) u\|^2 \le -2\lambda_M \|u\|^2 \le Macroscopic \ coercivity$

Introduction to hypocoercivity L² Hypocoercivity Functional inequalities and applications

An abstract hypocoercivity result Fourier variables and mode-by-mode analysis

The macro part and the Poincaré inequality

$$\begin{split} & \succ \text{ Free transport operator: } \mathsf{T} F = v \cdot \nabla_x F \\ & \text{ If } F_0(x,v) = u(x) \, \mathfrak{M}(v) \text{ with } \mathfrak{M}(v) = (2\pi)^{-d/2} \, e^{-|v|^2/2} \text{ then} \\ & (\mathsf{T}\Pi)^* \, (\mathsf{T}\Pi) F_0 = (-\Delta_x u) \, \mathfrak{M} \\ & \text{ and we obtain the heat equation } (e.g. \text{ on } \mathbb{T}^d) \end{split}$$

 $\partial_t u = \Delta u$

 \triangleright With an external potential ψ so that $\mathsf{T}F = v \cdot \nabla_x F - \nabla_x \psi \cdot \nabla_v F$ we obtain the Fokker-Planck equation

 $\partial_t u = \Delta \, u + \nabla \cdot (u \, \nabla \psi)$

The operator $A := (1 + (T\Pi)^* T\Pi)^{-1} (T\Pi)^*$ is such that

$$\langle \mathsf{AT}\Pi F, F \rangle \ge \frac{\lambda_M}{1 + \lambda_M} \|\Pi F\|^2$$

if the Poincaré inequality $\int |\nabla u|^2 e^{-\psi} dx \ge \lambda_M \int |u - \bar{u}|^2 e^{-\psi} dx$ holds

The assumptions in the compact case

 λ_m , λ_M , and C_M are positive constants such that, for any $F \in \mathcal{H}$ \triangleright microscopic coercivity:

$$-\langle \mathsf{L}F, F \rangle \ge \lambda_m \, \| (1 - \Pi)F \|^2 \tag{H1}$$

 \triangleright macroscopic coercivity:

$$\|\mathsf{T}\Pi F\|^2 \ge \lambda_M \, \|\Pi F\|^2 \tag{H2}$$

 \triangleright parabolic macroscopic dynamics:

$$\Pi \mathsf{T} \Pi F = 0 \tag{H3}$$

 \triangleright bounded auxiliary operators:

$$\|\mathsf{A}\mathsf{T}(1-\Pi)F\| + \|\mathsf{A}\mathsf{L}F\| \le C_M \|(1-\Pi)F\|$$
(H4)

Introduction to hypocoercivity L^2 Hypocoercivity Functional inequalities and applications

An abstract hypocoercivity result Fourier variables and mode-by-mode analysis

Equivalence and entropy decay

Choice: the limit as $t \to +\infty$ of $F(t, \cdot)$ is zero The L² entropy / Lyapunov functional is defined by $H[F] := \frac{1}{2} ||F||^2 + \delta \operatorname{Re}\langle AF, F \rangle$ \triangleright norm equivalence of H[F] and $||F||^2$ $\frac{2-\delta}{4} ||F||^2 \leq H[F] \leq \frac{2+\delta}{4} ||F||^2$ Entropy decay: $\frac{d}{dt}H[F] = -D[F]$ \triangleright entropy decay rate: for any $\delta > 0$ small enough and $\lambda = \lambda(\delta)$ $D[F] > \lambda H[F]$

Theorem

Under (H1)–(H4), for any $t \ge 0$, there is some some $\delta > 0$ such that

$$\begin{split} \mathsf{H}[F(t,\cdot)] &\leq \mathsf{H}[F_0] \, e^{-\lambda \, t} \\ \|F(t,\cdot)\|^2 &\leq \mathbb{C} \, \|F_0\|^2 \, e^{-\lambda \, t} \quad \text{with} \quad \mathbb{C} = \frac{2+\delta}{2-\delta} \end{split}$$

• Basic example 1: with confinement

Vlasov-Fokker-Planck equation with harmonic potential

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f - \nabla_x \psi \cdot \nabla_v f = \Delta_v f + \nabla_v \cdot (v f)$$

 \vartriangleright microscopic coercivity: Gaussian Poincaré inequality in v

$$\int_{\mathbb{R}^d} |F(v) - \rho \,\mathcal{M}(v)|^2 \,\frac{dv}{\mathcal{M}(v)} \le \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |\nabla_v F(v)|^2 \,\frac{dv}{\mathcal{M}(v)} \qquad (\mathrm{H1})$$

with $\rho = \int_{\mathbb{R}^d} F(v) dv$ \triangleright macroscopic coercivity: Gaussian Poincaré inequality in x

$$\int_{\mathbb{R}^d} \left| \rho(x) - \frac{M \, e^{-|x|^2/2}}{(2\pi)^{d/2}} \right|^2 \, e^{\frac{|x|^2}{2}} \, dx \le \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |\nabla_x \rho(x)|^2 \, e^{\frac{|x|^2}{2}} \, dx \quad (\mathrm{H2})$$

 \triangleright parabolic macroscopic dynamics (H3) and bounded auxiliary operators (H4) are consequences of elliptic estimates

• Basic example 2: without confinement

We consider the Cauchy problem

$$\partial_t f + v \cdot \nabla_x f = \mathsf{L} f \,, \quad f(0, x, v) = f_0(x, v)$$

 L is the Fokker-Planck operator L_1 or the linear BGK operator L_2

$$\mathsf{L}_1 f := \Delta_v f + \nabla_v \cdot (v f)$$
 and $\mathsf{L}_2 f := \rho_f \mathscr{M} - f$

 $\mathscr{M}(v) = \frac{e^{-\frac{1}{2}|v|^2}}{(2\pi)^{d/2}}$ is the normalized Gaussian function $\rho_f := \int_{\mathbb{R}^d} f \, dv$ is the spatial density

$$d\gamma := \gamma(v) \, dv$$
 where $\gamma := \frac{1}{\mathscr{M}}$

$$||f||^2_{\mathcal{L}^2(dx\,d\gamma)} := \iint_{\mathbb{R}^d \times \mathbb{R}^d} |f(x,v)|^2\,dx\,d\gamma$$

J. Dolbeault Hypocoercivity in kinetic equations

イロト イロト イヨト 一日

• Fourier variables: mode-by-mode hypocoercivity

Let us consider the Fourier transform in x, denote by $\xi \in \mathbb{R}^d$ the Fourier variable, so that $F = \hat{f}$ solves

$$\partial_t F + \mathsf{T} F = \mathsf{L} F \,, \quad F(0,\xi,v) = \widehat{f}_0(\xi,v) \,, \quad \mathsf{T} F = i \, (v\cdot\xi) F$$

Goal: apply the abstract method with ξ considered as a parameter

$$\mathcal{H} = \mathcal{L}^2 \left(d\gamma \right) \,, \quad \|F\|^2 = \int_{\mathbb{R}^d} |F|^2 \, d\gamma \,, \quad \Pi F = \mathscr{M} \, \int_{\mathbb{R}^d} F \, dv = \mathscr{M} \, \rho_F$$

The operator ${\sf A}$ is now defined as

$$(\mathsf{A}F)(v) = \frac{-i\,\xi}{1+|\xi|^2} \cdot \int_{\mathbb{R}^d} w\,F(w)\,dw\,\mathscr{M}(v)$$

and, with $X := \|(1 - \Pi)F\|$ and $Y := \|\Pi F\|$, we have that

$$\begin{split} |\operatorname{Re}\langle \mathsf{A}F,F\rangle| &\leq \frac{|\xi|}{1+|\xi|^2} \, X \, Y \,, \quad \|F\|^2 = X^2 + Y^2 \\ \frac{1}{2} \left(1 - \frac{\delta \, |\xi|}{1+|\xi|^2}\right) (X^2 + Y^2) &\leq \mathsf{H}[F] \leq \frac{1}{2} \left(1 + \frac{\delta \, |\xi|}{1+|\xi|^2}\right) (X^2 + Y^2) \\ &= 0 \quad \text{if } X = 0 \quad \text{if } X$$

Introduction to hypocoercivity L^2 Hypocoercivity Functional inequalities and applications

An abstract hypocoercivity result Fourier variables and mode-by-mode analysis

Entropy – entropy production inequality

$$-\langle \mathsf{L}F, F \rangle + \delta \langle \mathsf{AT}\Pi F, F \rangle \ge X^2 + \frac{\delta |\xi|^2}{1 + |\xi|^2} Y^2$$

$$\begin{split} \mathsf{D}[F] &= -\langle \mathsf{L}F, F \rangle + \delta \, \langle \mathsf{AT}\Pi F, F \rangle + \delta \, (\dots) \\ &\geq (\lambda_m - \delta) \, X^2 + \frac{\delta \, \lambda_M}{1 + \lambda_M} \, Y^2 - \, \delta \, C_M \, X \, Y \\ \text{with } \lambda_m &= 1 \,, \quad \Lambda_M = |\xi|^2 =: s^2 \,, \quad C_M = \frac{s \left(1 + \sqrt{3} \, s\right)}{1 + s^2} \end{split}$$

$$\begin{split} \mathsf{D}[F] &-\lambda\,\mathsf{H}[F] \\ &\geq \left(1 - \frac{\delta\,s^2}{1 + s^2} - \frac{\lambda}{2}\right)X^2 - \frac{\delta\,s}{1 + s^2}\left(1 + \sqrt{3}\,s + \lambda\right)X\,Y + \left(\frac{\delta\,s^2}{1 + s^2} - \frac{\lambda}{2}\right)Y^2 \end{split}$$

is (for any $s = |\xi| > 0$) a nonnegative quadratic form of X and Y iff...

Introduction to hypocoercivity L² Hypocoercivity Functional inequalities and applications

An abstract hypocoercivity result Fourier variables and mode-by-mode analysis

Figure: Horizontal axis: $\delta/2$, vertical axis: λ . Admissible region: grey triangle. Negative discriminant: dark grey area, shown here for s = 5

æ

Introduction to hypocoercivity L² Hypocoercivity Functional inequalities and applications

An abstract hypocoercivity result Fourier variables and mode-by-mode analysis

Results (whole space, no external potential)

On the whole Euclidean space, we can define the entropy

$$\mathsf{H}[f] := \frac{1}{2} \, \|f\|_{\mathrm{L}^2(dx \, d\gamma)}^2 + \delta \, \langle \mathsf{A}f, f \rangle_{dx \, d\gamma}$$

Replacing the macroscopic coercivity condition by Nash's inequality

$$\|u\|_{\mathrm{L}^{2}(dx)}^{2} \leq \mathcal{C}_{\mathrm{Nash}} \|u\|_{\mathrm{L}^{1}(dx)}^{\frac{4}{d+2}} \|\nabla u\|_{\mathrm{L}^{2}(dx)}^{\frac{2d}{d+2}}$$

proves that

$$\mathsf{H}[f] \le C \left(\mathsf{H}[f_0] + \|f_0\|_{\mathrm{L}^1(dx \, dv)}^2 \right) (1+t)^{-\frac{d}{2}}$$

(Bouin, JD, Mischler, Mouhot, Schmeiser)

Theorem

There exists a constant C > 0 such that, for any $t \ge 0$

$$\|f(t,\cdot,\cdot)\|_{\mathrm{L}^2(dx\,d\gamma)}^2 \le C\left(\|f_0\|_{\mathrm{L}^2(dx\,d\gamma)}^2 + \|f_0\|_{\mathrm{L}^2(d\gamma;\,\mathrm{L}^1(dx))}^2\right)(1+t)^{-\frac{d}{2}}$$

Comments

 \rhd Use of the enlargement of the space method or factorization method of (Gualdani, Mischler, Mouhot)

 \rhd Not limited to Maxwellian local equilibria

▷ Can be compared with spectral methods based on *Lyapunov matrix inequalities* and *twisted Euclidean norms* (Arnold, JD, Schmeiser, Wöhrer, 2021)

▷ Sharper but in most cases still suboptimal estimates can be given with A defined as a pseudo-differential operator (Arnold, JD, Schmeiser, Wöhrer, 2021)

(日)

An attempt of classification More examples Special macroscopic modes

Functional inequalities and hypocoercivity

In collaboration with Lanoir Addala, Emeric Bouin, Kleber Carrapatoso, Frédéric Hérau, Laurent Lafleche, Xingyu Li, Stéphane Mischler, Clément Mouhot, Christian Schmeiser, Lazhar Tayeb

 $\begin{array}{c} {\rm Introduction \ to \ hypocoercivity} \\ {\rm L}^2 \ {\rm Hypocoercivity} \\ {\rm Functional \ inequalities \ and \ applications} \end{array}$

An attempt of classification More examples Special macroscopic modes

The global picture: from diffusive to kinetic

• Depending on the local equilibria and on the external potential (H1) and (H2) (which are Poincaré type inequalities) can be replaced by other functional inequalities:

 \triangleright microscopic coercivity (H1)

$$-\langle \mathsf{L}F, F \rangle \ge \lambda_m \, \| (1 - \Pi)F \|^2$$

 \implies weak Poincaré inequalities or Hardy-Poincaré inequalities

 \triangleright macroscopic coercivity (H2)

 $\|\mathsf{T}\Pi F\|^2 \ge \lambda_M \, \|\Pi F\|^2$

 \implies Nash inequality, weighted Nash or Caffarelli-Kohn-Nirenberg inequalities

• This can be done at the level of the *diffusion equation* (homogeneous case) or at the level of the *kinetic equation* (non-homogeneous case)

Introduction to hypocoercivity Functional inequalities and applications An attempt of classification

Diffusion (Fokker-Planck) equations

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0, 1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$
Inequality	Nash	Caffarelli-Kohn -Nirenberg	Weak Poincaré or Weighted Poincaré	Poincaré
Asymptotic behavior	$t^{-d/2}$ decay	$t^{-(d-\gamma)/2}$ decay	$t^{-\mu}$ or $t^{-\frac{k}{2(1-\alpha)}}$ convergence	$e^{-\lambda t}$ convergence

Table 1: $\partial_t u = \Delta u + \nabla \cdot (u \nabla V)$

イロト イポト イヨト イヨト

臣

 $\begin{array}{c} {\rm Introduction \ to \ hypocoercivity} \\ {\rm L}^2 \ {\rm Hypocoercivity} \\ {\rm Functional \ inequalities \ and \ applications} \end{array}$

An attempt of classification More examples Special macroscopic modes

• Kinetic Fokker-Planck equations

 $\mathbf{B}=\operatorname{Bouin},\,\mathbf{L}=\operatorname{Lafleche},\,\mathbf{M}=\operatorname{Mouhot},\,\mathbf{MM}=\operatorname{Mischler},\,\operatorname{Mouhot}$
S $=\operatorname{Schmeiser}$

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0, 1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$, or \mathbb{T}^d Macro Poincaré
Micro Poincaré $F(v)=e^{-\langle v\rangle^{\beta}},\beta\geq 1$	BDMMS: $t^{-d/2}$ decay	BDS: $t^{-(d-\gamma)/2}$ decay	Cao: e^{-t^b} , $b < 1, \beta = 2$ convergence	DMS, Mischler- Mouhot $e^{-\lambda t}$ convergence
$F(v) = e^{-\langle v \rangle^{\beta}},$ $\beta \in (0, 1)$	BDLS: $t^{-\zeta}$, $\zeta = \min\left\{\frac{d}{2}, \frac{k}{\beta}\right\}$ decay			
$F(v) = \langle v \rangle^{-d-\beta}$	BDLS, fractional			

Table 1: $\partial_t f + v \cdot \nabla_x f = F \nabla_v (F^{-1} \nabla_v f)$. Notation: $\langle v \rangle = \sqrt{1 + |v|^2}$

・ロト ・四ト ・ヨト ・ヨー

Two additional examples

- \rhd Linearized Vlasov-Poisson-Fokker-Planck system
- \rhd Fractional diffusion limits and hypocoercivity

• Linearized Vlasov-Poisson-Fokker-Planck system

The $\mathit{Vlasov-Poisson-Fokker-Planck system}$ in presence of an external potential ψ is

$$\partial_t f + v \cdot \nabla_x f - (\nabla_x \psi + \nabla_x \phi) \cdot \nabla_v f = \Delta_v f + \nabla_v \cdot (v f)$$
$$-\Delta_x \phi = \rho_f = \int_{\mathbb{R}^d} f \, dv$$
(VPFP)

Linearized problem around f_{\star} : $f = f_{\star} (1 + \eta h), \iint_{\mathbb{R}^d \times \mathbb{R}^d} h f_{\star} dx dv = 0$

 $\begin{aligned} \partial_t h + v \cdot \nabla_x h - (\nabla_x \psi + \nabla_x \phi_\star) \cdot \nabla_v h + v \cdot \nabla_x \psi_h - \Delta_v h + v \cdot \nabla_v h &= \eta \, \nabla_x \psi_h \cdot \nabla_v h \\ - \Delta_x \psi_h &= \int_{\mathbb{R}^d} h \, f_\star \, dv \end{aligned}$

Drop the $O(\eta)$ term : linearized Vlasov-Poisson-Fokker-Planck / Ornstein-Uhlenbeck system

$$\partial_t h + v \cdot \nabla_x h - (\nabla_x \psi + \nabla_x \phi_\star) \cdot \nabla_v h + v \cdot \nabla_x \psi_h - \Delta_v h + v \cdot \nabla_v h = 0$$
$$-\Delta_x \psi_h = \int_{\mathbb{R}^d} h f_\star dv \,, \quad \iint_{\mathbb{R}^d \times \mathbb{R}^d} h f_\star dx dv = 0$$

J. Dolbeault

Hypocoercivity in kinetic equations

Hypocoercivity

Let us define the norm

$$\|h\|^2 := \iint_{\mathbb{R}^d \times \mathbb{R}^d} h^2 f_\star \, dx \, dv + \int_{\mathbb{R}^d} |\nabla_x \psi_h|^2 \, dx$$

(Addala, JD, Li, Tayeb)

Theorem

Let us assume that $d \ge 1$, $\psi(x) = |x|^{\alpha}$ for some $\alpha > 1$ and M > 0. Then there exist two positive constants \mathbb{C} and λ such that any solution h of (VPFPlin) with an initial datum h_0 of zero average with $\|h_0\|^2 < \infty$ is such that

$$\|h(t,\cdot,\cdot)\|^2 \le \mathfrak{C} \|h_0\|^2 e^{-\lambda t} \quad \forall t \ge 0$$

イロト イヨト イヨト

• Fractional diffusion limits and hypocoercivity

$$\partial_t f + v \cdot \nabla_x f = \mathsf{L} f$$

with fat tail local equilibrium \mathcal{M}

$$\forall v \in \mathbb{R}^d, \quad \mathscr{M}(v) = \frac{c_{\gamma}}{\langle v \rangle^{d+\gamma}} \quad \text{where} \quad \langle v \rangle := \sqrt{1+|v|^2}.$$

 \triangleright Fokker-Planck type operator ($\beta = 2$)

$$\mathsf{L}_1 f := \nabla_v \cdot \left(\mathscr{M} \nabla_v \left(\mathscr{M}^{-1} f \right) \right)$$

 \triangleright *linear Boltzmann* operator, or *scattering* collision operator

$$\mathsf{L}_2 f := \int_{\mathbb{R}^d} \mathsf{b}(\cdot, v') \left(f(v') \,\mathscr{M}(\cdot) - f(\cdot) \,\mathscr{M}(v') \right) \, \mathrm{d}v'$$

with collision frequency $\nu(v) := \int_{\mathbb{R}^d} b(v, v') \mathscr{M}(v') dv' \underset{|v| \to +\infty}{\sim} |v|^{-\beta}$ \triangleright the fractional Fokker-Planck operator $(0 < \sigma < 2, \beta = \sigma - \gamma)$

$$\mathsf{L}_3 f := \Delta_v^{\sigma/2} f + \nabla_v \cdot (E f)$$

+ technical conditions

・ロト ・日ト ・ヨト ・ヨト ・ヨ

(Bouin, JD, Lafleche, 2022)

Theorem

Let $d \geq 2$, $\beta \in \mathbb{R}$, $\gamma > \max\{0, -\beta\}$ and $k \in [0, \gamma)$ such that $\gamma \neq 2 + \beta$ or if $\gamma = 2 + \beta$ and $\frac{k}{\beta_+} > \frac{d}{2}$. If f is a solution with initial condition $f^{\text{in}} \in L^1(\mathrm{d}x \, \mathrm{d}v) \cap L^2(\langle v \rangle^k \, \mathrm{d}x \, \mathscr{M}^{-1} \, \mathrm{d}v)$, then for any $t \geq 0$,

$$\|f(t,\cdot,\cdot)\|_{L^{2}(dx\,\mathcal{M}^{-1}\,dv)}^{2} \lesssim \frac{\|f^{\mathrm{in}}\|_{L^{1}(dx\,dv)}^{2} + \|f^{\mathrm{in}}\|_{L^{2}(\langle v\rangle^{k}\,dx\,\mathcal{M}^{-1}\,dv)}^{2}}{(1+t)^{\tau}}$$

with
$$\tau = \min\left\{\frac{d}{\alpha}, \frac{k}{\beta_+}\right\}$$
 and $\alpha = \min\left\{\frac{\gamma+\beta}{1+\beta}, 2\right\}$

The exponent α arises from the *fractional diffusion limit*

$$\partial_t u + (-\Delta)^{\alpha/2} u = 0$$

cf. (Mellet, Mischler, Mouhot, 2011), (Jara, Komorowski, Olla), (Bouin, Mouhot)

・ロト ・四ト ・ヨト ・ヨト

.

Special macroscopic modes and hypocoercivity

Joint work with Kleber Carrapatoso, Frédéric Hérau, Stéphane Mischler, Clément Mouhot, Christian Schmeiser

The equation

Consider the kinetic equation

$$\partial_t f = \mathscr{L} f := \mathscr{T} f + \mathscr{C} f \,, \quad f_{|t=0} = f_0$$

with transport operator ${\mathscr T}$ given by

$$\mathscr{T}f := -v \cdot \nabla_x f + \nabla_x \phi \cdot \nabla_v f$$

where $\phi \in C^2(\mathbb{R}^d,\mathbb{R})$. Let $\rho(x) := e^{-\phi(x)}$ and $\langle \varphi \rangle := \int_{\mathbb{R}^d} \varphi \, \rho \, \mathrm{d}x$

Linear collision operator

 \mathscr{C} acts only on $v \in \mathbb{R}^d$, is self-adjoint in $L^2(\mathscr{M}^{-1})$, with $\mathscr{M}(v) := \frac{e^{-|v|^2/2}}{(2\pi)^{d/2}}$ and has the (d+2)-dimensional kernel of *collision invariants* given by

$$\operatorname{Ker} \mathscr{C} = \operatorname{Span} \left\{ \mathscr{M}, v_1 \, \mathscr{M}, \dots, v_d \, \mathscr{M}, |v|^2 \, \mathscr{M} \right\}$$

 \triangleright Spectral gap property

$$-\int_{\mathbb{R}^d} f(v) \,\mathscr{C}f(v) \,\frac{\mathrm{d}v}{\mathscr{M}(v)} \ge c_{\mathscr{C}} \,\|f - \Pi f\|_{\mathrm{L}^2(\mathscr{M}^{-1})}^2$$

where Π denotes the $L^2(\mathcal{M}^{-1})$ -orthogonal projection onto Ker \mathscr{C} \rhd For any polynomial function $p(v) : \mathbb{R}^d \to \mathbb{R}$ of degree at most 4, the function $p\mathcal{M}$ is in the domain of \mathscr{C} and

$$C(p):=\|\mathscr{C}(p\,\mathscr{M})\|_{\mathrm{L}^2(\mathscr{M}^{-1})}<\infty$$

イロト イロト イヨト 一日

 $\begin{array}{c} {\rm Introduction \ to \ hypocoercivity} \\ {\rm L}^2 \ {\rm Hypocoercivity} \\ {\rm Functional \ inequalities \ and \ applications} \end{array}$

An attempt of classification More examples Special macroscopic modes

Other assumptions (1/2)

 \triangleright Normalization conditions:

$$\int_{\mathbb{R}^d} \rho(x) \, \mathrm{d}x = 1 \,, \quad \int_{\mathbb{R}^d} x \, \rho(x) \, \mathrm{d}x = 0 \,, \quad \left\langle \nabla_x^2 \phi \right\rangle = \int_{\mathbb{R}^d} \nabla_x^2 \phi \, \rho \, \, \mathrm{d}x = \mathrm{Id}_{d \times d}$$

 \triangleright Growth/regularity assumption

$$|\nabla_x^2 \phi| \le \varepsilon \, |\nabla_x \phi|^2 + C_\varepsilon$$

 \triangleright Poincaré inequality

$$c_{\mathrm{P}} \int_{\mathbb{R}^d} |u - \langle u \rangle|^2 \rho \, \mathrm{d}x \le \int_{\mathbb{R}^d} |\nabla_x u|^2 \rho \, \mathrm{d}x$$

 \vartriangleright Moment bounds on ρ

$$\int_{\mathbb{R}^d} \left(|x|^4 + |\phi|^2 + |\nabla_x \phi|^4 \right) \rho \, \mathrm{d}x \le C_{\phi}$$

J. Dolbeault Hypocoercivity in kinetic equations

(日)

 $\begin{array}{c} {\rm Introduction \ to \ hypocoercivity} \\ {\rm L}^2 \ {\rm Hypocoercivity} \\ {\rm Functional \ inequalities \ and \ applications} \end{array}$

An attempt of classification More examples Special macroscopic modes

Other assumptions (2/2)

\triangleright Semi-group property

 $t \mapsto e^{t\mathscr{L}}$ is a strongly continuous semi-group on $L^2(\mathfrak{M}^{-1})$

where \mathfrak{M} is the global Maxwellian equilibrium

$$\mathfrak{M}(x,v) := \rho(x) \,\mathscr{M}(v) = \frac{e^{-\frac{1}{2}|v|^2 - \phi(x)}}{(2\,\pi)^{d/2}}$$

イロト イロト イヨト 一日

Special macroscopic modes (1/2)

 $Special\ macroscopic\ modes \quad \mathscr{C}F=0\,, \quad \partial_t F=\mathscr{T}F$

$$F = \left(r(t,x) + m(t,x) \cdot v + e(t,x) \mathfrak{E}(v)\right) \mathfrak{M}, \quad \mathfrak{E}(v) := \frac{|v|^2 - d}{\sqrt{2d}}$$

 \rhd Energy mode $F=\mathcal{H}\,\mathfrak{M}$ with

$$\mathcal{H}(x,v) := \frac{1}{2} \left(|v|^2 - d \right) + \phi(x) - \langle \phi \rangle$$

 \triangleright The set of *infinitesimal rotations compatible with* ϕ defined as

 $\mathcal{R}_{\phi} := \left\{ x \mapsto A \, x \, : \, A \in \mathfrak{M}_{d \times d}^{\text{skew}}(\mathbb{R}) \text{ s.t. } \forall \, x \in \mathbb{R}^d \, , \, \nabla_x \phi(x) \cdot A \, x = 0 \right\}$

gives rise rotation modes compatible with ϕ

$$(A x \cdot v) \mathfrak{M}(x, v), \quad A \in \mathfrak{R}_{\phi}$$

Special macroscopic modes (2/2): harmonic modes

Harmonic directions $E_{\phi} := \operatorname{Span}_{\mathbb{R}^d} \{ \nabla_x \phi(x) - x \}_{x \in \mathbb{R}^d}, \ d_{\phi} := \dim E_{\phi}$ \triangleright the potential is partially harmonic if $1 \leq d_{\phi} \leq d - 1$ harmonic directional modes are defined by

$$(x_i \cos t - v_i \sin t) \mathfrak{M}, \quad (x_i \sin t + v_i \cos t) \mathfrak{M}, \quad i \in I_\phi := \{d_\phi + 1, \dots, d\}$$

 \triangleright If $d_{\phi} = 0$, the potential $\phi(x) = \frac{1}{2} |x|^2 + \frac{d}{2} \log(2\pi)$ is fully harmonic In addition to the harmonic directional modes, there are harmonic pulsating modes

$$\left(\frac{1}{2} \left(|x|^2 - |v|^2\right) \cos(2t) - x \cdot v \sin(2t)\right) \mathfrak{M} \\ \left(\frac{1}{2} \left(|x|^2 - |v|^2\right) \sin(2t) + x \cdot v \cos(2t)\right) \mathfrak{M}$$

(Boltzmann, 1876) (Cercignani, 1983) (Uhlenbeck, Ford, 1963)

・ロト ・四ト ・ヨト ・ヨト

Theorem (Special macroscopic modes and hypocoercivity)

(1) All special macroscopic modes are given by

 $F = \alpha \mathfrak{M} + \beta \mathcal{H} \mathfrak{M} + A x \cdot v \mathfrak{M} + F_{\rm dir} + F_{\rm pul}$

(2) There are explicit constants C > 0 and $\lambda > 0$ such that, for any solution $f \in \mathcal{C}(\mathbb{R}^+; L^2(\mathfrak{M}^{-1}))$ with initial datum f_0 , there exists a unique special macroscopic mode F such that

 $\forall t \ge 0, \quad \|f(t) - F(t)\|_{L^2(\mathfrak{M}^{-1})} \le C e^{-\lambda t} \|f_0 - F(0)\|_{L^2(\mathfrak{M}^{-1})}$

イロト イロト イヨト 一日

 $\begin{array}{c} {\rm Introduction \ to \ hypocoercivity} \\ {\rm L}^2 \ {\rm Hypocoercivity} \\ {\rm Functional \ inequalities \ and \ applications} \end{array}$

An attempt of classification More examples Special macroscopic modes

A micro-macro decomposition

$$\partial_t h = \mathcal{L} h := \mathscr{T}h + \mathcal{C}h, \quad \mathcal{C}h := \mathfrak{M}^{-1} \mathscr{C} (\mathfrak{M} h)$$

with Ker $\mathfrak{C} =$ Span $\{1, v_1, \dots, v_d, |v|^2\}$ and
 $h := \frac{f - \alpha \mathfrak{M} - \beta \mathfrak{H} \mathfrak{M} - F_{rot} - F_{dir} - F_{pul}}{\mathfrak{M}}$

Micro-macro decomposition

$$h = h^{\parallel} + h^{\perp} \,, \quad h^{\parallel} := r + m \cdot v + e \, \mathfrak{E}(v)$$

$$(r,m,e)(t,x) := \int_{\mathbb{R}^d} \left(1, v, \mathfrak{E}(v) \right) h(t,x,v) \mathfrak{M}(v) \, \mathrm{d}v$$

• f is a special macroscopic modes iff $h^{\perp} = 0$ • all steady states are special macroscopic modes: factorization (use entropy-dissipation arguments)

Sketch of the proof

The function $h=h^{\parallel}+h^{\perp}=r+m\cdot v+e\,\mathfrak{E}(v)+h^{\perp}$ is such that

$$\frac{\mathrm{d}}{\mathrm{d}t} \|h\|^2 \le -2 \,\mathrm{c}_{\mathscr{C}} \,\|h^{\perp}\|^2$$

With the Witten-Laplace operator $\Omega := -\Delta_x + \nabla_x \phi \cdot \nabla_x + 1$ and

$$E[h] := \int_{\mathbb{R}^d} \left(v \otimes v - \operatorname{Id}_{d \times d} \right) h \,\mathfrak{M} \,\mathrm{d}v \,, \quad \Theta[h] := \int_{\mathbb{R}^d} v \left(\mathfrak{E}(v) - \sqrt{\frac{2}{d}} \right) h \,\mathfrak{M} \,\mathrm{d}v$$

we build a Lyapunov functional

$$\begin{aligned} \mathcal{F}[h] &:= \|h\|^2 + \varepsilon \left\langle \Omega^{-1} \, \nabla_x e, \Theta[h] \right\rangle + \varepsilon^{\frac{3}{2}} \left\langle \Omega^{-1} \, \nabla^{\text{sym}}_x \, m_s, E[h] - \sqrt{\frac{2}{d}} \left\langle e \right\rangle \operatorname{Id}_{d \times d} \right\rangle \\ &+ \varepsilon^{\frac{7}{4}} \left\langle \Omega^{-1} \, \nabla_x w_s, m_s \right\rangle + \varepsilon^{\frac{15}{8}} \left\langle -\Omega^{-1} \, \partial_t w_s, w_s \right\rangle \\ &- \varepsilon^{\frac{61}{32}} \left\langle (X - Y \cdot \nabla_x \phi), \nabla_x \phi \cdot A \, x \right\rangle - \varepsilon^{\frac{62}{32}} \left\langle b, b' \right\rangle - \varepsilon_6 \left\langle c', c'' \right\rangle \end{aligned}$$

such that, for some $\lambda \geq 0$,

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}[h] \leq -\lambda \mathcal{F}[h] \quad \text{and} \quad \|h\|^2 \lesssim \mathcal{F}[h] \lesssim \|h\|^2$$

J. Dolbeault

Hypocoercivity in kinetic equations

< ∃⇒

These slides can be found at

 $\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Lectures/ $$ $$ b Lectures $$$

The papers can be found at

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !