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for the pressure variable

B Caarelli-Kohn-Nirenberg inequalities: a proof of symmetry by the
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Bifurcation and phase transition in GNS inequalities
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λ 7→ µ(λ) on Sd with d = 3

‖∇u‖2
L2(Sd ) +

λ

p − 2
‖u‖2

L2(Sd ) ≥
µ(λ)

p − 2
‖u‖2

Lp(Sd )

Taylor expansion of u = 1 + εϕ1 as ε→ 0 with −∆ϕ1 = d ϕ1

µ(λ) < λ if and only if λ > d

B The inequality holds with µ(λ) = λ = d [Bakry, Emery, 1985]
[Beckner, 1993], [Bidaut-Véron, Véron, 1991, Corollary 6.1]
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GNS as entropy-entropy production inequalities

(subcritical) Gagliardo-Nirenberg-Sobolev inequality

‖∇F‖2
L2(Sd ) ≥ d Ep[F ] :=

d

p − 2

(
‖F‖2

Lp(Sd ) − ‖F‖
2
L2(Sd )

)
for any p ∈ [1, 2) ∪ (2, 2∗)

with 2∗ := 2 d
d−2 if d ≥ 3 and 2∗ = +∞ if d = 1 or 2

Limit p → 2: the logarithmic Sobolev inequality∫
Sd
|∇F |2 dµ ≥ d

2
E2[F ] :=

d

2

∫
Sd
F 2 log

(
F 2

‖F‖2
L2(Sd )

)
dµ

p = 1: Poincaré inequality

‖∇F‖2
L2(Sd ) ≥ d E1[F ] := d

(
‖F‖2

L2(Sd ) − ‖F‖
2
L1(Sd )

)
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Carré du champ – admissible parameters on Sd

[JD, Esteban, Kowalczyk, Loss] Monotonicity of the deficit along

∂u

∂t
= u−p (1−m)

(
∆u + (mp − 1)

|∇u|2

u

)

1 2 3 4

0.5

1.0

1.5

Case d = 5: admissible parameters 1 ≤ p ≤ 2∗ = 10/3 and m

(horizontal axis: p, vertical axis: m). Improved inequalities inside !
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Admissible parameters

22 J. Dolbeault & M.J. Esteban

Figures
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Fig. 1. The best constant ∏ 7! µ(∏) in Inequality (1) for d = 3 and p = 3 is represented by
the plain curve (numerical computation). The dashed line is the estimate of Proposition 10
(valid only for ∏∏ 1) and the dotted line is the estimate of Theorem 2.
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Fig. 2. The admissible range for d = 1, 2, 3 (first line), and d = 4, 5 and 10 (from left to
right), as it is deduced from Lemma 13 using (16): the curves p 7! m±(p) enclose the admis-
sible range of the exponent m.

d = 1, 2, 3 (first line) and d = 4, 5 and 10 (second line)

the curves p 7→ m±(p) determine the admissible parameters (p,m)

[JD, Esteban, Kowalczyk, Loss 2014] [JD, Esteban, 2019]

m±(d , p) := 1
(d+2) p

(
d p + 2±

√
d (p − 1) (2 d − (d − 2) p)

)
J. Dolbeault Phase transitions and symmetry
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Another Gagliardo-Nirenberg-Sobolev inequality

[JD, Esteban](
‖∇u‖2

L2(Sd ) + λ
p−2 ‖u‖

2
L2(Sd )

)θ
‖u‖2 (1−θ)

L2(Sd )
≥
(
µ(p,θ,λ)

p−2

)θ
‖u‖2

Lp(Sd )

Symmetry holds if µ(p, θ, λ) = λ, optimal functions are constant
Symmetry breaking if λ > d θ: take uε := 1 + εϕ, ∆ϕ+ d ϕ = 0

Bakry-Emery exponent : 2# := +∞ if d = 1, 2# := (2 d2 + 1)/(d − 1)2

if d ≥ 2
and take p ∈ (2, 2#]

θ# := 3
p − 2

4 p − 7
if d = 1 ,

1

θ#
:= 1+

(p − 1) (2# − p)

p − 2

(
d − 1

d + 2

)2

if d ≥ 2

Proposition

Let d ≥ 1, p ∈ (2, 2#), and θ ≥ θ#. The function λ 7→ µ(p, θ, λ) is
monotone increasing, concave and µ(p, θ, λ) < λ if and only if λ > d θ

J. Dolbeault Phase transitions and symmetry
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Second order phase transition
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d = 1, p = 5: θ = 2 (left) θ = 0.8 (right). Bifurcation at λ = µ = d θ
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Parameter range

Theorem (Bou Dagher, JD)

]Let d ≥ 1, p ∈ (2, 2∗) and θ > θ? := d (p − 2)/(2 p)
The function λ 7→ µ(p, θ, λ) is monotone increasing, concave

µ(p, θ, λ) ∼ κλ1−θ?/θ as λ→ +∞
µ(p, θ, λ) ≤ λ and µ(p, θ, λ) < λ if λ > d θ

µ(p, θ, λ) = λ if λ ≤ d θ , θ ≥ θ# , p ∈ (2, 2#] or p > 2 if d = 1
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horizontal axis: p, vertical axis: θ

in dimensions d = 1, d = 2 and d = 3 (from left to right)
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Second and first order phase transitions
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d = 1, p = 5, θ = 2: θ = 0.8, θ = 0.32 and θ = θ? = 0.3
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Critical case: d = 1, θ = θ?, for p = 9.0, 9.7, 10.1 and 10.8
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Second and first order phase transitions
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Critical case: d = 1, θ = θ?, for p = 9.0, 9.7, 10.1 and 10.8

J. Dolbeault Phase transitions and symmetry



GNS inequalities on Sd and phase transitions
Stability results based on entropy methods

Further results on symmetry

Subcritical inequalities and classical bifurcation results
Other mechanisms of phase transition
Caffarelli-Kohn-Nirenberg inequalities

Reparametrization and consequences

Euler-Lagrange equation for an optimal function (with θ = 1)

−∆u +
Λ

p − 2
u = up−1 (EL1,Λ)

Theorem (Bou Dagher, JD)

Let d ≥ 1, p ∈ (2, 2∗), θ ≥ θ?
A solution u of (EL1,Λ) also solves (ELθ,λ) for λ = λ(θ,Λ) with

λ(θ,Λ) := 1
θ

(
Λ + (1− θ) (p − 2)

‖∇u‖2
L2(Sd )

‖u‖2
L2(Sd )

)
For λ > 0 small enough, we have µ(θ, λ) = λ
For θ − θ? > 0 small enough, symmetry breaking occurs for λ < d θ

Symmetry breaking with λ < d θ means first order phase transition

J. Dolbeault Phase transitions and symmetry
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More qualitative properties

Proposition (Bou Dagher, JD)

Let θ0 := (d+2) (d+3) (p−2)
2 (p2+2 p−6)+d (p2+6 p−12)−d2 (p−2)2

Assuming that the curve C : [d , d + ε)→ (R+)2 is smooth enough:
If θ 6= θ0, the curve C bifurcates from (d θ, d θ) tangentially to µ = λ
The curve C is concave and below µ = λ (on the right) if θ > θ0

The curve C is convex and above the line µ = λ (on the left) if θ < θ0
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blue curve: p 7→ θ?(p)

yellow curve: if θ ≥ θ#(p), the phase transi-
tion is of second order

red curve: if it is below p 7→ θ?(p), the phase
transition is of first order for θ−θ?(p) > 0 small
(Gaussian test functions)

green curve: if κ(p, θ?) < θ?(p), the phase
transition is of first order for θ−θ?(p) > 0 small

(comparison with GNS on Rd )
black, dotted curve: p 7→ θ0(p) (at the bifur-

cation point)

brown curve p 7→ θ•(p): a numerical approx-
imation of the threshold between first / second
order phase transitions
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The critical Caffarelli-Kohn-Nirenberg inequality

a

b

0

(∫
Rd
|v|p

|x|b p dx
)2/p

≤ Ca,b

∫
Rd
|∇v|2
|x|2 a dx

a ≤ b ≤ a + 1, a < ac , d ≥ 3
p = 2 d

d−2+2 (b−a)
> 0, ac = 1

2
(d − 2)

B A radial optimal function:

v?(x) =
(
1 + |x |(p−2) (ac−a))−2/(p−2)

among radially symmetric functions

Theorem (JD, Esteban, Loss, 2015)

There is symmetry, i.e., Ca,b = C?a,b, and all optimal functions are
radially symmetric if bFS(a) ≤ b < a + 1. If a < b < bFS(a), then there
is symmetry breaking, Ca,b > C?a,b, and optimal functions are not
radially symmetric.

[Caffarelli, Kohn, Nirenberg (1984)], [F. Catrina, Z.-Q. Wang (2001)]
[Smets, Willem], [Catrina, Wang], [Felli, Schneider]
[Bonforte, JD, Nazaret, Muratori]
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A new proof: rewriting of CKN

1) Change of variables: v(r , ω) = u
(
rα, ω), Dαu = (α∂ru,∇ωu)∫

Rd |Dαu|2 |x |n−d dx ≥ Cα,n
(∫

Rd |u|p |x |n−d dx
)2/p

with n = 2 p/(p − 2). Symmetry means that the Aubin-Talenti
function u∗(x) := (1 + |x |2)−(n−2)/2 realizes the equality case

2) Relative measure: with w = u/u∗ and dµq(x) = |u∗(x)|q |x |n−d dx∫
Rd |Dαw |2 dµ2 dx+ 1

4 α
2 n (n−2)

∫
Rd |w |2 dµp dx ≥ Cα,n

(∫
Rd |w |p dµp dx

)2/p

3) Stereographic projection: w(x) = f (z , ω) with z = 1−|x|2
1+|x|2 , ω = 2 x

1+|x|2∫
Sd

(
α2
(
1− z2

)
|f ′|2 + |∇ωf |2

1−z2

)
dσn + α2

4 n (n − 2)
∫
Sd |f |

2 dσn

≥ Kα,n
(∫

Sd |f |
p dσn

)2/p

dσn = Z−1
n

(
1− z2

)(n−2)/2
dz dω, z ∈ [−1,+1], ω ∈ Sd−1

J. Dolbeault Phase transitions and symmetry



GNS inequalities on Sd and phase transitions
Stability results based on entropy methods

Further results on symmetry

Subcritical inequalities and classical bifurcation results
Other mechanisms of phase transition
Caffarelli-Kohn-Nirenberg inequalities

A new proof: fast diffusion equation and carré du champ

Let ′ and ∇ denote the derivatives with respect to z ∈ [−1, 1] and
ω ∈ Sd−1, ∆ = ∇ · ∇ and

Dv :=

(
α
√

1− z2 v ′,
1√

1− z2
∇v
)
, Lv := D ·Dv

Lv = α2 Lv +
1

1− z2
∆v , Lv :=

(
1− z2

)
v ′′ − n z v ′

Weighted fast diffusion equation

∂v

∂t
= Lvm = −D·(v DP) , P =

m

1−m
vm−1 , m =

n − 1

n
, p =

2 n

n − 2

v = up and D(t) :=

∫
Sd
|Du(t, ·)|2 dσn +

nα2

p − 2

∫
Sd
|u(t, ·)|2 dσn

Proposition (Bou Dagher, JD)

D′(t) ≤ 0 if α ≤ αFS :=
√

d−1
n−1

Nonlinear carré du champ techniques and Felli & Schneider (FS)
[JD, Zhang, 2021]: weights (1 + ε− z2) =⇒ First parabolic proof

J. Dolbeault Phase transitions and symmetry
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Details

D′(t) = − 8
(p+2)2

∫
Sd v

m
(
K[P]−mnα2 |DP|2

)
dσn

with K[P] := 1
2 L
(
|DP|2

)
−DP ·D(LP)− 1

n (LP)2

K[P] =m

∣∣∣∣α2
(
1− z2

)
P′′ − ∆P

(n−1)
(

1−z2
) ∣∣∣∣2 + 2α2

∣∣∣∇P′ + z∇P
1−z2

∣∣∣2
+ α2 (n − 1) |DP|2

+
(
1− z2

)−2
(

1
2 ∆(|∇P|2)−∇P · ∇∆P− (∆P)2

n−1 − (n − 2)α2 |∇P|2
)

Corollary (Bou Dagher, JD)

If n > d ≥ 3, m = (n − 1)/n and p = 2 n/(n − 2), then∫
Sd−1 ρ

q
(

1
2 ∆(|∇P|2)−∇P · ∇∆P− (∆P)2

n−1

)
dω

= a
∫
Sd−1 ρ

q
∥∥LP− b

a MP
∥∥2

dω +
(

c− b2

a

) ∫
Sd−1 ρ

q |∇P|4
P2 dω

+ (n − 2) d−1
n−1

∫
Sd−1 ρ

q |∇P|2 dω

Regularization as in [JD, Zhang]
J. Dolbeault Phase transitions and symmetry
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Stability results
based on entropy methods

B Subcritical Gagliardo-Nirenberg inequalities on Sd

B Sobolev inequality: the Bianchi-Egnell stability estimate made
constructive

B The Gaussian logarithmic Sobolev inequality seen as an infinite
dimensional limit
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Gagliardo-Nirenberg inequalities: stability

An improved inequality under orthogonality constraint (Π1 is a
projection on some positive spherical harmonic functions) and the
stability inequality arising from the carré du champ method can be
combined in the subcritical case as follows

Theorem (Brigati, JD, Simonov)

Let d ≥ 1 and p ∈ (1, 2∗). For any F ∈ H1(Sd , dµ), we have∫
Sd
|∇F |2 dµ− d Ep[F ]

≥ Sd,p

(
‖∇Π1F‖4

L2(Sd )

‖∇F‖2
L2(Sd ) + ‖F‖2

L2(Sd )

+ ‖∇(Id− Π1)F‖2
L2(Sd )

)

for some explicit stability constant Sd,p > 0

B The result holds true for the logarithmic Sobolev inequality (p = 2),
again with an explicit constant Sd,2, for any finite dimension d

J. Dolbeault Phase transitions and symmetry
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B The far away regime: use an improved interpolation inequality
If ‖∇F‖2

L2(Sd ) / ‖F‖
2
Lp(Sd ) ≥ ϑ0 > 0, by the convexity of ψ

‖∇F‖2
L2(Sd ) − d Ep[F ] ≥ d ‖F‖2

Lp(Sd ) ψ

(
1
d

‖∇F‖2
L2(Sd )

‖F‖2
Lp (Sd )

)
≥ d

ϑ0
ψ
(
ϑ0

d

)
‖∇F‖2

L2(Sd )

B The local case: ‖∇F‖2
L2(Sd ) < ϑ0 ‖F‖2

Lp(Sd )

Take ‖F‖Lp(Sd ) = 1, assume that d ϑ0

d−(p−2)ϑ0
> 0 and deduce from the

Poincaré inequality that

1− ϑ
d <

(∫
Sd F dµ

)2 ≤ 1

+ a Taylor expansion using a partial decomposition
on spherical harmonics

J. Dolbeault Phase transitions and symmetry
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Large dimensional limit

... based on the Maxwell-Poincaré lemma [McKean, 1973]
Gagliardo-Nirenberg-Sobolev inequalities on Sd , p ∈ [1, 2)

‖∇u‖2
L2(Sd ,dµd ) ≥

d
p−2

(
‖u‖2

Lp(Sd ,dµd ) − ‖u‖
2
L2(Sd ,dµd )

)
Theorem (Brigati, JD, Simonov)

Let v ∈ H1(Rn, dx) with compact support, d ≥ n and

ud(ω) = v
(
ω1/
√
d , ω2/

√
d , . . . , ωn/

√
d
)

where ω ∈ Sd ⊂ Rd+1. With dγ(y) := (2π)−n/2 e−
1
2 |y |

2

dy ,

lim
d→+∞

d
(
‖∇ud‖2

L2(Sd ,dµd ) −
d

2−p

(
‖ud‖2

L2(Sd ,dµd ) − ‖ud‖
2
Lp(Sd ,dµd )

))
= ‖∇v‖2

L2(Rn,dγ) − 1
2−p

(
‖v‖2

L2(Rn,dγ) − ‖v‖
2
Lp(Rn,dγ)

)
J. Dolbeault Phase transitions and symmetry
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An explicit stability result for the Sobolev inequality

Sobolev inequality on Rd with d ≥ 3, 2∗ = 2 d
d−2 and sharp constant Sd

‖∇f ‖2
L2(Rd ) ≥ Sd ‖f ‖2

L2∗ (Rd ) ∀ f ∈ Ḣ1(Rd) = D1,2(Rd)

with equality on the manifold M of the Aubin–Talenti functions

ga,b,c(x) = c
(
a + |x − b|2

)− d−2
2 , a ∈ (0,∞) , b ∈ Rd , c ∈ R

Theorem (JD, Esteban, Figalli, Frank, Loss)

There is a constant β > 0 with an explicit lower estimate which does not
depend on d such that for all d ≥ 3 and all f ∈ H1(Rd) \M we have

‖∇f ‖2
L2(Rd ) − Sd ‖f ‖2

L2∗ (Rd ) ≥
β

d
inf

g∈M
‖∇f −∇g‖2

L2(Rd )

No compactness argument
The (estimate of the) constant β is explicit
The decay rate β/d is optimal as d → +∞

J. Dolbeault Phase transitions and symmetry
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Stability for the Sobolev inequality: the history

B [Rodemich, 1969], [Aubin, 1976], [Talenti, 1976]

In the inequality ‖∇f ‖2
L2(Rd ) ≥ Sd ‖f ‖2

L2∗ (Rd ), the optimal constant is

Sd = 1
4 d (d − 2) |Sd |1−2/d

with equality on the manifold M = {ga,b,c} of the Aubin-Talenti
functions
B [Lions] a qualitative stability result

if lim
n→∞

‖∇fn‖2
2/‖fn‖2

2∗ = Sd , then lim
n→∞

inf
g∈M

‖∇fn −∇g‖2
2/‖∇fn‖2

2 = 0

B [Brezis, Lieb, 1985] a quantitative stability result ?
B [Bianchi, Egnell, 1991] there is some non-explicit cBE > 0 such that

‖∇f ‖2
2 ≥ Sd ‖f ‖2

2∗ + cBE inf
g∈M

‖∇f −∇g‖2
2

The strategy of Bianchi & Egnell involves two steps:
– a local (spectral) analysis: the neighbourhood of M
– a local-to-global extension based on concentration-compactness :

the far away regimeThe constant cBE is not explicit
J. Dolbeault Phase transitions and symmetry
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A stability result for the logarithmic Sobolev inequality

Use the inverse stereographic projection to rewrite the result on Sd

‖∇F‖2
L2(Sd ) −

1

4
d (d − 2)

(
‖F‖2

L2∗ (Sd ) − ‖F‖
2
L2(Sd )

)
≥ β

d
inf

G∈M(Sd )

(
‖∇F −∇G‖2

L2(Sd ) +
1

4
d (d − 2) ‖F − G‖2

L2(Sd )

)
Rescale by

√
d , consider a function depending only on n

coordinates and take the limit as d → +∞ to approximate the
Gaussian measure dγ = e−π |x|

2

dx

Corollary (JD, Esteban, Figalli, Frank, Loss)

With β > 0 as in the result for the Sobolev inequality

‖∇u‖2
L2(Rn,dγ) − π

∫
Rn

u2 log

(
|u|2

‖u‖2
L2(Rn,dγ)

)
dγ

≥ β π

2
inf

a∈Rn, c∈R

∫
Rn

|u − c ea·x |2 dγ
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Stability for the logarithmic Sobolev inequality

B [Gross, 1975] Gaussian logarithmic Sobolev inequality for n ≥ 1

‖∇u‖2
L2(Rn,dγ) ≥ π

∫
Rn

u2 log

(
|u|2

‖u‖2
L2(Rn,dγ)

)
dγ

B [Weissler, 1979] scale invariant (but dimension-dependent) version
of the Euclidean form of the inequality
B [Stam, 1959], [Federbush, 1969], [Costa, 1985] Cf. [Villani, 2008]
B [Bakry, Emery, 1984], [Carlen, 1991] equality iff

u ∈M :=
{
wa,c : (a, c) ∈ Rd×R

}
where wa,c(x) = c ea·x ∀ x ∈ Rn

[Carlen, 1991] reinforcement of the inequality (Wiener transform)
B [McKean, 1973], [Beckner, 92] (LSI) as a large d limit of Sobolev
B [Bobkov, Gozlan, Roberto, Samson, 2014], [Indrei et al., 2014-23]
stability in Wasserstein distance, in W1,1, etc.
B [JD, Toscani, 2016] Comparison with Weissler’s form, a (dimension
dependent) improved inequality
B [Fathi, Indrei, Ledoux, 2016] improved inequality assuming a
Poincaré inequality (Mehler formula)
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The global and the local problem

d(u, v)2 := q[u − v ] where q[w ] := ‖∇w‖2
L2(Sd ) + d

p−2 ‖w‖
2
L2(Sd )

deficit : δ[u] := ‖∇u‖2
L2(Sd ) + d

p−2

(
‖u‖2

L2(Sd ) − ‖u‖
2
Lp(Sd )

)
, p = 2 d

d−2

distance to the set M of the Aubin-Talenti (optimal) functions

d(u,M ) := inf
v∈M

d(u, v)

limt→+∞ d
(
u(t, ·),M

)
= 0 and δ[u(t, ·)] is monotone non-increasing if

∂u
∂t = mu(m−1) p

(
∆u + (mp − 1) |∇u|2

u

)
For a given ε ∈ (0, 1), u is in the far away regime if

d(u,M )2 > ε q[u]

and in the neighbourhood of M if d(u,M )2 ≤ ε q[u]

local stability : I(ε) := inf
{

δ[u]
d(u,M )2 : u ∈ H1(Sd , dσ) , d(u,M )2 ≤ ε q[u]

}
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A new proof for the global to local reduction

[Bonforte, JD, Esteban, Figalli, Frank, Loss] on an idea by Christ. If
we start in the far away regime, which means

d(u|t=0,M )2 > ε q[u|t=0]

using d(u|t=0,M ) ≤ d(u|t=0, 0) = q[u|t=0], ‖u(t, ·)‖Lp(Sd ) = 1 we obtain

δ[u|t=0]

d(u|t=0,M )2
≥

q[u|t=0]− d
p−2

q[u|t=0]
≥ 1−

d
p−2

q[u(t, ·)]
=
δ[u(t, ·)]

q[u(t, ·)]

We know that

lim
t→+∞

q[u(t, ·)] =
d

p − 2
and lim

t→+∞
d
(
u(t, ·),M

)2
= 0

so that for some t∗ > 0 we have

q[u(t∗, ·)] = 1
ε d
(
u(t∗, ·),M

)2

δ[u|t=0]

d(u|t=0,M )2
≥ δ[u(t∗, ·)]

q[u(t∗, ·)]
= ε

δ[u(t∗, ·)]

d
(
u(t∗, ·),M

)2 ≥ ε I(ε)
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GNS inequalities on Sd and phase transitions
Stability results based on entropy methods

Further results on symmetry

Symmetry results for spinors in dimension d = 3
Symmetry results for spinors in dimension d = 2
A Sobolev inequality for a Dirac operator

Further results (and conjectures)

on symmetry

B Caffarelli-Kohn-Nirenberg inequalities for spinor (complex) valued
functions in dimension d = 3

B Caffarelli-Kohn-Nirenberg inequalities for spinor (complex) valued
functions in dimension d = 2

B A Sobolev inequality for Dirac operators
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Symmetry results for spinors in dimension d = 3

We consider 2-spinors, which are C2-valued function

R3 3 x 7→ ψ(x) =

(
ψ1(x)
ψ2(x)

)
∈ C2

Caffarelli-Kohn-Nirenberg inequalities for spinors∫
R3

|σ · ∇ψ(x)|2

|x |2α
dx ≥ Cα,β

(∫
R3

|ψ(x)|p

|x |β p
dx

)2/p

(SCKN)

where ∂j = ∂xj and the gradient term is defined by

σ · ∇ψ =
3∑

j=1

σj ∂jψ

and σ = (σj)j=1,2,3 is the family of the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
α ≤ β ≤ α + 1, p = 6/(1− 2α + 2β), Cα,β ≥ 0 is the best constant

J. Dolbeault Phase transitions and symmetry
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Symmetry for spinors

Proposition (JD, Esteban, Frank, Loss)

Let Λ :=
{
k − 1

2 : k ∈ Z \ {0}
}

If α ∈ Λ, then Cα,β = 0 for all α ≤ β ≤ α + 1
If α 6∈ Λ, then Cα,β > 0 for all α ≤ β ≤ α + 1

Angular decomposition in eigenspaces of σ · L

L2
(
S,C2; dω

)
=

⊕
k∈Z\{−1}

Hk

where L := ω ∧ (−i ∇) is the angular momentum operator

Definition

A spinor ψ on R3 is symmetric if there is a constant χ0 ∈ C2 and a
complex-valued function f on R+ such that

ψ(x) = f (r)χ0 or ψ(x) = f (r)σ · ω χ0 , r = |x | , ω = x/r

i.e., ψ ∈ H0 or H−2

J. Dolbeault Phase transitions and symmetry
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Results

-

6

a

b

0 1

°1

1

Caffarelli-Kohn-Nirenberg
inequalities for scalars

-

6

0 1/2 1

1

Æ

Ø

°1°3/2

Caffarelli-Kohn-Nirenberg
inequalities for spinors

Symmetry regions: green; symmetry breaking regions: red

[JD, Esteban, Frank, Loss]
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The ingredients of the proof

Existence of optimizers

A Hardy inequality case: Cα,α+1 = mink∈Z\{−1}
(
k − α + 1

2

)2

Passing to logarithmic variables B see slide +1∫∫
R×S

(
|∂sφ|2 +

∣∣(σ · L− α + 1
2

)
φ
∣∣2) ds dω ≥ Cα,p

(∫∫
R×S |φ|

p ds dω
)2/p

Monotonicity properties: for some α? : (2, 6)→ [−1/2, 0]

Cα,p < C?α,p if − 1/2 ≤ α < α?(p)

Cα,p = C?α,p if α?(p) ≤ α < 1/2

A Gagliardo-Nirenberg interpolation inequality for spinors on the
sphere based on tools of harmonic analysis B see slide +2

A Keller-Lieb-Thirring estimate
A chain of (optimal) estimates
Instability: study of the quadratic form obtained by linearization

and representation using spherical harmonics B see slide +2
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Logarithmic variables2

6

-a

p

0 1

2

6
Caffarelli-Kohn-Nirenberg inequalities for scalars

6

-Æ

p

0 1°1

2

6
Caffarelli-Kohn-Nirenberg inequalities for spinors
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Symmetry versus symmetry breaking (details)
4

-

6

Æ

p

6

2
°1/2 1

3

-

6

Æ

p
6

2
°1/2 0 1/2 1
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Symmetry results for spinors in dimension d = 2

the d = 2 spinorial Caffarelli-Kohn-Nirenberg inequality∫
R2

|σ·∇ψ|2
|x|2α dx ≥ Cα,p

(∫
R2

|ψ|p
|x|βp dx

)2/p

(SCKN)

for spinor valued functions ψ : R2 → C2

B the logarithmic Caffarelli-Kohn-Nirenberg inequality∫
R
∫
S1

(
|∂sφ(s, θ)|2 + |(α− iσ3∂θ)φ(s, θ)|2

)
ds dθ

≥ Cα,p
(∫

R
∫
S1 |φ(s, θ)|p ds dθ

)2/p

Interpolation inequalities for Aharonov–Bohm magnetic fields
A(x) = (x2,− x1)/|x |2∫

R2 |(−i∇− αA)ψ|2 dx ≥ CAB
α,p

(∫
R2

|ψ|p
|x|2 dx

)2/p

(AB)

Theorem (JD, Frank, Weixler)

Cα,p = CAB
α,p for any (α, p) ∈ (0, 1/2)× (2,+∞)
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Symmetry versus symmetry breaking

Theorem (JD, Frank, Weixler)

For every α ∈ (0, 1/2) and p > 2, there is an optimizer with
Cα,p > 0 and limα→0+ Cα,p = 0. Symmetry holds if and only if
α ∈

(
0, α(p)

]
for some function p 7→ α(p) : (2,∞)→ (0, 1/2)

The symmetry and symmetry breaking regions are symmetric with
respect to α = 0 and 1-periodic

-2 -1 0 1 2

5

10

15

20
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8.5
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9.5

10.0

10.5

11.0

(SCKN) with d = 2. Horizontal axis: α ∈ (0, 1/2). Vertical axis: p ∈ (2,∞)

Symmetry range: green, by the equivalence with Aharonov-Bohm problem

and entropy methods for flows associated to (CKN) inequalities

Symmetry breaking range: red and blue; Undecided in the tiny white gap

magnetic ring: an interpolation inequality on S1

[JD, Esteban, Laptev, Loss]
Aharonov-Bohm and Caffarelli-Kohn-Nirenberg inequalities

[Bonheure, JD, Esteban, Laptev, Loss]

a Gegenbauer polynomial basis to study linear instability numerically

[JD, Frank, Weixler] J. Dolbeault Phase transitions and symmetry
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The Keller-Lieb-Thirring inequality (Schrödinger)

With q < 2∗ := 2 d/(d − 2) if d ≥ 3, and ϑ = d (q − 2)/(2 q)
The Gagliardo-Nirenberg-Sobolev inequality

‖∇u‖ϑL2(Rd ) ‖u‖
1−ϑ
L2(Rd ) ≥ Cq ‖u‖Lq(Rd )

can be rewritten as

‖∇u‖2
L2(Rd ) + λ ‖u‖2

L2(Rd ) ≥ Cq λ
1−ϑ ‖u‖2

Lq(Rd )

for any (λ, u) ∈ (0,+∞)×H1(Rd), with C 2
q = ϑϑ(1− ϑ)1−ϑ Cq

Let λ be such that Cq λ
1−ϑ = ‖V ‖Lp(Rd ). The Schrödinger energy is∫

Rd

|∇u|2 dx −
∫
Rd

V |u|2 dx ≥ ‖∇u‖2
L2(Rd ) − ‖V ‖Lp(Rd ) ‖u‖

2
Lq(Rd )

≥ −
(

C−1
q ‖V ‖Lp(Rd )

)1/(1−ϑ)

‖u‖2
L2(Rd )

Keller-Lieb-Thirring inequality : with η = 1/(1− ϑ) = 2 p/(2 p − d)

∀V ∈ Lp(Rd) ,
(
λ1 − (−∆− V )

)
− ≥ −Kp ‖V ‖ηLp(Rd )
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The free Dirac operator in dimension d is defined by

/Dm :=
d∑

j=1

αj (− i ∂j) + m β = α · (− i∇) + m β

d = 1, α = σ2 and β = σ3: /Dm = σ2 (− i ∂1) + m σ3

d = 2, α = (σj)j=1,2 and β = σ3: /Dm =
∑2

j=1 σj(− i ∂j) + m σ3

d = 3, α = (αk)k=1,2,3 and β such that

αk :=

(
0 σk
σk 0

)
and β :=

(
I2 0
0 −I2

)
Here (σj)j=1,2,3 are the Pauli matrices

Ground state : λD(V ) is the lowest eigenvalue in (−m,m) of
/Dm − V

ΛD(α, p) := inf
{
λD(V ) : V ∈ Lp(Rd ,R+) and ‖V ‖Lp(Rd ) = α

}
J. Dolbeault Phase transitions and symmetry
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A Sobolev/Keller inequality for a Dirac operator

Theorem (JD, Gontier, Pizzichillo, van den Bosch)

Let p ≥ d ≥ 1. There exists α?(p) > 0 such that the map
α 7→ ΛD(α, p) defined on

[
0, α?(p)

)
is continuous, strictly decreasing,

takes values in (−m,m], and such that

lim
α→0+

ΛD(α, p) = m and lim
α→α?(p)

ΛD(α, p) = −m

If (p, d) 6= (1, 1), then ΛD(α, p) is attained on
(
0, α?(p)

)
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The case of dimension d = 1

With m = 1 The function p 7→ α?(p) (left), has a maximum at p ≈ 1.32 and
limp→1+ α?(p) = π and limp→+∞ α?(p) = 2

The function (right) ΛD(α, p) for various p is such that ΛD

(
α?(p), p

)
= −1

J. Dolbeault Phase transitions and symmetry
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The radial case in dimension d = 3

Radial case with d = 3 and m = 1
(Left) The function p 7→ αrad

? (p) reaches its maximum at p ≈ 3.86

(Right) The maps α 7→ Λ
rad,(κ=1)
D (α, p)
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Is the optimal potential radial?

A numerical answer... Contour lines of the potential (by a fixed point
method) for p = 3 and λ = 1/2, for some initial potential chosen at random

Conjecture. The optimal potential at α = α?(p) is
an Aubin-Talenti profile up to an angular spinor

J. Dolbeault Phase transitions and symmetry
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