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The fast diffusion equation

ut = ∆um x ∈ R
d , t > 0

1 Fast diffusion equations: entropy methods
Barenblatt solutions, relative entropy functional, large time
asymptotics, functional inequalities

2 Fast diffusion equations: linearization of the entropy
weighted L2 spaces, spectral gap, and asymptotic rates

3 Gagliardo-Nirenberg inequalities: improvements
discarding asymptotic eigenmodes and getting improved
functional inequalities

4 [Sobolev and Hardy-Littlewood-Sobolev inequalities: duality,
flows]
extinction in the regime of separation of variables and concavity
along the flow
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Existence, classical results

ut = ∆um x ∈ R
d , t > 0

Self-similar (Barenblatt) function: U(t) = O(t−d/(2−d(1−m))) as
t → +∞
[Friedmann, Kamin, 1980] ‖u(t, ·) − U(t, ·)‖L∞ = o(t−d/(2−d(1−m)))

d−1

d

m

fast diffusion equation
porous media equation

heat equation

1d−2

d

global existence in L
1extinction in finite time

Existence theory, critical values of the parameter m
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Intermediate asymptotics for fast diffusion & porous media

Some references

Generalized entropies and nonlinear diffusions (EDP, uncomplete):
[Del Pino, J.D.], [Carrillo, Toscani], [Otto], [Juengel, Markowich,
Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler,
J.D., Esteban], [Markowich, Lederman], [Carrillo, Vázquez],
[Cordero-Erausquin, Gangbo, Houdré], [Cordero-Erausquin, Nazaret,
Villani], [Agueh, Ghoussoub],... [del Pino, Sáez], [Daskalopulos,
Sesum]...

Some methods

1) [J.D., del Pino] relate entropy and Gagliardo-Nirenberg inequalities
2) entropy – entropy-production method the Bakry-Emery
point of view
3) mass transport techniques
4) hypercontractivity for appropriate semi-groups
5) the approach by linearization of the entropy

Focus: Fast diffusion equations and Gagliardo-Nirenberg inequalities
We follow the same scheme as for the heat equation

J. Dolbeault Improved Sobolev inequalities
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Time-dependent rescaling, Free energy

Time-dependent rescaling: Take u(τ, y) = R−d(t) v (t, y/R(τ))
where

∂R

∂τ
= Rd(1−m)−1 , R(0) = 1 , t = log R

The function v solves a Fokker-Planck type equation

∂v

∂t
= ∆vm + ∇ · (x v) , v|τ=0 = u0

[Ralston, Newman, 1984] Lyapunov functional:
Generalized entropy or Free energy

Σ[v ] :=

∫

Rd

(
vm

m − 1
+

1

2
|x |2v

)
dx − Σ0

Entropy production is measured by the Generalized Fisher
information

d

dt
Σ[v ] = −I [v ] , I [v ] :=

∫

Rd

v

∣∣∣∣
∇vm

v
+ x

∣∣∣∣
2

dx
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Relative entropy and entropy production

Stationary solution: choose C such that ‖v∞‖L1 = ‖u‖L1 = M > 0

v∞(x) :=
(
C + 1−m

2 m
|x |2

)−1/(1−m)

+

Relative entropy: Fix Σ0 so that Σ[v∞] = 0. The entropy can be put
in an m-homogeneous form: for m 6= 1,

Σ[v ] =
∫

Rd ψ
(

v
v∞

)
vm
∞ dx with ψ(t) = tm−1−m (t−1)

m−1

Entropy – entropy production inequality

Theorem

d ≥ 3, m ∈ [ d−1
d
,+∞), m > 1

2 , m 6= 1

I [v ] ≥ 2 Σ[v ]

Corollary

A solution v with initial data u0 ∈ L1
+(Rd ) such that |x |2 u0 ∈ L1(Rd ),

um
0 ∈ L1(Rd ) satisfies Σ[v(t, ·)] ≤ Σ[u0] e

− 2 t

J. Dolbeault Improved Sobolev inequalities
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An equivalent formulation: Gagliardo-Nirenberg inequalities

Σ[v ] =
∫

Rd

(
vm

m−1 + 1
2 |x |2v

)
dx − Σ0 ≤ 1

2

∫
Rd v

∣∣∣∇vm

v
+ x

∣∣∣
2

dx = 1
2 I [v ]

Rewrite it with p = 1
2m−1 , v = w 2p, vm = wp+1 as

1

2

(
2m

2m − 1

)2 ∫

Rd

|∇w |2dx +

(
1

1 − m
− d

) ∫

Rd

|w |1+pdx + K ≥ 0

1 < p = 1
2m−1 ≤ d

d−2 ⇐⇒ Fast diffusion case: d−1
d

≤ m < 1 ;
K < 0
0 < p < 1 ⇐⇒ Porous medium case: m > 1, K > 0
for some γ, K = K0

(∫
Rd v dx =

∫
Rd w 2p dx

)γ

w = w∞ = v
1/2p
∞ is optimal

m = m1 := d−1
d

: Sobolev, m → 1: logarithmic Sobolev

Theorem

[Del Pino, J.D.] Assume that 1 < p ≤ d
d−2 (fast diffusion case) and

d ≥ 3 ‖w‖L2p(Rd ) ≤ A ‖∇w‖θ
L2(Rd ) ‖w‖1−θ

Lp+1(Rd )

A =
(

y(p−1)2

2πd

) θ
2
(

2y−d
2y

) 1
2p

(
Γ(y)

Γ(y− d
2 )

) θ
d

, θ = d(p−1)
p(d+2−(d−2)p) , y = p+1

p−1

J. Dolbeault Improved Sobolev inequalities
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Intermediate asymptotics

Σ[v ] ≤ Σ[u0] e
−2τ+ Csiszár-Kullback inequalities

Undo the change of variables, with

u∞(t, x) = R−d(t) v∞ (x/R(t))

Theorem

[Del Pino, J.D.] Consider a solution of ut = ∆um with initial data
u0 ∈ L1

+(Rd) such that |x |2 u0 ∈ L1(Rd ), um
0 ∈ L1(Rd )

Fast diffusion case: d−1
d

< m < 1 if d ≥ 3

lim sup
t→+∞

t
1−d(1−m)
2−d(1−m) ‖um − um

∞‖L1 < +∞

Porous medium case: 1 < m < 2

lim sup
t→+∞

t
1+d(m−1)
2+d(m−1) ‖ [u − u∞] um−1

∞ ‖L1 < +∞
J. Dolbeault Improved Sobolev inequalities
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Fast diffusion equations: the finite mass regime

Can we consider m < m1 ?

If m ≥ 1: porous medium regime or m1 := d−1
d

≤ m < 1, the
decay of the entropy is governed by Gagliardo-Nirenberg
inequalities, and to the limiting case m = 1 corresponds the
logarithmic Sobolev inequality

Displacement convexity holds in the same range of exponents,
m ∈ (m1, 1), as for the Gagliardo-Nirenberg inequalities

The fast diffusion equation can be seen as the gradient flow of the
generalized entropy with respect to the Wasserstein distance if
m > m̃1 := d

d+2

If mc := d−2
d

≤ m < m1, solutions globally exist in L1 and the
Barenblatt self-similar solution has finite mass

J. Dolbeault Improved Sobolev inequalities
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...the Bakry-Emery method

We follow the same scheme as for the heat equation

Consider the generalized Fisher information

I [v ] :=

∫

Rd

v |Z |2 dx with Z :=
∇vm

v
+ x

and compute

d

dt
I [v(t, ·)]+2 I [v(t, ·)] = −2 (m−1)

∫

Rd

um (divZ )2 dx−2
d∑

i , j=1

∫

Rd

um (∂iZ
j)2 dx

the Fisher information decays exponentially:
I [v(t, ·)] ≤ I [u0] e

− 2 t

limt→∞ I [v(t, ·)] = 0 and limt→∞ Σ[v(t, ·)] = 0
d
dt

(
I [v(t, ·)] − 2 Σ[v(t, ·)]

)
≤ 0 means I [v ] ≥ 2 Σ[v ]

[Carrillo, Toscani], [Juengel, Markowich, Toscani], [Carrillo, Juengel,
Markowich, Toscani, Unterreiter], [Carrillo, Vázquez]

I [v ] ≥ 2 Σ[v ] holds for any m > mc , at least for radial solutions
J. Dolbeault Improved Sobolev inequalities
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Fast diffusion: finite mass regime

Inequalities...

d−1

d

m

1d−2

d

global existence in L
1

Bakry-Emery method (relative entropy)

v
m ∈ L

1, x
2

∈ L
1

Sobolev

Gagliardo-Nirenberg

logarithmic Sobolev

d

d+2

v

... existence of solutions of ut = ∆um

J. Dolbeault Improved Sobolev inequalities
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More references: Extensions and related results
Mass transport methods: inequalities / rates [Cordero-Erausquin,
Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh,
Ghoussoub, Kang]
General nonlinearities [Biler, J.D., Esteban],
[Carrillo-DiFrancesco],
[Carrillo-Juengel-Markowich-Toscani-Unterreiter] and gradient
flows [Jordan-Kinderlehrer-Otto], [Ambrosio-Savaré-Gigli],
[Otto-Westdickenberg] [J.D.-Nazaret-Savaré], etc
Non-homogeneous nonlinear diffusion equations [Biler, J.D.,
Esteban], [Carrillo, DiFrancesco]
Extension to systems and connection with Lieb-Thirring
inequalities [J.D.-Felmer-Loss-Paturel, 2006],
[J.D.-Felmer-Mayorga]
Drift-diffusion problems with mean-field terms. An example: the
Keller-Segel model [J.D-Perthame, 2004],
[Blanchet-J.D-Perthame, 2006], [Biler-Karch-Laurençot-Nadzieja,
2006], [Blanchet-Carrillo-Masmoudi, 2007], etc
... connection with linearized problems [Markowich-Lederman],
[Carrillo-Vázquez], [Denzler-McCann], [McCann, Slepčev], [Kim,
McCann], [Koch, McCann, Slepčev]

J. Dolbeault Improved Sobolev inequalities
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Fast diffusion equations: the infinite

mass regime

Linearization of the entropy
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Extension to the infinite mass regime, finite time vanishing

If m > mc := d−2
d

≤ m < m1, solutions globally exist in L1(Rd)
and the Barenblatt self-similar solution has finite mass.
For m ≤ mc , the Barenblatt self-similar solution has infinite mass

Extension to m ≤ mc ? Work in relative variables !

d−1

d

m

1d−2

d

global existence in L
1

Bakry-Emery method (relative entropy)

v
m ∈ L

1, x
2

∈ L
1

d

d+2

v

v0, VD ∈ L
1

v0 − VD∗
∈ L

1

VD1
− VD0

∈ L
1

Σ[VD1
VD0

] < ∞

Σ[VD1
VD0

] = ∞

m1

d−4

d−2

VD1
− VD0

6∈ L
1

mcm∗

Gagliardo-Nirenberg

J. Dolbeault Improved Sobolev inequalities
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Entropy methods and linearization: intermediate

asymptotics, vanishing

[A. Blanchet, M. Bonforte, J.D., G. Grillo, J.L. Vázquez], [J.D.,
Toscani]

work in relative variables
use the properties of the flow
write everything as relative quantities (to the Barenblatt profile)
compare the functionals (entropy, Fisher information) to their
linearized counterparts

=⇒ Extend the domain of validity of the method to the price of a

restriction of the set of admissible solutions

Two parameter ranges: mc < m < 1 and 0 < m < mc , where
mc := d−2

d

mc < m < 1, T = +∞: intermediate asymptotics, τ → +∞
0 < m < mc , T < +∞: vanishing in finite time limτրT u(τ, y) = 0

Alternative approach by comparison techniques: [Daskalopoulos,
Sesum] (without rates)

J. Dolbeault Improved Sobolev inequalities
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Fast diffusion equation and Barenblatt solutions

∂u

∂τ
= −∇ · (u∇um−1) =

1 − m

m
∆um (1)

with m < 1. We look for positive solutions u(τ, y) for τ ≥ 0 and
y ∈ R

d , d ≥ 1, corresponding to nonnegative initial-value data
u0 ∈ L1

loc
(dx)

In the limit case m = 0, um/m has to be replaced by log u
Barenblatt type solutions are given by

UD,T (τ, y) := 1
R(τ )d

(
D + 1−m

2 d |m−mc |

∣∣ y

R(τ )

∣∣2
)− 1

1−m

+

If m > mc := (d − 2)/d , UD,T with R(τ) := (T + τ)
1

d (m−mc ) describes
the large time asymptotics of the solutions of equation (1) as τ → ∞
(mass is conserved)

If m < mc the parameter T now denotes the extinction time and

R(τ) := (T − τ)−
1

d (mc−m)

If m = mc take R(τ) = eτ , UD,T (τ, y) = e−d τ
(
D + e−2τ |y |2/2

)−d/2

Two crucial values of m: m∗ := d−4
d−2 < mc := d−2

d
< 1

J. Dolbeault Improved Sobolev inequalities



Fast diffusion equations: entropy methods
Fast diffusion equations: linearization of the entropy

Gagliardo-Nirenberg inequalities: improvements
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Rescaling

A time-dependent change of variables

t := 1−m
2 log

(
R(τ )
R(0)

)
and x :=

√
1

2 d |m−mc |

y

R(τ)

If m = mc , we take t = τ/d and x = e−τ y/
√

2

The generalized Barenblatt functions UD,T (τ, y) are transformed into
stationary generalized Barenblatt profiles VD(x)

VD(x) :=
(
D + |x |2

) 1
m−1 x ∈ R

d

If u is a solution to (1), the function v(t, x) := R(τ)d u(τ, y) solves

∂v

∂t
= −∇ ·

[
v ∇

(
vm−1 − V m−1

D

)]
t > 0 , x ∈ R

d (2)

with initial condition v(t = 0, x) = v0(x) := R(0)−d u0(y)

J. Dolbeault Improved Sobolev inequalities
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Goal

We are concerned with the sharp rate of convergence of a solution v of
the rescaled equation to the generalized Barenblatt profile VD in the
whole range m < 1
Convergence is measured in terms of the relative entropy

E[v ] :=
1

m − 1

∫

Rd

[
vm − V m

D − m V m−1
D (v − VD)

]
dx

for all m 6= 0, m < 1

Assumptions on the initial datum v0

(H1) VD0 ≤ v0 ≤ VD1 for some D0 > D1 > 0

(H2) if d ≥ 3 and m ≤ m∗, (v0 − VD) is integrable for a suitable

D ∈ [D1,D0]

The case m = m∗ = d−4
d−2 will be discussed later

If m > m∗, we define D as the unique value in [D1,D0] such that∫
Rd (v0 − VD) dx = 0

Our goal is to find the best possible rate of decay of E[v ] if v solves (2)
J. Dolbeault Improved Sobolev inequalities
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Sharp rates of convergence

Theorem

[Bonforte, J.D., Grillo, Vázquez] Under Assumptions (H1)-(H2), if
m < 1 and m 6= m∗, the entropy decays according to

E[v(t, ·)] ≤ C e−2 (1−m) Λ t ∀ t ≥ 0

The sharp decay rate Λ is equal to the best constant Λα,d > 0 in the
Hardy–Poincaré inequality of Theorem 7 with α := 1/(m − 1) < 0
The constant C > 0 depends only on m, d ,D0,D1,D and E[v0]

Notion of sharp rate has to be discussed
Rates of convergence in more standard norms: Lq(dx) for
q ≥ max{1, d (1 − m)/ [2 (2 − m) + d (1 − m)]}, or C k by
interpolation
By undoing the time-dependent change of variables, we deduce
results on the intermediate asymptotics of (1), i.e. rates of decay
of u(τ, y) − UD,T (τ, y) as τ → +∞ if m ∈ [mc , 1), or as τ → T if
m ∈ (−∞,mc) J. Dolbeault Improved Sobolev inequalities
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Strategy of proof
Assume that D = 1 and consider dµα := hα dx , hα(x) := (1 + |x |2)α,
with α = 1/(m − 1) < 0, and Lα,d := −h1−α div [ hα ∇· ] on L2(dµα):∫

Rd f (Lα,d f ) dµα−1 =
∫

Rd |∇f |2 dµα

A first order expansion of v(t, x) = hα(x)
[
1 + ε f (t, x)h1−m

α (x)
]

solves
∂f

∂t
+ Lα,d f = 0

Theorem

[A. Blanchet, M. Bonforte, J.D., G. Grillo, J.-L. Vázquez] Let d ≥ 3. For
any α ∈ (−∞, 0) \ {α∗}, there is a positive constant Λα,d such that

Λα,d

∫

Rd

|f |2 dµα−1 ≤
∫

Rd

|∇f |2 dµα ∀ f ∈ H1(dµα)

under the additional condition
∫

Rd f dµα−1 = 0 if α < α∗

Λα,d =





1
4 (d − 2 + 2α)2 if α ∈

[
− d+2

2 , α∗

)
∪ (α∗, 0)

− 4α− 2 d if α ∈
[
−d ,− d+2

2

)

− 2α if α ∈ (−∞,−d)

[Denzler, McCann], [Blanchet, Bonforte, J.D., Grillo, Vázquez]
J. Dolbeault Improved Sobolev inequalities
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Relative entropy and Fisher information, interpolation

For m 6= 0, 1, the relative entropy of J. Ralston and W.I. Newmann
and the generalized relative Fisher information are given by

F [w ] := m
1−m

∫
Rd

[
w − 1 − 1

m

(
wm − 1

)]
V m

D dx

I[w ] :=
∫

Rd

∣∣∣ 1
m−1 ∇

[
(wm−1 − 1)V m−1

D

] ∣∣∣
2

v dx

where w = v
VD

. If v is a solution of (2): d
dt
F [w(t, ·)] = −I[w(t, ·)]

Linearization: f := (w − 1)V m−1
D , h := max{h2, 1/h1},

h1(t) := infw(t, ·), h2(t) := supw(t, ·). With |imt→∞h(t) = 1

hm−2

∫

Rd

|f |2 V 2−m
D dx ≤ 2

m
F [w ] ≤ h2−m

∫

Rd

|f |2 V 2−m
D dx

∫

Rd

|∇f |2 VD dx ≤ [1 + X (h)] I[w ] + Y (h)

∫

Rd

|f |2 V 2−m
D dx

where h5−2m =: 1 + X (h), d (1 − m)
[
h4(2−m) − 1

]
=: Y (h)

and limh→1 X (h) = limh→1 Y (h) = 0
J. Dolbeault Improved Sobolev inequalities
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Proof (continued)

A new interpolation inequality: for h > 0 small enough

F [w ] ≤ h2−m [1 + X (h)]

2
[
Λα,d − m Y (h)

] m I[w ]

Another interpolation allows to close the system of estimates: for
some C, t large enough,

0 ≤ h − 1 ≤ CF
1−m

d+2−(d+1)m

Hence we have a nonlinear differential inequality

d

dt
F [w(t, ·)] ≤ −2

Λα,d − m Y (h)[
1 + X (h)

]
h2−m

F [w(t, ·)]

A Gronwall lemma (take h = 1 + CF
1−m

d+2−(d+1)m ) then shows that

lim sup
t→∞

e 2 Λα,d tF [w(t, ·)] < +∞

J. Dolbeault Improved Sobolev inequalities
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Plots (d = 5)

λ01 = −4α− 2 d

λ10 = −2α

λ11 = −6α− 2 (d + 2)

λ02 = −8α− 4 (d + 2)

λ20 = −4α

λ30

λ21 λ12

λ03

λcont
α,d

:= 1
4(d + 2α− 2)2

α = −d

α = −(d + 2)

α = −d+2
2

α = −d−2
2

α = −d+6
2

α

0

Essential spectrum of Lα,d

α = −
√
d− 1 − d

2

α = −
√
d− 1 − d+4

2

α = − − d+2
2

√
2 d

(d = 5)

Spectrum of Lα,d

mc = d−2
d

m1 = d−1
d

m2 = d+1
d+2

m̃1 = d

d+2

m̃2 = d+4
d+6

m

Spectrum of 
(1 −m)L1/(m−1),d

(d = 5)

Essential spectrum

of (1

1

−m)L1/(m−1),d

2

4

6
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Remarks, improvements

Optimal constants in interpolation inequalities does not mean
optimal asymptotic rates
The critical case (m = m∗, d ≥ 3): Slow asymptotics [Bonforte,
Grillo, Vázquez] If |v0 − VD | is bounded a.e. by a radial L1(dx)
function, then there exists a positive constant C∗ such that
E[v(t, ·)] ≤ C∗ t−1/2 for any t ≥ 0
Can we improve the rates of convergence by imposing restrictions
on the initial data ?

[Carrillo, Lederman, Markowich, Toscani (2002)] Poincaré
inequalities for linearizations of very fast diffusion equations
(radially symmetric solutions)
Formal or partial results: [Denzler, McCann (2005)], [McCann,
Slepčev (2006)], [Denzler, Koch, McCann (announcement)],

Faster convergence ?
Improved Hardy-Poincaré inequality: under the conditions
R

Rd f dµα−1 = 0 and
R

Rd x f dµα−1 = 0 (center of mas),
eΛα,d

R

Rd |f |
2
dµα−1 ≤

R

Rd |∇f |2 dµα

Next ? Can we kill other linear modes ?
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Improved asymptotic rates

[Bonforte, J.D., Grillo, Vázquez] Assume that m ∈ (m1, 1), d ≥ 3.
Under Assumption (H1), if v is a solution of (2) with initial datum v0

such that
∫

Rd x v0 dx = 0 and if D is chosen so that∫
Rd (v0 − VD) dx = 0, then

E[v(t, ·)] ≤ C̃ e−γ(m) t ∀ t ≥ 0

with γ(m) = (1 − m) Λ̃1/(m−1),d

�m1 =
d

d+2

m1 =
d− 1

d

�m2 =
d+4

d+6

m2 =
d+1

d+2

4

2

m

1

mc =
d− 2

d

(d = 5)

γ (m)

0
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Higher order matching asymptotics

For some m ∈ (mc , 1) with mc := (d − 2)/d , we consider on R
d the

fast diffusion equation

∂u

∂τ
+ ∇ ·

(
u∇um−1

)
= 0

The strategy is easy to understand using a time-dependent rescaling
and the relative entropy formalism. Define the function v such that

u(τ, y + x0) = R−d v(t, x) , R = R(τ) , t = 1
2 log R , x =

y

R

Then v has to be a solution of

∂v

∂t
+ ∇ ·

[
v

(
σ

d
2 (m−mc ) ∇vm−1 − 2 x

)]
= 0 t > 0 , x ∈ R

d

with (as long as we make no assumption on R)

2 σ− d
2 (m−mc ) = R 1−d (1−m) dR

dτ

J. Dolbeault Improved Sobolev inequalities
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Refined relative entropy

Consider the family of the Barenblatt profiles

Bσ(x) := σ− d
2

(
CM + 1

σ |x |2
) 1

m−1 ∀ x ∈ R
d (3)

Note that σ is a function of t: as long as dσ
dt

6= 0, the Barenblatt
profile Bσ is not a solution but we may still consider the relative
entropy

Fσ[v ] :=
1

m − 1

∫

Rd

[
vm − Bm

σ − m Bm−1
σ (v − Bσ)

]
dx

Let us briefly sketch the strategy of our method before giving all
details
The time derivative of this relative entropy is

d

dt
Fσ(t)[v(t, ·)] =

dσ

dt

(
d

dσ
Fσ[v ]

)

|σ=σ(t)︸ ︷︷ ︸
choose it = 0

⇐⇒
Minimize Fσ[v ] w.r.t. σ ⇐⇒

∫
Rd |x |2 Bσ dx =

∫
Rd |x |2 v dx

+
m

m − 1

∫

Rd

(
vm−1 − Bm−1

σ(t)

) ∂v

∂t
dx

(4)
J. Dolbeault Improved Sobolev inequalities
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The entropy / entropy production estimate

According to the definition of Bσ, we know that
2 x = σ

d
2 (m−mc ) ∇Bm−1

σ

Using the new change of variables, we know that

d

dt
Fσ(t)[v(t, ·)] = −m σ(t)

d
2 (m−mc )

1 − m

∫

Rd

v
∣∣∣∇

[
vm−1 − Bm−1

σ(t)

]∣∣∣
2

dx

Let w := v/Bσ and observe that the relative entropy can be written as

Fσ[v ] =
m

1 − m

∫

Rd

[
w − 1 − 1

m

(
wm − 1

)]
Bm

σ dx

(Repeating) define the relative Fisher information by

Iσ[v ] :=

∫

Rd

∣∣∣
1

m − 1
∇

[
(wm−1 − 1)Bm−1

σ

] ∣∣∣
2

Bσ w dx

so that
d

dt
Fσ(t)[v(t, ·)] = −m (1 − m)σ(t) Iσ(t)[v(t, ·)] ∀ t > 0

When linearizing, one more mode is killed and σ(t) scales out

J. Dolbeault Improved Sobolev inequalities
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Improved rates of convergence

Theorem

Let m ∈ (m̃1, 1), d ≥ 2, v0 ∈ L1
+(Rd ) such that vm

0 , |y |2 v0 ∈ L1(Rd )

E[v(t, ·)] ≤ C e−2 γ(m) t ∀ t ≥ 0

where

γ(m) =






((d−2) m−(d−4))2

4 (1−m) if m ∈ (m̃1, m̃2]

4 (d + 2)m − 4 d if m ∈ [m̃2,m2]

4 if m ∈ [m2, 1)

m̃1 = d

d+2

m1 = d−1
d

m̃2 = d+4
d+6

m2 = d+1
d+2

4

2

(d = 5)

γ(m)

Case 2

Case 3
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Gagliardo-Nirenberg inequalities:

improvements
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Gagliardo-Nirenberg inequalities:

further improvements

A brief summary of the strategy for further improvements

In the basin of attraction of Barenblatt functions: improving the
asymptotic rates of convergence for any m

∂v

∂t
+ ∇ ·

(
v ∇vm−1

)
= 0 t > 0 , x ∈ R

d

with m ∈ ( d−1
d
, 1), d ≥ 3

The 1
2 factor in the entropy - entropy production inequality can

be explained by spectral gap considerations

This factor can be improved for well prepared initial data, if
m > d−1

d

Global improvements can be obtained using rescalings which
depend on the second moment, even for m = d−1

d

J. Dolbeault Improved Sobolev inequalities
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Spectral gaps and best constants

0
mc = d−2

d

m1 = d−1

d

m2 = d+1

d+2

m̃2 := d+4

d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2
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Best matching Barenblatt profiles

Consider the fast diffusion equation

∂u

∂t
+ ∇ ·

[
u

(
σ

d
2 (m−mc ) ∇um−1 − 2 x

)]
= 0 t > 0 , x ∈ R

d

with a nonlocal, time-dependent diffusion coefficient

σ(t) =
1

KM

∫

Rd

|x |2 u(x , t) dx , KM :=

∫

Rd

|x |2 B1(x) dx

where

Bλ(x) := λ−
d
2

(
CM + 1

λ |x |2
) 1

m−1 ∀ x ∈ R
d

and define the relative entropy

Fλ[u] :=
1

m − 1

∫

Rd

[
um − Bm

λ − m Bm−1
λ (u − Bλ)

]
dx

J. Dolbeault Improved Sobolev inequalities
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Three ingredients for global improvements

1 infλ>0 Fλ[u(x , t)] = Fσ(t)[u(x , t)] so that

d

dt
Fσ(t)[u(x , t)] = −Jσ(t)[u(·, t)]

where the relative Fisher information is

Jλ[u] := λ
d
2 (m−mc )

m

1 − m

∫

Rd

u
∣∣∇um−1 −∇Bm−1

λ

∣∣2 dx

2 In the Bakry-Emery method, there is an additional (good) term

4

[
1 + 2 Cm,d

Fσ(t)[u(·, t)]
Mγ σ

d
2 (1−m)
0

]
d

dt

(
Fσ(t)[u(·, t)]

)
≥ d

dt

(
Jσ(t)[u(·, t)]

)

3 The Csiszár-Kullback inequality is also improved

Fσ[u] ≥ m

8
∫

Rd Bm
1 dx

C 2
M‖u − Bσ‖2

L1(Rd )

J. Dolbeault Improved Sobolev inequalities
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An improved Gagliardo-Nirenberg inequality (1/2)

Relative entropy functional

R(p)[f ] := inf
g∈M

(p)
d

∫

Rd

[
g 1−p

(
|f |2 p − g 2 p

)
− 2 p

p+1

(
|f |p+1 − gp+1

)]
dx

Theorem

Let d ≥ 2, p > 1 and assume that p < d/(d − 2) if d ≥ 3. If

∫
Rd |x |2 |f |2 p dx

(∫
Rd |f |2 p dx

)γ =
d (p−1) σ∗ Mγ−1

∗

d+2−p (d−2) , σ∗(p) :=
(
4 d+2−p (d−2)

(p−1)2 (p+1)

) 4 p

d−p (d−4)

for any f ∈ Lp+1 ∩ D1,2(Rd ), then we have

∫

Rd

|∇f |2 dx+

∫

Rd

|f |p+1 dx−Kp,d

(∫

Rd

|f |2 p dx

)γ

≥ Cp,d

(
R(p)[f ]

)2

(∫
Rd |f |2 p dx

)γ

J. Dolbeault Improved Sobolev inequalities
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An improved Gagliardo-Nirenberg inequality (2/2)

A Csiszár-Kullback inequality

R(p)[f ] ≥ CCK ‖f ‖2 p (γ−2)

L2 p(Rd )
inf

g∈M
(p)
d

‖|f |2 p − g 2 p‖2
L1(Rd )

with CCK = p−1
p+1

d+2−p (d−2)
32 p

σ
d

p−1
4 p

∗ M1−γ
∗ . Let

Cp,d := Cd,p CCK
2

Corollary

Under previous assumptions, we have

∫

Rd

|∇f |2 dx +

∫

Rd

|f |p+1 dx − Kp,d

(∫

Rd

|f |2 p dx

)γ

≥ Cp,d ‖f ‖2 p (γ−4)

L2 p(Rd )
inf

g∈Md (p)
‖|f |2 p − g 2 p‖4

L1(Rd )
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... but this is not all !
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Sobolev and

Hardy-Littlewood-Sobolev

inequalities:

duality, flows
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Sobolev and Hardy-Littlewood-Sobolev inequalities:

duality, flows

Outline

Legendre duality

Sobolev and HLS inequalities can be related using a nonlinear
flow compatible with Legendre’s duality

The asymptotic behaviour close to the vanishing time is
determined by a solution with separation of variables based on
the Aubin-Talenti solution

The vanishing time T can be estimated using a priori estimates

The entropy H is negative, concave, and we can relate H(0) with
H′(0) by integrating estimates on (0,T ), which provides an

improvement of Sobolev’s inequality if d ≥ 5

J. Dolbeault Improved Sobolev inequalities
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Legendre duality

To a convex functional F , we may associate the functional F ∗ defined
by Legendre’s duality as

F ∗[v ] := sup

(∫

Rd

u v dx − F [u]

)

To F1[u] = 1
2 ‖u‖2

Lp(Rd ), we associate F ∗
1 [v ] = 1

2 ‖v‖2
Lq(Rd ) where p

and q are Hölder conjugate exponents: 1/p + 1/q = 1
To F2[u] = 1

2 Sd ‖∇u‖2
L2(Rd ), we associate

F ∗
2 [v ] =

1

2
S−1

d

∫

Rd

v (−∆)−1v dx

where (−∆)−1v = Gd ∗ v , Gd (x) = 1
d−2 |Sd−1|−1 |x |2−d if d ≥ 3

As a straightforward consequence of Legendre’s duality, if we have a
functional inequality of the form F1[u] ≤ F2[u], then we have the dual
inequality F ∗

1 [v ] ≥ F ∗
2 [v ]

J. Dolbeault Improved Sobolev inequalities
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Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev’s inequality in R
d , d ≥ 3,

‖u‖2
L2∗ (Rd ) ≤ Sd ‖∇u‖2

L2(Rd ) ∀ u ∈ D1,2(Rd ) (5)

and the Hardy-Littlewood-Sobolev inequality

Sd ‖v‖2

L
2 d
d+2 (Rd )

≥
∫

Rd

v (−∆)−1v dx ∀ v ∈ L
2 d
d+2 (Rd) (6)

are dual of each other. Here Sd is the Aubin-Talenti constant and
2∗ = 2 d

d−2

J. Dolbeault Improved Sobolev inequalities
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Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

∂v

∂t
= ∆vm t > 0 , x ∈ R

d (7)

If we define H(t) := Hd [v(t, ·)], with

Hd [v ] :=

∫

Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Rd )

then we observe that

1

2
H′ = −

∫

Rd

vm+1 dx + Sd

(∫

Rd

v
2 d
d+2 dx

) 2
d
∫

Rd

∇vm · ∇v
d−2
d+2 dx

where v = v(t, ·) is a solution of (7). With the choice m = d−2
d+2 , we

find that m + 1 = 2 d
d+2

J. Dolbeault Improved Sobolev inequalities
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A first statement

Proposition

[J.D.] Assume that d ≥ 3 and m = d−2
d+2 . If v is a solution of (7) with

nonnegative initial datum in L2d/(d+2)(Rd ), then

1

2

d

dt

[∫

Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Rd )

]

=

(∫

Rd

vm+1 dx

) 2
d [

Sd ‖∇u‖2
L2(Rd ) − ‖u‖2

L2∗ (Rd )

]
≥ 0

The HLS inequality amounts to H ≤ 0 and appears as a consequence
of Sobolev, that is H′ ≥ 0 if we show that lim supt>0 H(t) = 0
Notice that u = vm is an optimal function for (5) if v is optimal for (6)

J. Dolbeault Improved Sobolev inequalities
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Improved Sobolev inequality

By integrating along the flow defined by (7), we can actually obtain
optimal integral remainder terms which improve on the usual Sobolev
inequality (5), but only when d ≥ 5 for integrability reasons

Theorem

[J.D.] Assume that d ≥ 5 and let q = d+2
d−2 . There exists a positive

constant C ≤
(
1 + 2

d

) (
1 − e−d/2

)
Sd such that

Sd ‖wq‖2

L
2 d
d+2 (Rd )

−
∫

Rd

wq (−∆)−1wq dx

≤ C ‖w‖
8

d−2

L2∗(Rd )

[
‖∇w‖2

L2(Rd ) − Sd ‖w‖2
L2∗ (Rd )

]

for any w ∈ D1,2(Rd )

J. Dolbeault Improved Sobolev inequalities
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Solutions with separation of variables

Consider the solution vanishing at t = T :

vT (t, x) = c (T − t)α (F (x))
d+2
d−2 ∀ (t, x) ∈ (0,T ) × R

d

where α = (d + 2)/4, c1−m = 4 m d , m = d−2
d+2 , p = d/(d − 2) and F is

the Aubin-Talenti solution of

−∆F = d (d − 2)F (d+2)/(d−2)

Let ‖v‖∗ := supx∈Rd (1 + |x |2)d+2 |v(x)|

Lemma

[M. delPino, M. Saez], [J. L. Vázquez, J. R. Esteban, A. Rodŕıguez]
For any solution v of (7) with initial datum v0 ∈ L2d/(d+2)(Rd ), v0 > 0,
there exists T > 0, λ > 0 and x0 ∈ R

d such that

lim
t→T−

(T − t)−
1

1−m ‖v(t, ·)/v(t, ·) − 1‖∗ = 0

with v (t, x) = λ(d+2)/2 vT (t, (x − x0)/λ)

J. Dolbeault Improved Sobolev inequalities
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A first set of a priori integral estimates

Let J(t) :=
∫

Rd v(t, x)m+1 dx . Let d ≥ 3 and m = (d − 2)/(d + 2)

Lemma

[J.D.] If v is a solution of (7) vanishing at time T > 0 with v0 ∈ L2∗

+ (Rd )

(
4 (T−t)
(d+2) Sd

) d
2 ≤ J(t) ≤ J(0) , ‖∇vm(t, ·)‖2

L2(Rd ) ≥ S−1
d

(
4 (T−t)

d+2

) d
2 −1

T ≤ 1
4 (d + 2) Sd

(∫
Rd vm+1

0 dx
) 2

d

for any t ∈ (0,T ). Moreover, if d ≥ 5, we also have

J(t) =

∫

Rd

vm+1(t, x) dx ≥
∫

Rd

vm+1
0 dx − 2 d

d+2 t ‖∇vm
0 ‖2

L2(Rd )

‖∇vm(t, ·)‖2
L2(Rd ) ≤ ‖∇vm

0 ‖2
L2(Rd )

T ≥ d + 2

2 d

∫

Rd

vm+1
0 dx ‖∇vm

0 ‖−2
L2(Rd )

J. Dolbeault Improved Sobolev inequalities
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Proofs (1/2)

J(t) :=
∫

Rd v(t, x)m+1 dx satisfies

J′ = −(m + 1) ‖∇vm‖2
L2(Rd ) ≤ −m + 1

Sd

J1− 2
d

If d ≥ 5, then we also have

J′′ = 2 m (m + 1)

∫

Rd

vm−1 (∆vm)2 dx ≥ 0

Such an estimate makes sense if v = vT . This is also true for any
solution v as can be seen by rewriting the problem on S

d :
integrability conditions for v are exactly the same as for vT �

Notice that

J′

J
≤ −m + 1

Sd

J−
2
d ≤ −κ with κ :=

2 d

d + 2

1

Sd

(∫

Rd

vm+1
0 dx

)− 2
d

≤ d

2 T

J. Dolbeault Improved Sobolev inequalities
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Proofs (2/2)

By the Cauchy-Schwarz inequality, we have

‖∇vm‖4
L2(Rd ) =

(∫

Rd

v (m−1)/2 ∆vm · v (m+1)/2 dx

)2

≤
∫

Rd

vm−1 (∆vm)2 dx

∫

Rd

vm+1 dx

so that Q(t) := ‖∇vm(t, ·)‖2
L2(Rd )

(∫
Rd vm+1(t, x) dx

)−(d−2)/d
is

monotone decreasing, and

H′ = 2 J (Sd Q − 1) , H′′ =
J′

J
H′ + 2 JSd Q′ ≤ J′

J
H′ ≤ 0

H′′ ≤ −κH′ with κ =
2 d

d + 2

1

Sd

(∫

Rd

vm+1
0 dx

)−2/d

By writing that −H(0) = H(T ) − H(0) ≤ H′(0) (1 − e−κ T )/κ and
using the estimate κT ≤ d/2, the proof is completed �
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The two-dimensional case: Legendre duality

Onofri’s inequality amounts to F1[u] ≤ F2[u] with

F1[u] := log

(∫

R2

eu dµ

)
and F2[u] :=

1

16 π

∫

R2

|∇u|2 dx+

∫

R2

u µ dx

Proposition

[E. Carlen, M. Loss], [V. Calvez, L. Corrias] For any v ∈ L1
+(R2) with∫

R2 v dx = 1, such that v log v and (1 + log |x |2) v ∈ L1(R2), we have

F ∗
1 [v ]−F ∗

2 [v ] =

∫

R2

v log

(
v

µ

)
dx−4 π

∫

R2

(v − µ) (−∆)−1(v − µ) dx ≥ 0

Notice that −∆ logµ = 8 π µ can be inverted as

(−∆)−1µ =
1

8 π
log (π µ)

J. Dolbeault Improved Sobolev inequalities
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The two-dimensional case: log HLS and...

H2[v ] :=

∫

R2

(v − µ) (−∆)−1(v − µ) dx − 1

4 π

∫

R2

v log

(
v

µ

)
dx

Assume that v is a positive solution of

∂v

∂t
= ∆ log

(
v

µ

)
t > 0 , x ∈ R

2

Proposition

[J.D.] If v is a solution with nonnegative initial datum v0 in L1(R2) such
that

∫
R2 v0 dx = 1, v0 log v0 ∈ L1(R2) and v0 logµ ∈ L1(R2), then

d

dt
H2[v(t, ·)] =

1

16 π

∫

R2

|∇u|2 dx −
∫

R2

(
e

u
2 − 1

)
u dµ

with log(v/µ) = u/2

J. Dolbeault Improved Sobolev inequalities
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The two-dimensional case: ...Onofri’s inequality

d

dt
H2[v(t, ·)] =

1

16 π

∫

R2

|∇u|2 dx −
∫

R2

(
e

u
2 − 1

)
u dµ

The right hand side is nonnegative by Onofri’s inequality:

d

dt
H2[v(t, ·)] ≥ 1

16 π

∫

R2

|∇u|2 dx +

∫

R2

u dµ− log

(∫

R2

eu dµ

)
≥ 0

If
∫

R2 u dµ = 1, then

−
∫

R2

e
u
2 u dµ ≥ − log

(∫

R2

eu dµ

)

Corollary: for any u ∈ D(Rd ) such that
∫

R2 e
u
2 dµ = 1, we have

1

16 π

∫

R2

|∇u|2 dx ≥
∫

R2

(
e

u
2 − 1

)
u dµ

J. Dolbeault Improved Sobolev inequalities
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The two-dimensional case: the sphere setting

The image w of v by the inverse stereographic projection on the
sphere S

2, up to a scaling, solves the equation

∂w

∂t
= ∆S2 log w t > 0 , y ∈ S

2

More precisely, if x = (x1, x2) ∈ R
2, then u and w are related by

w(t, y) =
u(t, x)

4 π µ(x)
, y =

(
2 (x1,x2)
1+|x|2 ,

1−|x|2

1+|x|2

)
∈ S

2

The loss of mass of the solution of

∂v

∂t
= ∆ log v t > 0 , x ∈ R

2

is compensated in case of

∂v

∂t
= ∆ log

(
v

µ

)
t > 0 , x ∈ R

2

by the source term −∆ logµ
J. Dolbeault Improved Sobolev inequalities



Fast diffusion equations: entropy methods
Fast diffusion equations: linearization of the entropy

Gagliardo-Nirenberg inequalities: improvements
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Thank you for your attention !

J. Dolbeault Improved Sobolev inequalities
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