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o Introduction to hypocoercivity

> Decay and convergence rates based on ¢-entropies

> H! Hypocoercivity, entropy methods and carré du champ
e L2 Hypocoercivity

> The diffusion limit

> Mode-by-mode analysis in Fourier variables

o Functional inequalities and applications
> Towards a systematic classification
> Some examples and extensions
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H! hypocoercivity

Introduction to hypocoercivity

We are interested in kinetic equations acting on a distribution
function f(t,x,v) > 0 with time ¢, position z and velocity v

A typical example: Viasov-Fokker-Planck equation with external
potential 1

3tf+U'me—Vm¢'vaZAvf-FVv(Uf)
Tf Lf

> Homogeneous case: no dependence in x: Fokker-Planck
equation, exponential rate of convergence to a stationary solution

e_%lv‘Q

0= Gy

> Inhomogeneous case: rate of convergence to a stationary
solution ? rate of decay if there is no stationary solution 7

J. Dolbeault Hypocoercivity in kinetic equations



Introduction to hypocoercivity
“ Hypocoercivity
Functional inequalities and applicatior

Introduction
H! hypocoercivity

Fokker-Planck equation and (p-entropies

The Fokker-Planck equation
atf = Avf + Vv(vf)

acts on a probability distribution function f(¢,v) >0
which depends here on time ¢ and velocity v (but not on x)

e— 31012
A W) = Gy
Use p-entropies... cf. Anton’s lecture. With p € [1,2], for any ¢t > 0,

[ f(t,0) = jﬂ”)”iv(ﬂw,/ﬁldv) <%pe
Q@ Beckner’s inequalities with Gaussian measure dy = . (v) dv
2 2 2

”hHL?(]Rd,d/L) - HhHLq(]Rd,du) <(2-9) HVh”L?(]Rd,du)
applied to h = (f/A4)?, g =2/p € (1,2]
Q ¢ = 2: Gaussian logarithmic Sobolev inequality (Gross, 1975)

/Rd h2 log (h2/”hHiq(R"du)) dli < th“iz(Rd,du)
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H! hypocoercivity

Vlasov-Fokker-Planck equation: methods

Vlasov-Fokker-Planck equation with external potential ¢
8tf+v'vwf_vww'vvf = Avf"’_vv(vf)

> Harmonic potential case: ¢(z) = % |z|?

@ Decomposition on Hermite functions and spectral results

@ Green’s function as in Kolmogorov’s computation (Kolmogorov,
1934)

() |z)24a(t) [v|2+8(t) z-v
exp (_7 ‘4‘a(t()lv()t‘)1152(t§ )

(2m)? (4a(t) () — 82(1))

@ Hypoelliptic methods (Hormander, 1965)

@ H' hypocoercivity (Villani, 2001 & 2005)

@ L? hypocoercivity (Mouhot, Neumann, 2006), (Hérau, 2006), (JD,
Mouhot, Schmeiser 2009 & 2015)

@ H~! hypocoercivity (Armstrong, Mourrat, 2019), (Brigati, 2021),
(Cao, Lu, Wang, 2020), (Albritton-Armstrong-Mourrat-Novack, 2021)

G(t,z,v) =

J. Dolbeault Hypocoercivity in kinetic equations



Introduction to hypocoercivity Introduction

H! hypocoercivity

A toy model

du 0 0 0 —k
E_(L—T)u, L_<0 _1>, T_(k 0 ), k+#0

u = (u1,us) and |u|? = u? + u3
Non-monotone decay, a well known picture:
see for instance (Filbet, Mouhot, Pareschi, 2006)
. d _
o H-theorem: £ |u|*> = —2u3
@ macroscopic limit: % =—k%u

e generalized entropy: H(u) = |u|? — % U U

dH 5k2 N\ , 6k* , Ok
- i) it e
SA
< _(2_5)u§_mU%+§U1UQ
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Plots for the toy problem
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Functional inequalities and applications H" hypocoercivity

w-entropies and hypocoercivity
(H! framework)

> Adapt @-entropies to kinetic equations

> Villani’s strategy: derive H! estimates (using a twisted Fisher
information) and then use standard interpolation inequalities to
establish decay rates for the entropy
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The kinetic Fokker-Planck equation, or Vlasov-Fokker-Planck equation

of

at—i—v Vaof =V - Vof =Ayf+V, - (vf)

with ¢ (z) = |z|>/2 and [ fllp1 (raxray = 1 has a unique nonnegative
stationary solution

1 2 2
M(z,v) = (27) e 2l

and g = f/9 solves the kinetic Ornstein-Uhlenbeck equation

Tg=1L
8t+g 9

with transport operator T and Ornstein-Uhlenbeck operator L
Tg:=v-Vyg—x-Vyg and Lg:=A,g—v-V,g

The function h = ¢”/? solves dh +Th=Lh+ %1 " |v h‘
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H! hypocoercivity

Sharp rates for the kinetic Fokker-Planck equation

Let ¢(x) = |2]?/2, du := Mdz dv, E[g] := //Rd y wp(g) du

Proposition

Let p € [1,2] and consider a nonnegative solution of the kinetic
Fokker-Planck equation. There is a constant C > 0 such that

Elg(t,-, )] < Ce™ Vt>0

and the rate e~t is sharp as t — 400

(Villani), (Arnold, Erb): a twisted Fisher information functional
N :(1—/\)/ |Vvh|2du+(1—)\)/ |Vxh|2du+>\/ Voh + Voh|2 dp
R R R?

With A = 1/2, we find %31/2[}1(25, )] < - Hl/g[h(t, )}
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H* hypocoercivity

Improved rates (in the large entropy regime)

Rewrite the decay of the Fisher information functional as

d
1= Xt My Xdp=[ X" Xdu+ [ Y -MYdp
dt Jga Rd Rd

where X = (V,h,V,h), Y = (Hy, Hyp, Fov, Fav)

1A 1—x =
E)Z’to - ( A ) & Ide, 93'(1 - ( 1+ XA—v i ) & Ide
2

v
K KA
1 Ao TS
A v —kA  _EY
— 2 2

S):n2 7% 7572)\ 2k QKZA ® IdeX]Rd
—7)‘ -5 2KA 2k
With constant coefficients
XLt X
)\*(A, l/) = max {H}}n m : ()\7 I/) S R2 s.t. 9372 Z O}
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For (\,v) = (1/2), A, = 1/2 and the eigenvalues of My(3,1) are given
as a function of kK = 8 (2 — p)/p € [0, 8] are all nonnegative

)\3(/’{)
1.0 -
f Az (k)
0.5 I
L /\1 (Ii)
K
. . . | . . . | . . . | . ! >
2 4 6 8
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H! hypocoercivity

An improvement based on an adapted

(Arnold, JD)... Improvement for y-entropies:
I>P(E)~E+KE? as € —0,
with ®(0) =0, ®'(0) =1, ®” > 0. Kinetic analog: (JD, Li, 2018)

Theorem

Letp € (1,2) and h be a solution of the kinetic Ornstein-Uhlenbeck
equation. Then there exists a function X : RT — [1/2,1) such that
A(0) = limy—s 1 oo A(t) = 1/2 and a function p > 1 s.t.

L 8xolhlt, )] < — plt) Brco A, )

As a consequence, for any t > 0 we have the global estimate

Inw [I(t,-)) < d1/2[ho) exp (— /0 t p(s) ds)
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An abstract hypocoercivity result
Fourier variables and mode-by-mode analysis

L2 Hypocoercivity

> Abstract statement, diffusion limit
> Mode-by-mode analysis in Fourier variables

> Refined decay rates in the whole space

Collaboration with...

C. Mouhot and C. Schmeiser

E. Bouin, S. Mischler, C. Mouhot and C. Schmeiser
A. Arnold, C. Schmeiser, and T. Wé&hrer
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An abstract evolution equation

Let us consider the equation

dF
E g
a

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (K, (-, -))
* denotes the adjoint with respect to (-, )

IT is the orthogonal projection onto the null space of L
The estimate
1d

— —||F||? = (LF, F) < — A\, (1 = T F?
thl\ | =(LF, F) < ¢ JF|

is not enough to conclude that || F(t,-)||? decays exponentially
< microscopic coercivity

J. Dolbeault Hypocoercivity in kinetic equations
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L2 Hypocoercivit ! )
1D Y Fourier variables and mode-by-mode analysis

o Formal macroscopic / diffusion limit

F =F(tz,v), T=v-V,, L good collision operator. Scaled evolution

equation

dF
—_ TF—fLF
sdt—i—

on the Hilbert space H. F. = Fy +eFy + &2 Fo + 0(e®) as ¢ — 04
el LFy =0,
el : TFy=LFy,
el P L TR =LE
The first equation reads as u = Fy = I1Fy
The second equation is simply solved by Fy = — (TII) F
After projection, the O(g) equation is
4 (IIFy) — IIT (TH) Fy =TILF, =0
Opu + (TIH* (T u =0
is such that d )l = = 2][(TID) || < —2 Ay |ul?

= Mauoswptc coercivity

J. Dolbeault Hypocoercivity in kinetic equations



An abstract hypocoercivity result

L2 Hypocoercivit ! )
yP Y Fourier variables and mode-by-mode analysis

The macro part and the Poincaré inequality

> Free transport operator: TF =v -V, F

If Fo(z,v) = u(z) M(v) with M(v) = (27)~ 2 e 1*I*/2 then
(TID* (TI) Fy = (— A u) M

and we obtain the heat equation (e.g. on T9)

ou=Au

> With an external potential ¢ so that TF =v -V, F — V¢ -V, F
we obtain the Fokker-Planck equation

Ou=Au+V - (uVy)
The operator A := (1+ (TI)*TIT) " (TI)* is such that

Aum

vali
o ImE

(ATIE,F) > -

if the Poincaré inequality [ [Vul?e™ % dz > Ay [ |u— ul? €% da holds

J. Dolbeault Hypocoercivity in kinetic equations
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yP Y Fourier variables and mode-by-mode analysis

The assumptions in the compact case

Am, Au, and C)y are positive constants such that, for any F' € H
> microscopic coercivity:

—(LF.F) = A\ |1 - IDFI? (H1)
D> macroscopic coercivity:
ITILE|[? > Ay ||TLF 2 (H2)
> parabolic macroscopic dynamics:
IOTIIF =0 (H3)
> bounded auziliary operators:

[AT(L = I F| + |ALF[| < Car [|(1 = T F| (H4)

J. Dolbeault Hypocoercivity in kinetic equations
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L2 Hypocoercivit
ypP Y Fourier variables and mode-by-mode analysis

Equivalence and entropy decay

Choice: the limit as t — +oo of F(t,-) is zero
The L? entropy / Lyapunov functional is defined by

H[F] := 1 ||F|* + 0 Re(AF, F)
> norm equivalence of H[F] and ||F||?
2= | P12 < HF) < 28| F)?
Entropy decay: %H[F] = —DI[F]
> entropy decay rate: for any 6 > 0 small enough and A = A(9)
D[F] > AH[F]

Under (H1)—(H4), for any t > 0, there is some some § > 0 such that

H[F(t,-)] < H[Fo]e !

|, < ClFol?e ™t with €= 22

J. Dolbeault Hypocoercivity in kinetic equations



An abstract hypocoercivity result

L2 Hypocoercivit
ypP Y Fourier variables and mode-by-mode analysis

a Basic example 1: with confinement

Vlasov-Fokker-Planck equation with harmonic potential

of

8t+v Vaof =V - Vo f =Auf+Vy-(vf)

> microscopic coercivity: Gaussian Poincaré inequality in v

/Rd /Rd |V, F(v ( ) (H1)
with p = [p. F(v) dv

> macroscopic coercwz'ty: Gaussian Poincaré inequality in x

2 2|2 2|2
/ e < / / |Vop(z)|? e dz (H2)
R4 Re JRY

> parabolic macroscopic dynamics (H3) and bounded auziliary
operators (H4) are consequences of elliptic estimates

P = pa

—lx|2/2
p(x) — M55

J. Dolbeault Hypocoercivity in kinetic equations



An abstract hypocoercivity result

2 ~aercivi
L® Hypocoercivity Fourier variables and mode-by-mode analysis

a Basic example 2: without confinement

We consider the Cauchy problem
atf‘i'vvxle—f, f(o,l',’U):f()(IE,U)
L is the Fokker-Planck operator L1 or the linear BGK operator Lo

Lifi=A,f+Vy-(vf) and Lof:=ps .l —f

—5lw? . . .
M (v) = ?QEW is the normalized Gaussian function

pf = Jpa fdv is the spatial density

1
dy:=~@w)dv where ~:= 7

9By = [ U0 dedy
Rd xR
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a Fourier variables: mode-by-mode hypocoercivity

Let us consider the Fourier transform in z, denote by ¢ € R¢ the
Fourier variable, so that F' = f solves

OWF+TF=LF, F(0,&v)=fo&v), TF=i(v-F

Goal: apply the abstract method with £ considered as a parameter

=12y, [FIP= [ |FPdy, P = [ Pdo—ttpr
R R

The operator A is now defined as

- 1+Z|§|2 -/RdwF(w)dw///(v)

and, with X := ||(1 — II)F|| and Y := ||IIF||, we have that

(AF)(v)

|£‘ XY, ||FH2 _ X2 +)/2

Re(AF, F) < 1"
1 6|§| 2 2 1 5|€| 2 2
2(1—1+|§|2>(X +Y )SH[F]§2<1+1+|€|2)(X +Y?)

J. Dolbeault Hypocoercivity in kinetic equations
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Entropy — entropy production inequality

2
—(LF,F) + 0 (ATIF, F) > X? + Olel Y2

1+ [¢]2
DIF] = — (LF, F) + 6 (ATIIF, F') 44 (...)
5 A\
> . 2, “7AM 2
2 (A = O X2+ 5= VP = 80n XY
. s(1++3s
with Ay =1, Ay = [¢2 =182, CM:(HSz)

D[F] — AH[F)
(1_1—‘,-3 %)XZ_H-S (1 +‘/§5+)‘)XY+(1+2_*)Y2

is (for any s = |£] > 0) a nonnegative quadratic form of X and Y iff...

J. Dolbeault Hypocoercivity in kinetic equations
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Functional inequalities and applications
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An abstract hypocoercivity result
Fourier variables and mode-by-mode analysis
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Results (whole space, no external potential)

On the whole Euclidean space, we can define the entropy

HIfT = 5 1122 dw ay) + 0 CAF, Faa ary

Replacing the macroscopic coercivity condition by Nash’s inequality

_4_ 24
[ullE2 (day < Cxash [ull ey IV ullfE

proves that

HIf) < € (ol + 1 folsawan) (1 +0)72

(Bouin, JD, Mischler, Mouhot, Schmeiser)

There exists a constant C > 0 such that, for anyt > 0

ol

2 2 2 —
£ L2z any < C (HfOHL?(dwdv) + ||f0||L2(d7;L1(dx))> (1+1)
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2 ~aercivi
L® Hypocoercivity Fourier variables and mode-by-mode analysis

Comments

> Use of the enlargement of the space method or factorization method
of (Gualdani, Mischler, Mouhot)
> Not limited to Maxwellian local equilibria

> Can be compared with spectral methods based on Lyapunov matrix
inequalities and twisted Fuclidean norms (Arnold, JD, Schmeiser,
Wohrer, 2021)

> Sharper but in most cases still suboptimal estimates can be given
with A defined as a pseudo-differential operator (Arnold, JD,
Schmeiser, Wohrer, 2021)

J. Dolbeault Hypocoercivity in kinetic equations
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|

Special macroscopic modes

Functional inequalities and
hypocoercivity

In collaboration with Lanoir Addala, Emeric Bouin, Kleber
Carrapatoso, Frédéric Hérau, Laurent Lafleche, Xingyu Li, Stéphane
Mischler, Clément Mouhot, Christian Schmeiser, Lazhar Tayeb

J. Dolbeault
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The global picture: from diffusive to kinetic

@ Depending on the local equilibria and on the external potential
(H1) and (H2) (which are Poincaré type inequalities) can be replaced
by other functional inequalities:

> microscopic coercivity (H1)

- <LF7F> Z >\m ”(1 _H)FH2

— weak Poincaré inequalities or
Hardy-Poincaré inequalities

> macroscopic coercivity (H2)
ITILF | > Aar [[ILF 2
—> Nash inequality, weighted Nash or
Caffarelli- Kohn- Nirenberg inequalities

@ This can be done at the level of the diffusion equation
(homogeneous case) or at the level of the kinetic equation
(non-homogeneous case)

J. Dolbeault Hypocoercivity in kinetic equations
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An attempt of classification
More examples

Special macroscopic modes

Diffusion (Fokker-Planck) equations

: V(z) =1 log|e] V(z)=|al* V(z) = [a*

P ] = ©
ofentia V=0 < ac(0,1) a>1
Jeak Poincaré

) Caffarelli-Kohn Weak Poincaré .

Inequality Nash Nigenber or Poincaré
8 Weighted Poincaré

Asymptotic g {=(d=)/2 1 or t‘ﬁ—a) g
behavior decay decay convergence convergence

Table 1: Qwu=Au+ V- (uVV)

J. Dolbeault
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a Kinetic Fokker-Planck equations

B = Bouin, L. = Lafleche, M = Mouhot, MM = Mischler, Mouhot
S

= Schmeiser
N V(z) = |z|*
Potential V=0 V(Z) =7 logla| V(z) = |z| a>1,orT¢
v<d ae(0,1) Macro Poincaré
DMS,
. e R .
Micro Poincaré BDEVg%[S' BDS: ¢—(@—)/2 Cao: eV, Mischler
_ o~ t b<1,8=2 Mouhot
Fv)=e ,B=1 1 decay ot
decay convergence €
convergence

) BDLS: t7¢,
F(v) = e~ @7, —
Be(0,1) mm{Q,d
decay
Ia _ () —d—B BDLS,
() = () fractional

Table 1: Oif +v - Vaof = FV,(F~'V,f). Notation: (v) = +/1+ [v[?

J. Dolbeault Hypocoercivity in kinetic equations
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Two additional examples

> Linearized Vlasov-Poisson-Fokker-Planck system

> Fractional diffusion limits and hypocoercivity

J. Dolbeault Hypocoercivity in kinetic equations
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a Linearized Vlasov-Poisson-Fokker-Planck system

The Viasov-Poisson-Fokker-Planck system in presence of an external
potential 1 is

8tf+v'vwf_(VI¢+Vm¢)'va:A1Jf+vv'(Uf)

VPFP
o= [ g (vPED)

Linearized problem around f,: f = f. (1+nh), [[zu, ga b fedzdo =0
Oth+v-Vih — (Vo + Viedy) - Voh +v - Vatby, — Ayh+v - Voh =0V, - Vyh

A = / h £ dv
R

Drop the O(n) term : linearized Viasov-Poisson-Fokker-Planck /
Ornstein- Uhlenbeck system

Oh+v-Vih — (Vo + Vo) - Voh +v - Voth, — Ayh+v-Vyh =0

—Aﬂ/}h:/ h fydv, // hfydrdv=0
Rd Rd xRd
(VPFPlin)

J. Dolbeault Hypocoercivity in kinetic equations
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Hypocoercivity

Let us define the norm

h? : // h? f, dmdv+/ |V ot |? dx
Rd

(Addala, JD, Li, Tayeb)

Theorem

Let us assume that d > 1, ¢¥(x) = |z|* for some a > 1 and M > 0.
Then there exist two positive constants € and X such that any
solution h of (VPFPlin) with an initial datum hg of zero average with
lhol|? < oo is such that

”h(tv'v')”2 <€ HhOH2 eiAt Vt>0

J. Dolbeault Hypocoercivity in kinetic equations
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a Fractional diffusion limits and hypocoercivity

atf+v'vmf: I—f
with fat tail local equilibrium 4

VoeR?!, (v)= <>C++w where (v) 1= /1 [v].
v
> Fokker-Planck type operator (8 = 2)
Lif =V (#V,(7"f))
> linear Boltzmann operator, or scattering collision operator
Laf = [ [ be!) (10).0) = £ ()
with collision frequency v(v) := [ b(v,v") A (v') dv’ o lv|=#
v|—+o0o

> the fractional Fokker-Planck operator (0 < o <2, =0 —7)

Lsf = A2 f +V, - (Ef)

+ technical conditions

J. Dolbeault Hypocoercivity in kinetic equations
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(Bouin, JD, Lafleche, 2022)

Theorem

Letd > 2, f € R, v > max{0,—F} and k € [0,7) such that vy # 2+
orify=2+4 0 and ﬁ > g. If f is a solution with initial condition

e Li(dx dv)n L2(<v>k de a1 dv), then for any t > 0,

HfinHil(dz dv) + Hmeiz((v)k dz 1 dv)

2
||f(t7.7.)||L2(dm‘//{*1d'u) ~ (1+t)T
withT:min{%,%} andazmin{%ﬂ}

The exponent « arises from the fractional diffusion limait
du+ (A2 =0

cf. (Mellet, Mischler, Mouhot, 2011), (Jara, Komorowski, Olla),
(Bouin, Mouhot)
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Special macroscopic modes

Special macroscopic modes and
hypocoercivity

Joint work with with Kleber Carrapatoso, Frédéric Hérau, Stéphane

Mischler, Clément Mouhot, Christian Schmeiser

[m] =) =
J. Dolbeault Hypocoercivity in kinetic equations
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The equation

Consider the kinetic equation
Wf=2Lf=Tf+Cf, fi=0o=Jo
with transport operator & given by
Tf==v-Vof + V-V, f

where ¢ € C?(R%,R). Let p(x) := e~ ?®) and (¢) := Jpa @ p dzx

J. Dolbeault Hypocoercivity in kinetic equations
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Linear collision operator

% acts only on v € R%, is self-adjoint in L2(.#Z '), with
M (V) 1= % and has the (d + 2)-dimensional kernel of collision
invariants given by

Ker % = Span{//{,vl///,...,vd///, |v|2//[}
> Spectral gap property

dv
- Ré f(’l)) (gf(’l)) %(U)

where IT denotes the L?(.# ~1)-orthogonal projection onto Ker ¢’
> For any polynomial function p(v) : R¢ — R of degree at most 4, the
function p .# is in the domain of ¥ and

> g |f = TLf[IE2 01

Clp) = 1€ (pA)||L2(a—) <0

J. Dolbeault Hypocoercivity in kinetic equations
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Other assumptions (1/2)

> Normalization conditions:

/ plx)yde =1, / zp(z)de =0, <V§¢>>=/ V¢ p dr = Idgxq
Rd Rd Rd

> Growth/reqularity assumption

V20| < e|Vao|* + C-:

> Poincaré inequality

cp/ |u—<u>|2pdx§/ |V,ul? p do
R4 R4

> Moment bounds on p

[ (it 10 + 19201 p do < €
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Other assumptions (2/2)

> Semi-group property
t > e s a strongly continuous semi-group on L?(OM~1)

where 201 is the global Mazwellian equilibrium

o~ vl —o(2)

M(x,v) = p(x) A (v) = T (2mydiz
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Special macroscopic modes (1/2)

Special macroscopic modes E€F =0, O F=9F

F=(r(t,z) +m(t,z) - v+e(t,z) €)M, €E):=

> Energy mode F = H I with
H(z,v) = 5 (lv]* = d) + ¢(x) — (¢)
> The set of infinitesimal rotations compatible with ¢ defined as
Rp:={z— Az : Ac MIH(R) st. Vo € R, V,¢(x) Az = 0}
gives rise rotation modes compatible with ¢

(Az-v)M(z,v), AeRy
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Special macroscopic modes (2/2): harmonic modes

Harmonic directions Ey := Span{V,¢(z) — 2},cra, dg := dim E
Rd

> the potential is partially harmonicif 1 <dy <d -1
harmonic directional modes are defined by

(x;cost—v;sint) M, (zisint+v;cost) M, i€ ly:={de+1,...,d}
> If dy = 0, the potential ¢(z) = 3 |z|* + £ log(2) is fully harmonic

In addition to the harmonic directional modes, there are harmonic
pulsating modes

(2 (lz> = |v[?) cos(2t) — z - vsin(2t)) M
(% (‘37|2 - |U|2) sin(2t) + z - v cos(2 t)) m

(Boltzmann, 1876) (Cercignani, 1983) (Uhlenbeck, Ford, 1963)
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Theorem (Special macroscopic modes and hypocoercivity)

(1) All special macroscopic modes are given by
F=aM+HM+ Az - oM+ Fair + Fpul

(2) There are explicit constants C' > 0 and X > 0 such that, for any
solution f € C(RT;L2(M 1)) with initial datum fo, there exists a
unique special macroscopic mode F such that

Vt20, [If(t) = FOl@n-1y < Ce" [1fo = F(0)llLean-1
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A micro-macro decomposition

Oth=Lh:=Th+Ch, Ch:=MM 1€ (Mh)
with Ker C = Span{l,vl,...,vd, |v|2} and

f—am—ﬁ%m_Frot_Fdir_Fpul
m

h:=
Micro-macro decomposition

h=hl+nt, bWli=r+m- v+ee()

(r,m,e)(t, x) ::/ (1,v,€(v) ) h(t, z,v) M(v) dv

Rd

@ f is a special macroscopic modes iff ht =0
@ all steady states are special macroscopic modes: factorization
(use entropy-dissipation arguments)
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Sketch of the proof

The function i = hll + h* =7 +m - v+ e&(v) + h* is such that
d
Sl < —2cq 12

With the Witten-Laplace operator Q := — A, + V0 -V, + 1 and

E[h] = /Rd (0@ v — Idgxa) hMdv, O[h] = /Rdv (Qf(v)f\/%> Lot dv
we build a Lyapunov functional
Th] = |hlP+e (21 Ve, O[Al) + ¥ (@1 95 my, Bl - 1/3 () lara)
tet <Qfl Vaws, ms> 1w <—Q*1 Opws, wg)
—eB (X =Y V,0),Vatp- Az) — % (0,1) — g6 (¢, ")
such that, for some A > 0,

d

T < = AR and |B)* S F(R) S (IA]
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These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Lectures/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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