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Subcritical inequalities and classical bifurcation results
Other mechanisms of phase transition
Caffarelli-Kohn-Nirenberg inequalities

GNS inequalities on S and phase transitions
sults based on entropy methods
Further results on symmetry

Stability re

Gagliardo-Nirenberg-Sobolev
inequalities on the sphere and phase
transitions

> Subcritical inequalities and classical bifurcation results

> Other mechanisms of phase transition; the carré du champ method
for the pressure variable

> Caarelli-Kohn-Nirenberg inequalities: a proof of symmetry by the
parabolic carré du champ method
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Bifurcation and phase transition in GNS inequalities

A= u(N) on S with d =3
A
Vol + 52 Nl 2 220 ol

Taylor expansion of u =1+4+¢e¢; as € — 0 with — Ap; =d ¢
w(A) <X ifand only if A>d

> The inequality holds with u(\) = A = d [Bakry, Emery, 1985]
[Beckner, 1993], [Bidaut-Véron, Véron, 1991, Corollary 6.1]
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GNS as entropy-entropy production inequalities

@ (subcritical) Gagliardo-Nirenberg-Sobolev inequality

2 d 2 2
IVF 120 2 dEolF] = 2 (IFlEnn — IF )

for any p € [1,2) U (2,2*)
with 2* := 2% if d >3 and 2" = 4o if d = 1 or

Q@ Limit p — 2: the logarithmic Sobolev inequality

d d F?
IVFPPdu> =~ &[Fl:=~= | F’log| —5— | du
2
5 2 2 Jsa IF 1259

@ p =1: Poincaré inequality

IVFIase) > dEF] = d (I1FI2ase) — IF 1)
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Caffarelli-Kohn-Nirenberg inequalities

Carré du champ — admissible parameters on S¢

entropy methods
Further results on symmetry

[JD, Esteban, Kowalczyk, Loss| Monotonicity of the deficit along

du (- |Vul?
_ p(1—m) _
B = U Au+(mp—-1) .,

0.5

Case d = 5: admissible parameters 1 < p < 2* =10/3 and m
(horizontal axis: p, vertical axis: m). Improved inequalities inside !
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Admissible parameters

—

[
[
_

N AN

d =1, 2, 3 (first line) and d = 4, 5 and 10 (second line)
the curves p — m4i(p) determine the admissible parameters (p, m)
[JD, Esteban, Kowalczyk, Loss 2014] [JD, Esteban, 2019]

mi(d,p) = iy (dp+2i\/d )(zd—(d—z)p))
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Another Gagliardo-Nirenberg-Sobolev inequality

[JD, Esteban]
0
2 2 2(1-6 0, 2
(IVulaaey + 525 lalZaen) T2 > (H22) ul, e,
@ Symmetry holds if p(p,d,\) = A, optimal functions are constant
Q Symmetry breaking if A > d@: take u. :=1+cp, Ap+dp =0

Bakry-Emery exponent : 2% := 400 if d = 1, 2% := (2d? + 1) /(d — 1)?
ifd>2
and take p € (2,2%]

-2 1 (p—1)(2* —p) (d—1\*.
o# =3P fd=1 =1 fd>2
34p—7 itd T0# + p—2 d+2 ifd=

Proposition

Let d > 1, p € (2,2%), and 6 > 67. The function A — u(p, 0, \) is
monotone increasing, concave and p(p, 6, ) < X if and only if A > d @
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Second order phase transitio

2 3 0 5 0

d=1,p="5:0=2(left) # = 0.8 (right). Bifurcation at A= p=d6

[m] = =
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Parameter range

Theorem (Bou Dagher, JD)

[Let d > 1, pe(2,2)and 0 > 0, :=d(p—2)/(2p)
The function A — p(p, 6, A) is monotone increasing, concave

w(p, 0, 0) ~ kA0 as X = 400
w(p,0,\) < Xand p(p,0,A) < Aif A > d 6
w(p,0,\) = Nif A< db, 0> 6% pec(2,2florp>2ifd=1

12 14 2 )

horizontal ’axis: p, vertiéal axis: 6
in dimensions d =1, d =2 and d = 3 (from left to right)
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Second and first order phase tra

g g — B B o oz o5 o o5 L Y

d=1,p=506=20=086=032and 6 =6, =0.3

[m] = =

it
S
p
?
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Second and first order phase transitions
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0=032and 0 =0,=0.3

0 o 04
I [y 04 o8
0 I o4
I
o / 0 I
03 0 04 o
03 I 041
r
o 03
1 [} 3 (7 or [} 0 ] o 02 [ o 0z n [

Critical case

cd=1,0=6,, for p=29.0, 9.7, 10.1 and 10.8
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Reparametrization and consequences

Euler-Lagrange equation for an optimal function (with 6§ = 1)

A
5 u= Llp_1 (ELl /\)

—Au+ ;
p
Theorem (Bou Dagher, JD)

Let d > 1, p€(2,2%), 0 > 0,
A solution u of (EL; a) also solves (ELg ) for A = A(0, A) with

N
A, A) =1 (/\ +(1-60)(p-2) —h”u”jg )

@ For A > 0 small enough, we have u(6,\) = A
Q@ For 6 — 6, > 0 small enough, symmetry breaking occurs for A < d 6

Symmetry breaking with A < d 6 means first order phase transition
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More qualitative properties

Proposition (Bou Dagher, JD)

_ d+2) (d+3) (p—2
Let 0o := 50273 p—(6)+d)(£72+6)p(512))—d2 (=22

Assuming that the curve C : [d,d + €) — (RT)? is smooth enough:

Q If 0 # by, the curve C bifurcates from (d 0, d 0) tangentially to p = \
Q@ The curve C is concave and below . = X (on the right) if 0 > 6

Q@ The curve C is convex and above the line ;. = A (on the left) if 0 < 0y

08
Q. blue curve: p s 64(p)
@_ yellow curve: if 6 > 0%(p), the phase transi-
06l tion is of second order

red curve: if it is below p > 04 (p), the phase
transition is of first order for 6 — 04 (p) > 0 small
(Gaussian test functions)

Q. green curve: if x(p, 04) < 04(p), the phase

04l
transition is of first order for 6 — 04 (p) > 0 small
(comparison with GNS on RY)
o Q. black, dotted curve: p > 0y(p) (at the bifur-
r cation point)
@ brown curve p — 0e(p): a numerical approx-
imation of the threshold between first / second
00 order phase transitions
0 2 4 6 8 10 12
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The critical Caffarelli-Kohn-Nirenberg inequality

b

d(ac—a) p 2/p
bps(a) := —————=+a-a, [v] - |vvf?
2\/(ac-a)*+d-1 ¢ (f]Rd [x|bP X) < Ca,b de TxZe dx

a<b<a+l,a<a,d>3
p= d—2+22d(b—a) >0,a=3(d-2)

0 “ > A radial optimal function:
Ve(x) = (14 |x|(P=2 Cemah) 72/
among radially symmetric functions

Theorem (JD, Esteban, Loss, 2015)

There is symmetry, v.e., C;p = C} ,, and all optimal functions are
radially symmetric if bpga) < b < a+ 1. If a < b < brs(a), then there

is symmetry breaking, C5p > C , and optimal functions are not
radially symmetric.

[Caffarelli, Kohn, Nirenberg (1984)], [F. Catrina, Z.-Q. Wang (2001)]
[Smets, Willem], [Catrina, Wang], [Felli, Schneider]
[Bonforte, JD, Nazaret, Muratori]
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A new proof: rewrltmg of CKN

1) Change of variables: v(r,w) = u(r®,w), Dau = (ad,u, V,u)

Jrea D2 ]9 dx > Copp (i [u]? | x]7~ dlx)*/P

with n=2p/(p — 2). Symmetry means that the Aubin-Talenti
function u,(x) := (1 + |x|?)~("=2)/2 realizes the equality case

2) Relative measure: with w = u/u, and dpug(x) = |u.(x)]9 [x|"~7 dx

2
Jgo IDaw|? duo dx+3 o2 n(n=2) [pu Iw|? dpp dx > Con ([ga |W|P dpp dx) /e

1—|X|2 _ _2x

3) Stereographic projection: w(x) = f(z,w) with z = 7%, w = T

Jos <a2(1 — )| + 'Yj;‘f) don+ Sn(n—2) [, |f]? do,
> Koo (fuo |FIP dora) ™/

do, =271 (1- 22)("_2)/2 dzdw, z € [-1,+1], w € S9~1
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A new proof: fast diffusion equation and carré du champ

i \l bifurcation results

Let ' and V denote the derivatives with respect to z € [—1,1] and
weSL A=V-V and

1
Dv := (a\/l—zzv',HVv) , Lv:=D-Dv
—z

1
Lv:azﬁv—l—ﬁAv, Ev::(l—z) —nzv
Weighted fast diffusion equation

-1 2
%:Lvm:—D(vDP), p=_" _ym1 ! !

Proposition (Bou Dagher, JD)

D'(t) <0 ifa < apg = /<=2

@ Nonlinear carré du champ techniques and Felli & Schneider (FS)

J. Dolbeault Phase transitions and symmetry



GNS inequalities on §9 and phase transitions Suberitic )1 ine e alities and classic )1 1 ifurcation results
Othe S ns of phase trans
Caffarelli- Kohn Nlr(,nbcrg 1ncqudht1ns

Details

D'(t) = — iay Joo v (KI[Pl = mna? |DPP) do,,
with K[P] := 2 L (|DP|?) — DP - D(LP) — 1 (LP)?
2

2
_ 201 _ 2\ pr _ AP 2 /| zVP
K[P]—m'a (1-22)P (nl)(IZZ)‘ +2a | VP + £
+a?(n—1)|DPJ?
+(1-22) 7 (3 A(VPR) — VP- VAP — B8 — (n—2)0?|VPP)

Corollary (Bou Dagher, JD)

Ifn>d>3, m=(n—1)/nand p=2n/(n—2), then
Jsor % (3 AUVPR) = VP VAP — L4 dly

=2 fyos 07 | LP = EMP " do + (c = &) fo, p7 2 ds

+(n—2) % fsd—l p?|VP|? dw

Regularization as in [JD, Zhang]
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1equa . e p . Subcritical inequalities

ili >sul s >ntr. = 5 L Q + i
Stability results based on entropy mothods  WESEUGIEUS HGNIgarithmicISODOIEVRREaUAIItics

Stability results
based on entropy methods

> Subcritical Gagliardo-Nirenberg inequalities on S¢
> Sobolev inequality: the Bianchi-Egnell stability estimate made
constructive

> The Gaussian logarithmic Sobolev inequality seen as an infinite
dimensional limit
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Subcritical inequalities

bility results based on entropy methods e ) L
Scabilitygresult=gbasedionfentronygmethod Sobolev and logarithmic Sobolev inequalities

Gagliardo-Nirenberg inequalities: stability

An improved inequality under orthogonality constraint (I; is a
projection on some positive spherical harmonic functions) and the
stability inequality arising from the carré du champ method can be
combined in the subcritical case as follows

Theorem (Brigati, JD, Simonov)

Let d > 1 and p € (1,2*). For any F € HY(S?, du), we have

/Sd |VF|?du — d E[F]

- ( IV F [ E2se
= d,p P} 2
||VF||L2(Sd) + HFHL2(S")

+ [|V(Id — My) F”iz(gd))

for some explicit stability constant /4 , > 0

v

> The result holds true for the logarithmic Sobolev inequality (p = 2),
again with an explicit constant . », for any finite dimension d
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Stability results based on entropy methods
Further results on symmetry

Subcritical inequalities
Sobolev and logarithmic Sobolev inequalities

> The far away regime' use an improved interpolation inequality
If |V F 250 / [ FlIEssey = Yo > 0, by the convexity of ¢

IVF
VAl ~ dEp1F] 2 d [FIey o (3 T

P(sd

> L (%) [VFI s

> The local case: ||VF||i2(Sd) < ||F||i,,(Sd)
Take |[F||pge) = 1, assume that ﬁ;)—ﬂo > 0 and deduce from the
Poincaré inequality that

1_%< (fdedM)2

+ a Taylor expansion using a partial decomposition
on spherical harmonics
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Stability results based on entropy methods o q .
‘ ‘ >bolev and logarithmic Sobolev inequalities

Large dimensional limit

.. based on the Maxwell-Poincaré lemma [McKean, 1973]
Gagliardo-Nirenberg-Sobolev inequalities on S9, p € [1,2)

IVl iy = 525 (00000 ey — 190

Theorem (Brigati, JD, Simonov)

Let v € HY(R", dx) with compact support, d > n and
ug(w) = v(wl/\/g,wz/\Fd, . ,w,,/\/g)

where w € S¢ C RYTL. With dvy(y) := (2m)~"/2e=2 b dy,

d 2 2
Jim (1612 gy = 755 (1600200 sy — oo ) )

= 91y — 25 (1V1aqgn .0 = V12 o(gr )

v
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Stability results based on entropy methods Sobeley and loaarithmic Sobolev inequalitics

An explicit stability result for the Sobolev inequality

Sobolev inequality on RY with d > 3, 2* = j—f’z and sharp constant Sy
IVFlITa@e) = Sa If T gy ¥ €H(RY) = 22(RY)
with equality on the manifold M of the Aubin-Talenti functions

_d=2
2

gab,c(x) =c(a+ |x— b?) , a€(0,0), beRI, ceR

Theorem (JD, Esteban, Figalli, Frank, Loss)

There is a constant 3 > 0 with an explicit lower estimate which does not
depend on d such that for all d > 3 and all f € H}(R?) \ M we have

8 .
IVl = So Il ey 2 5 in€ IVF = Veliags)

@ No compactness argument
@ The (estimate of the) constant g is explicit
@ The decay rate 3/d is optimal as d — +0c0
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Stability results based on entropy methods Sobeley and loaarithmic Sobolev inequalitics

Stability for the Sobolev inequality: the history

> [Rodemich, 1969], [Aubin, 1976}, [Talenti, 1976]
In the inequality va”iz(Rd) > Sy ||f||i2 (re)> the optimal constant is

Sy =1d(d—2)[s?~%
with equality on the manifold M = {g, 5} of the Aubin-Talenti
functions

> [Lions| a qualitative stability result
i Jim V63163 = Sa . then lim_inf [V, ~Vel3/| VA3 =0

> [Brezis, Lieb, 1985] a quantitative stability result ?
> [Bianchi, Egnell, 1991] there is some non-explicit cgg > 0 such that

IVFI3 > Sa I

2 - 2
. f |[VF-V
> +CBEg'E”M I gll2

Q@ The strategy of Bianchi & Egnell involves two steps:

— a local (spectral) analysis: the neighbourhood of M
— a local-to-global extension based on concentration-compactness :
@ The constant cpg is not explicit the far away regime

J. Dolbeault Phase transitions and symmetry
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Stability results based on entropy methods Sobeley and loaarithmic Sobolev inequalitics

A stability result for the logarithmic Sobolev inequality

@ Use the inverse stereographic projection to rewrite the result on S¢
2 2
IVF I ey~ 3 9 (@ = 2) (IFI2 o~ IF )

B 2 1 )
> Gel/ctf(sd IVF = VGl + 5 d(d = 2) [IF = Gllizs

@ Rescale by v/d, consider a function depending only on n
coordinates and take the limit as d — 400 to approximate the
Gaussian measure dy = e~ " X" dx

Corollary (JD, Esteban, Figalli, Frank, Loss)

With 8 > 0 as in the result for the Sobolev inequality

2
Vol gy — 7 | o108 | —d— ) 0
Rn HUHLZ R",d)

Br . x|2
> - _ a-x
- 2 aeﬂwfceR " = ey

4
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Subcritical inequalities
Sobolev and logarithmic Sobolev inequalities

Stability for the logarithmic Sobolev inequality

> [Gross, 1975] Gaussian logarithmic Sobolev inequality for n > 1

|uf?
IV ullZ2 g 277/ v?log | —5———— | dy
L2(R",d) . ”u”L?(]R" i)

> [Weissler, 1979] scale invariant (but dimension-dependent) version
of the Euclidean form of the inequality

> [Stam, 1959], [Federbush, 1969], [Costa, 1985] Cf. [Villani, 2008]
> [Bakry, Emery, 1984], [Carlen, 1991] equality iff

ue M = {w: (a,c) € RxR} where w,c(x)=ce®™ VxeR"

[Carlen, 1991] reinforcement of the inequality (Wiener transform)

> [McKean, 1973], [Beckner, 92| (LSI) as a large d limit of Sobolev
> [Bobkov, Gozlan, Roberto, Samson, 2014], [Indrei et al., 2014-23]
stability in Wasserstein distance, in Wi, etc.

> [JD, Toscani, 2016] Comparison with Weissler’s form, a (dimension
dependent) improved inequality

> [Fathi, Indrei, Ledoux, 2016] improved inequality assuming a
Poincaré inequality (Mehler formula)
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Stability results based on entropy methods Sobeley and loaarithmic Sobolev inequalitics

The global and the local problem

2 2
d(u,v)?:=qlu—v] where qw]:=|Vw|i2ce + 555 [IWlli2se
. 2 2 2
Q deficit : 0[u] := ”quL?(Sd) + p%z (HuHL2(Sd) - ”u”LP(Sd))a p= dfd
Q@ distance to the set .Z of the Aubin-Talenti (optimal) functions

d(u, A ) = in/f/ld(u, v)

ve
lime— o0 d(u(t,-), . #) = 0 and d[u(t,-)] is monotone non-increasing if
% = mulm=1p (Au +(mp—1) L:|2>
For a given € € (0,1), u is in the far away regime if
d(u, #)? > q[u]

and in the neighbourhood of . if d(u, #)? < e q[u]
local stability : Z(g) := inf {% cue HY(SY, do), d(u,.#)? < 5q[u]}
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Stability results based on entropy methods Sobalas amd loaarithmie Sobolev inequalitios

A new proof for the global to local reduction

[Bonforte, JD, Esteban, Figalli, Frank, Loss| on an idea by Christ. If
we start in the far away regime, which means

d(ult:07 ///)2 > 5Q[U\t:0]
using d(uje=o, #) < d(uje=0,0) = qfuje=0], [|u(t, ‘)HLP(Sd) =1 we obtain

Mool alueol = 5% 5% ofu(e)]

d(u\t:07'//)2 h q[u\t:O] - q[u(t")] B q[u(tv')]
We know that

lim qfu(t, )]:L2 and  lim d(u(t, )(///)2:0

t—+o0 p— t—-+oo

so that for some t, > 0 we have

alu(t., )] = Ld(u(t.,),.#)?

d(u\t:0:<//)2 ~ qlu(ts, )] B d(u(t*,-),.///)2 -

J. Dolbeault Phase transitions and symmetry
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Symmetry results for spinors in dimension d = 3
Symmetry results for spinors in dimension d = 2
A Sobolev inequality for a Dirac operator

Further results (and conjectures)

on symmetry

> Caffarelli-Kohn-Nirenberg inequalities for spinor (complex) valued
functions in dimension d = 3

> Caffarelli-Kohn-Nirenberg inequalities for spinor (complex) valued
functions in dimension d = 2

> A Sobolev inequality for Dirac operators
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Further results on symmetry A’ Sobolev inequality for a Dirac oy

Symmetry results for spinors in dimension d = 3

We consider 2-spinors, which are C?-valued function

R3 3 x — (x) = ¢1(X))€C2
¥ ( Pa(x)
Calffarelli-Kohn-Nirenberg inequalities for spinors

/Rs o= VOIE o o Cos (/R [0l dx) v (SCKN)

[x[2 2 [x|Pp

where 0; = 0, and the gradient term is defined by

3

oV => g
j=1

and o = (0j)j=1,2,3 is the family of the Pauli matrices

0 1 0 —i 1 0
w=(10) == (V7)o 4

a<fB<a+1l p=6/(1-2a+2p),Csp > 0 is the best constant

J. Dolbeault Phase transitions and symmetry
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Symmetry for spinors

Proposition (JD, Esteban, Frank, Loss)

Let N:={k—13 : keZ\{0}}
Ifael thenCop=0foralla<pf<a+1
Ifa &N, thenCqp >0 foralla<p<a+1

Angular decomposition in eigenspaces of o - L
L2(S,C%dw) = P Ha
keZ\{-1}

where L :=w A (—i V) is the angular momentum operator

Definition

A spinor 1 on R3 is symmetric if there is a constant yo € C? and a
complex-valued function f on R, such that

P(x)=f(r)xo or Y(x)=f(r)o-wxo, r=Ix, w=x/r
ie., € HoorH_»

J. Dolbeault Phase transitions and symmetry
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Results

[JD, Esteban, Frank, Loss]

Symmetry regions: green; symmetry breaking regions: red
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Symmetry results for spinors in dimension d = 3
Symmetry results for spinors in dimension d = 2
Further results on symmetry A Sobolev inequality for a Dirac operator

The ingredients of the proof

Q@ Existence of optimizers
@ A Hardy inequality case: Co a1 = MiNkez\ (~1} (k —a+ %)2
@ Passing to logarithmic variables > see slide +1

. /
s (19502 + [(0- L=+ 3) 6|") ds dew > Cap (S s |0lP o5 dw)2 ’

@ Monotonicity properties: for some o, : (2,6) — [—1/2,0]

Cop<Cip, if —1/2<a<ap)
Ca,p = Cé,p if Oé*(P) <a< 1/2

@ A Gagliardo-Nirenberg interpolation inequality for spinors on the
sphere based on tools of harmonic analysis > see slide 42
@ A Keller-Lieb-Thirring estimate

@ A chain of (optimal) estimates

Q@ Instability: study of the quadratic form obtained by linearization
and representation using spherical harmonics > see slide 42

J. Dolbeault Phase transitions and symmetry



d . B B B
GNS inequalities on S and phase transition Symmetry results for spinors in dimension d = 3
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Logarithmic variables

‘ Caffarelli-Kohn-Nirenberg inequalities for scalars P

Caffarelli-Kohn-Nirenberg inequalities for spinors b
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Symmetry versus symmetry breaking (details)

p
6 of”
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Symmetry results for spinors in dimension d = 2

Q@ the d = 2 spinorial Caffarelli-Kohn-Nirenberg inequality

b N
Joo T e > Cap (oo 1555 o) (SCKN)

[x[> [x]7P

for spinor valued functions v : R? — C?
> the logarithmic Caffarelli-Kohn-Nirenberg inequality

Ji S (10:0(5.0) + I( = i0300)(s, )" ) ds d
> Cap (Jo Jou |6(s.0)IP ds da)z/p

Q@ Interpolation inequalities for Aharonov-Bohm magnetic fields
A(x) = (2, — x1)/Ix[?

. h|P 2/p
Joo (=19 = @AYo dx = CAB ( [ 247 o) (AB)

a,p

Theorem (JD, Frank, Weixler)

Ca,p = CAB for any (a, p) € (0,1/2) x (2, +00)

J. Dolbeault Phase transitions and symmetry
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d Symmetry results for spinors in dimension d = 2
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GNS inequalities on §9 and pt
tability results based on entropy metho

IR eETii GT Gty

Symmetry versus symmetry breaking

Theorem (JD, Frank, Weixler)

Q@ For every o € (0,1/2) and p > 2, there is an optimizer with

Cap > 0 and lima—0, Cop = 0. Symmetry holds if and only if

a € (0,a(p)] for some function p — a(p) : (2, 00) — (0,1/2)

Q@ The symmetry and symmetry breaking regions are symmetric with
respect to @ = 0 and 1-periodic
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(SCKN) with d = 2. Horizontal axis: o € (0,1/2). Vertical azis: p € (2,00)
Q Symmetry range: green, by the equivalence with Aharonov-Bohm problem
and entropy methods for flows associated to (CKN) inequalities

Q Symmetry breaking range: red and blue; Undecided in the tiny white gap

Q@ magnetic ring: an interpolation inequality on S!

[JD, Esteban, Laptev, Loss]

Q@ Aharonov-Bohm and Caffarelli-Kohn-Nirenberg inequalities
[Bonheure, JD, Esteban, Laptev, Loss]

Q@ a Gegenbauer polynomial basis to study linear instability numerically
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The Keller-Lieb-Thirring inequality (Schrédinger)

@ With g <2*:=2d/(d—2)ifd>3,and 9 =d(qg—2)/(2q)
The Gagliardo-Nirenberg-Sobolev inequality

||VU||L2(Rd) HUHL2 RY) = %q ||u||Lq(]Rd)
can be rewritten as
2 2 — 2
||VUHL2(Rd) + A ||U||L2(Rd) > Cq A HUHLq(Rd)

for any (X, u) € (0,+00) x HY(RY), with 62 = 9?(1 —9)'~7 C,
@ Let A be such that Cg A" = || V|| 5(zsy. The Schrodinger energy is

2 2
19— [ V1P a2 IVl ~ Vil Tl

B 1/(1-0)
— (2" Vil ) 2(z0)
Keller-Lieb-Thirring inequality : withn=1/(1—9)=2p/(2p — d)
VVELP(RY), (M —(-A=V))_ > —Kp [[V[[za
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The free Dirac operator in dimension d is defined by

d
@m = Zog(—iaj)—l—mﬂ:a-(—iV)—&-mﬁ

Jj=1

@d=1a=o0yand B=03: P, =02(—101) + mos
Qd=2 a= (O'J')j:1’2 and 8 = o3: ,Dm = 212-21 Uj(—iaj) + mos
@ d =3, a = (ak)k=1,2,3 and S such that

(0 o (L, 0
Q) = (Uk 0) and [ := <0 _H2>

Here (Uj)j:1)2’3 are the Pauli matrices

Ground state : Ap(V) is the lowest eigenvalue in (— m, m) of

@m -V
Ap(a, p) i= inf{)\D(V) LV e LP(RYRY) and ||Vl pge = a}
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A Sobolev/Keller inequality for a Dirac operator

Theorem (JD, Gontier, Pizzichillo, van den Bosch)

Let p > d > 1. There exists a,(p) > 0 such that the map
a — Np(a, p) defined on [O, a*(p)) is continuous, strictly decreasing,
takes values in (— m, m], and such that

lim Ap(a,p) =m and lim Ap(a,p)=—m
a—04 a—a,(p)

If (p,d) # (1,1), then Ap(a, p) is attained on (0, a,(p))
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The case of dimension d =1

1.0

3.8 1
0.5

3.6
0.0
3.4 1 =051
1.0

3.2 1
1.0

3.0 1
0.5 1
2.8 1 0.0 1
-0.5 1

2.6
1.0

1 2 3 4 5 6 7 8 0 1 2 3 4

With m =1 The function p — a.(p) (left), has a mazimum at p ~ 1.32 and
limp—1, au(p) = 7 and limp 100 ax(p) = 2
The function (right) Ap(a, p) for various p is such that Ap (o (p),p) = —1
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The radial case in dimension d = 3

5.0

4.8

4.6

4.4

4.2

4.0

3.8 1

3.6 1

1.01

0.5 1

0.0 1

-0.51

-1.04

1.04

0.54

0.0

—-0.54

LU [ I
©~N o U A

T T OTUTOT

-1.04

10 0

-
N
w

Radial case withd =3 and m=1

(Left) The function p — o’*3(p) reaches its mazimum at p ~ 3.86

(Right) The maps o +— /\rDad’(“:l)(Oc7 p)
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Is the optimal potential radial?

Iteration n = 2 Iteration n = 4

Iteration n = 6 Iteration n = 8 Iteration n = 10

0 0 0
-2 -2 -2
-4 -4 -4
-6 -6 -6
-6 -4 -2 o 2 a4 -6 -4 -2 o 2 a4 -6 -4 -2 o 2 4

A numerical answer... Contour lines of the potential (by a fized point
method) for p =3 and X\ = 1/2, for some initial potential chosen at random
Conjecture. The optimal potential at o = o, (p) is

an Aubin-Talenti profile up, to an angular-spinor
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These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Lectures/
> Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list /
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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