Rigidity results, inequalities and nonlinear flows on compact manifolds

Jean Dolbeault

 $http://www.ceremade.dauphine.fr/{\sim}dolbeaul$

Ceremade, Université Paris-Dauphine

July 1st, 2013 Chilean-French-Polish Conference on Nonlinear PDE's Będlewo (June 30 – July 5, 2013)

マヨン イラン イラン

Outline

- **1** Inequalities on the sphere
- In Flows on the sphere
- Spectral consequences
- Generalization to Riemannian manifolds

Joint work with:

Maria J. Esteban, Michal Kowalczyk, Ari Laptev and Michael Loss

マヨン イラン イラン

Inequalities on the sphere

0 . The case of the sphere as a simple example

(日) (同) (日) (日)

A family of interpolation inequalities on the sphere

The following interpolation inequality holds on the sphere:

$$\frac{p-2}{d} \int_{\mathbb{S}^d} |\nabla u|^2 \, d\mu + \int_{\mathbb{S}^d} |u|^2 \, d\mu \ge \left(\int_{\mathbb{S}^d} |u|^p \, d\mu \right)^{2/p} \quad \forall \ u \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$$

$$\bullet \text{ for any } p \in (2, 2^*] \text{ with } 2^* = \frac{2d}{d-2} \text{ if } d \ge 3$$

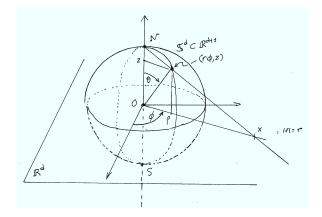
$$\bullet \text{ for any } p \in (2, \infty) \text{ if } d = 2$$

Here $d\mu$ is the uniform probability measure: $\mu(\mathbb{S}^d) = 1$

0 1 is the optimal constant, equality achieved by constants 0 $p=2^*$ Sobolev inequality...

イロト イポト イモト イモト

Stereographic projection



J. Dolbeault Rigidity results, inequalities and nonlinear flows on compact manifolds

<ロ> (四) (四) (日) (日) (日)

э

Sobolev inequality

The stereographic projection of $\mathbb{S}^d \subset \mathbb{R}^d \times \mathbb{R} \ni (\rho \phi, z)$ onto \mathbb{R}^d : to $\rho^2 + z^2 = 1, z \in [-1, 1], \rho \ge 0, \phi \in \mathbb{S}^{d-1}$ we associate $x \in \mathbb{R}^d$ such that $r = |x|, \phi = \frac{x}{|x|}$

$$z = \frac{r^2 - 1}{r^2 + 1} = 1 - \frac{2}{r^2 + 1}$$
, $\rho = \frac{2r}{r^2 + 1}$

and transform any function u on \mathbb{S}^d into a function v on \mathbb{R}^d using

$$u(y) = \left(\frac{r}{\rho}\right)^{\frac{d-2}{2}} v(x) = \left(\frac{r^2+1}{2}\right)^{\frac{d-2}{2}} v(x) = (1-z)^{-\frac{d-2}{2}} v(x)$$

 $\blacksquare \ p=2^*, \, \mathsf{S}_d=\frac{1}{4}\,d\,(d-2)\,|\mathbb{S}^d|^{2/d}\colon$ Euclidean Sobolev inequality

$$\int_{\mathbb{R}^d} |\nabla v|^2 \, dx \geq \mathsf{S}_d \left[\int_{\mathbb{R}^d} |v|^{\frac{2d}{d-2}} \, dx \right]^{\frac{d-2}{d}} \quad \forall v \in \mathcal{D}^{1,2}(\mathbb{R}^d)$$

イベト イラト イラト

Extended inequality

$$\int_{\mathbb{S}^d} |\nabla u|^2 \ d\mu \geq \frac{d}{p-2} \left[\left(\int_{\mathbb{S}^d} |u|^p \ d\mu \right)^{2/p} - \int_{\mathbb{S}^d} |u|^2 \ d\mu \right] \quad \forall \ u \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$$

is valid

÷

- for any $p \in (1,2) \cup (2,\infty)$ if d = 1, 2
- \blacksquare for any $p\in (1,2)\cup (2,2^*]$ if $d\geq 3$

 $\textcircled{\sc logarithmic}$ Sobolev inequality

$$\int_{\mathbb{S}^d} |\nabla u|^2 \ d\mu \ge \frac{d}{2} \int_{\mathbb{S}^d} |u|^2 \ \log\left(\frac{|u|^2}{\int_{\mathbb{S}^d} |u|^2 \ d\mu}\right) \ d\mu \quad \forall \ u \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$$

$$\textcircled{a. case } p = 2$$

• Poincaré inequality

$$\int_{\mathbb{S}^d} |\nabla u|^2 \ d\mu \ge d \int_{\mathbb{S}^d} |u - \bar{u}|^2 \ d\mu \quad \text{with} \quad \bar{u} := \int_{\mathbb{S}^d} u \ d\mu \quad \forall \ u \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$$

$$\textcircled{access } p = 1$$
Reading the second point of the secon

A spectral approach when $p \in (1,2) - 1^{ ext{st}}$ step

[Dolbeault-Esteban-Kowalczyk-Loss] adapted from [Beckner] (case of Gaussian measures).

Nelson's hypercontractivity result. Consider the heat equation

$$\frac{\partial f}{\partial t} = \Delta_{\mathbb{S}^d} f$$

with initial datum $f(t = 0, \cdot) = u \in L^{2/p}(\mathbb{S}^d)$, for some $p \in (1, 2]$, and let $F(t) := \|f(t, \cdot)\|_{L^{p(t)}(\mathbb{S}^d)}$. The key computation goes as follows.

$$\frac{F'}{F} = \frac{p'}{p^2 F^p} \left[\int_{\mathbb{S}^d} v^2 \log \left(\frac{v^2}{\int_{\mathbb{S}^d} v^2 \ d\mu} \right) \ d\mu + 4 \frac{p-1}{p'} \ \int_{\mathbb{S}^d} |\nabla v|^2 \ d\mu \right]$$

with $v := |f|^{p(t)/2}$. With $4 \frac{p-1}{p'} = \frac{2}{d}$ and $t_* > 0$ e such that $p(t_*) = 2$, we have

$$\|f(t_*,\cdot)\|_{{
m L}^2({\mathbb S}^d)} \le \|u\|_{{
m L}^{2/p}({\mathbb S}^d)} \quad {
m if} \quad rac{1}{p-1} = e^{2\,d\,t_*}$$

イロト イポト イラト イラト

A spectral approach when $p \in (1,2)$ – $2^{ ext{nd}}$ step

Spectral decomposition. Let $u = \sum_{k \in \mathbb{N}} u_k$ be a spherical harmonics decomposition, $\lambda_k = k (d + k - 1)$, $a_k = \|u_k\|_{L^2(\mathbb{S}^d)}^2$ so that $\|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} = \sum_{k \in \mathbb{N}} a_{k} \text{ and } \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} = \sum_{k \in \mathbb{N}} \lambda_{k} a_{k}$ $\|f(t_*,\cdot)\|^2_{L^2(\mathbb{S}^d)} = \sum a_k e^{-2\lambda_k t_*}$ $\frac{\|u\|_{L^{2}(\mathbb{S}^{d})}^{2}-\|u\|_{L^{p}(\mathbb{S}^{d})}^{2}}{2-p} \leq \frac{\|u\|_{L^{2}(\mathbb{S}^{d})}^{2}-\|f(t_{*},\cdot)\|_{L^{2}(\mathbb{S}^{d})}^{2}}{2-p}$ $=\frac{1}{2-p}\sum_{k\in\mathbb{N}^*}\lambda_k\,a_k\,\frac{1-e^{-2\lambda_k\,t_*}}{\lambda_k}$ $\leq \quad \frac{1 - e^{-2\,\lambda_1\,t_*}}{(2 - p)\,\lambda_1} \sum_{t_* \in \mathbb{N}^*} \lambda_k \, a_k = \frac{1 - e^{-2\,\lambda_1\,t_*}}{(2 - p)\,\lambda_1} \, \|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2$

The conclusion easily follows if we notice that $\lambda_1 = d$, and $e^{-2\lambda_1 t_*} = p - 1$ so that $\frac{1 - e^{-2\lambda_1 t_*}}{(2-p)\lambda_1} = \frac{1}{d}$

J. Dolbeault

Rigidity results, inequalities and nonlinear flows on compact manifolds

Optimality: a perturbation argument

• The optimality of the constant can be checked by a Taylor expansion of $u = 1 + \varepsilon v$ at order two in terms of $\varepsilon > 0$, small • For any $p \in (1, 2^*]$ if $d \ge 3$, any p > 1 if d = 1 or 2, it is remarkable that

$$\mathcal{Q}[u] := \frac{(p-2) \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2}}{\|u\|_{\mathrm{L}^{p}(\mathbb{S}^{d})}^{2} - \|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2}} \geq \inf_{u \in \mathrm{H}^{1}(\mathbb{S}^{d}, d\mu)} \mathcal{Q}[u] = \frac{1}{d}$$

is achieved by $\mathcal{Q}[1+\varepsilon\,v]$ as $\varepsilon\to 0$ and v is an eigenfunction associated with the first nonzero eigenvalue of $\Delta_{\mathbb{S}^d}$

 $\bigcirc \ p>2$ no simple proof based on spectral analysis: [Beckner], an approach based on Lieb's duality, the Funk-Hecke formula and some (non-trivial) computations

 ${\bf Q}$ elliptic methods / Γ_2 formalism of Bakry-Emery / flow... they are the same (main contribution) and can be simplified (!) As a side result, you can go beyond these approaches and discuss optimality

くロン くぼう くちと くちょう

Some references (1/2)

Q [Gidas-Spruck 1981], [Bidaut-Véron & Véron 1991]: the elliptic approach on manifolds with (uniformly) positive curvature

- [Licois-Véron 1995]: improved interpolation
- \blacksquare [Bakry-Ledoux]: the ${\sf F}_2$ formalism and the carré du champ method
- [Bentaleb et al.]: the ultraspherical operator

• [Demange 2008]: improved rates of decay using flows under uniform strict positivity of the curvature; also see Villani's book *Optimal Transport, Old and New*

 \mathbf{Q} + Spectral issues

・ロト ・同ト ・ヨト ・ヨト

Schwarz foliated symmetry and the ultraspherical setting

$$(\xi_0, \, \xi_1, \dots \xi_d) \in \mathbb{S}^d, \, \xi_d = z, \, \sum_{i=0}^d |\xi_i|^2 = 1 \, [\text{Smets-Willem}]$$

Lemma

Up to a rotation, any minimizer of Q depends only on ξ_d

• Let
$$d\sigma(\theta) := \frac{(\sin \theta)^{d-1}}{Z_d} d\theta$$
, $Z_d := \sqrt{\pi} \frac{\Gamma(\frac{d}{2})}{\Gamma(\frac{d+1}{2})}$: $\forall v \in \mathrm{H}^1([0,\pi], d\sigma)$

$$\frac{p-2}{d}\int_0^\pi |v'(\theta)|^2 \ d\sigma + \int_0^\pi |v(\theta)|^2 \ d\sigma \ge \left(\int_0^\pi |v(\theta)|^p \ d\sigma\right)^{\frac{2}{p}}$$

• Change of variables $z = \cos \theta$, $v(\theta) = f(z)$

$$\frac{p-2}{d}\int_{-1}^{1}|f'|^2 \nu \ d\nu_d + \int_{-1}^{1}|f|^2 \ d\nu_d \ge \left(\int_{-1}^{1}|f|^p \ d\nu_d\right)^{\frac{2}{p}}$$

where $\nu_d(z) dz = d\nu_d(z) := Z_d^{-1} \nu^{\frac{d}{2}-1} dz, \nu(z) := 1 - z^2$

The ultraspherical operator

With $d\nu_d = Z_d^{-1} \nu^{\frac{d}{2}-1} dz$, $\nu(z) := 1 - z^2$, consider the space $L^2((-1, 1), d\nu_d)$ with scalar product

$$\langle f_1, f_2 \rangle = \int_{-1}^1 f_1 f_2 \, d\nu_d \,, \quad \|f\|_p = \left(\int_{-1}^1 f^p \, d\nu_d\right)^{\frac{1}{p}}$$

The self-adjoint *ultraspherical* operator is

$$\mathcal{L} f := (1 - z^2) f'' - d z f' = \nu f'' + \frac{d}{2} \nu' f'$$

which satisfies $\langle f_1, \mathcal{L} f_2 \rangle = - \int_{-1}^1 f'_1 f'_2 \nu d\nu_d$

Proposition

Let $p \in [1,2) \cup (2,2^*]$, $d \ge 1$

$$-\langle f, \mathcal{L} \, f
angle = \int_{-1}^1 |f'|^2 \,
u \; d
u_d \geq d \; rac{\|f\|_p^2 - \|f\|_2^2}{p-2} \quad orall \, f \in \mathrm{H}^1([-1,1], d
u_d)$$

Flows on the sphere

• Heat flow and the Bakry-Emery method

• Fast diffusion (porous media) flow and the choice of the exponents

イロト イポト イヨト イヨト

Heat flow and the Bakry-Emery method

With
$$g = f^{p}$$
, *i.e.* $f = g^{\alpha}$ with $\alpha = 1/p$

(Ineq.)
$$-\langle f, \mathcal{L} f \rangle = -\langle g^{\alpha}, \mathcal{L} g^{\alpha} \rangle =: \mathcal{I}[g] \ge d \frac{\|g\|_{1}^{2\alpha} - \|g^{2\alpha}\|_{1}}{p-2} =: \mathcal{F}[g]$$

Heat flow

$$\frac{\partial g}{\partial t} = \mathcal{L} g$$

$$\frac{d}{dt} \|g\|_1 = 0, \quad \frac{d}{dt} \|g^{2\alpha}\|_1 = -2(p-2) \langle f, \mathcal{L} f \rangle = 2(p-2) \int_{-1}^1 |f'|^2 \nu \, d\nu_d$$

which finally gives

$$\frac{d}{dt}\mathcal{F}[g(t,\cdot)] = -\frac{d}{p-2}\frac{d}{dt}\|g^{2\alpha}\|_1 = -2\,d\,\mathcal{I}[g(t,\cdot)]$$

Ineq. $\iff \frac{d}{dt}\mathcal{F}[g(t,\cdot)] \leq -2 d \mathcal{F}[g(t,\cdot)] \iff \frac{d}{dt}\mathcal{I}[g(t,\cdot)] \leq -2 d \mathcal{I}[g(t,\cdot)]$

4 **A b b b b**

The equation for $g = f^{\rho}$ can be rewritten in terms of f as

$$rac{\partial f}{\partial t} = \mathcal{L} f + (p-1) \, rac{|f'|^2}{f} \,
u$$

$$-\frac{1}{2}\frac{d}{dt}\int_{-1}^{1}|f'|^{2}\nu d\nu_{d} = \frac{1}{2}\frac{d}{dt}\langle f,\mathcal{L}f\rangle = \langle \mathcal{L}f,\mathcal{L}f\rangle + (p-1)\left\langle \frac{|f'|^{2}}{f}\nu,\mathcal{L}f\right\rangle$$

$$\frac{d}{dt}\mathcal{I}[g(t,\cdot)] + 2 d\mathcal{I}[g(t,\cdot)] = \frac{d}{dt} \int_{-1}^{1} |f'|^2 \nu \, d\nu_d + 2 d \int_{-1}^{1} |f'|^2 \nu \, d\nu_d$$
$$= -2 \int_{-1}^{1} \left(|f''|^2 + (p-1) \frac{d}{d+2} \frac{|f'|^4}{f^2} - 2(p-1) \frac{d-1}{d+2} \frac{|f'|^2 f''}{f} \right) \nu^2 \, d\nu_d$$

is nonpositive if

$$|f''|^2 + (p-1) \frac{d}{d+2} \frac{|f'|^4}{f^2} - 2(p-1) \frac{d-1}{d+2} \frac{|f'|^2 f''}{f}$$

is pointwise nonnegative, which is granted if

$$\left[(p-1)\frac{d-1}{d+2}\right]^2 \le (p-1)\frac{d}{d+2} \iff p \le \frac{2d^2+1}{(d-1)^2} < \frac{2d}{d-2} = 2^*$$

J. Dolbeault

Rigidity results, inequalities and nonlinear flows on compact manifolds

... up to the critical exponent: a proof on two slides

$$\left[\frac{\partial}{\partial z},\mathcal{L}\right] \, u = (\mathcal{L} \, u)' - \mathcal{L} \, u' = -2 \, z \, u'' - d \, u'$$

$$\int_{-1}^{1} (\mathcal{L} u)^{2} d\nu_{d} = \int_{-1}^{1} |u''|^{2} \nu^{2} d\nu_{d} + d \int_{-1}^{1} |u'|^{2} \nu d\nu_{d}$$
$$\int_{-1}^{1} (\mathcal{L} u) \frac{|u'|^{2}}{u} \nu d\nu_{d} = \frac{d}{d+2} \int_{-1}^{1} \frac{|u'|^{4}}{u^{2}} \nu^{2} d\nu_{d} - 2 \frac{d-1}{d+2} \int_{-1}^{1} \frac{|u'|^{2} u''}{u} \nu^{2} d\nu_{d}$$

On (-1, 1), let us consider the *porous medium (fast diffusion)* flow

$$u_t = u^{2-2\beta} \left(\mathcal{L} \, u + \kappa \, \frac{|u'|^2}{u} \, \nu \right)$$

If $\kappa = \beta (p-2) + 1$, the L^p norm is conserved

$$\frac{d}{dt} \int_{-1}^{1} u^{\beta p} \, d\nu_d = \beta \, p \, (\kappa - \beta \, (p - 2) - 1) \int_{-1}^{1} u^{\beta (p - 2)} \, |u'|^2 \, \nu \, d\nu_d = 0$$

イベト イラト イラト

$$\begin{split} f &= u^{\beta}, \, \|f'\|_{L^{2}(\mathbb{S}^{d})}^{2} + \frac{d}{p-2} \left(\|f\|_{L^{2}(\mathbb{S}^{d})}^{2} - \|f\|_{L^{p}(\mathbb{S}^{d})}^{2} \right) \geq 0 \; ? \\ \mathcal{A} &:= -\frac{1}{2\beta^{2}} \frac{d}{dt} \int_{-1}^{1} \left(|(u^{\beta})'|^{2} \nu + \frac{d}{p-2} \left(u^{2\beta} - \overline{u}^{2\beta} \right) \right) d\nu_{d} \\ &= \int_{-1}^{1} \left(\mathcal{L} \, u + (\beta - 1) \frac{|u'|^{2}}{u} \, \nu \right) \left(\mathcal{L} \, u + \kappa \frac{|u'|^{2}}{u} \, \nu \right) d\nu_{d} \\ &\quad + \frac{d}{p-2} \frac{\kappa - 1}{\beta} \int_{-1}^{1} |u'|^{2} \nu \, d\nu_{d} \\ &= \int_{-1}^{1} |u''|^{2} \nu^{2} \, d\nu_{d} - 2 \frac{d-1}{d+2} \left(\kappa + \beta - 1 \right) \int_{-1}^{1} u'' \frac{|u'|^{2}}{u} \nu^{2} \, d\nu_{d} \\ &\quad + \left[\kappa \left(\beta - 1 \right) + \frac{d}{d+2} \left(\kappa + \beta - 1 \right) \right] \int_{-1}^{1} \frac{|u'|^{4}}{u^{2}} \nu^{2} \, d\nu_{d} \\ &= \int_{-1}^{1} \left| u'' - \frac{p+2}{6-p} \frac{|u'|^{2}}{u} \right|^{2} \nu^{2} \, d\nu_{d} \geq 0 \quad \text{if } p = 2^{*} \text{ and } \beta = \frac{4}{6-p} \end{split}$$

 \mathcal{A} is nonnegative for some β if $\frac{8 d^2}{(d+2)^2} (p-1)(2^*-p) \leq 0$

= nar

Spectral consequences

Q A quantitative deviation with respect to the semi-classical regime

J. Dolbeault Rigidity results, inequalities and nonlinear flows on compact manifolds

(a)

Some references (2/2)

Consider the Schrödinger operator $H = -\Delta - V$ on \mathbb{R}^d and denote by $(\lambda_k)_{k\geq 1}$ its eigenvalues

■ Euclidean case [Keller, 1961]

$$|\lambda_1|^{\gamma} \leq \mathrm{L}^1_{\gamma,d} \int_{\mathbb{R}^d} V^{\gamma+rac{\epsilon}{2}}_+$$

[Lieb-Thirring, 1976]

$$\sum_{k\geq 1} |\lambda_k|^{\gamma} \leq \mathrm{L}_{\gamma,d} \int_{\mathbb{R}^d} V_+^{\gamma+\frac{d}{2}}$$

 $\gamma \geq 1/2$ if d = 1, $\gamma > 0$ if d = 2 and $\gamma \geq 0$ if $d \geq 3$ [Weidl], [Cwikel], [Rosenbljum], [Aizenman], [Laptev-Weidl], [Helffer], [Robert], [Dolbeault-Felmer-Loss-Paturel]... [Dolbeault-Laptev-Loss 2008]

• Compact manifolds: log Sobolev case: [Federbusch], [Rothaus]; case $\gamma = 0$ (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak]; [Lieb], [Levin], [Ouabaz-Poupaud]... [Ilyin]

An interpolation inequality (I)

Lemma (Dolbeault-Esteban-Laptev)

Let $q \in (2, 2^*)$. Then there exists a concave increasing function $\mu : \mathbb{R}^+ \to \mathbb{R}^+$ with the following properties

$$\mu(\alpha) = \alpha \quad \forall \, \alpha \in \left[0, \tfrac{d}{q-2} \right] \quad \textit{and} \quad \mu(\alpha) < \alpha \quad \forall \, \alpha \in \left(\tfrac{d}{q-2}, +\infty \right)$$

$$\mu(\alpha) = \mu_{\mathrm{asymp}}(\alpha) \left(1 + o(1)\right) \quad \text{as} \quad \alpha \to +\infty \,, \quad \mu_{\mathrm{asymp}}(\alpha) := \frac{\mathsf{K}_{q,d}}{\kappa_{q,d}} \,\alpha^{1-\vartheta}$$

such that

$$\|\nabla u\|_{L^{2}(\mathbb{S}^{d})}^{2} + \alpha \|u\|_{L^{2}(\mathbb{S}^{d})}^{2} \ge \mu(\alpha) \|u\|_{L^{q}(\mathbb{S}^{d})}^{2} \quad \forall u \in H^{1}(\mathbb{S}^{d})$$

If $d \ge 3$ and $q = 2^{*}$, the inequality holds with $\mu(\alpha) = \min \{\alpha, \alpha_{*}\}$
 $\alpha_{*} := \frac{1}{4} d(d-2)$

• $\mu_{\text{asymp}}(\alpha) := \frac{\mathsf{K}_{q,d}}{\mathsf{K}_{q,d}} \alpha^{1-\vartheta}, \ \vartheta := d \frac{q-2}{2q} \text{ corresponds to the semi-classical regime and } \mathsf{K}_{q,d} \text{ is the optimal constant in the Euclidean Gagliardo-Nirenberg-Sobolev inequality}$

$$\mathsf{K}_{q,d} \|v\|^2_{\mathcal{L}^q(\mathbb{R}^d)} \leq \|\nabla v\|^2_{\mathcal{L}^2(\mathbb{R}^d)} + \|v\|^2_{\mathcal{L}^2(\mathbb{R}^d)} \quad \forall v \in \mathrm{H}^1(\mathbb{R}^d)$$

 \blacksquare Let φ be a non-trivial eigenfunction of the Laplace-Beltrami operator corresponding the first nonzero eigenvalue

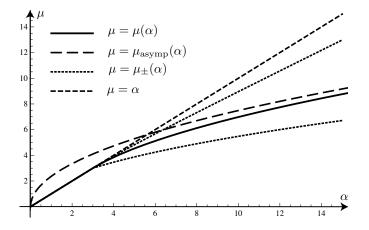
$$-\Delta \varphi = d \varphi$$

Consider $u = 1 + \varepsilon \varphi$ as $\varepsilon \to 0$ Taylor expand \mathcal{Q}_{α} around u = 1

$$\mu(\alpha) \leq \mathcal{Q}_{\alpha}[1 + \varepsilon \varphi] = \alpha + \left[d + \alpha \left(2 - q\right)\right] \varepsilon^2 \int_{\mathbb{S}^d} |\varphi|^2 \ d\mu + o(\varepsilon^2)$$

By taking ε small enough, we get $\mu(\alpha) < \alpha$ for all $\alpha > d/(q-2)$ Optimizing on the value of $\varepsilon > 0$ (not necessarily small) provides an interesting test function...

イロト 不得 トイヨト イヨト



イロン イ団 とくほと くほとう

э

Consider the Schrödinger operator $-\Delta - V$ and the energy

$$\begin{split} \mathcal{E}[u] &:= \int_{\mathbb{S}^d} |\nabla u|^2 - \int_{\mathbb{S}^d} V \, |u|^2 \\ &\geq \int_{\mathbb{S}^d} |\nabla u|^2 - \mu \, \|u\|_{\mathrm{L}^q(\mathbb{S}^d)}^2 \geq -\alpha(\mu) \, \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \quad \text{if } \mu = \|V_+\|_{\mathrm{L}^p(\mathbb{S}^d)} \end{split}$$

Theorem (Dolbeault-Esteban-Laptev)

Let $d \ge 1$, $p \in (\max\{1, d/2\}, +\infty)$. Then there exists a convex increasing function α s.t. $\alpha(\mu) = \mu$ if $\mu \in [0, \frac{d}{2}(p-1)]$ and $\alpha(\mu) > \mu$ if $\mu \in (\frac{d}{2}(p-1), +\infty)$

$$|\lambda_1(-\Delta - V)| \le lpha (\|V\|_{\mathrm{L}^p(\mathbb{S}^d)}) \quad \forall V \in \mathrm{L}^p(\mathbb{S}^d)$$

For large values of μ , we have $\alpha(\mu)^{p-\frac{d}{2}} = L^1_{p-\frac{d}{2},d} (\kappa_{q,d} \mu)^p (1+o(1))$ and the above estimate is optimal If p = d/2 and $d \ge 3$, the inequality holds with $\alpha(\mu) = \mu$ iff $\mu \in [0, \alpha_*]$

A Keller-Lieb-Thirring inequality

Corollary (Dolbeault-Esteban-Laptev)

Let
$$d \ge 1, \gamma = p - d/2$$

 $|\lambda_1(-\Delta - V)|^{\gamma} \lesssim L^1_{\gamma,d} \int_{\mathbb{S}^d} V^{\gamma + \frac{d}{2}} \text{ as } \mu = ||V||_{L^{\gamma + \frac{d}{2}}(\mathbb{S}^d)} \to \infty$
if either $\gamma > \max\{0, 1 - d/2\} \text{ or } \gamma = 1/2 \text{ and } d = 1$
However, if $\mu = ||V||_{L^{\gamma + \frac{d}{2}}(\mathbb{S}^d)} \le \frac{1}{4} d(2\gamma + d - 2)$, then we have
 $|\lambda_1(-\Delta - V)|^{\gamma + \frac{d}{2}} \le \int_{\mathbb{S}^d} V^{\gamma + \frac{d}{2}}$

for any $\gamma \geq \max\{0, 1-d/2\}$ and this estimate is optimal

 $\mathcal{L}^1_{\gamma,d}$ is the optimal constant in the Euclidean one bound state in eq.

$$|\lambda_1(-\Delta-\phi)|^\gamma \leq \mathrm{L}^1_{\gamma,d}\int_{\mathbb{R}^d} \phi_+^{\gamma+rac{d}{2}} \, dx$$

< 回 ト く ヨ ト く ヨ ト

Another interpolation inequality (II)

Let $d \ge 1$ and $\gamma > d/2$ and assume that $L^1_{-\gamma,d}$ is the optimal constant in

$$egin{aligned} \lambda_1(-\Delta+\phi)^{-\gamma} &\leq \mathrm{L}^1_{-\gamma,d} \int_{\mathbb{R}^d} \phi^{rac{d}{2}-\gamma} \; dx \ q &= 2 rac{2\,\gamma-d}{2\,\gamma-d+2} \quad ext{and} \quad p &= rac{q}{2-q} = \gamma - rac{d}{2} \end{aligned}$$

Theorem (Dolbeault-Esteban-Laptev)

$$\left(\lambda_1(-\Delta+W)
ight)^{-\gamma}\lesssim \mathrm{L}^1_{-\gamma,d}\,\int_{\mathbb{S}^d}W^{rac{d}{2}-\gamma}\quad \textit{as}\quad eta=\|W^{-1}\|^{-1}_{\mathrm{L}^{\gamma-rac{d}{2}}(\mathbb{S}^d)}
ightarrow\infty$$

However, if
$$\gamma \geq \frac{d}{2} + 1$$
 and $\beta = \|W^{-1}\|_{L^{\gamma-\frac{d}{2}}(\mathbb{S}^d)}^{-1} \leq \frac{1}{4} d(2\gamma - d + 2)$

$$\left(\lambda_1(-\Delta+W)
ight)^{rac{d}{2}-\gamma}\leq\int_{\mathbb{S}^d}W^{rac{d}{2}-\gamma}$$

and this estimate is optimal

 $\mathsf{K}^*_{q,d}$ is the optimal constant in the Gagliardo-Nirenberg-Sobolev inequality

$$\mathsf{K}^*_{q,d} \| \mathsf{v} \|^2_{\mathcal{L}^2(\mathbb{R}^d)} \leq \| \nabla \mathsf{v} \|^2_{\mathcal{L}^2(\mathbb{R}^d)} + \| \mathsf{v} \|^2_{\mathcal{L}^q(\mathbb{R}^d)} \quad \forall \, \mathsf{v} \in \mathrm{H}^1(\mathbb{R}^d)$$

and
$$\mathcal{L}_{-\gamma,d}^1 := \left(\mathsf{K}_{q,d}^*\right)^{-\gamma}$$
 with $q = 2\frac{2\gamma-d}{2\gamma-d+2}, \, \delta := \frac{2q}{2d-q(d-2)}$

Lemma (Dolbeault-Esteban-Laptev)

Let $q \in (0,2)$ and $d \ge 1$. There exists a concave increasing function ν $\nu(\beta) \le \beta \quad \forall \beta > 0 \quad \text{and} \quad \nu(\beta) < \beta \quad \forall \beta \in \left(\frac{d}{2-q}, +\infty\right)$ $\nu(\beta) = \beta \quad \forall \beta \in \left[0, \frac{d}{2-q}\right] \quad \text{if} \quad q \in [1,2)$ $\nu(\beta) = \mathsf{K}^*_{q,d} \; (\kappa_{q,d} \; \beta)^{\delta} \; (1+o(1)) \quad \text{as} \quad \beta \to +\infty$

such that

$$\|\nabla u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + \beta \|u\|_{\mathrm{L}^{q}(\mathbb{S}^{d})}^{2} \geq \nu(\beta) \|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \quad \forall \, u \in \mathrm{H}^{1}(\mathbb{S}^{d})$$

The threshold case: q = 2

Lemma (Dolbeault-Esteban-Laptev)

Let $p > \max\{1, d/2\}$. There exists a concave nondecreasing function ξ $\xi(\alpha) = \alpha \quad \forall \ \alpha \in (0, \alpha_0) \quad \text{and} \quad \xi(\alpha) < \alpha \quad \forall \ \alpha > \alpha_0$ for some $\alpha_0 \in \left[\frac{d}{2} (p-1), \frac{d}{2} p\right]$, and $\xi(\alpha) \sim \alpha^{1-\frac{d}{2p}} \quad \text{as} \quad \alpha \to +\infty$ such that, for any $u \in H^1(\mathbb{S}^d)$ with $||u||_{L^2(\mathbb{S}^d)} = 1$ $\int_{\mathbb{S}^d} |u|^2 \log |u|^2 \ d\mu + p \log \left(\frac{\xi(\alpha)}{\alpha}\right) \le p \log \left(1 + \frac{1}{\alpha} ||\nabla u||^2_{L^2(\mathbb{S}^d)}\right)$

Corollary (Dolbeault-Esteban-Laptev)

$$e^{-\lambda_1(-\Delta-W)/lpha} \leq rac{lpha}{\xi(lpha)} \left(\int_{\mathbb{S}^d} e^{-p \, W/lpha} \, d\mu
ight)^{1/p}$$

J. Dolbeault

Rigidity results, inequalities and nonlinear flows on compact manifolds

Generalization to Riemannian manifolds

 ${\bf Q}$ no sign is required on the Ricci tensor and an improved integral criterion is established

 \blacksquare the flow explores the energy landscape... and shows the non-optimality of the improved criterion

マヨン イラン イラン

Riemannian manifolds with positive curvature

 (\mathfrak{M}, g) is a smooth compact connected Riemannian manifold dimension d, no boundary, Δ_g is the Laplace-Beltrami operator $\operatorname{vol}(\mathfrak{M}) = 1, \mathfrak{R}$ is the Ricci tensor, $\lambda_1 = \lambda_1(-\Delta_g)$

$$\rho := \inf_{\mathfrak{M}} \inf_{\xi \in \mathbb{S}^{d-1}} \mathfrak{R}(\xi, \xi)$$

Theorem (Licois-Véron, Bakry-Ledoux)

Assume d \geq 2 and ρ > 0. If

$$\lambda \leq (1- heta)\,\lambda_1 + heta\,rac{d\,
ho}{d-1} \quad ext{where} \quad heta = rac{(d-1)^2\,(p-1)}{d\,(d+2)+p-1} > 0$$

then for any $p \in (2, 2^*)$, the equation

$$-\Delta_g v + \frac{\lambda}{p-2} \left(v - v^{p-1} \right) = 0$$

has a unique positive solution $v \in C^2(\mathfrak{M})$: $v \equiv 1$

Riemannian manifolds: first improvement

Theorem (Dolbeault-Esteban-Loss)

For any $p \in (1, 2) \cup (2, 2^*)$

$$0 < \lambda < \lambda_{\star} = \inf_{u \in \mathrm{H}^{2}(\mathfrak{M})} \frac{\int_{\mathfrak{M}} \left[(1-\theta) \left(\Delta_{g} u \right)^{2} + \frac{\theta \, d}{d-1} \, \mathfrak{R}(\nabla u, \nabla u) \right] d \, \mathsf{v}_{g}}{\int_{\mathfrak{M}} |\nabla u|^{2} \, d \, \mathsf{v}_{g}}$$

there is a unique positive solution in $C^2(\mathfrak{M})$: $u \equiv 1$

 $\lim_{p\to 1_+} \theta(p) = 0 \Longrightarrow \lim_{p\to 1_+} \lambda_{\star}(p) = \lambda_1$ if ρ is bounded $\lambda_{\star} = \lambda_1 = d \rho / (d-1) = d$ if $\mathfrak{M} = \mathbb{S}^d$ since $\rho = d-1$

$$(1- heta)\lambda_1+ heta \, rac{d \,
ho}{d-1} \leq \lambda_\star \leq \lambda_1$$

伺い イヨト イヨト

Riemannian manifolds: second improvement

$$H_g u$$
 denotes Hessian of u and $\theta = \frac{(d-1)^2 (p-1)}{d (d+2) + p - 1}$

$$\mathbf{Q}_{g} u := \mathbf{H}_{g} u - \frac{g}{d} \Delta_{g} u - \frac{(d-1)(p-1)}{\theta(d+3-p)} \left[\frac{\nabla u \otimes \nabla u}{u} - \frac{g}{d} \frac{|\nabla u|^{2}}{u} \right]$$

$$\Lambda_{\star} := \inf_{u \in \mathrm{H}^{2}(\mathfrak{M}) \setminus \{0\}} \frac{(1-\theta) \int_{\mathfrak{M}} (\Delta_{g} u)^{2} dv_{g} + \frac{\theta d}{d-1} \int_{\mathfrak{M}} \left[\|\mathrm{Q}_{g} u\|^{2} + \mathfrak{R}(\nabla u, \nabla u) \right]}{\int_{\mathfrak{M}} |\nabla u|^{2} dv_{g}}$$

Theorem (Dolbeault-Esteban-Loss)

Assume that $\Lambda_* > 0$. For any $p \in (1,2) \cup (2,2^*)$, the equation has a unique positive solution in $C^2(\mathfrak{M})$ if $\lambda \in (0,\Lambda_*)$: $u \equiv 1$

A (1) > A (1) > A

Optimal interpolation inequality

For any
$$p \in (1,2) \cup (2,2^*)$$
 or $p = 2^*$ if $d \ge 3$

$$\|
abla v\|_{\mathrm{L}^2(\mathfrak{M})}^2 \geq rac{\lambda}{
ho-2} \left[\|v\|_{\mathrm{L}^p(\mathfrak{M})}^2 - \|v\|_{\mathrm{L}^2(\mathfrak{M})}^2
ight] \quad orall v \in \mathrm{H}^1(\mathfrak{M})$$

Theorem (Dolbeault-Esteban-Loss)

Assume $\Lambda_{\star} > 0$. The above inequality holds for some $\lambda = \Lambda \in [\Lambda_{\star}, \lambda_1]$ If $\Lambda_{\star} < \lambda_1$, then the optimal constant Λ is such that

 $\Lambda_{\star} < \Lambda \leq \lambda_1$

If p = 1, then $\Lambda = \lambda_1$

Using $u = 1 + \varepsilon \varphi$ as a test function where φ we get $\lambda \le \lambda_1$ A minimum of

$$\mathbf{v}\mapsto \|
abla \mathbf{v}\|_{\mathrm{L}^2(\mathfrak{M})}^2 - rac{\lambda}{
ho-2} \left[\|\mathbf{v}\|_{\mathrm{L}^p(\mathfrak{M})}^2 - \|\mathbf{v}\|_{\mathrm{L}^2(\mathfrak{M})}^2
ight]$$

under the constraint $\|v\|_{L^p(\mathfrak{M})} = 1$ is negative if $\lambda > \lambda_1$

The flow

The key tools the flow

$$u_t = u^{2-2\beta} \left(\Delta_g u + \kappa \frac{|\nabla u|^2}{u} \right), \quad \kappa = 1 + \beta \left(p - 2 \right)$$

If $v = u^{\beta}$, then $\frac{d}{dt} \|v\|_{L^{p}(\mathfrak{M})} = 0$ and the functional

$$\mathcal{F}[u] := \int_{\mathfrak{M}} |\nabla(u^{\beta})|^2 \, d\, v_g + \frac{\lambda}{p-2} \left[\int_{\mathfrak{M}} u^{2\,\beta} \, d\, v_g - \left(\int_{\mathfrak{M}} u^{\beta\,p} \, d\, v_g \right)^{2/p} \right]$$

is monotone decaying

 Q. J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature, J. Funct. Anal., 254 (2008), pp. 593−611. Also see C. Villani, Optimal Transport, Old and New

- 不同 とうてき とうちょう

Elementary observations (1/2)

Let $d \geq 2$, $u \in C^2(\mathfrak{M})$, and consider the trace free Hessian

$$\mathbf{L}_{g} u := \mathbf{H}_{g} u - \frac{g}{d} \Delta_{g} u$$

Lemma

$$\int_{\mathfrak{M}} (\Delta_g u)^2 \, d\, \mathsf{v}_g = \frac{d}{d-1} \int_{\mathfrak{M}} \|\operatorname{L}_g u\|^2 \, d\, \mathsf{v}_g + \frac{d}{d-1} \int_{\mathfrak{M}} \mathfrak{R}(\nabla u, \nabla u) \, d\, \mathsf{v}_g$$

Based on the Bochner-Lichnerovicz-Weitzenböck formula

$$\frac{1}{2}\Delta |\nabla u|^2 = ||\mathbf{H}_g u||^2 + \nabla(\Delta_g u) \cdot \nabla u + \Re(\nabla u, \nabla u)$$

イロト イポト イヨト イヨト

Elementary observations (2/2)

Lemma

$$\int_{\mathfrak{M}} \Delta_g u \, \frac{|\nabla u|^2}{u} \, dv_g$$
$$= \frac{d}{d+2} \int_{\mathfrak{M}} \frac{|\nabla u|^4}{u^2} \, dv_g - \frac{2d}{d+2} \int_{\mathfrak{M}} [\mathrm{L}_g u] \cdot \left[\frac{\nabla u \otimes \nabla u}{u}\right] \, dv_g$$

Lemma

$$\int_{\mathfrak{M}} (\Delta_g u)^2 \, d \, v_g \geq \lambda_1 \int_{\mathfrak{M}} |\nabla u|^2 \, d \, v_g \quad \forall \, u \in \mathrm{H}^2(\mathfrak{M})$$

and λ_1 is the optimal constant in the above inequality

(a)

The key estimates

$$\mathcal{G}[u] := \int_{\mathfrak{M}} \left[\theta \left(\Delta_g u \right)^2 + (\kappa + \beta - 1) \Delta_g u \, \frac{|\nabla u|^2}{u} + \kappa \left(\beta - 1 \right) \frac{|\nabla u|^4}{u^2} \right] d \, \mathsf{v}_g$$

Lemma

$$\frac{1}{2\beta^2}\frac{d}{dt}\mathcal{F}[u] = -(1-\theta)\int_{\mathfrak{M}} (\Delta_g u)^2 \, d\, v_g - \mathcal{G}[u] + \lambda \int_{\mathfrak{M}} |\nabla u|^2 \, d\, v_g$$

$$\mathbf{Q}_{g}^{\theta} u := \mathbf{L}_{g} u - \frac{1}{\theta} \frac{d-1}{d+2} \left(\kappa + \beta - 1\right) \left[\frac{\nabla u \otimes \nabla u}{u} - \frac{g}{d} \frac{|\nabla u|^{2}}{u} \right]$$

Lemma

$$\mathcal{G}[u] = \frac{\theta d}{d-1} \left[\int_{\mathfrak{M}} \|\mathbf{Q}_{g}^{\theta}u\|^{2} dv_{g} + \int_{\mathfrak{M}} \mathfrak{R}(\nabla u, \nabla u) dv_{g} \right] - \mu \int_{\mathfrak{M}} \frac{|\nabla u|^{4}}{u^{2}} dv_{g}$$

with $\mu := \frac{1}{\theta} \left(\frac{d-1}{d+2}\right)^{2} (\kappa + \beta - 1)^{2} - \kappa (\beta - 1) - (\kappa + \beta - 1) \frac{d}{d+2}$

Rigidity results, inequalities and nonlinear flows on compact manifolds

J. Dolbeault

The end of the proof

Assume that $d \geq 2$. If $\theta = 1$, then μ is nonpositive if

$$eta_-(p) \leq eta \leq eta_+(p) \quad orall \, p \in (1,2^*)$$

where $\beta_{\pm} := \frac{b \pm \sqrt{b^2 - a}}{2a}$ with $a = 2 - p + \left\lceil \frac{(d-1)(p-1)}{d+2} \right\rceil^2$ and $b = \frac{d+3-p}{d+2}$ Notice that $\beta_{-}(p) < \beta_{+}(p)$ if $p \in (1, 2^*)$ and $\beta_{-}(2^*) = \beta_{+}(2^*)$

$$\theta = \frac{(d-1)^2 (p-1)}{d (d+2) + p - 1}$$
 and $\beta = \frac{d+2}{d+3-p}$

Proposition

Let $d \ge 2$, $p \in (1,2) \cup (2,2^*)$ $(p \ne 5 \text{ or } d \ne 2)$

$$\frac{1}{2\beta^2}\frac{d}{dt}\mathcal{F}[u] \leq (\lambda - \Lambda_{\star})\int_{\mathfrak{M}} |\nabla u|^2 \, d\, v_g$$

A summary

J. Dolbeault Rigidity results, inequalities and nonlinear flows on compact manifolds

イロン イロン イヨン イヨン

ъ.

• the sphere: the flow tells us what to do, and provides a simple proof (*choice of the exponents*) once the problem is reduced to the ultraspherical setting

 \bigcirc the spectral point of view on the inequality: how to measure the deviation with respect to the *semi-classical* estimates, a nice example of bifurcation (and *symmetry breaking*)

• *Riemannian manifolds:* no sign is required on the Ricci tensor and an improved integral criterion is established. We extend the theory from pointwise criteria to a non-local Schrödinger type estimate (Rayleigh quotient). The flow explores the energy landscape... and generically shows the non-optimality of the improved criterion

• the flow is a nice way of exploring an energy space. *Rigidity* result tell you that a local result is actually global because otherwise the flow would relate (far away) extremal points while keeping the energy minimal

http://www.ceremade.dauphine.fr/~dolbeaul > Preprints (or arxiv, or HAL)

Q. J.D., Maria J. Esteban, Ari Laptev, and Michael Loss. Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates, Preprint

Q J.D., Maria J. Esteban, and Michael Loss. Nonlinear flows and rigidity results on compact manifolds, Preprint

 \blacksquare J.D., Maria J. Esteban and Ari Laptev. Spectral estimates on the sphere, submitted to Analysis & PDE

• J.D., Maria J. Esteban, Michal Kowalczyk, and Michael Loss. Sharp interpolation inequalities on the sphere: New methods and consequences. Chinese Annals of Mathematics, Series B, 34 (1): 99-112, 2013.

These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul ▷ Lectures

Thank you for your attention !

・ロト ・回ト ・ヨト ・ヨト

э