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Introduction to hypocoercivity
We are interested in kinetic equations acting on a distribution
function f(t, x, v) ≥ 0 with time t, position x and velocity v

A typical example: Vlasov-Fokker-Planck equation with external
potential ψ

∂tf + v · ∇xf −∇xψ · ∇vf︸ ︷︷ ︸
Tf

= ∆vf +∇v(v f)︸ ︷︷ ︸
Lf

B Homogeneous case: no dependence in x: Fokker-Planck
equation, exponential rate of convergence to a stationary solution

M (v) = e−
1
2 |v|

2

(2π)d/2

B Inhomogeneous case: rate of convergence to a stationary
solution ? rate of decay if there is no stationary solution ?

J. Dolbeault Hypocoercivity in kinetic equations
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Fokker-Planck equation and ϕ-entropies
The Fokker-Planck equation

∂tf = ∆vf +∇v(v f)
acts on a probability distribution function f(t, v) ≥ 0
which depends here on time t and velocity v (but not on x)

M (v) = e−
1
2 |v|

2

(2π)d/2

Use ϕ-entropies... cf. Anton’s lecture. With p ∈ [1, 2], for any t ≥ 0,

‖f(t, v)−M (v)‖2
Lp(Rd,M−1dv) ≤ C0 e

−2t

Beckner’s inequalities with Gaussian measure dµ = M (v) dv

‖h‖2
L2(Rd,dµ) − ‖h‖

2
Lq(Rd,dµ) ≤ (2− q) ‖∇h‖2

L2(Rd,dµ)

applied to h = (f/M )p, q = 2/p ∈ (1, 2]
q = 2: Gaussian logarithmic Sobolev inequality (Gross, 1975)∫

Rd

h2 log
(
h2/‖h‖2

Lq(Rd,dµ)

)
dµ ≤ ‖∇h‖2

L2(Rd,dµ)
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Vlasov-Fokker-Planck equation: methods

Vlasov-Fokker-Planck equation with external potential ψ

∂tf + v · ∇xf −∇xψ · ∇vf = ∆vf +∇v(v f)

B Harmonic potential case: ψ(x) = κ
2 |x|

2

Decomposition on Hermite functions and spectral results
Green’s function as in Kolmogorov’s computation (Kolmogorov,

1934)

G(t, x, v) =
exp

(
−γ(t) |x|2+α(t) |v|2+β(t) x·v

4α(t) γ(t)−β2(t)

)
(2π)d

(
4α(t) γ(t)− β2(t)

)d/2

Hypoelliptic methods (Hörmander, 1965)
H1 hypocoercivity (Villani, 2001 & 2005)
L2 hypocoercivity (Mouhot, Neumann, 2006), (Hérau, 2006), (JD,

Mouhot, Schmeiser 2009 & 2015)
H−1 hypocoercivity (Armstrong, Mourrat, 2019), (Brigati, 2021),

(Cao, Lu, Wang, 2020), (Albritton-Armstrong-Mourrat-Novack, 2021)
J. Dolbeault Hypocoercivity in kinetic equations
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A toy model

du

dt
= (L− T)u , L =

(
0 0
0 −1

)
, T =

(
0 −k
k 0

)
, k 6= 0

u = (u1, u2) and |u|2 = u2
1 + u2

2
Non-monotone decay, a well known picture:
see for instance (Filbet, Mouhot, Pareschi, 2006)

H-theorem: d
dt |u|

2 = − 2u2
2

macroscopic limit: du1
dt = − k2 u1

generalized entropy: H(u) = |u|2 − δ k
1+k2 u1 u2

dH
dt

= −
(

2− δ k2

1 + k2

)
u2

2 −
δ k2

1 + k2 u
2
1 + δ k

1 + k2 u1 u2

≤ −(2− δ)u2
2 −

δΛ
1 + Λ u2

1 + δ

2 u1u2

J. Dolbeault Hypocoercivity in kinetic equations



Introduction to hypocoercivity
L2 Hypocoercivity

Functional inequalities and applications
Introduction
H1 hypocoercivity

Plots for the toy problem
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ϕ-entropies and hypocoercivity
(H1 framework)

B Adapt ϕ-entropies to kinetic equations

B Villani’s strategy: derive H1 estimates (using a twisted Fisher
information) and then use standard interpolation inequalities to
establish decay rates for the entropy

J. Dolbeault Hypocoercivity in kinetic equations
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The kinetic Fokker-Planck equation, or Vlasov-Fokker-Planck equation

∂f

∂t
+ v · ∇xf −∇xψ · ∇vf = ∆vf +∇v · (v f)

with ψ(x) = |x|2/2 and ‖f‖L1(Rd×Rd) = 1 has a unique nonnegative
stationary solution

M(x, v) = (2π)−d e−
1
2 (|x|2+|v|2)

and g = f/M solves the kinetic Ornstein-Uhlenbeck equation

∂g

∂t
+ Tg = L g

with transport operator T and Ornstein-Uhlenbeck operator L

Tg := v · ∇xg − x · ∇vg and L g := ∆vg − v · ∇vg

The function h = gp/2 solves ∂h
∂t + Th = Lh+ 2−p

p
|∇vh|2
h

J. Dolbeault Hypocoercivity in kinetic equations
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Sharp rates for the kinetic Fokker-Planck equation

Let ψ(x) = |x|2/2, dµ := M dx dv, E[g] :=
∫∫

Rd×Rd

ϕp(g) dµ

Proposition

Let p ∈ [1, 2] and consider a nonnegative solution of the kinetic
Fokker-Planck equation. There is a constant C > 0 such that

E[g(t, ·, ·)] ≤ C e−t ∀ t ≥ 0

and the rate e−t is sharp as t→ +∞

(Villani), (Arnold, Erb): a twisted Fisher information functional

Jλ[h] = (1−λ)
∫
Rd

|∇vh|2 dµ+(1−λ)
∫
Rd

|∇xh|2 dµ+λ
∫
Rd

|∇xh+∇vh|2 dµ

With λ = 1/2, we find d
dtJ1/2[h(t, ·)] ≤ − J1/2[h(t, ·)]

J. Dolbeault Hypocoercivity in kinetic equations
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Improved rates (in the large entropy regime)
Rewrite the decay of the Fisher information functional as

− 1
2
d

dt

∫
Rd

X⊥ ·M0 X dµ =
∫
Rd

X⊥ ·M1 X dµ+
∫
Rd

Y ⊥ ·M2 Y dµ

where X = (∇vh,∇xh) , Y = (Hvv,Hxv, Fvv, Fxv)

M0 =
(

1 λ
λ ν

)
⊗ IdRd , M1 =

(
1− λ 1+λ−ν

2
1+λ−ν

2 λ

)
⊗ IdRd

M2 =


1 λ −κ2 −κλ2
λ ν −κλ2 −κ ν2
−κ2 −κλ2 2κ 2κλ
−κλ2 −κ ν2 2κλ 2κν

⊗ IdRd×Rd

With constant coefficients

λ?(λ, ν) = max
{

min
X

X⊥ ·M1 X

X⊥ ·M0 X
: (λ, ν) ∈ R2 s.t. M2 ≥ 0

}
J. Dolbeault Hypocoercivity in kinetic equations
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For (λ, ν) = (1/2), λ? = 1/2 and the eigenvalues of M2( 1
2 , 1) are given

as a function of κ = 8 (2− p)/p ∈ [0, 8] are all nonnegative

2 4 6 8

0.5

1.0

1.5

λ1(κ)

λ2(κ)

λ3(κ)

λ4(κ)

κ
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An improvement based on an adapted
(Arnold, JD)... Improvement for ϕ-entropies:

I ≥ Φ(E) ∼ E + κE2 as E→ 0+

with Φ(0) = 0, Φ′(0) = 1, Φ′′ > 0. Kinetic analog: (JD, Li, 2018)

Theorem

Let p ∈ (1, 2) and h be a solution of the kinetic Ornstein-Uhlenbeck
equation. Then there exists a function λ : R+ → [1/2, 1) such that
λ(0) = limt→+∞ λ(t) = 1/2 and a function ρ > 1 s.t.

d

dt
Jλ(t)[h(t, ·)] ≤ − ρ(t) Jλ(t)[h(t, ·)]

As a consequence, for any t ≥ 0 we have the global estimate

Jλ(t)[h(t, ·)] ≤ J1/2[h0] exp
(
−
∫ t

0
ρ(s) ds

)
J. Dolbeault Hypocoercivity in kinetic equations
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L2 Hypocoercivity

B Abstract statement, diffusion limit

B Mode-by-mode analysis in Fourier variables

B Refined decay rates in the whole space

Collaboration with...
C. Mouhot and C. Schmeiser

E. Bouin, S. Mischler, C. Mouhot and C. Schmeiser
A. Arnold, C. Schmeiser, and T. Wöhrer

J. Dolbeault Hypocoercivity in kinetic equations
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An abstract evolution equation
Let us consider the equation

dF

dt
+ TF = LF

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (H, 〈·, ·〉)
∗ denotes the adjoint with respect to 〈·, ·〉

Π is the orthogonal projection onto the null space of L

The estimate
1
2
d

dt
‖F‖2 = 〈LF, F 〉 ≤ −λm ‖(1−Π)F‖2

is not enough to conclude that ‖F (t, ·)‖2 decays exponentially
⇐ microscopic coercivity

J. Dolbeault Hypocoercivity in kinetic equations
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Formal macroscopic / diffusion limit
F = F (t, x, v), T = v · ∇x, L good collision operator. Scaled evolution
equation

ε
dF

dt
+ TF = 1

ε
LF

on the Hilbert space H. Fε = F0 + ε F1 + ε2 F2 + O(ε3) as ε→ 0+

ε−1 : LF0 = 0 ,
ε0 : TF0 = LF1 ,

ε1 : dF0
dt + TF1 = LF2

The first equation reads as u = F0 = ΠF0
The second equation is simply solved by F1 = − (TΠ)F0
After projection, the O(ε) equation is

d
dt (ΠF0)− ΠT (TΠ)F0 = ΠLF2 = 0

∂tu+ (TΠ)∗ (TΠ)u = 0

is such that d
dt‖u‖

2 = − 2 ‖(TΠ)u‖2 ≤ − 2λM ‖u‖2

⇐ Macroscopic coercivity
J. Dolbeault Hypocoercivity in kinetic equations
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The macro part and the Poincaré inequality
B Free transport operator: TF = v · ∇xF
If F0(x, v) = u(x)M(v) with M(v) = (2π)−d/2 e−|v|

2/2 then
(TΠ)∗ (TΠ)F0 = (−∆xu)M

and we obtain the heat equation (e.g. on Td)

∂tu = ∆u

B With an external potential ψ so that TF = v · ∇xF −∇xψ · ∇vF
we obtain the Fokker-Planck equation

∂tu = ∆u+∇ · (u∇ψ)

The operator A :=
(
1 + (TΠ)∗TΠ

)−1(TΠ)∗ is such that

〈ATΠF, F 〉 ≥ λM
1 + λM

‖ΠF‖2

if the Poincaré inequality
∫
|∇u|2 e−ψ dx ≥ λM

∫
|u− ū|2 e−ψ dx holds

J. Dolbeault Hypocoercivity in kinetic equations
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The assumptions in the compact case

λm, λM , and CM are positive constants such that, for any F ∈ H

B microscopic coercivity:

−〈LF, F 〉 ≥ λm ‖(1−Π)F‖2 (H1)

B macroscopic coercivity:

‖TΠF‖2 ≥ λM ‖ΠF‖2 (H2)

B parabolic macroscopic dynamics:

ΠTΠF = 0 (H3)

B bounded auxiliary operators:

‖AT(1−Π)F‖+ ‖ALF‖ ≤ CM ‖(1−Π)F‖ (H4)

J. Dolbeault Hypocoercivity in kinetic equations
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Equivalence and entropy decay
Choice: the limit as t→ +∞ of F (t, ·) is zero
The L2 entropy / Lyapunov functional is defined by

H[F ] := 1
2 ‖F‖

2 + δRe〈AF, F 〉
B norm equivalence of H[F ] and ‖F‖2

2− δ
4 ‖F‖

2 ≤ H[F ] ≤ 2+δ
4 ‖F‖

2

Entropy decay: d
dtH[F ] = −D[F ]

B entropy decay rate: for any δ > 0 small enough and λ = λ(δ)
D[F ] ≥ λH[F ]

Theorem
Under (H1)–(H4), for any t ≥ 0, there is some some δ > 0 such that

H[F (t, ·)] ≤ H[F0] e−λ t

‖F (t, ·)‖2 ≤ C ‖F0‖2 e−λ t with C = 2+δ
2−δ

J. Dolbeault Hypocoercivity in kinetic equations
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Basic example 1: with confinement

Vlasov-Fokker-Planck equation with harmonic potential

∂f

∂t
+ v · ∇xf −∇xψ · ∇vf = ∆vf +∇v · (v f)

B microscopic coercivity: Gaussian Poincaré inequality in v∫
Rd

|F (v)− ρM (v)|2 dv

M (v) ≤
∫
Rd

∫
Rd

|∇vF (v)|2 dv

M (v) (H1)

with ρ =
∫
Rd F (v) dv

B macroscopic coercivity: Gaussian Poincaré inequality in x∫
Rd

∣∣∣ρ(x)− M e−|x|
2/2

(2π)d/2

∣∣∣2 e |x|22 dx ≤
∫
Rd

∫
Rd

|∇xρ(x)|2 e
|x|2

2 dx (H2)

B parabolic macroscopic dynamics (H3) and bounded auxiliary
operators (H4) are consequences of elliptic estimates

J. Dolbeault Hypocoercivity in kinetic equations
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Basic example 2: without confinement

We consider the Cauchy problem

∂tf + v · ∇xf = Lf , f(0, x, v) = f0(x, v)

L is the Fokker-Planck operator L1 or the linear BGK operator L2

L1f := ∆vf +∇v · (v f) and L2f := ρf M − f

M (v) = e−
1
2 |v|

2

(2π)d/2 is the normalized Gaussian function

ρf :=
∫
Rd f dv is the spatial density

dγ := γ(v) dv where γ := 1
M

‖f‖2
L2(dx dγ) :=

∫∫
Rd×Rd

|f(x, v)|2 dx dγ

J. Dolbeault Hypocoercivity in kinetic equations
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Fourier variables: mode-by-mode hypocoercivity
Let us consider the Fourier transform in x, denote by ξ ∈ Rd the
Fourier variable, so that F = f̂ solves

∂tF + TF = LF , F (0, ξ, v) = f̂0(ξ, v) , TF = i (v · ξ)F
Goal: apply the abstract method with ξ considered as a parameter

H = L2 (dγ) , ‖F‖2 =
∫
Rd

|F |2 dγ , ΠF = M

∫
Rd

F dv = M ρF

The operator A is now defined as

(AF )(v) = − i ξ
1 + |ξ|2 ·

∫
Rd

wF (w) dwM (v)

and, with X := ‖(1−Π)F‖ and Y := ‖ΠF‖, we have that

|Re〈AF, F 〉| ≤ |ξ|
1 + |ξ|2 X Y , ‖F‖2 = X2 + Y 2

1
2

(
1− δ |ξ|

1 + |ξ|2

)
(X2 + Y 2) ≤ H[F ] ≤ 1

2

(
1 + δ |ξ|

1 + |ξ|2

)
(X2 + Y 2)

J. Dolbeault Hypocoercivity in kinetic equations
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Entropy – entropy production inequality

−〈LF, F 〉+ δ 〈ATΠF, F 〉 ≥ X2 + δ |ξ|2

1 + |ξ|2 Y
2

D[F ] = −〈LF, F 〉+ δ 〈ATΠF, F 〉+ δ (...)

≥ (λm − δ)X2 + δ λM
1 + λM

Y 2 − δ CM X Y

with λm = 1 , ΛM = |ξ|2 =: s2 , CM =
s
(
1 +
√

3 s
)

1 + s2

D[F ]− λH[F ]

≥
(

1− δ s2

1+s2 − λ
2

)
X2 − δ s

1+s2

(
1 +
√

3 s+ λ
)
X Y +

(
δ s2

1+s2 − λ
2

)
Y 2

is (for any s = |ξ| > 0) a nonnegative quadratic form of X and Y iff...

J. Dolbeault Hypocoercivity in kinetic equations
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triangle. Negative discriminant: dark grey area, shown here for s = 5
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Results (whole space, no external potential)
On the whole Euclidean space, we can define the entropy

H[f ] := 1
2 ‖f‖

2
L2(dx dγ) + δ 〈Af, f〉dx dγ

Replacing the macroscopic coercivity condition by Nash’s inequality

‖u‖2
L2(dx) ≤ CNash ‖u‖

4
d+2
L1(dx) ‖∇u‖

2 d
d+2
L2(dx)

proves that

H[f ] ≤ C
(

H[f0] + ‖f0‖2
L1(dx dv)

)
(1 + t)− d

2

(Bouin, JD, Mischler, Mouhot, Schmeiser)

Theorem
There exists a constant C > 0 such that, for any t ≥ 0

‖f(t, ·, ·)‖2
L2(dx dγ) ≤ C

(
‖f0‖2

L2(dx dγ) + ‖f0‖2
L2(dγ; L1(dx))

)
(1 + t)− d

2

J. Dolbeault Hypocoercivity in kinetic equations
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Comments

B Use of the enlargement of the space method or factorization method
of (Gualdani, Mischler, Mouhot)
B Not limited to Maxwellian local equilibria
B Can be compared with spectral methods based on Lyapunov matrix
inequalities and twisted Euclidean norms (Arnold, JD, Schmeiser,
Wöhrer, 2021)
B Sharper but in most cases still suboptimal estimates can be given
with A defined as a pseudo-differential operator (Arnold, JD,
Schmeiser, Wöhrer, 2021)

J. Dolbeault Hypocoercivity in kinetic equations
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Functional inequalities and
hypocoercivity

In collaboration with Lanoir Addala, Emeric Bouin, Kleber
Carrapatoso, Frédéric Hérau, Laurent Lafleche, Xingyu Li, Stéphane

Mischler, Clément Mouhot, Christian Schmeiser, Lazhar Tayeb
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The global picture: from diffusive to kinetic
Depending on the local equilibria and on the external potential

(H1) and (H2) (which are Poincaré type inequalities) can be replaced
by other functional inequalities:
B microscopic coercivity (H1)

−〈LF, F 〉 ≥ λm ‖(1−Π)F‖2

=⇒ weak Poincaré inequalities or
Hardy-Poincaré inequalities

B macroscopic coercivity (H2)

‖TΠF‖2 ≥ λM ‖ΠF‖2

=⇒ Nash inequality, weighted Nash or
Caffarelli-Kohn-Nirenberg inequalities

This can be done at the level of the diffusion equation
(homogeneous case) or at the level of the kinetic equation
(non-homogeneous case)

J. Dolbeault Hypocoercivity in kinetic equations



Introduction to hypocoercivity
L2 Hypocoercivity

Functional inequalities and applications

An attempt of classification
More examples
Special macroscopic modes

Diffusion (Fokker-Planck) equations

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1

Inequality Nash
Ca↵arelli-Kohn

-Nirenberg

Weak Poincaré
or

Weighted Poincaré
Poincaré

Asymptotic
behavior

t�d/2

decay
t�(d��)/2

decay
t�µ or t

� k
2 (1�↵)

convergence

e�� t

convergence

Table 1: @tu = �u + r · (urV )

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1

Inequality Nash
Ca↵arelli-Kohn

-Nirenberg

Weak Poincaré
or

Weighted Poincaré
Poincaré

Asymptotic
behavior

t�d/2

decay
t�(d��)/2

decay
t�µ or t

� k
2 (1�↵)

convergence

e�� t

convergence

Table 2: @tu = �u + r · (urV )

1
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Kinetic Fokker-Planck equations
B = Bouin, L = Lafleche, M = Mouhot, MM = Mischler, Mouhot
S = Schmeiser

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1, or Td

Macro Poincaré

Micro Poincaré
F (v) = e�hvi� , � � 1

BDMMS:
t�d/2

decay

BDS: t�(d��)/2

decay

Cao: e�tb ,
b < 1, � = 2
convergence

DMS,
Mischler-
Mouhot

e��t

convergence

F (v) = e�hvi� ,
� 2 (0, 1)

BDLS: t�⇣ ,
⇣ =

min
�

d
2 , k

�}
decay

F (v) = hvi�d�� BDLS,
fractional

Table 1: @tf + v · rxf = F rv

�
F�1 rvf

�
. Notation: hvi =

p
1 + |v|2

1
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Two additional examples

B Linearized Vlasov-Poisson-Fokker-Planck system

B Fractional diffusion limits and hypocoercivity
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Linearized Vlasov-Poisson-Fokker-Planck system
The Vlasov-Poisson-Fokker-Planck system in presence of an external
potential ψ is

∂tf + v · ∇xf − (∇xψ +∇xφ) · ∇vf = ∆vf +∇v · (v f)

−∆xφ = ρf =
∫
Rd

f dv
(VPFP)

Linearized problem around f?: f = f? (1 + η h),
∫∫

Rd×Rd h f? dx dv = 0

∂th+ v · ∇xh− (∇xψ +∇xφ?) · ∇vh+ v · ∇xψh −∆vh+ v · ∇vh = η∇xψh · ∇vh

−∆xψh =
∫
Rd

h f? dv

Drop the O(η) term : linearized Vlasov-Poisson-Fokker-Planck /
Ornstein-Uhlenbeck system
∂th+ v · ∇xh− (∇xψ +∇xφ?) · ∇vh+ v · ∇xψh −∆vh+ v · ∇vh = 0

−∆xψh =
∫
Rd

h f? dv ,

∫∫
Rd×Rd

h f? dx dv = 0

(VPFPlin)
J. Dolbeault Hypocoercivity in kinetic equations
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Hypocoercivity

Let us define the norm

‖h‖2 :=
∫∫

Rd×Rd

h2 f? dx dv +
∫
Rd

|∇xψh|2 dx

(Addala, JD, Li, Tayeb)

Theorem

Let us assume that d ≥ 1, ψ(x) = |x|α for some α > 1 and M > 0.
Then there exist two positive constants C and λ such that any
solution h of (VPFPlin) with an initial datum h0 of zero average with
‖h0‖2

<∞ is such that

‖h(t, ·, ·)‖2 ≤ C ‖h0‖2
e−λ t ∀ t ≥ 0
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Fractional diffusion limits and hypocoercivity

∂tf + v · ∇xf = Lf
with fat tail local equilibrium M

∀ v ∈ Rd, M (v) = cγ
〈v〉d+γ where 〈v〉 :=

√
1 + |v|2 .

B Fokker-Planck type operator (β = 2)

L1f := ∇v ·
(
M ∇v

(
M−1f

))
B linear Boltzmann operator, or scattering collision operator

L2f :=
∫
Rd

b(·, v′)
(
f(v′) M (·)− f(·) M (v′)

)
dv′

with collision frequency ν(v) :=
∫
Rd b(v, v′) M (v′) dv′ ∼

|v|→+∞
|v|−β

B the fractional Fokker-Planck operator (0 < σ < 2, β = σ − γ)

L3f := ∆σ/2
v f +∇v · (E f)

+ technical conditions
J. Dolbeault Hypocoercivity in kinetic equations
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(Bouin, JD, Lafleche, 2022)

Theorem

Let d ≥ 2, β ∈ R, γ > max{0,−β} and k ∈ [0, γ) such that γ 6= 2 + β
or if γ = 2 + β and k

β+
> d

2 . If f is a solution with initial condition
f in ∈ L1( dx dv) ∩ L2(〈v〉k dxM−1 dv

)
, then for any t ≥ 0,

‖f(t, ·, ·)‖2
L2( dxM−1 dv) .

∥∥f in
∥∥2

L1( dx dv) +
∥∥f in

∥∥2
L2(〈v〉k dx M−1 dv)

(1 + t)τ

with τ = min
{
d
α ,

k
β+

}
and α = min

{
γ+β
1+β , 2

}
The exponent α arises from the fractional diffusion limit

∂tu+ (−∆)α/2u = 0

cf. (Mellet, Mischler, Mouhot, 2011), (Jara, Komorowski, Olla),
(Bouin, Mouhot)
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Special macroscopic modes and
hypocoercivity

Joint work with with Kleber Carrapatoso, Frédéric Hérau, Stéphane
Mischler, Clément Mouhot, Christian Schmeiser
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The equation

Consider the kinetic equation

∂tf = L f := T f + C f , f|t=0 = f0

with transport operator T given by

T f := − v · ∇xf +∇xφ · ∇vf

where φ ∈ C2(Rd,R). Let ρ(x) := e−φ(x) and 〈ϕ〉 :=
∫
Rd ϕρ dx
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Linear collision operator

C acts only on v ∈ Rd, is self-adjoint in L2(M−1), with
M (v) := e−|v|

2/2

(2π)d/2 and has the (d+ 2)-dimensional kernel of collision
invariants given by

Ker C = Span
{
M , v1 M , . . . , vd M , |v|2 M

}
B Spectral gap property

−
∫
Rd

f(v) C f(v) dv
M (v) ≥ cC ‖f −Πf‖2

L2(M−1)

where Π denotes the L2(M−1)-orthogonal projection onto Ker C
B For any polynomial function p(v) : Rd → R of degree at most 4, the
function pM is in the domain of C and

C(p) := ‖C (pM )‖L2(M−1) <∞
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Other assumptions (1/2)

B Normalization conditions:∫
Rd

ρ(x) dx = 1 ,
∫
Rd

x ρ(x) dx = 0 ,
〈
∇2
xφ
〉

=
∫
Rd

∇2
xφ ρ dx = Idd×d

B Growth/regularity assumption

|∇2
xφ| ≤ ε |∇xφ|2 + Cε

B Poincaré inequality

cP

∫
Rd

|u− 〈u〉|2 ρ dx ≤
∫
Rd

|∇xu|2 ρ dx

B Moment bounds on ρ∫
Rd

(
|x|4 + |φ|2 + |∇xφ|4

)
ρ dx ≤ Cφ
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Other assumptions (2/2)

B Semi-group property

t 7→ etL is a strongly continuous semi-group on L2(M−1)

where M is the global Maxwellian equilibrium

M(x, v) := ρ(x) M (v) = e−
1
2 |v|

2−φ(x)

(2π)d/2
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Special macroscopic modes (1/2)

Special macroscopic modes CF = 0 , ∂tF = T F

F =
(
r(t, x) +m(t, x) · v + e(t, x)E(v)

)
M , E(v) := |v|

2 − d√
2 d

B Energy mode F = HM with

H(x, v) := 1
2
(
|v|2 − d

)
+ φ(x)− 〈φ〉

B The set of infinitesimal rotations compatible with φ defined as

Rφ :=
{
x 7→ Ax : A ∈Mskew

d×d(R) s.t. ∀x ∈ Rd , ∇xφ(x) ·Ax = 0
}

gives rise rotation modes compatible with φ

(Ax · v)M(x, v) , A ∈ Rφ
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Special macroscopic modes (2/2): harmonic modes

Harmonic directions Eφ := Span
Rd

{∇xφ(x)− x}x∈Rd , dφ := dimEφ

B the potential is partially harmonic if 1 ≤ dφ ≤ d− 1
harmonic directional modes are defined by

(xi cos t−vi sin t)M , (xi sin t+vi cos t)M , i ∈ Iφ := {dφ+1, . . . , d}

B If dφ = 0, the potential φ(x) = 1
2 |x|

2 + d
2 log(2π) is fully harmonic

In addition to the harmonic directional modes, there are harmonic
pulsating modes( 1

2
(
|x|2 − |v|2

)
cos(2 t)− x · v sin(2 t)

)
M( 1

2
(
|x|2 − |v|2

)
sin(2 t) + x · v cos(2 t)

)
M

(Boltzmann, 1876) (Cercignani, 1983) (Uhlenbeck, Ford, 1963)
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Theorem (Special macroscopic modes and hypocoercivity)
(1) All special macroscopic modes are given by

F = αM + βHM +Ax · vM + Fdir + Fpul

(2) There are explicit constants C > 0 and λ > 0 such that, for any
solution f ∈ C

(
R+; L2(M−1)

)
with initial datum f0, there exists a

unique special macroscopic mode F such that

∀ t ≥ 0 , ‖f(t)− F (t)‖L2(M−1) ≤ C e
−λ t ‖f0 − F (0)‖L2(M−1)
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A micro-macro decomposition

∂th = Lh := T h+ Ch , Ch := M−1 C (Mh)

with KerC = Span
{

1, v1, . . . , vd, |v|2
}
and

h := f − αM− βHM− Frot − Fdir − Fpul

M

Micro-macro decomposition

h = h‖ + h⊥ , h‖ := r +m · v + eE(v)

(r,m, e)(t, x) :=
∫
Rd

(
1, v,E(v)

)
h(t, x, v)M(v) dv

f is a special macroscopic modes iff h⊥ = 0
all steady states are special macroscopic modes: factorization

(use entropy-dissipation arguments)
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Sketch of the proof
The function h = h‖ + h⊥ = r +m · v + eE(v) + h⊥ is such that

d
dt‖h‖

2 ≤ − 2 cC ‖h⊥‖2

With the Witten-Laplace operator Ω := −∆x +∇xφ · ∇x + 1 and

E[h] :=
∫
Rd

(v ⊗ v − Idd×d)hMdv , Θ[h] :=
∫
Rd

v
(
E(v)−

√
2
d

)
hM dv

we build a Lyapunov functional

F[h] := ‖h‖2+ε
〈
Ω−1∇xe,Θ[h]

〉
+ ε

3
2
〈
Ω−1∇sym

x ms, E[h]−
√

2
d 〈e〉 Idd×d

〉
+ ε

7
4
〈
Ω−1∇xws,ms

〉
+ ε

15
8 〈−Ω−1 ∂tws, ws〉

− ε 61
32 〈(X − Y · ∇xφ),∇xφ ·Ax〉 − ε

62
32 〈b, b′〉 − ε6 〈c′, c′′〉

such that, for some λ ≥ 0,
d
dtF[h] ≤ −λF[h] and ‖h‖2 . F[h] . ‖h‖2
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
B Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/
B Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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