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Linear and nonlinear flows: entropy methods
CKN inequalities, symmetry breaking and weighted nonlinear flows

A result of uniqueness on a classical example

On the sphere Sd , let us consider the positive solutions of

−∆u + λ u = up−1

p ∈ [1, 2) ∪ (2, 2∗] if d ≥ 3, 2∗ = 2 d
d−2

p ∈ [1, 2) ∪ (2,+∞) if d = 1, 2

Theorem

If λ ≤ d, u ≡ λ1/(p−2) is the unique solution

[Gidas & Spruck, 1981], [Bidaut-Véron & Véron, 1991]
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Bifurcation point of view
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Figure: (p − 2)λ 7→ (p − 2)µ(λ) with d = 3

‖∇u‖2
L2(Sd ) + λ ‖u‖2

L2(Sd ) ≥ µ(λ) ‖u‖2
Lp(Sd )

Taylor expansion of u = 1 + εϕ1 as ε→ 0 with −∆ϕ1 = d ϕ1

µ(λ) < λ if and only if λ >
d

p − 2

B The inequality holds with µ(λ) = λ = d
p−2 [Bakry & Emery, 1985]

[Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

Inequalities without weights and fast
diffusion equations: optimality and

uniqueness of the critical points
The Bakry-Emery method (compact manifolds)

B The Fokker-Planck equation
B The Bakry-Emery method on the sphere: a parabolic method
B The Moser-Trudiger-Onofri inequality (on a compact manifold)

Fast diffusion equations on the Euclidean space (without weights)
B Euclidean space: Rényi entropy powers
B Euclidean space: self-similar variables and relative entropies
B The role of the spectral gap
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

The Fokker-Planck equation

The linear Fokker-Planck (FP) equation

∂u

∂t
= ∆u +∇ · (u∇φ)

on a domain Ω ⊂ Rd , with no-flux boundary conditions

(∇u + u∇φ) · ν = 0 on ∂Ω

is equivalent to the Ornstein-Uhlenbeck (OU) equation

∂v

∂t
= ∆v −∇φ · ∇v =: L v

(Bakry, Emery, 1985), (Arnold, Markowich, Toscani, Unterreiter,
2001)
With mass normalized to 1, the unique stationary solution of (FP) is

us =
e−φ∫

Ω
e −φ dx

⇐⇒ vs = 1
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The Bakry-Emery method

With dγ = us dx and v such that
∫

Ω
v dγ = 1, q ∈ (1, 2], the q-entropy

is defined by

Eq[v ] :=
1

q − 1

∫

Ω

(vq − 1− q (v − 1)) dγ

Under the action of (OU), with w = vq/2, Iq[v ] := 4
q

∫
Ω
|∇w |2 dγ,

d

dt
Eq[v(t, ·)] = −Iq[v(t, ·)] and

d

dt

(
Iq[v ]− 2λ Eq[v ]

)
≤ 0

with λ := inf
w∈H1(Ω,dγ)\{0}

∫
Ω (2 q−1

q ‖Hessw‖2+Hessφ:∇w⊗∇w) dγ∫
Ω
|∇w |2 dγ

Proposition

(Bakry, Emery, 1984) (JD, Nazaret, Savaré, 2008) Let Ω be convex.
If λ > 0 and v is a solution of (OU), then Iq[v(t, ·)] ≤ Iq[v(0, ·)] e−2λ t

and Eq[v(t, ·)] ≤ Eq[v(0, ·)] e−2λ t for any t ≥ 0 and, as a consequence,

Iq[v ] ≥ 2λ Eq[v ] ∀ v ∈ H1(Ω, dγ)
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

A proof of the interpolation
inequality by the carré du champ

method
‖∇u‖2

L2(Sd ) ≥
d

p − 2

(
‖u‖2

Lp(Sd ) − ‖u‖2
L2(Sd )

)
∀ u ∈ H1(Sd)

p ∈ [1, 2) ∪ (2, 2∗] if d ≥ 3, 2∗ = 2 d
d−2

p ∈ [1, 2) ∪ (2,+∞) if d = 1, 2
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The Bakry-Emery method on the sphere

Entropy functional

Ep[ρ] := 1
p−2

[∫
Sd ρ

2
p dµ−

(∫
Sd ρ dµ

) 2
p

]
if p 6= 2

E2[ρ] :=
∫
Sd ρ log

(
ρ

‖ρ‖
L1(Sd )

)
dµ

Fisher information functional

Ip[ρ] :=
∫
Sd |∇ρ

1
p |2 dµ

[Bakry & Emery, 1985] carré du champ method: use the heat flow

∂ρ

∂t
= ∆ρ

and observe that d
dt Ep[ρ] = −Ip[ρ],

d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0 =⇒ Ip[ρ] ≥ d Ep[ρ]

with ρ = |u|p, if p ≤ 2# := 2 d2+1
(d−1)2
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The linear Bakry-Emery method and a nonlinear extension
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The evolution under the fast diffusion flow

To overcome the limitation p ≤ 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

∂ρ

∂t
= ∆ρm

(Demange), (JD, Esteban, Kowalczyk, Loss): for any p ∈ [1, 2∗]

Kp[ρ] :=
d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0

1.0 1.5 2.5 3.0

0.0

0.5

1.5

2.0

(p,m) admissible region, d = 5
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

Cylindrical coordinates, Schwarz symmetrization,
stereographic projection...
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

... and the ultra-spherical operator

Change of variables z = cos θ, v(θ) = f (z), dνd := ν
d
2−1 dz/Zd ,

ν(z) := 1− z2

The self-adjoint ultraspherical operator is

L f := (1− z2) f ′′ − d z f ′ = ν f ′′ +
d

2
ν′ f ′

which satisfies 〈f1,L f2〉 = −
∫ 1

−1
f ′1 f
′

2 ν dνd

Proposition

Let p ∈ [1, 2) ∪ (2, 2∗], d ≥ 1. For any f ∈ H1([−1, 1], dνd),

−〈f ,L f 〉 =

∫ 1

−1

|f ′|2 ν dνd ≥ d
‖f ‖2

Lp(Sd ) − ‖f ‖2
L2(Sd )

p − 2
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The heat equation ∂g
∂t = L g for g = f p can be rewritten in terms of f

as
∂f

∂t
= L f + (p − 1)

|f ′|2
f

ν

−1

2

d

dt

∫ 1

−1

|f ′|2 ν dνd =
1

2

d

dt
〈f ,L f 〉 = 〈L f ,L f 〉+(p−1)

〈 |f ′|2
f

ν,L f
〉

d

dt
I[g(t, ·)] + 2 d I[g(t, ·)] =

d

dt

∫ 1

−1

|f ′|2 ν dνd + 2 d

∫ 1

−1

|f ′|2 ν dνd

= − 2

∫ 1

−1

(
|f ′′|2 + (p − 1)

d

d + 2

|f ′|4
f 2
− 2 (p − 1)

d − 1

d + 2

|f ′|2 f ′′
f

)
ν2 dνd

is nonpositive if

|f ′′|2 + (p − 1)
d

d + 2

|f ′|4
f 2
− 2 (p − 1)

d − 1

d + 2

|f ′|2 f ′′
f

is pointwise nonnegative, which is granted if
[

(p − 1)
d − 1

d + 2

]2

≤ (p−1)
d

d + 2
⇐⇒ p ≤ 2 d2 + 1

(d − 1)2
= 2# <

2 d

d − 2
= 2∗
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The linear Bakry-Emery method and a nonlinear extension
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The elliptic point of view (nonlinear flow)
∂u
∂t = u2−2β

(
L u + κ |u

′|2
u ν

)
, κ = β (p − 2) + 1

−L u − (β − 1)
|u′|2
u

ν +
λ

p − 2
u =

λ

p − 2
uκ

Multiply by L u and integrate

...

∫ 1

−1

L u uκ dνd = −κ
∫ 1

−1

uκ
|u′|2
u

dνd

Multiply by κ |u
′|2
u and integrate

... = +κ

∫ 1

−1

uκ
|u′|2
u

dνd

The two terms cancel and we are left only with

∫ 1

−1

∣∣∣∣u′′ −
p + 2

6− p

|u′|2
u

∣∣∣∣
2

ν2 dνd = 0 if p = 2∗ and β =
4

6− p
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

The Moser-Trudinger-Onofri

inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban

Extension to compact Riemannian manifolds of dimension 2...

=⇒

J. Dolbeault Uniqueness and symmetry
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The linear Bakry-Emery method and a nonlinear extension
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We shall also denote by R the Ricci tensor, by Hgu the Hessian of u
and by

Lgu := Hgu −
g

d
∆gu

the trace free Hessian. Let us denote by Mgu the trace free tensor

Mgu := ∇u ⊗∇u − g

d
|∇u|2

We define

λ? := inf
u∈H2(M)\{0}

∫

M

[
‖Lgu − 1

2 Mgu ‖2 + R(∇u,∇u)
]
e−u/2 d vg

∫

M

|∇u|2 e−u/2 d vg

J. Dolbeault Uniqueness and symmetry
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Theorem

Assume that d = 2 and λ? > 0. If u is a smooth solution to

− 1

2
∆gu + λ = eu

then u is a constant function if λ ∈ (0, λ?)

The Moser-Trudinger-Onofri inequality on M

1

4
‖∇u‖2

L2(M) + λ

∫

M

u d vg ≥ λ log

(∫

M

eu d vg

)
∀ u ∈ H1(M)

for some constant λ > 0. Let us denote by λ1 the first positive
eigenvalue of −∆g

Corollary

If d = 2, then the MTO inequality holds with λ = Λ := min{4π, λ?}.
Moreover, if Λ is strictly smaller than λ1/2, then the optimal constant
in the MTO inequality is strictly larger than Λ

J. Dolbeault Uniqueness and symmetry
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The flow

∂f

∂t
= ∆g (e−f /2)− 1

2 |∇f |2 e−f /2

Gλ[f ] :=

∫

M

‖Lg f − 1
2 Mg f ‖2 e−f /2 d vg +

∫

M

R(∇f ,∇f ) e−f /2 d vg

− λ
∫

M

|∇f |2 e−f /2 d vg

Then for any λ ≤ λ? we have

d

dt
Fλ[f (t, ·)] =

∫

M

(
− 1

2 ∆g f + λ
) (

∆g (e−f /2)− 1
2 |∇f |2 e−f /2

)
d vg

= −Gλ[f (t, ·)]

Since Fλ is nonnegative and limt→∞ Fλ[f (t, ·)] = 0, we obtain that

Fλ[u] ≥
∫ ∞

0

Gλ[f (t, ·)] dt

J. Dolbeault Uniqueness and symmetry
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Weighted Moser-Trudinger-Onofri inequalities on the
two-dimensional Euclidean space

On the Euclidean space R2, given a general probability measure µ
does the inequality

1

16π

∫

R2

|∇u|2 dx ≥ λ
[

log

(∫

Rd

eu dµ

)
−
∫

Rd

u dµ

]

hold for some λ > 0 ? Let

Λ? := inf
x∈R2

−∆ logµ

8π µ

Theorem

Assume that µ is a radially symmetric function. Then any radially
symmetric solution to the EL equation is a constant if λ < Λ? and the
inequality holds with λ = Λ? if equality is achieved among radial functions

J. Dolbeault Uniqueness and symmetry
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

Euclidean space: Rényi entropy
powers and fast diffusion

The Euclidean space without weights

B Rényi entropy powers, the entropy approach without rescaling:
(Savaré, Toscani): scalings, nonlinearity and a concavity property
inspired by information theory

J. Dolbeault Uniqueness and symmetry
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The linear Bakry-Emery method and a nonlinear extension
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The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in Rd , d ≥ 1

∂v

∂t
= ∆vm

with initial datum v(x , t = 0) = v0(x) ≥ 0 such that
∫
Rd v0 dx = 1 and∫

Rd |x |2 v0 dx < +∞. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

U?(t, x) :=
1

(
κ t1/µ

)d B?
( x

κ t1/µ

)

where

µ := 2 + d (m − 1) , κ :=
∣∣∣ 2µm

m − 1

∣∣∣
1/µ

and B? is the Barenblatt profile

B?(x) :=





(
C? − |x |2

)1/(m−1)

+
if m > 1

(
C? + |x |2

)1/(m−1)
if m < 1

J. Dolbeault Uniqueness and symmetry
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

The Rényi entropy power F

The entropy is defined by

E :=

∫

Rd

vm dx

and the Fisher information by

I :=

∫

Rd

v |∇p|2 dx with p =
m

m − 1
vm−1

If v solves the fast diffusion equation, then

E′ = (1−m) I

To compute I′, we will use the fact that

∂p

∂t
= (m − 1) p ∆p + |∇p|2

F := Eσ with σ =
µ

d (1−m)
= 1+

2

1−m

(
1

d
+ m − 1

)
=

2

d

1

1−m
−1

has a linear growth asymptotically as t → +∞
J. Dolbeault Uniqueness and symmetry
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

The variation of the Fisher information

Lemma

If v solves ∂v
∂t = ∆vm with 1− 1

d ≤ m < 1, then

I′ =
d

dt

∫

Rd

v |∇p|2 dx = − 2

∫

Rd

vm
(
‖D2p‖2 + (m − 1) (∆p)2

)
dx

Explicit arithmetic geometric inequality

‖D2p‖2 − 1

d
(∆p)2 =

∥∥∥∥D2p− 1

d
∆p Id

∥∥∥∥
2

.... there are no boundary terms in the integrations by parts ?

=⇒
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

The concavity property

Theorem

[Toscani-Savaré] Assume that m ≥ 1− 1
d if d > 1 and m > 0 if d = 1.

Then F (t) is increasing, (1−m) F′′(t) ≤ 0 and

lim
t→+∞

1

t
F(t) = (1−m)σ lim

t→+∞
Eσ−1 I = (1−m)σ Eσ−1

? I?

[Dolbeault-Toscani] The inequality

Eσ−1 I ≥ Eσ−1
? I?

is equivalent to the Gagliardo-Nirenberg inequality

‖∇w‖θL2(Rd ) ‖w‖1−θ
Lq+1(Rd )

≥ CGN ‖w‖L2q(Rd )

if 1− 1
d ≤ m < 1. Hint: vm−1/2 = w

‖w‖
L2q (Rd )

, q = 1
2 m−1

J. Dolbeault Uniqueness and symmetry
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

Euclidean space: self-similar
variables and relative entropies

In the Euclidean space, it is possible to characterize the optimal
constants using a spectral gap property

J. Dolbeault Uniqueness and symmetry
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

Self-similar variables and relative entropies

The large time behavior of the solution of ∂v
∂t = ∆vm is governed by

the source-type Barenblatt solutions

v?(t, x) :=
1

κd(µ t)d/µ
B?
(

x

κ (µ t)1/µ

)
where µ := 2 + d (m − 1)

where B? is the Barenblatt profile (with appropriate mass)

B?(x) :=
(
1 + |x |2

)1/(m−1)

A time-dependent rescaling: self-similar variables

v(t, x) =
1

κd Rd
u
(
τ,

x

κR

)
where

dR

dt
= R1−µ , τ(t) := 1

2 log

(
R(t)

R0

)

Then the function u solves a Fokker-Planck type equation

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2 x

) ]
= 0

J. Dolbeault Uniqueness and symmetry
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The linear Bakry-Emery method and a nonlinear extension
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Free energy and Fisher information

The function u solves a Fokker-Planck type equation

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2 x

) ]
= 0

(Ralston, Newman, 1984) Lyapunov functional:
Generalized entropy or Free energy

E [u] :=

∫

Rd

(
−um

m
+ |x |2u

)
dx − E0

Entropy production is measured by the Generalized Fisher
information

d

dt
E [u] = −I[u] , I[u] :=

∫

Rd

u
∣∣∇um−1 + 2 x

∣∣2 dx

J. Dolbeault Uniqueness and symmetry
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

Without weights: relative entropy, entropy production

Stationary solution: choose C such that ‖u∞‖L1 = ‖u‖L1 = M > 0

u∞(x) :=
(
C + |x |2

)−1/(1−m)

+

Entropy – entropy production inequality (del Pino, JD)

Theorem

d ≥ 3, m ∈ [ d−1
d ,+∞), m > 1

2 , m 6= 1

I[u] ≥ 4 E [u]

p = 1
2m−1 , u = w2p: (GN) ‖∇w‖θL2(Rd ) ‖w‖1−θ

Lq+1(Rd )
≥ CGN ‖w‖L2q(Rd )

Corollary

(del Pino, JD) A solution u with initial data u0 ∈ L1
+(Rd) such that

|x |2 u0 ∈ L1(Rd), um0 ∈ L1(Rd) satisfies E [u(t, ·)] ≤ E [u0] e− 4 t

J. Dolbeault Uniqueness and symmetry
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

A computation on a large ball, with boundary terms

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2 x

) ]
= 0 τ > 0 , x ∈ BR

where BR is a centered ball in Rd with radius R > 0, and assume that
u satisfies zero-flux boundary conditions

(
∇um−1 − 2 x

)
· x

|x | = 0 τ > 0 , x ∈ ∂BR .

With z(τ, x) := ∇Q(τ, x) := ∇um−1 − 2 x , the relative Fisher
information is such that

d

dτ

∫

BR

u |z |2 dx + 4

∫

BR

u |z |2 dx

+ 2 1−m
m

∫

BR

um
(∥∥D2Q

∥∥2 − (1−m) (∆Q)2
)
dx

=

∫

∂BR

um
(
ω · ∇|z |2

)
dσ ≤ 0 (by Grisvard’s lemma)

J. Dolbeault Uniqueness and symmetry
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

Spectral gap: sharp asymptotic rates of convergence

Assumptions on the initial datum v0

(H1) VD0 ≤ v0 ≤ VD1 for some D0 > D1 > 0

(H2) if d ≥ 3 and m ≤ m∗, (v0 − VD) is integrable for a suitable
D ∈ [D1,D0]

Theorem

(Blanchet, Bonforte, JD, Grillo, Vázquez) Under Assumptions
(H1)-(H2), if m < 1 and m 6= m∗ := d−4

d−2 , the entropy decays according
to

E [v(t, ·)] ≤ C e−2 (1−m) Λα,d t ∀ t ≥ 0

where Λα,d > 0 is the best constant in the Hardy–Poincaré inequality

Λα,d

∫

Rd

|f |2 dµα−1 ≤
∫

Rd

|∇f |2 dµα ∀ f ∈ H1(dµα) ,

∫

Rd

fdµα−1 = 0

with α := 1/(m − 1) < 0, dµα := hα dx, hα(x) := (1 + |x |2)α

J. Dolbeault Uniqueness and symmetry
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The linear Bakry-Emery method and a nonlinear extension
Fast diffusion equations on the Euclidean space

Spectral gap and best constants

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

J. Dolbeault Uniqueness and symmetry
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Critical Caffarelli-Kohn-Nirenberg inequality
Large time asymptotics and spectral gaps
Linearization and optimality

Caffarelli-Kohn-Nirenberg,
symmetry and symmetry breaking

results, and weighted nonlinear flows
B The critical Caffarelli-Kohn-Nirenberg inequality
[JD, Esteban, Loss]

[B A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities]
[JD. Esteban, Loss, Muratori]

B Large time asymptotics and spectral gaps

B Optimality cases

J. Dolbeault Uniqueness and symmetry
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Critical Caffarelli-Kohn-Nirenberg inequality

Let Da,b :=
{
v ∈ Lp

(
Rd , |x |−b dx

)
: |x |−a |∇v | ∈ L2

(
Rd , dx

)}

(∫

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇v |2
|x |2 a

dx ∀ v ∈ Da,b

holds under conditions on a and b

p =
2 d

d − 2 + 2 (b − a)
(critical case)

B An optimal function among radial functions:

v?(x) =
(

1 + |x |(p−2) (ac−a)
)− 2

p−2

and C?a,b =
‖ |x |−b v? ‖2

p

‖ |x |−a∇v? ‖2
2

Question: Ca,b = C?a,b (symmetry) or Ca,b > C?a,b (symmetry breaking) ?

J. Dolbeault Uniqueness and symmetry
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Critical CKN: range of the parameters

Figure: d = 3(∫

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇v |2
|x |2 a

dx

a

b

0

1

−1

b = a

b= a+ 1

a = d−2
2

p

a ≤ b ≤ a + 1 if d ≥ 3
a < b ≤ a + 1 if d = 2, a + 1/2 < b ≤ a + 1 if d = 1
and a < ac := (d − 2)/2

p =
2 d

d − 2 + 2 (b − a)

(Glaser, Martin, Grosse, Thirring (1976))
(Caffarelli, Kohn, Nirenberg (1984))

[F. Catrina, Z.-Q. Wang (2001)]

J. Dolbeault Uniqueness and symmetry
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Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve

bFS(a) :=
d (ac − a)

2
√

(ac − a)2 + d − 1
+ a− ac

a

b

0

[Smets], [Smets, Willem], [Catrina, Wang], [Felli, Schneider]
The functional

C?a,b

∫

Rd

|∇v |2
|x |2 a

dx −
(∫

Rd

|v |p
|x |b p

dx

)2/p

is linearly instable at v = v?
J. Dolbeault Uniqueness and symmetry
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Symmetry versus symmetry breaking:
the sharp result in the critical case

[JD, Esteban, Loss (2016)]

a

b

0

Theorem

Let d ≥ 2 and p < 2∗. If either a ∈ [0, ac) and b > 0, or a < 0 and
b ≥ bFS(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

J. Dolbeault Uniqueness and symmetry
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The Emden-Fowler transformation and the cylinder

B With an Emden-Fowler transformation, critical the
Caffarelli-Kohn-Nirenberg inequality on the Euclidean space are
equivalent to Gagliardo-Nirenberg inequalities on a cylinder

v(r , ω) = r a−ac ϕ(s, ω) with r = |x | , s = − log r and ω =
x

r

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as the subcritical interpolation inequality

‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C) ≥ µ(Λ) ‖ϕ‖2

Lp(C) ∀ϕ ∈ H1(C)

where Λ := (ac − a)2, C = R× Sd−1 and the optimal constant µ(Λ) is

µ(Λ) =
1

Ca,b
with a = ac ±

√
Λ and b =

d

p
±
√

Λ

J. Dolbeault Uniqueness and symmetry
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Linearization around symmetric critical points

Up to a normalization and a scaling

ϕ?(s, ω) = (cosh s)−
1

p−2

is a critical point of

H1(C) 3 ϕ 7→ ‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C)

under a constraint on ‖ϕ‖2
Lp(C)

ϕ? is not optimal for (CKN) if the Pöschl-Teller operator

−∂2
s −∆ω + Λ− ϕp−2

? = −∂2
s −∆ω + Λ− 1

(cosh s)2

has a negative eigenvalue, i.e., for Λ > Λ1 (explicit)

J. Dolbeault Uniqueness and symmetry
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The variational problem on the cylinder

Λ 7→ µ(Λ) := min
ϕ∈H1(C)

‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C)

‖ϕ‖2
Lp(C)

is a concave increasing function

Restricted to symmetric functions, the variational problem becomes

µ?(Λ) := min
ϕ∈H1(R)

‖∂sϕ‖2
L2(Rd ) + Λ ‖ϕ‖2

L2(Rd )

‖ϕ‖2
Lp(Rd )

= µ?(1) Λα

Symmetry means µ(Λ) = µ?(Λ)
Symmetry breaking means µ(Λ) < µ?(Λ)

J. Dolbeault Uniqueness and symmetry
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Numerical results

20 40 60 80 100

10

20

30

40

50

symmetric

non-symmetric

asymptotic

bifurcation

µ

Λα

µ(Λ)

�(Λ) = µ

�

(1) Λα

Parametric plot of the branch of optimal functions for p = 2.8, d = 5.

Non-symmetric solutions bifurcate from symmetric ones at a bifurcation

point Λ1 computed by V. Felli and M. Schneider. The branch behaves for

large values of Λ as predicted by F. Catrina and Z.-Q. Wang

J. Dolbeault Uniqueness and symmetry
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what we have to to prove / discard...

non-symmetric

symmetric

bifurcation
Jθ(µ)

Λθ(µ)

���� ���� ���� ���� ���� ����

����

����

����

����

Λθ(µ)

Jθ(µ)

symmetric

non-symmetric

bifurcation

Jθ(µ)

bifurcation

symmetric

non-symmetric

symmetric

Λθ(µ)

KGN

KCKN(ϑ(p,d), ΛFS(p,θ),p)1/

1/

∗

When the local criterion (linear stability) differs from global results in a

larger family of inequalities (center, right)...
J. Dolbeault Uniqueness and symmetry
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The uniqueness result and the
strategy of the proof

J. Dolbeault Uniqueness and symmetry
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The elliptic problem: rigidity

The symmetry issue can be reformulated as a uniqueness (rigidity)
issue. An optimal function for the inequality

(∫

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇v |2
|x |2 a

dx

solves the (elliptic) Euler-Lagrange equation

−∇ ·
(
|x |−2a∇v

)
= |x |−bp vp−1

(up to a scaling and a multiplication by a constant). Is any
nonnegative solution of such an equation equal to

v?(x) =
(
1 + |x |(p−2) (ac−a)

)− 2
p−2

(up to invariances) ? On the cylinder

− ∂2
s ϕ− ∂ωϕ+ Λϕ = ϕp−1

Up to a normalization and a scaling

ϕ?(s, ω) = (cosh s)−
1

p−2

J. Dolbeault Uniqueness and symmetry
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Symmetry in one slide: 3 steps

A change of variables: v(|x |α−1 x) = w(x), Dαv =
(
α ∂v
∂s ,

1
s ∇ωv

)

‖v‖L2p,d−n(Rd ) ≤ Kα,n,p ‖Dαv‖ϑL2,d−n(Rd ) ‖v‖1−ϑ
Lp+1,d−n(Rd )

∀ v ∈ Hp
d−n,d−n(Rd)

Concavity of the Rényi entropy power: with
Lα = −D∗α Dα = α2

(
u′′ + n−1

s u′
)

+ 1
s2 ∆ω u and ∂u

∂t = Lαum

− d
dt G[u(t, ·)]

(∫
Rd u

m dµ
)1−σ

≥ (1−m) (σ − 1)
∫
Rd u

m
∣∣∣LαP−

∫
Rd u |DαP|2 dµ∫

Rd um dµ

∣∣∣
2

dµ

+ 2
∫
Rd

(
α4
(
1− 1

n

) ∣∣∣P′′ − P′

s − ∆ω P
α2 (n−1) s2

∣∣∣
2

+ 2α2

s2

∣∣∇ωP′ − ∇ωP
s

∣∣2
)

um dµ

+ 2
∫
Rd

(
(n − 2)

(
α2
FS − α2

)
|∇ωP|2 + c(n,m, d) |∇ωP|4

P2

)
um dµ

Elliptic regularity and the Emden-Fowler transformation: justifying
the integrations by parts

=⇒
J. Dolbeault Uniqueness and symmetry
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Proof of symmetry (1/3: changing the dimension)

We rephrase our problem in a space of higher, artificial dimension
n > d (here n is a dimension at least from the point of view of the
scaling properties), or to be precise we consider a weight |x |n−d which
is the same in all norms. With β = 2 a and γ = b p,

v(|x |α−1 x) = w(x) , α = 1 +
β − γ

2
and n = 2

d − γ
β + 2− γ

we claim that Inequality (CKN) can be rewritten for a function
v(|x |α−1 x) = w(x) as

‖v‖L2p,d−n(Rd ) ≤ Kα,n,p ‖Dαv‖ϑL2,d−n(Rd ) ‖v‖1−ϑ
Lp+1,d−n(Rd )

∀ v ∈ Hp
d−n,d−n(Rd)

with the notations s = |x |, Dαv =
(
α ∂v
∂s ,

1
s ∇ωv

)
and

d ≥ 2 , α > 0 , n > d and p ∈ (1, p?]

By our change of variables, w? is changed into

v?(x) :=
(
1 + |x |2

)−1/(p−1) ∀ x ∈ Rd

J. Dolbeault Uniqueness and symmetry
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The strategy of the proof (2/3: Rényi entropy)

The derivative of the generalized Rényi entropy power functional is

G[u] :=

(∫

Rd

um dµ

)σ−1 ∫

Rd

u |DαP|2 dµ

where σ = 2
d

1
1−m − 1. Here dµ = |x |n−d dx and the pressure is

P :=
m

1−m
um−1

Looking for an optimal function in (CKN) is equivalent to minimize G
under a mass constraint

J. Dolbeault Uniqueness and symmetry
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With Lα = −D∗α Dα = α2
(
u′′ + n−1

s u′
)

+ 1
s2 ∆ω u, we consider the fast

diffusion equation
∂u

∂t
= Lαu

m

critical case m = 1− 1/n; subcritical range 1− 1/n < m < 1
The key computation is the proof that

− d
dt G[u(t, ·)]

(∫
Rd u

m dµ
)1−σ

≥ (1−m) (σ − 1)
∫
Rd u

m
∣∣∣LαP−

∫
Rd u |DαP|2 dµ∫

Rd um dµ

∣∣∣
2

dµ

+ 2
∫
Rd

(
α4
(
1− 1

n

) ∣∣∣P′′ − P′

s − ∆ω P
α2 (n−1) s2

∣∣∣
2

+ 2α2

s2

∣∣∇ωP′ − ∇ωP
s

∣∣2
)

um dµ

+ 2
∫
Rd

(
(n − 2)

(
α2
FS − α2

)
|∇ωP|2 + c(n,m, d) |∇ωP|4

P2

)
um dµ =: H[u]

for some numerical constant c(n,m, d) > 0. Hence if α ≤ αFS, the
r.h.s. H[u] vanishes if and only if P is an affine function of |x |2, which
proves the symmetry result. A quantifier elimination problem (Tarski,
1951) ?

J. Dolbeault Uniqueness and symmetry
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(3/3: elliptic regularity, boundary terms)

This method has a hidden difficulty: integrations by parts ! Hints:

use elliptic regularity: Moser iteration scheme, Sobolev regularity,
local Hölder regularity, Harnack inequality, and get global regularity
using scalings

use the Emden-Fowler transformation, work on a cylinder,
truncate, evaluate boundary terms of high order derivatives using
Poincaré inequalities on the sphere

Summary: if u solves the Euler-Lagrange equation, we test by Lαu
m

0 =

∫

Rd

dG[u] · Lαum dµ ≥ H[u] ≥ 0

H[u] is the integral of a sum of squares (with nonnegative constants in
front of each term)... or test by |x |γ div

(
|x |−β ∇w1+p

)
the equation

(p − 1)2

p (p + 1)
w1−3p div

(
|x |−β w2p∇w1−p)+ |∇w1−p|2 + |x |−γ

(
c1 w

1−p − c2

)
= 0

J. Dolbeault Uniqueness and symmetry
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Fast diffusion equations with
weights: large time asymptotics

The entropy formulation of the problem

[Relative uniform convergence]

Asymptotic rates of convergence

From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

vt + |x |γ ∇ ·
[
|x |−β v ∇

(
vm−1 − |x |2+β−γ)] = 0 (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret

J. Dolbeault Uniqueness and symmetry
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CKN and entropy – entropy production inequalities

When symmetry holds, (CKN) can be written as an entropy – entropy
production inequality

1−m
m (2 + β − γ)2 E [v ] ≤ I[v ]

and equality is achieved by Bβ,γ(x) :=
(
1 + |x |2+β−γ) 1

m−1

Here the free energy and the relative Fisher information are defined by

E [v ] :=
1

m − 1

∫

Rd

(
vm −Bm

β,γ −mBm−1
β,γ (v −Bβ,γ)

) dx

|x |γ

I[v ] :=

∫

Rd

v
∣∣∣∇vm−1 −∇Bm−1

β,γ

∣∣∣
2 dx

|x |β
If v solves the Fokker-Planck type equation

vt + |x |γ ∇ ·
[
|x |−β v ∇

(
vm−1 − |x |2+β−γ)] = 0 (WFDE-FP)

then
d

dt
E [v(t, ·)] = − m

1−m
I[v(t, ·)]

J. Dolbeault Uniqueness and symmetry
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0

Λ0,1

Λ1,0

Λess

Essential spectrum

δδ4δ1 δ5δ2

Λ0,1

Λ1,0

Λess

Essential spectrum

δ4 δ5:=
n

2−η

The spectrum of L as a function of δ = 1
1−m , with n = 5. The

essential spectrum corresponds to the grey area, and its bottom is
determined by the parabola δ 7→ Λess(δ). The two eigenvalues Λ0,1 and
Λ1,0 are given by the plain, half-lines, away from the essential
spectrum. The spectral gap determines the asymptotic rate of
convergence to the Barenblatt functions

=⇒

J. Dolbeault Uniqueness and symmetry
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Global vs. asymptotic estimates

Estimates on the global rates. When symmetry holds (CKN) can
be written as an entropy – entropy production inequality

(2 + β − γ)2 E [v ] ≤ m

1−m
I[v ]

so that

E [v(t)] ≤ E [v(0)] e− 2 (1−m) Λ? t ∀ t ≥ 0 with Λ? :=
(2 + β − γ)2

2 (1−m)

Optimal global rates. Let us consider again the entropy – entropy
production inequality

K(M) E [v ] ≤ I[v ] ∀ v ∈ L1,γ(Rd) such that ‖v‖L1,γ(Rd ) = M ,

where K(M) is the best constant: with Λ(M) := m
2 (1−m)−2K(M)

E [v(t)] ≤ E [v(0)] e− 2 (1−m) Λ(M) t ∀ t ≥ 0

J. Dolbeault Uniqueness and symmetry



Linear and nonlinear flows: entropy methods
CKN inequalities, symmetry breaking and weighted nonlinear flows

Critical Caffarelli-Kohn-Nirenberg inequality
Large time asymptotics and spectral gaps
Linearization and optimality

Linearization and optimality

Joint work with M.J. Esteban and M. Loss

J. Dolbeault Uniqueness and symmetry
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Linearization and scalar products

With uε such that

uε = B?
(
1 + ε f B1−m

?

)
and

∫

Rd

uε dx = M?

at first order in ε→ 0 we obtain that f solves

∂f

∂t
= L f where L f := (1−m)Bm−2

? |x |γ D∗α
(
|x |−β B? Dα f

)

Using the scalar products

〈f1, f2〉 =

∫

Rd

f1 f2 B2−m
? |x |−γ dx and 〈〈f1, f2〉〉 =

∫

Rd

Dα f1 · Dα f2 B? |x |−β dx

we compute

1

2

d

dt
〈f , f 〉 = 〈f ,L f 〉 =

∫

Rd

f (L f )B2−m
? |x |−γ dx = −

∫

Rd

|Dα f |2 B? |x |−β dx

for any f smooth enough: with 〈f ,L f 〉 = −〈〈f , f 〉〉
1

2

d

dt
〈〈f , f 〉〉 =

∫

Rd

Dα f · Dα (L f )B? |x |−β dx = −〈〈f ,L f 〉〉

J. Dolbeault Uniqueness and symmetry
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Linearization of the flow, eigenvalues and spectral gap

Now let us consider an eigenfunction associated with the smallest
positive eigenvalue λ1 of L

−L f1 = λ1 f1

so that f1 realizes the equality case in the Hardy-Poincaré inequality

〈〈g , g〉〉 := − 〈g ,L g〉 ≥ λ1 ‖g − ḡ‖2 , ḡ := 〈g , 1〉 / 〈1, 1〉 (P1)

−〈〈g ,L g〉〉 ≥ λ1 〈〈g , g〉〉 (P2)

Proof by expansion of the square
−〈〈(g − ḡ),L (g − ḡ)〉〉 = 〈L (g − ḡ),L (g − ḡ)〉 = ‖L (g − ḡ)‖2

(P1) is associated with the symmetry breaking issue
(P2) is associated with the carré du champ method

The optimal constants / eigenvalues are the same

Key observation: λ1 ≥ 4 ⇐⇒ α ≤ αFS :=
√

d−1
n−1

J. Dolbeault Uniqueness and symmetry
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Three references

Lecture notes on Symmetry and nonlinear diffusion flows...
a course on entropy methods (see webpage)

[JD, Maria J. Esteban, and Michael Loss] Symmetry and
symmetry breaking: rigidity and flows in elliptic PDEs
... the elliptic point of view: arXiv: 1711.11291

[JD, Maria J. Esteban, and Michael Loss] Interpolation
inequalities, nonlinear flows, boundary terms, optimality and
linearization... the parabolic point of view
Journal of elliptic and parabolic equations, 2: 267-295, 2016.

J. Dolbeault Uniqueness and symmetry

https://arxiv.org/abs/1711.11291


Linear and nonlinear flows: entropy methods
CKN inequalities, symmetry breaking and weighted nonlinear flows

Critical Caffarelli-Kohn-Nirenberg inequality
Large time asymptotics and spectral gaps
Linearization and optimality

These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/
B Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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