Improved Sobolev inequalities, relative entropy and fast diffusion equations

Jean Dolbeault

 $http://www.ceremade.dauphine.fr/{\sim}dolbeaul$

Ceremade, Université Paris-Dauphine

July 19th, 2011 Banff workshop 11w5019: *Geometric properties of solutions of nonlinear PDEs and their applications* (July 18-22, 2011)

< ロト < 同ト < ヨト < ヨト

The fast diffusion equation

$$u_t = \Delta u^m \quad x \in \mathbb{R}^d, \ t > 0$$

- Fast diffusion equations: entropy methods Barenblatt solutions, relative entropy functional, large time asymptotics, functional inequalities
- Solution Fast diffusion equations: linearization of the entropy weighted L^2 spaces, spectral gap, and asymptotic rates
- Gagliardo-Nirenberg inequalities: improvements discarding asymptotic eigenmodes and getting improved functional inequalities
- [Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows]
 extinction in the regime of separation of variables and concavity along the flow

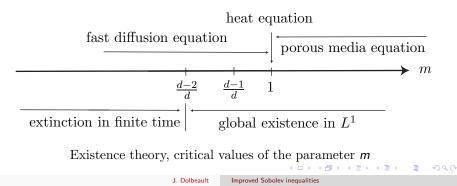
Fast diffusion equations: entropy methods

イロト イポト イヨト イヨト

Existence, classical results

$$u_t = \Delta u^m \quad x \in \mathbb{R}^d, \ t > 0$$

Self-similar (Barenblatt) function: $\mathcal{U}(t) = O(t^{-d/(2-d(1-m))})$ as $t \to +\infty$ [Friedmann, Kamin, 1980] $\|u(t, \cdot) - \mathcal{U}(t, \cdot)\|_{L^{\infty}} = o(t^{-d/(2-d(1-m))})$



Intermediate asymptotics for fast diffusion & porous media

Some references

Generalized entropies and nonlinear diffusions (EDP, uncomplete): [Del Pino, J.D.], [Carrillo, Toscani], [Otto], [Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler, J.D., Esteban], [Markowich, Lederman], [Carrillo, Vázquez], [Cordero-Erausquin, Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub],... [del Pino, Sáez], [Daskalopulos, Sesum]...

Some methods

1) [J.D., del Pino] relate entropy and ${\mbox{{\sf Gagliardo-Nirenberg}}}$ inequalities

2) entropy – entropy-production method the **Bakry-Emery**

point of view

- 3) mass transport techniques
- 4) hypercontractivity for appropriate semi-groups
- 5) the approach by **linearization** of the entropy

Focus: Fast diffusion equations and Gagliardo-Nirenberg inequalities We follow the same scheme as for the heat equation 233

Time-dependent rescaling, Free energy

• Time-dependent rescaling: Take $u(\tau, y) = R^{-d}(t) v(t, y/R(\tau))$ where

$$\frac{\partial R}{\partial \tau} = R^{d(1-m)-1} , \quad R(0) = 1 , \quad t = \log R$$

 \blacksquare The function v solves a Fokker-Planck type equation

$$\frac{\partial \mathbf{v}}{\partial t} = \Delta \mathbf{v}^m + \nabla \cdot (\mathbf{x} \, \mathbf{v}) \,, \quad \mathbf{v}_{|\tau=0} = u_0$$

• [Ralston, Newman, 1984] Lyapunov functional: Generalized entropy or Free energy

$$\Sigma[v] := \int_{\mathbb{R}^d} \left(\frac{v^m}{m-1} + \frac{1}{2} |x|^2 v \right) dx - \Sigma_0$$

Entropy production is measured by the **Generalized Fisher** information

$$\frac{d}{dt}\Sigma[v] = -I[v], \quad I[v] := \int_{\mathbb{R}^d} v \left| \frac{\nabla v^m}{v} + x \right|^2 dx$$

Relative entropy and entropy production

Q Stationary solution: choose C such that $\|v_{\infty}\|_{L^1} = \|u\|_{L^1} = M > 0$

$$v_{\infty}(x) := \left(C + \frac{1-m}{2m}|x|^2\right)_+^{-1/(1-m)}$$

Relative entropy: Fix Σ_0 so that $\Sigma[v_{\infty}] = 0$. The entropy can be put in an *m*-homogeneous form: for $m \neq 1$,

$$\Sigma[v] = \int_{\mathbb{R}^d} \psi\left(\frac{v}{v_{\infty}}\right) v_{\infty}^m dx$$
 with $\psi(t) = \frac{t^m - 1 - m(t-1)}{m-1}$

Entropy – entropy production inequality

Theorem

$$d\geq 3$$
, $m\in [rac{d-1}{d},+\infty)$, $m>rac{1}{2}$, $m
eq 1$

 $I[v] \geq 2\Sigma[v]$

Corollary

A solution v with initial data $u_0 \in L^1_+(\mathbb{R}^d)$ such that $|x|^2 u_0 \in L^1(\mathbb{R}^d)$, $u_0^m \in L^1(\mathbb{R}^d)$ satisfies $\sum [v(t, \cdot)] \leq \sum [u_0] e^{-2t}$

J. Dolbeault

Improved Sobolev inequalities

An equivalent formulation: Gagliardo-Nirenberg inequalities

$$\begin{split} \boldsymbol{\Sigma}[\boldsymbol{v}] &= \int_{\mathbb{R}^d} \left(\frac{\boldsymbol{v}^m}{m-1} + \frac{1}{2} |\boldsymbol{x}|^2 \boldsymbol{v} \right) d\boldsymbol{x} - \boldsymbol{\Sigma}_0 \leq \frac{1}{2} \int_{\mathbb{R}^d} \boldsymbol{v} \left| \frac{\nabla \boldsymbol{v}^m}{\boldsymbol{v}} + \boldsymbol{x} \right|^2 d\boldsymbol{x} = \frac{1}{2} \boldsymbol{I}[\boldsymbol{v}] \\ \text{Rewrite it with } \boldsymbol{p} = \frac{1}{2m-1}, \ \boldsymbol{v} = \boldsymbol{w}^{2p}, \ \boldsymbol{v}^m = \boldsymbol{w}^{p+1} \text{ as} \\ &\frac{1}{2} \left(\frac{2m}{2m-1} \right)^2 \int_{\mathbb{R}^d} |\nabla \boldsymbol{w}|^2 d\boldsymbol{x} + \left(\frac{1}{1-m} - d \right) \int_{\mathbb{R}^d} |\boldsymbol{w}|^{1+p} d\boldsymbol{x} + K \geq \mathbf{0} \\ \bullet \ 1 < \boldsymbol{p} = \frac{1}{2m-1} \leq \frac{d}{d-2} \iff \text{Fast diffusion case: } \frac{d-1}{d} \leq m < 1 ; \\ K < 0 \\ \bullet \ 0 < \boldsymbol{p} < 1 \iff \text{Porous medium case: } m > 1, \ K > \mathbf{0} \\ \bullet \ \text{for some } \boldsymbol{\gamma}, \ K = K_0 \left(\int_{\mathbb{R}^d} \boldsymbol{v} \, d\boldsymbol{x} = \int_{\mathbb{R}^d} \boldsymbol{w}^{2p} \, d\boldsymbol{x} \right)^{\gamma} \\ \bullet \ \boldsymbol{w} = \boldsymbol{w}_\infty = \boldsymbol{v}_\infty^{1/2p} \text{ is optimal} \\ \bullet \ \boldsymbol{m} = \boldsymbol{m}_1 := \frac{d-1}{d} : \text{ Sobolev}, \ \boldsymbol{m} \to 1: \text{ logarithmic Sobolev} \end{split}$$

[Del Pino, J.D.] Assume that 1 (fast diffusion case) and $<math>d \geq 3$ $\|w\|_{L^{2p}(\mathbb{R}^d)} \leq A \|\nabla w\|_{L^2(\mathbb{R}^d)}^{1-\theta} \|w\|_{L^{p+1}(\mathbb{R}^d)}^{1-\theta}$ $A = \left(\frac{y(p-1)^2}{2\pi d}\right)^{\frac{\theta}{2}} \left(\frac{2y-d}{2y}\right)^{\frac{1}{2p}} \left(\frac{\Gamma(y)}{\Gamma(y-\frac{d}{2})}\right)^{\frac{\theta}{d}}, \quad \theta = \frac{d(p-1)}{p(d+2-(d-2)p)}, \quad y = \frac{p+1}{p-1}$

Intermediate asymptotics

$$\begin{split} \Sigma[v] \leq \Sigma[u_0] \, e^{-2\tau} + \, \mathrm{Csisz\acute{a}r-Kullback} \ \mathrm{inequalities} \\ \mathrm{Undo} \ \mathrm{the} \ \mathrm{change} \ \mathrm{of} \ \mathrm{variables}, \ \mathrm{with} \end{split}$$

$$u_{\infty}(t,x) = R^{-d}(t) v_{\infty} (x/R(t))$$

Theorem

[Del Pino, J.D.] Consider a solution of $u_t = \Delta u^m$ with initial data $u_0 \in L^1_+(\mathbb{R}^d)$ such that $|x|^2 u_0 \in L^1(\mathbb{R}^d)$, $u_0^m \in L^1(\mathbb{R}^d)$

• Fast diffusion case: $\frac{d-1}{d} < m < 1$ if $d \ge 3$

$$\limsup_{t\to+\infty} t^{\frac{1-d(1-m)}{2-d(1-m)}} \|u^m - u_\infty^m\|_{L^1} < +\infty$$

• Porous medium case: 1 < m < 2

$$\limsup_{t\to+\infty} t^{\frac{1+d(m-1)}{2+d(m-1)}} \| \left[u - u_{\infty} \right] u_{\infty}^{m-1} \|_{L^{1}} < +\infty$$

Fast diffusion equations: the finite mass regime

Can we consider $m < m_1$?

- If $m \ge 1$: porous medium regime or $m_1 := \frac{d-1}{d} \le m < 1$, the decay of the entropy is governed by Gagliardo-Nirenberg inequalities, and to the limiting case m = 1 corresponds the logarithmic Sobolev inequality
- Displacement convexity holds in the same range of exponents, $m \in (m_1, 1)$, as for the Gagliardo-Nirenberg inequalities
- The fast diffusion equation can be seen as the gradient flow of the generalized entropy with respect to the Wasserstein distance if $m > \widetilde{m}_1 := \frac{d}{d+2}$
- If $m_c := \frac{d-2}{d} \le m < m_1$, solutions globally exist in L^1 and the Barenblatt self-similar solution has finite mass

...the Bakry-Emery method

We follow the same scheme as for the heat equation

Consider the generalized Fisher information

$$I[v] := \int_{\mathbb{R}^d} v |Z|^2 dx \quad \text{with} \quad Z := \frac{\nabla v^m}{v} + x$$

and compute

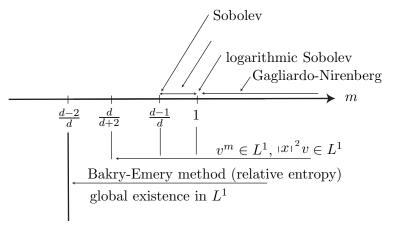
$$\frac{d}{dt} I[v(t,\cdot)] + 2 I[v(t,\cdot)] = -2 (m-1) \int_{\mathbb{R}^d} u^m (\operatorname{div} Z)^2 \, dx - 2 \sum_{i,j=1}^d \int_{\mathbb{R}^d} u^m (\partial_i Z^j)^2 \, dx$$

• the Fisher information decays exponentially: $I[v(t, \cdot)] \leq I[u_0] e^{-2t}$ • $\lim_{t\to\infty} I[v(t, \cdot)] = 0$ and $\lim_{t\to\infty} \Sigma[v(t, \cdot)] = 0$ • $\frac{d}{dt} \left(I[v(t, \cdot)] - 2\Sigma[v(t, \cdot)] \right) \leq 0$ means $I[v] \geq 2\Sigma[v]$

[Carrillo, Toscani], [Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Carrillo, Vázquez] $\label{eq:scalar} I[v] \geq 2\,\Sigma[v] \mbox{ holds for any } m > m_c, \mbox{ at least for radial solutions} \mbox{ at least for radial sol$

Fast diffusion: finite mass regime

Inequalities...



More references: Extensions and related results

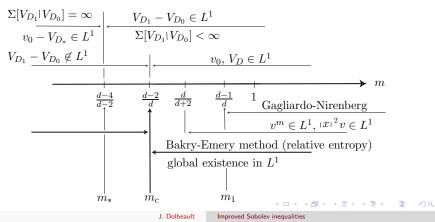
- Mass transport methods: inequalities / rates [Cordero-Erausquin, Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub, Kang]
- General nonlinearities [Biler, J.D., Esteban],
 - [Carrillo-DiFrancesco],
 - [Carrillo-Juengel-Markowich-Toscani-Unterreiter] and gradient
 - flows [Jordan-Kinderlehrer-Otto], [Ambrosio-Savaré-Gigli],
 - [Otto-Westdickenberg] [J.D.-Nazaret-Savaré], etc
- Non-homogeneous nonlinear diffusion equations [Biler, J.D., Esteban], [Carrillo, DiFrancesco]
- Extension to systems and connection with Lieb-Thirring inequalities [J.D.-Felmer-Loss-Paturel, 2006], [J.D.-Felmer-Mayorga]
- Drift-diffusion problems with mean-field terms. An example: the Keller-Segel model [J.D-Perthame, 2004], [Blanchet-J.D-Perthame, 2006], [Biler-Karch-Laurençot-Nadzieja, 2006], [Blanchet-Carrillo-Masmoudi, 2007], etc
- ... connection with linearized problems [Markowich-Lederman], [Carrillo-Vázquez], [Denzler-McCann], [McCann, Slepčev], [Kim, McCann], [Koch, McCann, Slepčev], [Kim, [mproved Sobolev inequalities]

Fast diffusion equations: the infinite mass regime Linearization of the entropy

Extension to the infinite mass regime, finite time vanishing

- If $m > m_c := \frac{d-2}{d} \le m < m_1$, solutions globally exist in $L^1(\mathbb{R}^d)$ and the Barenblatt self-similar solution has finite mass.
- For $m \leq m_c$, the Barenblatt self-similar solution has infinite mass

Extension to $m \leq m_c$? Work in relative variables !



Entropy methods and linearization: intermediate asymptotics, vanishing

[A. Blanchet, M. Bonforte, J.D., G. Grillo, J.L. Vázquez], [J.D., Toscani]

- work in relative variables
- use the properties of the flow
- write everything as relative quantities (to the Barenblatt profile)
- compare the functionals (entropy, Fisher information) to their linearized counterparts

 \implies Extend the domain of validity of the method to the price of a restriction of the set of admissible solutions

Two parameter ranges: $m_c < m < 1$ and $0 < m < m_c,$ where $m_c := \frac{d-2}{d}$

- $m_c < m < 1$, $T = +\infty$: intermediate asymptotics, $\tau \to +\infty$
- $0 < m < m_c$, $T < +\infty$: vanishing in finite time $\lim_{\tau \nearrow T} u(\tau, y) = 0$

Alternative approach by comparison techniques: [Daskalopoulos, Sesum] (without rates)

ъ.

Fast diffusion equation and Barenblatt solutions

$$\frac{\partial u}{\partial \tau} = -\nabla \cdot (u \,\nabla u^{m-1}) = \frac{1-m}{m} \,\Delta u^m \tag{1}$$

with m < 1. We look for positive solutions $u(\tau, y)$ for $\tau \ge 0$ and $y \in \mathbb{R}^d$, $d \ge 1$, corresponding to nonnegative initial-value data $u_0 \in L^1_{\text{loc}}(dx)$ In the limit case m = 0, u^m/m has to be replaced by $\log u$

Barenblatt type solutions are given by

$$U_{D,T}(\tau,y) := \frac{1}{R(\tau)^d} \left(D + \frac{1-m}{2\,d\,|m-m_c|} \Big| \frac{y}{R(\tau)} \Big|^2 \right)_+^{-\frac{1}{1-m}}$$

• If $m > m_c := (d-2)/d$, $U_{D,T}$ with $R(\tau) := (T+\tau)^{\frac{1}{d(m-m_c)}}$ describes the large time asymptotics of the solutions of equation (1) as $\tau \to \infty$ (mass is conserved)

• If $m < m_c$ the parameter T now denotes the *extinction time* and $R(\tau) := (T - \tau)^{-\frac{1}{d(m_c - m)}}$ • If $m = m_c$ take $R(\tau) = e^{\tau}$, $U_{D,T}(\tau, y) = e^{-d\tau} \left(D + e^{-2\tau} |y|^2/2\right)^{-d/2}$

Two crucial values of m: $m_{a} := \frac{d-4}{d} < m_{c} := \frac{d-2}{d} < 1^{O(1-1)} < 1^{O(1-1)}$

Rescaling

A time-dependent change of variables

$$t := \frac{1-m}{2} \log \left(\frac{R(\tau)}{R(0)} \right)$$
 and $x := \sqrt{\frac{1}{2 d |m-m_c|}} \frac{y}{R(\tau)}$

If $m = m_c$, we take $t = \tau/d$ and $x = e^{-\tau} y/\sqrt{2}$

The generalized Barenblatt functions $U_{D,T}(\tau, y)$ are transformed into stationary generalized Barenblatt profiles $V_D(x)$

$$V_D(x) := \left(D + |x|^2\right)^{rac{1}{m-1}} \quad x \in \mathbb{R}^d$$

If u is a solution to (1), the function $v(t,x):=R(\tau)^d\,u(\tau,y)$ solves

$$\frac{\partial v}{\partial t} = -\nabla \cdot \left[v \,\nabla \left(v^{m-1} - V_D^{m-1} \right) \right] \quad t > 0 \,, \quad x \in \mathbb{R}^d \tag{2}$$

with initial condition $v(t = 0, x) = v_0(x) := R(0)^{-d} u_0(y)$

A (20) A (20) A (20)

Goal

We are concerned with the sharp rate of convergence of a solution v of the rescaled equation to the generalized Barenblatt profile V_D in the whole range m<1

Convergence is measured in terms of the relative entropy

$$\mathcal{E}[v] := \frac{1}{m-1} \int_{\mathbb{R}^d} \left[v^m - V_D^m - m \, V_D^{m-1} \left(v - V_D \right) \right] \, dx$$

for all $m \neq 0, \ m < 1$

Assumptions on the initial datum v_0

(H1) $V_{D_0} \leq v_0 \leq V_{D_1}$ for some $D_0 > D_1 > 0$ (H2) if $d \geq 3$ and $m \leq m_*$, $(v_0 - V_D)$ is integrable for a suitable $D \in [D_1, D_0]$ • The case $m = m_* = \frac{d-4}{d-2}$ will be discussed later • If $m > m_*$, we define D as the unique value in $[D_1, D_0]$ such that $\int_{\mathbb{R}^d} (v_0 - V_D) dx = 0$

Our goal is to find the best possible rate of decay of $\mathcal{E}[v]$ if v solves (2)

Sharp rates of convergence

Theorem

[Bonforte, J.D., Grillo, Vázquez] Under Assumptions (H1)-(H2), if m < 1 and $m \neq m_*$, the entropy decays according to

 $\mathcal{E}[v(t,\cdot)] \leq C e^{-2(1-m)\wedge t} \quad \forall t \geq 0$

The sharp decay rate Λ is equal to the best constant $\Lambda_{\alpha,d} > 0$ in the Hardy–Poincaré inequality of Theorem 7 with $\alpha := 1/(m-1) < 0$ The constant C > 0 depends only on m, d, D_0, D_1, D and $\mathcal{E}[v_0]$

- Notion of *sharp rate* has to be discussed
- Rates of convergence in more standard norms: $L^{q}(dx)$ for $q \geq \max\{1, d(1-m)/[2(2-m)+d(1-m)]\}$, or C^{k} by interpolation

• By undoing the time-dependent change of variables, we deduce results on the *intermediate asymptotics* of (1), i.e. rates of decay of $u(\tau, y) - U_{D,T}(\tau, y)$ as $\tau \to +\infty$ if $m \in [m_c, 1)$, or as $\tau \to T$ if $m \in (-\infty, m)$

Strategy of proof

Assume that D = 1 and consider $d\mu_{\alpha} := h_{\alpha} dx$, $h_{\alpha}(x) := (1 + |x|^2)^{\alpha}$, with $\alpha = 1/(m-1) < 0$, and $\mathcal{L}_{\alpha,d} := -h_{1-\alpha} \operatorname{div} [h_{\alpha} \nabla \cdot]$ on $L^2(d\mu_{\alpha})$: $\int_{\mathbb{R}^d} f(\mathcal{L}_{\alpha,d} f) d\mu_{\alpha-1} = \int_{\mathbb{R}^d} |\nabla f|^2 d\mu_{\alpha}$

A first order expansion of $v(t,x) = h_{\alpha}(x) \left[1 + \varepsilon f(t,x) h_{\alpha}^{1-m}(x)\right]$ solves $\frac{\partial f}{\partial t} + \mathcal{L}_{\alpha,d} f = 0$

Theorem

[A. Blanchet, M. Bonforte, J.D., G. Grillo, J.-L. Vázquez] Let $d \ge 3$. For any $\alpha \in (-\infty, 0) \setminus \{\alpha_*\}$, there is a positive constant $\Lambda_{\alpha,d}$ such that

$$\Lambda_{lpha,d}\int_{\mathbb{R}^d} |f|^2\,d\mu_{lpha-1} \leq \int_{\mathbb{R}^d} |
abla f|^2\,d\mu_lpha \quad orall\, f\in H^1(d\mu_lpha)$$

under the additional condition $\int_{\mathbb{R}^d} f \, d\mu_{\alpha-1} = 0$ if $\alpha < \alpha_*$

$$\Lambda_{\alpha,d} = \begin{cases} \frac{1}{4} (d-2+2\alpha)^2 & \text{if } \alpha \in \left[-\frac{d+2}{2}, \alpha_*\right) \cup (\alpha_*, 0) \\ -4\alpha - 2d & \text{if } \alpha \in \left[-d, -\frac{d+2}{2}\right) \\ -2\alpha & \text{if } \alpha \in (-\infty, -d) \\ \text{Improved Sobolev inequalities} \end{cases}$$

Relative entropy and Fisher information, interpolation

For $m \neq 0, 1$, the relative entropy of J. Ralston and W.I. Newmann and the generalized relative Fisher information are given by

$$\mathcal{F}[w] := \frac{m}{1-m} \int_{\mathbb{R}^d} \left[w - 1 - \frac{1}{m} \left(w^m - 1 \right) \right] V_D^m dx$$
$$\mathcal{I}[w] := \int_{\mathbb{R}^d} \left| \frac{1}{m-1} \nabla \left[\left(w^{m-1} - 1 \right) V_D^{m-1} \right] \right|^2 v dx$$

where $w = \frac{v}{V_D}$. If v is a solution of (2): $\frac{d}{dt}\mathcal{F}[w(t,\cdot)] = -\mathcal{I}[w(t,\cdot)]$ **Linearization:** $f := (w-1)V_D^{m-1}$, $h := \max\{h_2, 1/h_1\}$, $h_1(t) := \inf w(t,\cdot)$, $h_2(t) := \sup w(t,\cdot)$. With $|im_{t\to\infty}h(t) = 1$

$$h^{m-2} \int_{\mathbb{R}^d} |f|^2 V_D^{2-m} \, dx \le \frac{2}{m} \, \mathcal{F}[w] \le h^{2-m} \int_{\mathbb{R}^d} |f|^2 \, V_D^{2-m} \, dx$$
$$\int_{\mathbb{R}^d} |\nabla f|^2 \, V_D \, dx \le [1 + X(h)] \, \mathcal{I}[w] + Y(h) \int_{\mathbb{R}^d} |f|^2 \, V_D^{2-m} \, dx$$

where $h^{5-2m} =: 1 + X(h), d(1-m) [h^{4(2-m)} - 1] =: Y(h)$ and $\lim_{h \to 1} X(h) = \lim_{h \to 1} Y(h) = 0$

Proof (continued)

Q A new **interpolation** inequality: for h > 0 small enough

$$\mathcal{F}[w] \leq \frac{h^{2-m} \left[1 + X(h)\right]}{2 \left[\Lambda_{\alpha,d} - m Y(h)\right]} m \mathcal{I}[w]$$

• Another **interpolation** allows to close the system of estimates: for some C, t large enough,

$$0 \leq h-1 \leq \mathsf{C}\,\mathcal{F}^{\frac{1-m}{d+2-(d+1)m}}$$

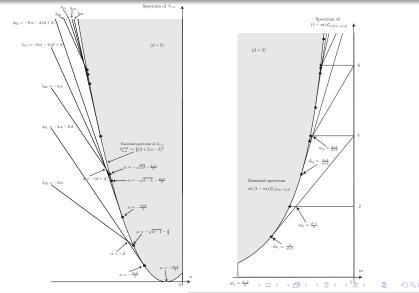
Hence we have a nonlinear differential inequality

$$rac{d}{dt}\mathcal{F}[w(t,\cdot)]\leq -2\,rac{\Lambda_{lpha,d}-m\,Y(h)}{ig[1+X(h)ig]\,h^{2-m}}\,\mathcal{F}[w(t,\cdot)]$$

Q A **Gronwall** lemma (take $h = 1 + C \mathcal{F}^{\frac{1-m}{d+2-(d+1)m}}$) then shows that

$$\limsup_{t\to\infty} e^{2\Lambda_{\alpha,d}t} \mathcal{F}[w(t,\cdot)] < +\infty$$

Plots (d = 5)



J. Dolbeault

Improved Sobolev inequalities

Remarks, improvements

- Optimal constants in interpolation inequalities does not mean optimal *asymptotic* rates
- The critical case $(m = m_*, d \ge 3)$: Slow asymptotics [Bonforte, Grillo, Vázquez] If $|v_0 V_D|$ is bounded a.e. by a radial $\mathcal{L}^1(dx)$ function, then there exists a positive constant C^* such that $\mathcal{E}[v(t, \cdot)] \le C^* t^{-1/2}$ for any $t \ge 0$
- Can we improve the rates of convergence by imposing restrictions on the initial data ?
 - [Carrillo, Lederman, Markowich, Toscani (2002)] Poincaré inequalities for linearizations of very fast diffusion equations (radially symmetric solutions)
 - Formal or partial results: [Denzler, McCann (2005)], [McCann, Slepčev (2006)], [Denzler, Koch, McCann (announcement)],

• Faster convergence ?

- Improved Hardy-Poincaré inequality: under the conditions $\int_{\mathbb{R}^d} f \, d\mu_{\alpha-1} = 0$ and $\int_{\mathbb{R}^d} x f \, d\mu_{\alpha-1} = 0$ (center of mas), $\widetilde{\Lambda}_{\alpha,d} \int_{\mathbb{R}^d} |f|^2 \, d\mu_{\alpha-1} \leq \int_{\mathbb{R}^d} |\nabla f|^2 \, d\mu_{\alpha}$
- Next ? Can we kill other linear modes ?

Improved asymptotic rates

[Bonforte, J.D., Grillo, Vázquez] Assume that $m \in (m_1, 1), d \geq 3$. Under Assumption (H1), if v is a solution of (2) with initial datum v_0 such that $\int_{\mathbb{D}^d} x v_0 dx = 0$ and if D is chosen so that $\int_{\mathbb{D}_d} (v_0 - V_D) dx = 0$, then $\mathcal{E}[\mathbf{v}(t,\cdot)] \leq \widetilde{C} e^{-\gamma(m)t} \quad \forall t \geq 0$ with $\gamma(m) = (1-m) \widetilde{\Lambda}_{1/(m-1),d}$ < 🗇 → A B M A B M

Higher order matching asymptotics

For some $m \in (m_c, 1)$ with $m_c := (d-2)/d$, we consider on \mathbb{R}^d the fast diffusion equation

$$\frac{\partial u}{\partial \tau} + \nabla \cdot \left(u \, \nabla u^{m-1} \right) = 0$$

The strategy is easy to understand using a time-dependent rescaling and the relative entropy formalism. Define the function ν such that

$$u(\tau, y + x_0) = R^{-d} v(t, x) , \quad R = R(\tau) , \quad t = \frac{1}{2} \log R , \quad x = \frac{y}{R}$$

Then \boldsymbol{v} has to be a solution of

$$\frac{\partial \mathbf{v}}{\partial t} + \nabla \cdot \left[\mathbf{v} \left(\sigma^{\frac{d}{2}(m-m_c)} \nabla \mathbf{v}^{m-1} - 2 \, \mathbf{x} \right) \right] = 0 \quad t > 0 \ , \quad \mathbf{x} \in \mathbb{R}^d$$

with (as long as we make no assumption on R)

$$2\,\sigma^{-\frac{d}{2}(m-m_c)} = R^{1-d\,(1-m)}\,\frac{dR}{d\tau}$$

(日) (同) (日) (日)

Refined relative entropy

Consider the family of the Barenblatt profiles

$$B_{\sigma}(x) := \sigma^{-\frac{d}{2}} \left(C_M + \frac{1}{\sigma} |x|^2 \right)^{\frac{1}{m-1}} \quad \forall x \in \mathbb{R}^d$$
(3)

Note that σ is a function of t: as long as $\frac{d\sigma}{dt} \neq 0$, the Barenblatt profile B_{σ} is not a solution but we may still consider the relative entropy

$$\mathcal{F}_{\sigma}[v] := \frac{1}{m-1} \int_{\mathbb{R}^d} \left[v^m - B_{\sigma}^m - m B_{\sigma}^{m-1} \left(v - B_{\sigma} \right) \right] dx$$

Let us briefly sketch the strategy of our method before giving all details

The time derivative of this relative entropy is

$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = \underbrace{\frac{d\sigma}{dt} \left(\frac{d}{d\sigma} \mathcal{F}_{\sigma}[v]\right)_{|\sigma=\sigma(t)}}_{\text{choose it}} + \frac{m}{m-1} \int_{\mathbb{R}^d} \left(v^{m-1} - B^{m-1}_{\sigma(t)}\right) \frac{\partial v}{\partial t} \, dx$$

$$\overset{\text{choose it}}{\longleftrightarrow} = 0$$

$$\overset{\longleftrightarrow}{\longleftrightarrow} \int_{\text{Delevation}} |v|^2 B_{\sigma(t)} \, dx = \int_{\mathbb{R}^d} |v|^2 v \, dx^{4/2} \, dx^{$$

The entropy / entropy production estimate

According to the definition of B_{σ} , we know that $2x = \sigma^{\frac{d}{2}(m-m_c)} \nabla B_{\sigma}^{m-1}$ Using the new change of variables, we know that

$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = -\frac{m\,\sigma(t)^{\frac{d}{2}(m-m_c)}}{1-m}\int_{\mathbb{R}^d} v\left|\nabla\left[v^{m-1} - B^{m-1}_{\sigma(t)}\right]\right|^2\,dx$$

Let $w := v/B_{\sigma}$ and observe that the relative entropy can be written as

$$\mathcal{F}_{\sigma}[v] = \frac{m}{1-m} \int_{\mathbb{R}^d} \left[w - 1 - \frac{1}{m} \left(w^m - 1 \right) \right] B_{\sigma}^m \, dx$$

(Repeating) define the relative Fisher information by

$$\mathcal{I}_{\sigma}[v] := \int_{\mathbb{R}^d} \left| \frac{1}{m-1} \nabla \left[\left(w^{m-1} - 1 \right) B_{\sigma}^{m-1} \right] \right|^2 B_{\sigma} w \, dx$$

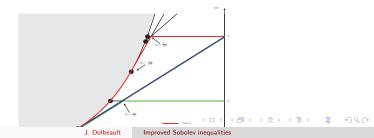
so that $\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = -m(1-m)\sigma(t)\mathcal{I}_{\sigma(t)}[v(t,\cdot)] \quad \forall t > 0$

When linearizing, one more mode is killed and $\sigma(t)$ scales out

Improved rates of convergence

Theorem

Let
$$m \in (\widetilde{m}_{1}, 1)$$
, $d \geq 2$, $v_{0} \in L_{+}^{1}(\mathbb{R}^{d})$ such that v_{0}^{m} , $|y|^{2} v_{0} \in L^{1}(\mathbb{R}^{d})$
 $\mathcal{E}[v(t, \cdot)] \leq C e^{-2\gamma(m)t} \quad \forall t \geq 0$
where
 $\gamma(m) = \begin{cases} \frac{((d-2)m - (d-4))^{2}}{4(1-m)} & \text{if } m \in (\widetilde{m}_{1}, \widetilde{m}_{2}] \\ 4(d+2)m - 4d & \text{if } m \in [\widetilde{m}_{2}, m_{2}] \\ 4 & \text{if } m \in [m_{2}, 1) \end{cases}$



Gagliardo-Nirenberg inequalities: improvements

イロト イポト イヨト イヨト

Gagliardo-Nirenberg inequalities: further improvements

- A brief summary of the strategy for further improvements
 - In the basin of attraction of Barenblatt functions: improving the asymptotic rates of convergence for any m

$$rac{\partial v}{\partial t} +
abla \cdot \left(v \,
abla v^{m-1}
ight) = 0 \quad t > 0 \;, \quad x \in \mathbb{R}^d$$

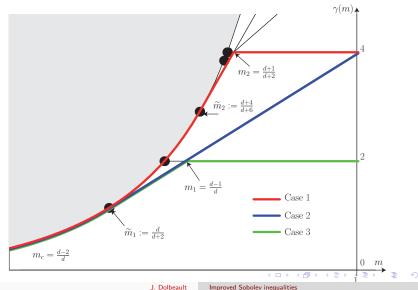
with $m \in (\frac{d-1}{d}, 1), d \geq 3$

- The $\frac{1}{2}$ factor in the entropy entropy production inequality can be explained by *spectral gap* considerations
- $\bullet\,$ This factor can be improved for well prepared initial data, if $m>\frac{d-1}{d}$
- Global improvements can be obtained using rescalings which depend on the second moment, even for $m = \frac{d-1}{d}$

・ロト ・ 日本 ・ 日本 ・ 日本

Fast diffusion equations: entropy methods Gagliardo-Nirenberg inequalities: improvements Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Spectral gaps and best constants



Best matching Barenblatt profiles

Consider the fast diffusion equation

$$\frac{\partial u}{\partial t} + \nabla \cdot \left[u \left(\sigma^{\frac{d}{2}(m-m_c)} \nabla u^{m-1} - 2x \right) \right] = 0 \quad t > 0 , \quad x \in \mathbb{R}^d$$

with a nonlocal, time-dependent diffusion coefficient

$$\sigma(t) = rac{1}{K_M} \int_{\mathbb{R}^d} |x|^2 \, u(x,t) \, dx \;, \quad K_M := \int_{\mathbb{R}^d} |x|^2 \, B_1(x) \, dx$$

where

$$B_{\lambda}(x) := \lambda^{-rac{d}{2}} \left(C_M + rac{1}{\lambda} |x|^2
ight)^{rac{1}{m-1}} \quad orall x \in \mathbb{R}^d$$

and define the relative entropy

$$\mathcal{F}_{\lambda}[u] := \frac{1}{m-1} \int_{\mathbb{R}^d} \left[u^m - B_{\lambda}^m - m B_{\lambda}^{m-1} \left(u - B_{\lambda} \right) \right] \, dx$$

イロン 不良 とうせい かいしょ

Three ingredients for *global improvements*

•
$$\inf_{\lambda>0} \mathcal{F}_{\lambda}[u(x,t)] = \mathcal{F}_{\sigma(t)}[u(x,t)]$$
 so that
 $\frac{d}{dt} \mathcal{F}_{\sigma(t)}[u(x,t)] = -\mathcal{J}_{\sigma(t)}[u(\cdot,t)]$

where the relative Fisher information is

$$\mathcal{J}_{\lambda}[u] := \lambda^{\frac{d}{2}(m-m_c)} \frac{m}{1-m} \int_{\mathbb{R}^d} u \left| \nabla u^{m-1} - \nabla B_{\lambda}^{m-1} \right|^2 dx$$

In the Bakry-Emery method, there is an additional (good) term

$$4\left[1+2C_{m,d}\frac{\mathcal{F}_{\sigma(t)}[u(\cdot,t)]}{M^{\gamma}\sigma_{0}^{\frac{d}{2}(1-m)}}\right]\frac{d}{dt}\left(\mathcal{F}_{\sigma(t)}[u(\cdot,t)]\right)\geq\frac{d}{dt}\left(\mathcal{J}_{\sigma(t)}[u(\cdot,t)]\right)$$

The Csiszár-Kullback inequality is also improved

$$\mathcal{F}_{\sigma}[u] \geq \frac{m}{8 \int_{\mathbb{R}^d} B_1^m \, dx} C_M^2 \|u - B_{\sigma}\|_{\mathrm{L}^1(\mathbb{R}^d)}^2$$

An improved Gagliardo-Nirenberg inequality (1/2)

Relative entropy functional

$$\mathcal{R}^{(p)}[f] := \inf_{g \in \mathfrak{M}_d^{(p)}} \int_{\mathbb{R}^d} \left[g^{1-p} \left(|f|^{2\,p} - g^{2\,p} \right) - \frac{2\,p}{p+1} \left(|f|^{p+1} - g^{p+1} \right) \right] \, dx$$

Theorem

Let
$$d \ge 2$$
, $p > 1$ and assume that $p < d/(d-2)$ if $d \ge 3$. If

$$\frac{\int_{\mathbb{R}^d} |x|^2 |f|^{2p} dx}{\left(\int_{\mathbb{R}^d} |f|^{2p} dx\right)^{\gamma}} = \frac{d(p-1)\sigma_* M_*^{\gamma-1}}{d+2-p(d-2)}, \ \sigma_*(p) := \left(4 \frac{d+2-p(d-2)}{(p-1)^2(p+1)}\right)^{\frac{4p}{d-p(d-4)}}$$

for any $f \in \mathrm{L}^{p+1} \cap \mathcal{D}^{1,2}(\mathbb{R}^d)$, then we have

$$\int_{\mathbb{R}^{d}} |\nabla f|^{2} dx + \int_{\mathbb{R}^{d}} |f|^{p+1} dx - \mathsf{K}_{p,d} \left(\int_{\mathbb{R}^{d}} |f|^{2p} dx \right)^{\gamma} \ge \mathsf{C}_{p,d} \frac{\left(\mathcal{R}^{(p)}[f] \right)^{2}}{\left(\int_{\mathbb{R}^{d}} |f|^{2p} dx \right)^{\gamma}}$$

An improved Gagliardo-Nirenberg inequality (2/2)

A Csiszár-Kullback inequality

$$\mathcal{R}^{(p)}[f] \ge \mathsf{C}_{\mathrm{CK}} \, \|f\|_{\mathrm{L}^{2p}(\mathbb{R}^d)}^{2p\,(\gamma-2)} \inf_{g \in \mathfrak{M}_d^{(p)}} \||f|^{2p} - g^{2p}\|_{\mathrm{L}^1(\mathbb{R}^d)}^2$$

with
$$C_{CK} = \frac{p-1}{p+1} \frac{d+2-p(d-2)}{32p} \sigma_*^{d \frac{p-1}{4p}} M_*^{1-\gamma}$$
. Let
 $\mathfrak{C}_{p,d} := C_{d,p} C_{CK}^2$

Corollary

Under previous assumptions, we have

$$\begin{split} \int_{\mathbb{R}^d} |\nabla f|^2 \, dx + \int_{\mathbb{R}^d} |f|^{p+1} \, dx - \mathsf{K}_{p,d} \left(\int_{\mathbb{R}^d} |f|^{2p} \, dx \right)^{\gamma} \\ &\geq \mathfrak{C}_{p,d} \, \|f\|_{\mathrm{L}^{2p}(\mathbb{R}^d)}^{2p(\gamma-4)} \inf_{g \in \mathfrak{M}_d(p)} \||f|^{2p} - g^{2p}\|_{\mathrm{L}^1(\mathbb{R}^d)}^4 \end{split}$$

... but this is not all !

イロト イヨト イヨト イヨト

э.

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

- (同) - (日) - (日)

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Outline

- Legendre duality
- Sobolev and HLS inequalities can be related using a nonlinear flow *compatible with Legendre's duality*
- The asymptotic behaviour close to the *vanishing time* is determined by a solution with *separation of variables* based on the Aubin-Talenti solution
- $\bullet\,$ The vanishing time T can be estimated using a priori estimates
- The entropy H is negative, concave, and we can relate H(0) with H'(0) by integrating estimates on (0, T), which provides an improvement of Sobolev's inequality if d ≥ 5

イロト イポト イヨト イヨト

Legendre duality

To a convex functional ${\cal F},$ we may associate the functional ${\cal F}^*$ defined by Legendre's duality as

$$F^*[v] := \sup\left(\int_{\mathbb{R}^d} u \, v \, dx - F[u]\right)$$

• To $F_1[u] = \frac{1}{2} ||u||^2_{L^p(\mathbb{R}^d)}$, we associate $F_1^*[v] = \frac{1}{2} ||v||^2_{L^q(\mathbb{R}^d)}$ where pand q are Hölder conjugate exponents: 1/p + 1/q = 1• To $F_2[u] = \frac{1}{2} S_d ||\nabla u||^2_{L^2(\mathbb{R}^d)}$, we associate

$$F_2^*[v] = \frac{1}{2} \, \mathsf{S}_d^{-1} \int_{\mathbb{R}^d} v \, (-\Delta)^{-1} v \, dx$$

where $(-\Delta)^{-1}v = G_d * v$, $G_d(x) = \frac{1}{d-2} |\mathbb{S}^{d-1}|^{-1} |x|^{2-d}$ if $d \ge 3$ As a straightforward consequence of Legendre's duality, if we have a functional inequality of the form $F_1[u] \le F_2[u]$, then we have the dual inequality $F_1^*[v] \ge F_2^*[v]$

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev's inequality in \mathbb{R}^d , $d \geq 3$,

$$\|u\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^2 \leq \mathsf{S}_d \, \|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \quad \forall \ u \in \mathcal{D}^{1,2}(\mathbb{R}^d) \tag{5}$$

and the Hardy-Littlewood-Sobolev inequality

$$\mathsf{S}_{d} \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} \geq \int_{\mathbb{R}^{d}} v(-\Delta)^{-1} v \, dx \quad \forall \, v \in \mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d}) \tag{6}$$

are dual of each other. Here S_d is the Aubin-Talenti constant and $2^*=\frac{2\,d}{d-2}$

・ロト ・ 理 ト ・ モ ト

Using a nonlinear flow to relate Sobolev and HLS

Consider the *fast diffusion* equation

$$\frac{\partial v}{\partial t} = \Delta v^m \quad t > 0 , \quad x \in \mathbb{R}^d$$
(7)

If we define $H(t) := H_d[v(t, \cdot)]$, with

$$H_{d}[v] := \int_{\mathbb{R}^{d}} v(-\Delta)^{-1} v \, dx - S_{d} \|v\|_{L^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2}$$

then we observe that

$$\frac{1}{2}\mathsf{H}' = -\int_{\mathbb{R}^d} \mathsf{v}^{m+1} \, d\mathsf{x} + \mathsf{S}_d \left(\int_{\mathbb{R}^d} \mathsf{v}^{\frac{2d}{d+2}} \, d\mathsf{x}\right)^{\frac{2}{d}} \int_{\mathbb{R}^d} \nabla \mathsf{v}^m \cdot \nabla \mathsf{v}^{\frac{d-2}{d+2}} \, d\mathsf{x}$$

where $v = v(t, \cdot)$ is a solution of (7). With the choice $m = \frac{d-2}{d+2}$, we find that $m + 1 = \frac{2d}{d+2}$

イロト イポト イヨト イヨト

A first statement

Proposition

[J.D.] Assume that $d \ge 3$ and $m = \frac{d-2}{d+2}$. If v is a solution of (7) with nonnegative initial datum in $L^{2d/(d+2)}(\mathbb{R}^d)$, then

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} \left[\int_{\mathbb{R}^d} v \, (-\Delta)^{-1} v \, dx - \mathsf{S}_d \, \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \right] \\ &= \left(\int_{\mathbb{R}^d} v^{m+1} \, dx \right)^{\frac{2}{d}} \left[\mathsf{S}_d \, \|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 - \|u\|_{\mathrm{L}^{2*}(\mathbb{R}^d)}^2 \right] \ge 0 \end{aligned}$$

The HLS inequality amounts to $H \le 0$ and appears as a consequence of Sobolev, that is $H' \ge 0$ if we show that $\limsup_{t>0} H(t) = 0$ Notice that $u = v^m$ is an optimal function for (5) if v is optimal for (6)

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Improved Sobolev inequality

By integrating along the flow defined by (7), we can actually obtain optimal integral remainder terms which improve on the usual Sobolev inequality (5), but only when $d \ge 5$ for integrability reasons

Theorem

[J.D.] Assume that $d \ge 5$ and let $q = \frac{d+2}{d-2}$. There exists a positive constant $C \le (1 + \frac{2}{d}) (1 - e^{-d/2}) S_d$ such that

$$\begin{aligned} \mathsf{S}_{d} \|w^{q}\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} &- \int_{\mathbb{R}^{d}} w^{q} (-\Delta)^{-1} w^{q} dx \\ &\leq \mathcal{C} \|w\|_{\mathrm{L}^{2*}(\mathbb{R}^{d})}^{\frac{8}{d-2}} \left[\|\nabla w\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \mathsf{S}_{d} \|w\|_{\mathrm{L}^{2*}(\mathbb{R}^{d})}^{2} \right] \end{aligned}$$

for any $w \in \mathcal{D}^{1,2}(\mathbb{R}^d)$

Solutions with separation of variables

Consider the solution vanishing at t = T:

$$\overline{v}_{\mathcal{T}}(t,x) = c \left(\mathcal{T}-t\right)^{lpha} \left(\mathcal{F}(x)\right)^{rac{d+2}{d-2}} \quad orall \left(t,x
ight) \in (0,\mathcal{T}) imes \mathbb{R}^{d}$$

where $\alpha = (d+2)/4$, $c^{1-m} = 4 m d$, $m = \frac{d-2}{d+2}$, p = d/(d-2) and F is the Aubin-Talenti solution of

$$-\Delta F = d \left(d - 2 \right) F^{\left(d + 2 \right) / \left(d - 2 \right)}$$

Let $\|v\|_* := \sup_{x \in \mathbb{R}^d} (1 + |x|^2)^{d+2} |v(x)|$

Lemma

[M. delPino, M. Saez], [J. L. Vázquez, J. R. Esteban, A. Rodríguez] For any solution v of (7) with initial datum $v_0 \in L^{2d/(d+2)}(\mathbb{R}^d)$, $v_0 > 0$, there exists T > 0, $\lambda > 0$ and $x_0 \in \mathbb{R}^d$ such that

$$\lim_{t \to T_{-}} (T - t)^{-\frac{1}{1 - m}} \|v(t, \cdot) / \overline{v}(t, \cdot) - 1\|_{*} = 0$$

with $\overline{v}(t,x) = \lambda^{(d+2)/2} \overline{v}_T(t,(x-x_0)/\lambda)$

A first set of a priori integral estimates

Let
$$J(t) := \int_{\mathbb{R}^d} v(t, x)^{m+1} dx$$
. Let $d \ge 3$ and $m = (d-2)/(d+2)$

Lemma

 $[{\rm J.D.}]$ If v is a solution of (7) vanishing at time T>0 with $v_0\in {\rm L}^{2^*}_+(\mathbb{R}^d)$

$$\begin{split} \left(\frac{4(T-t)}{(d+2)\,\mathsf{S}_d} \right)^{\frac{d}{2}} &\leq \mathsf{J}(t) \leq \mathsf{J}(0) \;, \quad \|\nabla \mathsf{v}^m(t,\cdot)\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \geq \mathsf{S}_d^{-1} \left(\frac{4(T-t)}{d+2} \right)^{\frac{d}{2}-1} \\ \mathcal{T} &\leq \frac{1}{4} \left(d+2 \right) \mathsf{S}_d \left(\int_{\mathbb{R}^d} \mathsf{v}_0^{m+1} \; dx \right)^{\frac{2}{d}} \end{split}$$

for any $t \in (0, T)$. Moreover, if $d \ge 5$, we also have

$$\begin{aligned} \mathsf{J}(t) &= \int_{\mathbb{R}^d} \mathsf{v}^{m+1}(t,x) \; dx \geq \int_{\mathbb{R}^d} \mathsf{v}_0^{m+1} \; dx - \frac{2d}{d+2} t \, \|\nabla \mathsf{v}_0^m\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \\ &\|\nabla \mathsf{v}^m(t,\cdot)\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \leq \|\nabla \mathsf{v}_0^m\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \\ &T \geq \frac{d+2}{2 d} \int_{\mathbb{R}^d} \mathsf{v}_0^{m+1} \; dx \, \|\nabla \mathsf{v}_0^m\|_{\mathrm{L}^2(\mathbb{R}^d)}^{-2} \end{aligned}$$

Proofs (1/2)

$$\mathsf{J}(t):=\int_{\mathbb{R}^d} \mathsf{v}(t,x)^{m+1} \; dx \; \mathrm{satisfies}$$

$$\mathsf{J}'=-(m+1)\,\|
abla \mathsf{v}^m\|^2_{\mathrm{L}^2(\mathbb{R}^d)}\leq -rac{m+1}{\mathsf{S}_d}\,\mathsf{J}^{1-rac{2}{d}}$$

If $d \geq 5$, then we also have

$$J'' = 2 m (m+1) \int_{\mathbb{R}^d} v^{m-1} (\Delta v^m)^2 \, dx \ge 0$$

Such an estimate makes sense if $v = \overline{v}_T$. This is also true for any solution v as can be seen by rewriting the problem on \mathbb{S}^d : integrability conditions for v are exactly the same as for \overline{v}_T

Notice that

$$\frac{\mathsf{J}'}{\mathsf{J}} \le -\frac{m+1}{\mathsf{S}_d} \,\mathsf{J}^{-\frac{2}{d}} \le -\kappa \quad \text{with} \quad \kappa := \frac{2\,d}{d+2} \,\frac{1}{\mathsf{S}_d} \left(\int_{\mathbb{R}^d} \mathsf{v}_0^{m+1} \,dx\right)^{-\frac{2}{d}} \le \frac{d}{2\,\mathsf{T}}$$

Proofs (2/2)

By the Cauchy-Schwarz inequality, we have

$$\begin{aligned} \|\nabla v^m\|_{\mathrm{L}^2(\mathbb{R}^d)}^4 &= \left(\int_{\mathbb{R}^d} v^{(m-1)/2} \,\Delta v^m \cdot v^{(m+1)/2} \,dx\right)^2 \\ &\leq \int_{\mathbb{R}^d} v^{m-1} \,(\Delta v^m)^2 \,dx \int_{\mathbb{R}^d} v^{m+1} \,dx \end{aligned}$$

so that $Q(t) := \|\nabla v^m(t, \cdot)\|_{L^2(\mathbb{R}^d)}^2 \left(\int_{\mathbb{R}^d} v^{m+1}(t, x) dx\right)^{-(d-2)/d}$ is monotone decreasing, and

$$H' = 2 J (S_d Q - 1), \quad H'' = \frac{J'}{J} H' + 2 J S_d Q' \le \frac{J'}{J} H' \le 0$$
$$H'' \le -\kappa H' \quad \text{with} \quad \kappa = \frac{2 d}{d + 2} \frac{1}{S_d} \left(\int_{\mathbb{R}^d} v_0^{m+1} dx \right)^{-2/d}$$

By writing that $-H(0) = H(T) - H(0) \le H'(0) (1 - e^{-\kappa T})/\kappa$ and using the estimate $\kappa T \le d/2$, the proof is completed

(a)

The two-dimensional case: Legendre duality

On ofri's inequality amounts to $F_1[u] \leq F_2[u]$ with

$$F_1[u] := \log\left(\int_{\mathbb{R}^2} e^u \ d\mu\right) \quad \text{and} \quad F_2[u] := \frac{1}{16 \pi} \int_{\mathbb{R}^2} |\nabla u|^2 \ dx + \int_{\mathbb{R}^2} u \ \mu \ dx$$

Proposition

[E. Carlen, M. Loss], [V. Calvez, L. Corrias] For any $v \in L^1_+(\mathbb{R}^2)$ with $\int_{\mathbb{R}^2} v \, dx = 1$, such that $v \log v$ and $(1 + \log |x|^2) v \in L^1(\mathbb{R}^2)$, we have

$$F_{1}^{*}[v] - F_{2}^{*}[v] = \int_{\mathbb{R}^{2}} v \log\left(\frac{v}{\mu}\right) dx - 4\pi \int_{\mathbb{R}^{2}} (v - \mu) (-\Delta)^{-1} (v - \mu) dx \ge 0$$

Notice that $-\Delta \log \mu = 8 \pi \mu$ can be inverted as

$$(-\Delta)^{-1}\mu = \frac{1}{8\pi} \log{(\pi \mu)}$$

(日) (同) (日) (日)

The two-dimensional case: log HLS and...

$$H_{2}[v] := \int_{\mathbb{R}^{2}} (v - \mu) (-\Delta)^{-1} (v - \mu) \, dx - \frac{1}{4 \pi} \int_{\mathbb{R}^{2}} v \, \log\left(\frac{v}{\mu}\right) \, dx$$

Assume that v is a positive solution of

$$rac{\partial v}{\partial t} = \Delta \log \left(rac{v}{\mu}
ight) \quad t > 0 \;, \quad x \in \mathbb{R}^2$$

Proposition

[J.D.] If v is a solution with nonnegative initial datum v_0 in $L^1(\mathbb{R}^2)$ such that $\int_{\mathbb{R}^2} v_0 dx = 1$, $v_0 \log v_0 \in L^1(\mathbb{R}^2)$ and $v_0 \log \mu \in L^1(\mathbb{R}^2)$, then

$$\frac{d}{dt}\mathsf{H}_2[v(t,\cdot)] = \frac{1}{16\pi} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx - \int_{\mathbb{R}^2} \left(e^{\frac{u}{2}} - 1\right) u \, d\mu$$

with $\log(v/\mu) = u/2$

The two-dimensional case: ... Onofri's inequality

$$\frac{d}{dt}\mathsf{H}_{2}[v(t,\cdot)] = \frac{1}{16\pi} \int_{\mathbb{R}^{2}} |\nabla u|^{2} dx - \int_{\mathbb{R}^{2}} \left(e^{\frac{u}{2}} - 1\right) u d\mu$$

The right hand side is nonnegative by Onofri's inequality:

$$\frac{d}{dt}\mathsf{H}_2[v(t,\cdot)] \geq \frac{1}{16\pi} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + \int_{\mathbb{R}^2} u \, d\mu - \log\left(\int_{\mathbb{R}^2} e^u \, d\mu\right) \geq 0$$

• If
$$\int_{\mathbb{R}^2} u \ d\mu = 1$$
, then

$$-\int_{\mathbb{R}^2}e^{rac{u}{2}}u\;d\mu\geq -\log\left(\int_{\mathbb{R}^2}e^u\;d\mu
ight)$$

• Corollary: for any $u \in \mathcal{D}(\mathbb{R}^d)$ such that $\int_{\mathbb{R}^2} e^{\frac{u}{2}} d\mu = 1$, we have

$$\frac{1}{16\pi} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx \ge \int_{\mathbb{R}^2} \left(e^{\frac{u}{2}} - 1 \right) u \, d\mu$$

The two-dimensional case: the sphere setting

The image w of v by the inverse stereographic projection on the sphere \mathbb{S}^2 , up to a scaling, solves the equation

$$rac{\partial w}{\partial t} = \Delta_{\mathbb{S}^2} \log w \quad t > 0 \;, \quad y \in \mathbb{S}^2$$

More precisely, if $x = (x_1, x_2) \in \mathbb{R}^2$, then u and w are related by

$$w(t,y) = \frac{u(t,x)}{4 \pi \mu(x)}, \quad y = \left(\frac{2(x_1,x_2)}{1+|x|^2}, \frac{1-|x|^2}{1+|x|^2}\right) \in \mathbb{S}^2$$

The loss of mass of the solution of

$$rac{\partial v}{\partial t} = \Delta \log v \quad t > 0 \;, \quad x \in \mathbb{R}^2$$

is compensated in case of

$$rac{\partial v}{\partial t} = \Delta \log \left(rac{v}{\mu}
ight) \quad t > 0 \;, \quad x \in \mathbb{R}^2$$

by the source term $-\Delta\log\mu$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Thank you for your attention !

イロト イヨト イヨト イヨト

э