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A result of uniqueness on a classical example

On the sphere S9, let us consider the positive solutions of
—Au+ N u=uP?
pel2)uU(2,27]ifd >3, 2" = 2%

pell2)U(2,4+00)ifd=1,2

IfX<d, u= A2 js the unique solution

[Gidas & Spruck, 1981], [Bidaut-Véron & Véron, 1991]
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Bifurcation point of view

81 i

Figure: (p -2 A= (p—2)u(X) withd =3
19012200y + A1 = 5O 1000
Taylor expansion of u =1+4¢e¢; as € — 0 with — Ap; =d ¢
d
u(A) < A if and only if A > b2
> The inequality holds with p(A) = A = p;iZ [Bakry & Emery, 1985]
[Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]
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Inequalities without weights and fast
diffusion equations: optimality and
uniqueness of the critical points

@ The Bakry-Emery method (compact manifolds)

> The Fokker-Planck equation

> The Bakry-Emery method on the sphere: a parabolic method
> The Moser-Trudiger-Onofri inequality (on a compact manifold)

@ Fast diffusion equations on the Euclidean space (without weights)
> Euclidean space: Rényi entropy powers

> Euclidean space: self-similar variables and relative entropies

> The role of the spectral gap
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The Fokker-Planck equation

The linear Fokker-Planck (FP) equation

ou
a-Au—FV-(uV(ﬁ)

on a domain Q C RY, with no-flux boundary conditions
(Vu+uVe)-v=0 on 0Q
is equivalent to the Ornstein-Uhlenbeck (OU) equation
0
a—\; =Av—-V¢-Vv=Lv

(Bakry, Emery, 1985), (Arnold, Markowich, Toscani, Unterreiter,
2001)

With mass normalized to 1, the unique stationary solution of (FP) is

e_(z)

= —_— S:]-
er*‘bdX — V.

Us
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The Bakry-Emery method

With dy = us dx and v such that [, vdy =1, g € (1,2], the g-entropy
is defined by

1
Elvl = —— | (vI-1—-gq(v—1))dy
g-1Jg
Under the action of (OU), with w = v9/2, T,[v] := %fQ |Vw|? dy,

d d

Ealu(t )] = ~Tolv(t)] and 2 (Zolv] = 20&,[v]) <0
. . J, (2 9=1 ||Hess wl||?+Hess ¢ VW®VW) dvy
th A= f 2 g .

. weH S\ (0} Ja[Vwidy

Proposition

(Bakry, Emery, 1984) (JD, Nazaret, Savaré, 2008) Let Q be convex.

If X >0 and v is a solution of (OU), then T,[v(t,-)] < Zy[v(0,-)] e 2**

and E[v(t,-)] < &[v(0,-)] e=2 ¢ for any t > 0 and, as a consequence,
Z,[v] > 20 &[v] Vv e HY(Q,dy)
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A proof of the interpolation
inequality by the carré du champ
method

d

1Velitae) > 57 (lellfaee) ~ lulfan) Vo€ HA(E?)
pel2)uU(2,27]ifd >3,2" = 2%

pell,2)U(2,4+o00)ifd=1,2

J. Dolbeault Uniqueness and symmetry



Linear and nonlinear flows: entropy methods The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

The Bakry-Emery method on the sphere

Entropy functional
2
Eplo) = 55 {fsd p> dip— (g p du)"] if p#2

— p
52[/)] = fgd p log (HPHLl@d)) du
Fisher information functional
1
Lolol = Jou VPP ? du

[Bakry & Emery, 1985] carré du champ method: use the heat flow

dp

LA

ot
and observe that £&,[p] = — Z,[0],

(Ll -~ d&l)) <0 = Tlo] > d& L

. . 2
with p = |u|P, if p < 27 := %
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The evolution under the fast diffusion flow

To overcome the limitation p < 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

Op
ot
(Demange), (JD, Esteban, Kowalczyk, Loss): for any p € [1,2*]

Kolel = 5 (Tl -~ d&50al) <0

Am

L L
25 30

(p, m) admissible region, d =5
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Cylindrical coordinates, Schwarz symmetrization,
stereographic projection...

X o, =
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. and the ultra-spherical operator

Change of variables z = cosf, v(0) = f(z), dvg == v dz/Zy,
v(z):=1-2°

The self-adjoint ultraspherical operator is
AW/ / 1" d ! gl
Lf=01-2z)f"—dzf'=vf +§I/f

which satisfies (A, L f) = f i vduy

Proposition

Let p € [1,2) U (2,2%], d > 1. For any f € HY([-1,1], dvg),

—(f .cf)‘/l F'2 v dvg > d 11t = 1Pl
) - . d Z p— 2

J. Dolbeault Uniqueness and symmetry



Linear and nonlinear flows: entropy methods The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

The heat equation % = L g for g = fP can be rewritten in terms of f
as
of |f'|2
f -1
T =Lf+(p—-1) v

1d [, 1d B |f')?

d d 1 1
= Tlg(t, )] + 2d Z[g(t, )] = 7/ 12 v dug + 2d/ 12 v dug
dt dt |, .

1 4 12 g1
d |f'| d—1|f"|*f
—_9 f//2 1) —— -2 1) —= 2
/1(| | (p )d—|—2 f2 (p )d—|—2 f v dvg

is nonpositive if

d |f/|4 d_1|f‘/|2f//
2 2P Vgm s
is pointwise nonnegative, which is granted if

_ 112 2
d 1}_(_) 2 +1 _y _ 2d .

[(p_l)d+2 2 PSS d=2

FP+p—1)
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The elliptic point of view (nonlinear flow)

Ju — 228 (cu+m¥u),n:ﬁ(p—2)+1

lu'|? A A )
_ —(B-1 = “
Lu—(-1) . 1/+p_2u p_2u

Multiply by £ v and integrate

1 | /|2
/ Euu”dud:—ﬁ/ dvy
-1 J-1 u

v
Multiply by % and integrate

\’|2
..:—l—,%/ u® duvy
—1

The two terms cancel and we are left only with

1
4
/ u v dvg =0 ifp:2*andﬂ:67
-1

—p

,opt2 |uPP
6—p u
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The Moser-Trudinger-Onofri

inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban

Q@ Extension to compact Riemannian manifolds of dimension 2...
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We shall also denote by R the Ricci tensor, by Hyu the Hessian of u
and by

Leu:=Hgu— %Agu

the trace free Hessian. Let us denote by M, u the trace free tensor
Mgu:=Vu®Vu-— % |V ul?

We define

/sm { |Lgu — 3 Mgul]* +R(Vu, Vu) e "2 dv,

Ay = inf
uER(M)\{0} / Vul2e 2 dv,
m
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Theorem

Assume that d = 2 and A\, > 0. If u is a smooth solution to

1
—EAgu—i-)\:e”

then u is a constant function if A € (0, \,)

The Moser-Trudinger-Onofri inequality on 9t

1
7 ||Vu|\i2(5m) + A / udvg > X log (/ e! dvg) Yu e HY(OM)
m m

for some constant A > 0. Let us denote by A; the first positive
eigenvalue of — A,

If d = 2, then the MTO inequality holds with A = A := min{4 7, A\, }.
Moreover, if A is strictly smaller than \1/2, then the optimal constant
in the MTO inequality is strictly larger than N\
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The flow

of

a _ Ag(eff/Z) _ % |vf|2 eff/2

Gilf] = /{m | Lgf — LM f|2e "2dv, + /im R(VF, Ve /2dy,

—)\/ |VF2e 2dy,
m
Then for any A < A\, we have
—]-‘,\[f( )= / (=3 Agf + ) (Ag(e*f/z) — 3 IVFP e*f/2) dvg
m
= —G\f(t,-)]
Since F) is nonnegative and lim;_,o Fa[f(t,-)] = 0, we obtain that

Fa[] > /OOO GA[F(t )] dt
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Weighted Moser-Trudinger-Onofri inequalities on the
two-dimensional Euclidean space

On the Euclidean space R?, given a general probability measure
does the inequality

1
—— [ |Vu]?Pdx > \|log / e'du | — / udp
167 R2 Rd R

hold for some A > 0 7 Let

inff — =% Alog 1
x€R? 8w p

Assume that p is a radially symmetric function. Then any radially
symmetric solution to the EL equation is a constant if A < A, and the
inequality holds with A\ = A, if equality is achieved among radial functions
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gl Fast diffusion equations on the Euclidean space

Euclidean space: Rényi entropy
powers and fast diffusion

@ The Euclidean space without weights

> Rényi entropy powers, the entropy approach without rescaling:

(Savaré, Toscani): scalings, nonlinearity and a concavity property
inspired by information theory
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The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in RY. d>1

v

— =AvT"

ot
with initial datum v(x, t = 0) = vp(x) > 0 such that [, vo dx =1 and
Jge X[ vo dx < +00. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

1 X
Uslt,%) = (s tl/u)d B*(n tl/u)
where
| 2pm Yk

=2 -1 = —
i +d(m-1), & —

and B, is the Barenblatt profile
(Co— xRV itm>1
B.(x) = n1/(m=1) .
(G + |x?) ifm<1
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The Rényi entropy power F

The entropy is defined by

E::/ v dx
Rd

and the Fisher information by

I ::/ v|Vpl? dx with p= ym—1
RY m-—1
If v solves the fast diffusion equation, then
E=(1-ml

To compute I, we will use the fact that

Ip 2

—=(m-1)pA

5 = (m—1)pAp+|Vpl

. I 2 1 2 1
F:=E° th = =1 - -1)==———-1
e d(l—m) +1—m<d+m ) dl—m

has a linear growth asymptotically as t — +oo
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The variation of the Fisher information

If v solves % = Av™ with 1 — % <m<1, then

d
= E/ v|Vp|? dx = —2/ v (||D2p||2 +(m—1) (Ap)2) dx

Rd R

Explicit arithmetic geometric inequality

2
1 1
0%l - & (an = | D2~ £ ap1d

.... there are no boundary terms in the integrations by parts ?
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The concavity property

[Toscani-Savaré| Assume that m>1— 2 ifd >1and m>0ifd =1.
Then F(t) is increasing, (1 — m)F"(t) <0 and

) 1 o 2 o—1] __ o—1
lim ;F(t)—(l—m)at_llTooE I=(1-m)oE{ "I,

t—+o0o

[Dolbeault-Toscani] The inequality
EO- I > ETI,
is equivalent to the Gagliardo-Nirenberg inequality
IV W12y WIS ey = Coon W g

if1-2<m<1 Hint: v?1/2=__¥* g=_1

= Twieewe,’ 97 2m—1
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Euclidean space: self-similar
variables and relative entropies

@ In the Euclidean space, it is possible to characterize the optimal
constants using a spectral gap property
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Self-similar variables and relative entropies

The large time behavior of the solution of % = Av™ is governed by
the source-type Barenblatt solutions

1 X
valtx) 1= K (p t)d/m B*(;@(M t)l/u) where i :=2+d(m—1)

where B, is the Barenblatt profile (with appropriate mass)

m—1)

B.(x) == (1+ |x])"¢

A time-dependent rescaling: self-similar variables

1 X dR 1— R(t)
V(t, X) = W U(T, /{7,"—\’) where E =R M, T(t) = % |0g (RO
Then the function u solves a Fokker-Planck type equation

%—I—V- [U(Vum_l—Zx)} =0
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Free energy and Fisher information

Q@ The function u solves a Fokker-Planck type equation

%—FV- [U(Vumfl—Qx)] =0

@ (Ralston, Newman, 1984) Lyapunov functional:
Generalized entropy or Free energy

E[ul ;:/ (—u+x|2u) dx — &
Rd m

Q@ Entropy production is measured by the Generalized Fisher
information

i<€'[u] =—TI[u], Z[u] ::/ u|Vu'"*1 +2x|% dx
dt R
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Without weights: relative entropy, entropy production

Q@ Stationary solution: choose C such that ||usl||L: = |Jull;r =M >0

e (x) = (C + [x?) /O™

Q@ FEntropy — entropy production inequality (del Pino, JD)

d23,m6[%,+oo),m>%,m7é1

T[u] > 4 €[]

p= 2m1717 u=w?> (GN) ”VW”Lz(Rd ”WHL‘?“(Rd) = CGN ||WHL2q(Rd)

(del Pino, JD) A solution u with initial data ug € L1 (R?) such that
Ix|2 up € LY(RY), uf’ € L1(RY) satisfies E[u(t,-)] < E[ug] e~ **
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A computation on a large ball, with boundary terms

ou

E+V'[U(Vum*1—2x)}:0 >0, x€Bg

where Bg is a centered ball in RY with radius R > 0, and assume that
u satisfies zero-flux boundary conditions

(Vumfl - 2X) S

|x|

With z(7, x) := VQ(7, x) := Vu™ ! — 2x, the relative Fisher
information is such that

d
— u|z\2dx+4/ ulz|? dx
dT Br Br

=0 7>0, xecdBg.

vaize [ um (D) - (- m) (A0)7) ox
Br
= / u™ (w- V|z|?) do < 0 (by Grisvard’s lemma)
9B

J. Dolbeault Uniqueness and symmetry



Linear and nonlinear flows: entropy methods The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

Spectral gap: sharp asymptotic rates of convergence

Assumptions on the initial datum v
(Hl) \/D0 < v < VD1 fm" some Dy > Dy >0

(H2) if d > 3 and m < m,, (vy — V) is integrable for a suitable
D e [[)17 Do]

Theorem

(Blanchet, Bonforte, JD, Grillo, Vézquez) Under Assumptions
(H1)-(H2), if m < 1 and m # m, := 9=%, the entropy decays according
to

Elv(t,))] < Ce2=mAadt >0

where Ny ,g > 0 is the best constant in the Hardy—Poincaré inequality

/\W,/ | dpte—1 g/ |VfPdu, VY fe Hl(d,ua),/ fdpie_1 =0
RY Rd Rd

with o := 1/(m — 1) < 0, dpg 1= hy dx, ho(x) := (1 + |x|?)®
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Spectral gap and best constants

y(m)
4
my = 44
did
d+6
2
e Case 1
— (ase 2
e Case 3
0 m
1
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Caffarelli-Kohn-Nirenberg,
symmetry and symmetry breaking
results, and weighted nonlinear flows

> The critical Caffarelli-Kohn-Nirenberg inequality
[JD, Esteban, Loss|

[> A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities]
[JD. Esteban, Loss, Muratori]

> Large time asymptotics and spectral gaps

> Optimality cases
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Critical Caffarelli-Kohn-Nirenberg inequality

Let D, p = { veLP(RY, [x|Pdx) : |x|7?|Vv| € L? (RY, dx) }

VP O\ [vv[?
<Ad |X‘bp dx < Ca,b |X‘2 dx VYve Da,b

holds under conditions on a and b

2d
d—2+2(b—a)

p= (critical case)

> An optimal function among radial functions:

[xI2 v I3

2
_ (p—2) (2c—2)) 72 -
Vi (x) (1 + |x] ) and Cj, v 2

Question: Cyp = Cj ) (symmetry) or C;p > Cj , (symmetry breaking) ¢
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Critical CKN: range of the parameters

Figure: d =3 b b—at
v NP %
5 dx < Cap 52 dx
e |X| re |X| 1 )
g T
/ 0 o
b=a

a<b<a+lifd>3
a<b<a+lifd=2a+1/2<b<a+lifd=1
and a < ac := (d — 2)/2
B 2d (Glaser, Martin, Grosse, Thirring (1976))
P= d—2+2(b—a) (Caffarelli, Kohn, Nirenberg (1984))
[F. Catrina, Z.-Q. Wang (2001)]
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Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve b
d(a. — a)

brs(a) = +a—a
rs(2) 2/(ac—aR +d—1 ‘

/ 0

[Smets|, [Smets, Willem], [Catrina, Wang], [Felli, Schneider]

The functional
2 p 2/p
;_b/ \V\;| dx — / |VL dx
" Jra |x]22 Rra |x[PP

is linearly instable at v = v,
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Symmetry versus symmetry breaking:

the sharp result in the critical case "

[JD, Esteban, Loss (2016)]

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and
b > bgs(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

J. Dolbeault Uniqueness and symmetry
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Linearization and optimality

The Emden-Fowler transformation and the cylinder

> With an Emden-Fowler transformation, critical the
Caffarelli-Kohn-Nirenberg inequality on the Fuclidean space are
equivalent to Gagliardo-Nirenberg inequalities on a cylinder
X
v(r,w)=r""*y¢(s,w) with r=|x|, s=—logr and w=-—
With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as the subcritical interpolation inequality

100112y + Vel ey + MellEaey = 1A 2llEsey Vo € HY(C)

where A := (a — a)?, C = R x S?~! and the optimal constant u(A) is

d
uN) = c— with a=a.+ VA and b:Ei\/K
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Linearization around symmetric critical points

Up to a normalization and a scaling
©«(s,w) = (cosh 5)7ﬁ
is a critical point of
HY(C) 5 ¢ = [0s0l22(c) + I Vuplliae) + Mellize
under a constraint on ||<p\|%p(c)
@« is not optimal for (CKN) if the Poschl-Teller operator
—R D+ NP P = - NN ———

has a negative eigenvalue, i.e., for A > Ay (explicit)
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The variational problem on the cylinder

A= p(A) == min 105012cy + IVwpllF2ey + Aol

peH(C) H‘PH%;:(C)

is a concave increasing function

Restricted to symmetric functions, the variational problem becomes

'u*(/\) — min ||as§0||i2(Rd) + A ”('0”%42(]1@1) _
)

(1) A
€H(R) ||90||ip(]Rd) ( )

Symmetry means p(A) = p(A)
Symmetry breaking means p(A) < p,(A)
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Numerical results

50

--- asymptotic

30

-------- symmetric
20

non-symmetric

Parametric plot of the branch of optimal functions for p = 2.8, d = 5.
Non-symmetric solutions bifurcate from symmetric ones at a bifurcation
point N1 computed by V. Felli and M. Schneider. The branch behaves for
large values of N\ as predicted by F. Catrina and Z.-Q. Wang
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what we have to to prove / discard...

/ Jﬂ ) X X ’ ‘
/ (v bifurcation /! /
I K V4 symmetric /
V] ic / 785 y . /
8 mmetrl(/,' 94 / bifurcation K
/ / X /
/ e 00 Aes(p9)) /
/ .
/ / non-symmetric "
/
1 . . / o
bifurcation e T(u)
/) (H) 79
/
Y, non-symmetric
715
14 1/Ken
7% / 170
non-symmetric
2 765 symmetric
788 symmetric
0 G N
A(p) N(u) Ny)
L ; : ; ; 77 B B 0 2 2 265 0 5 20

When the local criterion (linear stability) differs from global results in a
larger family of inequalities (center, right)...
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The uniqueness result and the
strategy of the proof
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The elliptic problem: rigidity

The symmetry issue can be reformulated as a uniqueness (rigidity)
issue. An optimal function for the inequality

p 2/p 2
/ VP s\ <, [V g
Rre |X|PP " Jre |x]22

solves the (elliptic) Euler-Lagrange equation

-V (‘X|722 Vv) = \x|*b’J vP1
(up to a scaling and a multiplication by a constant). Is any
nonnegative solution of such an equation equal to

_ 2

Vie(x) = (1 + |x\(p’2)(36*3)) P2

(up to invariances) ? On the cylinder
—Rp—p+No=pP"

Up to a normalization and a scaling

©«(s,w) = (cosh 5)7ﬁ
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Symmetry in one slide: 3 steps

@ A change of variables: v(|x|*7!x) = w(x), Dov = (a ‘52, 1 Vo)
HV||L2Pd n(R9) < Ka n,p ”D V”L2 d—n(Rd) ||VHLp+1 d—n(Rd) Vv e Hd—n,d—n(Rd)

@ Concavity of the Rényi entropy power with
Ea:—D*Da:a2(u”+”1 )—|— A, uand =L um

4 Glu(t, N (fga u™ du)
> (1 m) (o 1) [ um |£gP - BeelRePlan g,
#2 feu (a* (1= 3

+2fRd (( -2) (aFS—a)|V P\2+C(n m, d)‘ wP' ) u™dp

—0

" P’ A, P
PY — s aZ(n-1)s?

2
+ 25‘52 |VwP/ — L:P| ) u™du

Q@ Elliptic regularity and the Emden-Fowler transformation: justifying
the integrations by parts
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Proof of symmetry (1/3: changing the dimension)

We rephrase our problem in a space of higher, artificial dimension

n > d (here n is a dimension at least from the point of view of the
scaling properties), or to be precise we consider a weight |x|"~¢ which
is the same in all norms. With 8 =2a and v = bp,

a—1 ﬁ Y d—W
v(|x x)=w(x), a=1+—— and n=2—>—
(X1 %) = w(x) _ T

we claim that Inequality (CKN) can be rewritten for a function
v(|x|*1 x) = w(x) as

[[vIlL2e.0- n(Rd) < Ka,n,p ||D(¥V||L2 d—n(Rd) ”VHLp-l d—n(Rd) Vve Hzfn,dfn(Rd)
with the notations s = |x|, Dav = (a ‘g:, 1V,v) and

d>2, a>0, n>d and pe(l,ps]
By our change of variables, w, is changed into

vi(x) == (1+ |X|2)71/(p71) Vx € R?

J. Dolbeault Uniqueness and symmetry
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The derivative of the generalized Rényi entropy power functional is

o—1
Glu] = (/ u™ du) / u|DPJ? du
RY RY

where o = 2 21— — 1. Here dp = |x|"~? dx and the pressure is

m
Pi= — ym!
1—mu

Looking for an optimal function in (CKN) is equivalent to minimize G
under a mass constraint

J. Dolbeault Uniqueness and symmetry
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With L, = — D% D, = o? (u/’ + "%1 u/) + s% A, u, we consider the fast
diffusion equation

critical case m = 1 — 1/n; subcritical range 1 —1/n<m <1
The key computation is the proof that

2 G[u(t, )] (fpo u™ dpr)"
f]Rd u\DaP\zdu 2

2 (1 - m) (U - 1) f]Rd u™ Jod umdp
, 2
+2f]Rd (064 (1_%)‘P//_P?_(x2(Anw—|;)52 +

+2 [pa ((" —2) (agg — @®) [VuPP + ¢(n, m, d) %) um dp = H[u]

L,P— du

(9P ) ur

for some numerical constant c(n, m,d) > 0. Hence if a < afg, the
r.h.s. H[u] vanishes if and only if P is an affine function of |x|?, which
proves the symmetry result. A quantifier elimination problem (Tarski,
1951) ¢

J. Dolbeault Uniqueness and symmetry
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(3/3: elliptic regularity, boundary terms)

This method has a hidden difficulty: integrations by parts ! Hints:

Q@ use elliptic regularity: Moser iteration scheme, Sobolev regularity,
local Holder regularity, Harnack inequality, and get global regularity
using scalings

Q@ use the Emden-Fowler transformation, work on a cylinder,
truncate, evaluate boundary terms of high order derivatives using
Poincaré inequalities on the sphere

Summary: if u solves the Euler-Lagrange equation, we test by L,u™
0= / dG[u] - Lou™dp > H[u] > 0
Rd

H[u] is the integral of a sum of squares (with nonnegative constants in
front of each term)... or test by |x|7 div (|x|~® Vw!*P) the equation
(p—1)°

1-3p 3: =B ,,2p 1—p 1—p|2 -y 1-p _
w div (|x w PV w + |Vw =+ |x caw — ) =0

J. Dolbeault Uniqueness and symmetry
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Fast diffusion equations with
weights: large time asymptotics

@ The entropy formulation of the problem
o [Relative uniform convergence]

e Asymptotic rates of convergence

e From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

vt XDV [TV Iy < X2 =0 (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret
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CKN and entropy — entropy production inequalities

When symmetry holds, (CKN) can be written as an entropy — entropy
production inequality

Lm @24 8-y €&Vl <I[v]

_1
and equality is achieved by Bz ,(x) := (1 + [x[>HF~7) "
Here the free energy and the relative Fisher information are defined by

R 1 m m m—1 dx
g[V] = m oo (V — %IB’,Y — m%ﬁﬁ (V — %ﬁ,7)> W
2 dx
— m—1 m—1
I[V] = /Rdv’Vv _V%Bv’)’ ’ W

If v solves the Fokker-Planck type equation

Ve + X[ V- [|x\_ﬂ vV (vt - |x|2+ﬂ—W)} —0  (WFDE-FP)

then %E[v(t, N == Tt )

J. Dolbeault Uniqueness and symmetry
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Essential spectrum

Essential spectrum

The spectrum of £ as a function of § = 11—, with n=5. The
essential spectrum corresponds to the grey area, and its bottom is
determined by the parabola ¢ — Aess(6). The two eigenvalues Ag 1 and
1,0 are given by the plain, half-lines, away from the essential
spectrum. The spectral gap determines the asymptotic rate of

convergence to the Barenblatt functions

J. Dolbeault Uniqueness and symmetry
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Global vs. asymptotic estimates

Q@ FEstimates on the global rates. When symmetry holds (CKN) can
be written as an entropy — entropy production inequality

2+8-7) eV <

T LIVl

so that

AL . _(2+8—9)
Elv(t)] < E[v(0)] e 20-mAt vi>0 with A, =i

@ Optimal global rates. Let us consider again the entropy — entropy
production inequality

K(M)Ev] < T[v] Vv e LY (RY) such that [vlLisrey =M,
where K(M) is the best constant: with A(M) := % (1 — m)~2K(M)
E[v(t)] < E[v(0)] e~ 2A-mMAMt v >0

J. Dolbeault Uniqueness and symmetry
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Linearization and optimality

Joint work with M.J. Esteban and M. Loss
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Linearization and scalar products

With u. such that

u. = B, (1 +e fBi_m) and u. dx = M,
Rd
at first order in ¢ — 0 we obtain that f solves
f
% =Lf where Lf:=(1-m)BI ?|x|"D} (|x|"?B.Daf)

Using the scalar products
<f1,fz>:/ A6HB ™ x| dx and <<f1,f2>>=/ Dafi - Do B [x| 7 dx
Rd Rd

we compute

1
Y e ey = [ FLAB X dx = — / Do F2B, |x|7 dx
2 dt R R
for any f smooth enough: with (f,Lf) = — (f, )
1d

5 g if )= /R Do f Do (LF) By |x|% dx = — (f,LF)

J. Dolbeault Uniqueness and symmetry
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Linearization of the flow, eigenvalues and spectral gap

Now let us consider an eigenfunction associated with the smallest
positive eigenvalue \; of L

—LA=Mh
so that fi realizes the equality case in the Hardy-Poincaré inequality
(g.6) =~ (g.Le) = Mlg—&l", &:=(g1)/(L1)  (P1)

(g Lg) = M (g 8) (P2)
Proof by expansion of the square
~((e—8).L(g—8))=(L(g—&)L(g—&)=IL(g—&)
@ (P1) is associated with the symmetry breaking issue

@ (P2) is associated with the carré du champ method
The optimal constants / eigenvalues are the same

@ Key observation: \; >4 <= «a<aps: = %

J. Dolbeault Uniqueness and symmetry
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Three references

@ Lecture notes on Symmetry and nonlinear diffusion flows...
a course on entropy methods (see webpage)

@ [JD, Maria J. Esteban, and Michael Loss] Symmetry and
symmetry breaking: rigidity and flows in elliptic PDEs
... the elliptic point of view: arXiv: 1711.11291

@ [JD, Maria J. Esteban, and Michael Loss| Interpolation
inequalities, nonlinear flows, boundary terms, optimality and
linearization... the parabolic point of view

Journal of elliptic and parabolic equations, 2: 267-295, 2016.
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These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Conferences/
> Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list /
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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