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Outline

- Methods based on self-similarity are now well established at the
level of diffusion equations

- It is an important tool for the understanding of large time
asymptotics

— Can we extend such methods to Kkinetic equations ?

- Self-similarity: a tool for understanding dispersive properties of
Kinetic equations

- Notion of intermediate asymptotics has to be replaced by
asymptotic stability

How to relate kinetic descriptions with diffusive models 7
diffusion limits
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I. Ime-dependent rescalings and asymp-
totic stability



Consider the VlIasov-Poisson system

Orf +v-Vaef —Vep-Vof =0
—A¢p = /Rdf(t,x,v) dv

in the physical space: x, v € ]R3, without confinement. Because
of the repulsive mean field force, particles runaway at infinity and
one expects to get dispersion estimates at least as t — o

d /1 ; 1 ;
@(?//R3><R3 lx — tv|“ f(t,z,v) da:dv—|—§t/R3|V¢| da:)

1
:_t_Q//R?’ R3|:U—tv|2f(t,:1:,v) dx dv < 0
X



Since LP norms of the distribution function f(t¢-,-) are preserved:

||f(t'7 ')||LOO(R3XR3) S ||f0||LOO(R3><R3) Vt>0
Dispersion can be measured by interpolation

< — =

0 < p(t,x) /Rdf(t,x,’v) dv /\az—tv\ng dv + /|x—tfu\>Rf dv
R\3 1

0 <p(tz)<4n <?) ||f0||LOO(R3><R3) + ?/R3 |z — tv|2 fdv

Optimizing on R = R(x,t) with z, t fixed, we get

3/5
0 < p(t,2) < C ol 2 oery (a7 = t02 £ o) 768

3/5
||'0||L5/3(R3) <C ||f0||i</>f(R3><R3) (/ /R3><R3 |z — t’U|2 f dx dv) +—6/5



Theorem 1. [Perthame, Iliner-Rein] Assume
fo € LN L¥(R3 x R3), J g3 2|2 4+ |v]?) f dzdv < oo
T hen

><R3(

loCt: Il 5/3 g3y = O >/®)



SCALINGS

If (f,®) is a solution to the Vlasov-Poisson system,

f)\,p(taxav) L= )\Q_df (At,/,L$,>\_1/,L’U>

and the corresponding qb)\,’u given by the Poisson equation are
also solutions to the Vlasov-Poisson system.

If we additionally require that the L} (IR% x R%) norm is preserved,
we get: u = 22/d and the corresponding distribution function is

f>\7>\2/d(t,aj,v) = \4dy <>\ t,\2/d g \—1+2/d v)

We immediately see that for d = 3, this scaling is not convenient
since in the singular limit the initial data is not well defined as a

measure.



A SPECIAL SOLUTION

The “monokinetic” distribution function:
fOO(tvxa,lJ) .= p(ta m) 5(U T U(t, 'CU))
is a solution of (VP) if

1
t,x) = | x), u(t,x)= x
are solutions to the pressureless Euler-Poisson system (EP)

op+V-(pu)=0
Oru + (U . V:c)u = —Vz0
—Ap=p

dR
ar _ p1-d
dt



TIME-DEPENDENT RESCALINGS

[Rein,J.D.] We define a change of variables which leaves (VP)
as invariant as possible

(t,z,v) — (7,€,n)

dt = A2(t)dr, =z = R(t)¢

Assuming that ¢ — x(t) and 7 — &(7) satisfy ‘fi = v and d£ =
<= @Galilean invariance, the new velocity variable n has to satlsfy

_dzx R@)
V== = R(t)¢ + R(t)——t = R(t)¢ ‘|' (t)
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Rescaled distribution function:
f(t,z,v) = G(t)F(1,§,n)

A2(t) R(t)
V— ———T .

R(t) R(t)

If v and W are defined as the rescaled spatial density and the

rescaled potential respectively, then

V(T7£) — fRdF(Ta‘San) d77 — éTzcd;p(t)x))

dr = A72(t)dt, ¢ = R~ (t)z, n =

W(r, &) = Anzd(ta), VeW(r,&) = AL Vaio(t,z),
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Rescaled VIasov equation

O-F +1n-VeF + 2A2<§—-%>n-vnF
5 A% 42 2G 0

— R‘5€-VyF — RIGAY 24V W - V) F + A2ZF =0
LY norm is preserved under the change of variables

A R 1@G A\ 2

A R 2d G R
No time—depende9t4factor in front of the nonlinear term:
A=R¥Y4 G=R 2 %and R has to solve

R+RI-4=0

12



Rescaled Vlasov-Poisson system (RVP):

OrF +n-VeF + Yy Kg — VW + CZ_T4R%_1R77> F] =0
—AW =v(7,§) = [ga F(7,€,m) dn
The relation between the old and the new variables is
dt = R¥2dr, dr = R=/?dt

r=RE €=R 1z
d

. d -
v = R¢ + Rl_in, n = R271 ('v — %x)
and the rescaled functions are given by

F(r,&,n) = R2°9(t,2,0), v(r,€) = Rip(t,z)
W(r, &) = RI72¢(t,x), VW(r,&) = RITIV.0(t, 2)
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FMg n) = vM(€)5(n) where § is the usual Dirac distribution is
a steady state, with

¢ if | < (My|Sd1t/d
/1€l it g > (M/]SetHL/d

and associated spatial density

VW (6) = {

Vo]\g(f) =d - ]IBd((M/|Sd_1D1/d)

By the inverse rescaling transformation, we get

M __d R(t)
~ (tz,v) = WI[Bd(R(t)(M/|Sd_1D1/d)(x) 5(” - R(t)x>

M (t,2) = HBs

and P%(tax) — #IBd(R(t)(M/LS’d—lDl/d)(w)v U
This defines a weak solution of (VP) or (EP)

14



The behavior of R(t) depends on the dimension. For d # 2,

1 /dR, \2 1 /dR 2 1 5.4 Ddran
(@ ®) 5 (G ©@) == o -ro =0

and, for d = 2,
1 /dR. \? 1 /dR 2 R(t)
2 ®) 5 (@) =t (m)

If we choose ‘é—f(O) — 0 and R(0) = 1, initial data for the
rescaled problem is the same as for the original system

As t — oo, we get the following equivalences

Rt ~t2 if d=1

R(t) ~tl0ogt if d=2
R(t)~t if d>3

15



In terms of the rescaled time variable, this means

7(t) ~logt if d=1
7(t) ~ Vl0ogt if d=2
T(t) — Too < 00 if d>3

The friction coefficient

d— 4 __1
= R2? ‘R
g 2

IS not constant, but converges as ¢t — oo to a positive constant,
at least for d < 4. In the case d = 4, one recovers that the
V0asov-Poisson system is conformally invariant

Decay of the energy of the rescaled system

% U /Rded (% nl° + % €+ %W) (. & m) de dn
=) [ [, P F(r.&n) dgdn <0

16



II. Measuring stability in kKinetic equations

17



Consider the (VP) system in the gravitational case

Orf +v-Vaof —(Vzp + Vzdp) - Vof =0
(VP)
Ax¢:47'(',0, I|m|x|_>ooqb(t,a:) =0

in presence of an external potential ¢g. If we look for stationary
solutions taking the form

fa,0) =7 (5 o2 + 6(2) + do(2) — )

VlIasov's equation is satisfied and the problem is reduced to solve
the nonlinear Poisson equation

Ap =41 G(P + ¢g — k)
with
A [T00

G(u) := /R3’y(%|v|2—l—u> dvzg ; v(s + u) V2 s ds

18



A POTENTIAL ENERGY ESTIMATE

Lemma 2. There exists a positive constant C' such that
vV f e LL NL>(R®) with [v]? f € L}(R®)

1/2
LIV do < C U oy IS oy ( o 012 Gy v) davdo
R L1 (R®) L>*(R”) \/R

> _ p(y)p(x)
/R3|v¢| dm—/R3(—A¢)¢da:—47r o e ey

According to the Hardy-Littlewood-Sobolev inequalities,
V|2 de < 4r X ||p||2
fro V0P do < an=llZg

s . 7/12 5/12
Because of Holder's inequality, [|pl] 6/5g3y < IIpHL/l(Rs)||/O|||_{-)/3(R3)

Use interpolation inequalities to bound ||p|||_5/3(R3)
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AN EQUIVALENT MINIMIZATION PROBLEM

T ={f € LENL=(RO) : f(2,0) >0, |l 1oy =M, [Ifll sy < 1}
Let Jy, =inf{J(f) : feTl

() = 2R fdrdy By (f)

(& o V9|2 dar) ~ (Bpor())?

Lemma 3. The minimization problems E(f) = Ej; and J(f) =
Jps over the set [ ), are equivalent
(i) Their respective minima satisfy

4 Jy Ey = —1
(ii) If fp; € T)s is @ minimizer of the functional E, then it is also
a minimizer of the functional J

20



Theorem 1 (J.D., Sanchez, Soler). Let fy; be a minimizing
function for the functional E on [ s, with radial mass density.
T hen

(10 32+ ey, (2) < SEGD
fu(z,v) =«

\ O otherwise

where qbe iIs the unique radial solution on R3 of

7 Eny 3/2

o, =S (B0,

It is the unique minimizer with radial mass density and it is also a
steady-state solution to the VP system. Moreover, if f is another
minimizing function, then with = := 3 [ex f(z,v) dz dv

f(x,v) = fyy(e —z,v) V(x,v) € R°

21



NONLINEAR STABILITY FOR THE EVOLUTION PROBLEM

[Guo, Rein, Wolansky, Sanchez, Soler, Schaeffer, Lemou-Méhats-Raphaél]
Consider for any g, h € I 3y the distance d defined by

1
d(g,h) = E(g) = E(h) + Vg — VénlFzgs)

Theorem 2. For every e > 0, there exists a 6 > 0 such that, if f
s a solution of the VP system with an initial condition fqg €T y;,
then

The result is easily achieved by contradiction since E(f*(t)) —
E(fm) < E(fo) — E(fa) 0 implies [V ey = Vgl 2(g3y \ O
O
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III. Nonlinear diffusion equations as diffusion
limits of kinetic equations
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MODEL

?Of + ev - Vaf — VeV () - Vof = Q[f] (1)
Qlfl :=G;—f

Gy =GP+ V(@) ~ iy, (2,))

Local Fermi level: oy iIs implicitly determined by the condition

/R?)Gfdv:pf = /R?)fdv
The collision operator can be rewritten as

g, t) = V@) i) and [ (SRl do = p;

QUI=G—f, Gp=(5lP - )

24



ASSUMPTIONS

The energy profile v : (£, E>) — Ry is a nonincreasing, non-
negative €! function, —co < By < Ex < oo, limg_ g, v(E) = 0. If
E> < 0o, we extend ~ to [E»,00) by O and assume that there are
constants £ > 0 and C' > 0 such that

v(E) < C(E; - E) on (E,E»)
If F» = oo we require
~(E) =O0(E~%?2) as E — o

to ensure existence of second velocity moments

+ technical assumptions on ~ close to E»

25



FORMAL ASYMPTOTIC AS ¢ —» 0

f:Z fZG’L pz e R?)fzd,v p:Z p’LGZ
1=0 =1
Let G :=sign(p") v([v|?/2 — G(|p"])), G~ 32 G'e'
eV : GOz, v,t) = G o =(|v[*?/2 + V(z) — pO(z, 1)) = f°
el - vV f0— ViV -V, f0 =Gt - fl
€2 : OfO 4 v Vefl =V V-V fl =G2— f?

at/R3f0 dv—l—Vx-/RSUfldsz(e)

1
1 =0-vu® fy’<§v2—l—V(a?)—,uo(aﬁ,t)>—|—G1 /R3 vl dv = —pOVou®

26



Collecting these estimates, we get, for p°(z,t) = [p3 fO(z,v,t) dv,
0p° = V - (pPV )

Use: u® = a(p®) + V to recover the expected drift-diffusion
equation :

8ip° =V - (pP°(Vi(p°) + VV (2))) (2)

MOTIVATION

e collisions : short time scale

e Gibbs states are usually better known than collision kernels

e Gibbs states «— generalized entropies

e nonlinear diffusion equations are difficult to justify directly

e global Gibbs states are the same at the kinetic / diffusion levels

[Ben Abdallah, J.D.], [Chavanis, Laurencot, Lemou], [Degond, Ringhofer]
27



Example 1. Power law case : ~(F) := DE™% D >0, k> 5/2
(existence of second velocity moments)

— L P %1]€ -
n(p) = _<Dﬁ(k)> , where 3(k) =4 \/_/ (s + 1)k ds

Fast diffusion equations :

9 OV (ph32) 4 o= L (1 Vi
= V.| OV (p" VV], where — ( )7—
Outside of a finite ball, the potential grows faster than a power
3

V(z) > C|xz|?, a.e. for |z|>R with g¢>

k—5/2

28



Example 2. Maxwell distribution : ~v(FE) = exp(—F)
_ 3
i(p) =logp— 5 log(27)

Linear drift-diffusion equation : v(p) = p

o=V - (Vo+pVV)

"the linear case "

Growth assumption on the potential

V(z) > qlog(|z]), a.e. for |z|>R with ¢>3



Example 3. Let v be a cut-off power with positive exponent :

D(E> — E)t for E<E, D>0, k>0

E) = (E~-—E)k =
V(E) (F2 )+ {O otherwise

1
3

n(p) = ( P >@ — FE>, where o(k)= 477\/5/01 Vu(l—u)* du

Da(k)

Porous medium equations : v(p) = ©p2k+3

k+5/2

1 1 \mi3
Op=V- -[OV|pkt3/2] +pVV ]|, where O := 2
0 =v-(09 (¢552) +sv) 3 (5a)

Growth condition on the potential : if 4* is the upper bound for
the Fermi energy

3

3
k43
30
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(E2+u*—V(:U)>+=O< ) a.e. as |x| — o0, g¢q>



Example 4. Fermi-Dirac distribution : ~(E) = exp(l

E)4+«o
3
__1 _47T\/§ o0 VP dp _ @m)z2
()0) = 0 exp(p—60—loga)+1 « Lis o (—aexp(6))
L 1/, 1 op . L
i) = 10| = (Usjo) (=) | L= X

Macroscopic equation : 9;p = V - ((D(,O)Vp + pVV))

3/2 ¢ ; —1 —ap
(2m)%/2 Uiy 1o ((Li375) (55%))
Moreover the expansion of D(p) at p = 0 gives
V2 ap n (3 2\/§> a?p?

4 (2m)3/2 " \8 9 J(2n)3

D(p) =V'(p) =pi'(p) =

D(p) =1+ + 0(p)

31



Example 5. Bose-Einstein distribution : ~v(F) = exp(%@)_a

3
42 [0 VP dp _ (2m)2
0o exp(p—60—loga)—1

_ 1 _ o
n(p) = |og( ('—'3/12)<(27T)p3/2)>

Macroscopic equation : ;p = V - <(D(P)Vp + pVV)>

(B~ () =

Li3/2 (a exp(e))

o) P
(27) 3/2 Lll/Q((L|3/2)((2 )3/2)>

Observe that lim,_;1'(p) =0 and lim,_ o/ (p) =1

(2m)3/2¢(3) _ 41,144
« ~ Q

D(p) =1V (p) = pit'(p) =

Maximal density p : p =

32



Local Gibbs state and diffusion coefficient : Modelization
1 _
QUfI=G,—f, Gr= W(E\’U\Q — M(pf))
i1 (—Es —F71) — (0,00) is such that

(1)) = 4nV2 [~ 2(p— 0)v/p dp

We extend 1 by the value 0 on (—oco,—E5). Differentiation
with respect to 6 leads to the Abelian equation

(E=1)'(6) _ /9 v(=q)
21/ 2 —o00 V0 — q
and gives an explicit expression of v in terms of u™—

A e D (O J
V2 272dE? )00 \/—E — 0

dq

1

v(E) =

33



INITIAL DATA

We assume that there is a constant Fermi level p* such that

0 < f1(2,0) < f*(20) ;=7 (S + V@) — i) W(a,v) €R®

Maximal macroscopic density :

1
p:= |im 7(—|v|2—9> dv
9—>—Ei'_ R3 2

If p < oo we assume

—_1 _
pmo(w) <p

34



POTENTIAL

V.V € WH>*R3) and V is bounded from below

r€R3

Confinement condition : with f*(x,v) := fy(%|fu|2 + V(x) — M*>

1
e LY (R3 xR3) and //]12{6 <§|v|2 + V(:I:)) f*(z,v) dv dr < oo

Observe that this implies || f*||;1 > || frll;1 = M
A compatibility assumption : Given a Gibbs state (a function ~),
impose some minimal growth conditions on V.

35



EXISTENCE AND UNIQUENESS

Proposition 4. For any p € (1,c), Eq. (1) has a unique weak
solution in

V= {f € C0,00; (L' NLPYR®)):0< f < f* Vt>0a.e}

Proof:. Cf. [Poupaud-Schmeiser, 1991] : definethemap f—I[f] = ¢
ezatg—l— €V Vzgg —eVgV - Vyg = Gf -9
g(t=0)=f1

[ maps V into itself and is a contraction for sufficiently small
time intervals.

36



FREE ENERGY

7= ] [(%MQ +V)f+ ﬁv[f]] dv dz

B = [ ) ds

—v~* is monotonically increasing = (3 is a convex function
Microscopic energy associated to a distribution function f :

1

Bp(a,0,1) = P4V @)~y (2, 0) = 2o~ (e, 8)) = — (G

2E(1C0) = [[(Gr-HGHEA— ) dv de = ~DIf] < O

37



CONSEQUENCES .
62[9(]?(,.,.,7:)) —S"(fl)] =~ [ DIA®) d

97|OC[]C] (xa '7t) L= /R3 [(é|v|2—l—V(w)—,uf(ac,t))f(az,v,t)—l—ﬁy(f(w,v,t))] dv

is convex. Minimum if and only if f = Gy

0 = 2ol +V @)~y (e, )+ 17 = LJoPo+V (@) — (e, 1)~

Froclf (@, ) = FioclGyl(z,¢) and  F > F[Gy] > Flg]

Flg] = //R6 7(%\'&42 +V - u) (,U — ?) dv dr = /R3 (upg - V(pg)) dz

. __ 1 1 _
with pg =72 =V) (o) =5 [ 1Py (51 = fi(py) ) do
38



Consider the partition of the support of f* according to
1 _
Q= {(x,v,t) € supp f* CR® x (0,7) : By = §|U|2 —ppr(z,t)) < Ez}

1 _
Q2 = { (2,0,1) € suPP f* C RO x (0,) : Ey = _|vf2 ~ filps(2.1)) = By}

T he family of solutions f€, up to the extraction of a subsequence,
converges to its local Gibs state Gy = ~y(Ey) a.e. on Q24 and it
converges to 0 a.e. on £2g.
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Qﬁ_’t ={veR3: (z,v,t) €} and Q' :={veR3: (z,0,t) € Q}
Notice that Q%' =R3 if B> = oo

Lemma 5. For any nonnegative function f < f* there exists a
constant, which does not depend on x and t, such that
Gr—1f

o
P VA O

forany m=1,2,+1=1,2,3.

dv <M,

40



Scaled perturbations of the first and second moments

€ — (G e Ge
je::/IR@vf f dv and k° —/ v@v f
€

Lemma 6. For any bounded, open set U C R3 x [0,T), there are
two constants Jv[(l] and M2, which do not depend on ¢, such that

15 2,y <M and |Is%ll 2 () MG as e —0.

If g(z,v,t) 1= v(|v|?/2 — &(p(x, 1)), then

o
/R3U Qugdv=rv(p)ld3*3 where v(p):= /O o' (o) do

41



Proposition 7. p¢ — pY in LY _ strongly for all p € (1, 0).

loc
Div-Curl Lemma as in [Goudon-Poupaud, 2001]. Integrate (1) with
respect to dv and vdv

(’9tp€—|-Va;-j€= 0
628tj6—|—V$-/R3v®vf€ dv = —j€ — P,V

Split the second moments of f

/R3 vRUfC dv = /]1%3 v@vGT dv—l—/R3 vRU(f =G dv = v(p) I3¥3 ek

Op° + Vz-j =0
{ Vav(p?) = —7° — pViV —eVy - kS — 2 0y5°
Apply the Div-Curl Lemma to
U= (p%35°), V" :=(w(p),0,0,0)

42



With (curlw);; = w;j — wj,, and

div, U =0,
(curly V10,4 = —5°— pVaV — eVz - k¢ — 205°

we obtain the convergence of U - V&% = pSiv(pci)

AS in [Marcati-Milani, 1990], we deduce using Young measures that
the convergence of p% is strong. The strict convexity assumption
is replaced by the strict monotonicity of the function v in pv(p).
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Theorem 8. For any € > 0, the equation has a unique weak
solution f€ € C(0,00; L1 N LP(R®)) for all p < co. As e — 0, f€
weakly converges to a local Gibbs state fo given by

1 _
Oz, v,t) = (5 v|* + V(2) — i(p(z, t))) V (z,v,t) € RZxR3xR
where p is a solution of the nonlinear diffusion equation
Otp = V- (Vav(p) +p ViV (x))
with initial data p(x,0) = pr(x) := [p3 f1(x,v) dv
P _
v(p) = [ s (s) ds

Moreover, [p3 f€dv strongly converges to p in LZ,?OC ase—0
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