Mean-field attractive models: existence of stationary states and time-periodic solutions, orbital stability and symmetry issues

Jean Dolbeault (Ceremade, Université Paris-Dauphine) (with J. Campos and M. del Pino) (+ J. Fernández, J. Salomon + G. Aki, C. Sparber)

http://www.ceremade.dauphine.fr/~dolbeaul

Będlewo (June 28, 2010) NONLOCAL OPERATORS AND PARTIAL DIFFERENTIAL EQUATIONS (JUNE 26 – JULY 2, 2010)

Outline: Non-locality comes from a Poisson equation

- A first statement: there are non radially symmetric critical points
- Relative equilibria: examples and (partial) classification for systems of point particles. Time-periodic solutions
- Kinetic equations: extending the notion of relative equilibria to continuum mechanics
- Results for kinetic / diffusion equations
- The variational approach: heuristics
- The variational approach: a sketch of the proofs
- Flat systems: results and numerical computation
- Mean field gravitational models in quantum mechanics (with temperature)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Concluding remarks: symmetry breaking and stability

Gravitational (non-relativistic) Vlasov-Poisson system in \mathbb{R}^3

$$\begin{cases} \partial_t F + w \cdot \nabla_z F - \nabla_z \Phi \cdot \nabla_w F = 0\\ \Delta \Phi = \int_{\mathbb{R}^3} F \, dw \end{cases}$$
(1)

Theorem

For any $N \ge 2$, any $p \in (1,5)$, any positive numbers $\lambda_1, \lambda_2, \ldots, \lambda_N$ and any $\omega > 0$ small enough, there is a solution F^{ω} of (1) which is a relative equilibrium with angular velocity ω whose support has N disjoint connected components, each of them with mass m_i^{ω} such that

$$\lim_{\omega\to 0_+}m_i^{\omega}=\lambda_i^{(3-p)/2}\,m_*=:m_i$$

for some positive constant m_* . The center of mass $z_i^{\omega}(t)$ of each component is such that $\lim_{\omega\to 0_+} \omega^{2/3} z_i^{\omega}(t) =: z_i(t)$ is a relative equilibrium of the N-body Newton's equations with gravitational interaction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Systems of discrete particles: the N-body problem in gravitation

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Solutions of the N-body problem in gravitation

- ... many solutions are known
 - No stationary (time independent) solutions
 - Periodic solutions in Hamiltonian dynamics: [Ekeland et al.]
 - Choregraphies: [Chenciner et al.], [Terracini et al.]

Rysunek: Choregraphies, pictures taken from S. Terracini's web page

http://www.matapp.unimib.it/~suster/files/index.html

Newton's equations: basics

Consider N point particles with masses m_i located at $z_i(t) \in \mathbb{R}^3$ subject to Newton's equations

$$m_i \frac{d^2 z_i}{dt^2} = \sum_{i \neq j=1}^N \frac{m_i m_j}{4\pi} \frac{z_j - z_i}{|z_j - z_i|^3}$$
(2)

Ansatz: the system is stationary in a reference frame rotating at constant angular velocity $\Omega = \omega e_3$ Notation: $x' = (x^1, x^2, 0) = x - (x \cdot e_3) e_3$, a change of coordinates $x^3 = z^3$, $x^1 + i x^2 = e^{i\omega t}(z^1 + i z^2)$

provides Newton's equations in a rotating frame

$$\frac{d^2 x_i}{dt^2} = \sum_{i\neq j=1}^N \frac{m_j}{4\pi} \frac{x_j - x_i}{|x_j - x_i|^3} + \omega^2 x_i' + 2\Omega \wedge \frac{dx_i}{dt}$$

We look for stationary solutions in the rotating frame: relative equilibria The configuration is *central* and planar: critical points of the function

$$\mathcal{V}_{\omega}(x'_{1}, x'_{2}, \dots, x'_{N}) := -\frac{1}{8\pi} \sum_{i \neq j=1}^{N} \frac{m_{i} m_{j}}{|x'_{j} - x'_{i}|} - \frac{\omega^{2}}{2} \sum_{i \neq j=1}^{N} m_{i} |x'_{i}|^{2}$$

► All masses m_i are equal to some m > 0 and x'_i are located at the summits of a regular polygon, where r = |x'_i| is adjusted so that

$$\frac{d}{dr} \left[\frac{a_N}{4\pi} \frac{m}{r} + \frac{1}{2} \omega^2 r^2 \right] = 0 \quad \text{with} \quad a_N := \frac{1}{\sqrt{2}} \sum_{j=1}^{N-1} \frac{1}{\sqrt{1 - \cos(2\pi j/N)}}$$

gives a Lagrange solution with $r = r(N, \omega) := \left(\frac{a_N m}{4\pi \omega^2}\right)^{1/3}$ [Perko-Walter]: all masses have to be equal if $N \ge 4$ Scale invariance:

$$r(N,\varepsilon^{3/2}\omega) = \frac{1}{\varepsilon}r(N,\omega) \quad \forall \ \varepsilon > 0$$

If $\nabla \mathcal{V}_{\omega}(x'_1, x'_2, \dots, x'_N) = 0$, then $\nabla \mathcal{V}_{\varepsilon^{3/2} \, \omega}(\varepsilon^{-1} \, x'_1, \varepsilon^{-1} \, x'_2, \dots$ the study of the critical points of \mathcal{V}_{ω} can be reduced to the case $\omega = 1$

- ► N 1 points particles of same mass are located at the summits of a regular centered polygon and one more point particle stands at the center (with not necessarily the same mass as the other ones). A solution is then found again by adjusting the size of the polygon
- The Euler-Moulton solutions are made of aligned points

Fule, volution

Relative equilibria are critical points of the function $\mathcal{V}_\omega: (\mathbb{R}^2)^N o \mathbb{R}$

$$\mathcal{V}_{\omega}(x'_{1}, x'_{2}, \dots, x'_{N}) := -\frac{1}{8\pi} \sum_{i \neq j=1}^{N} \frac{m_{i} m_{j}}{|x'_{j} - x'_{i}|} - \frac{1}{2} \omega^{2} \sum_{i=1}^{N} m_{i} |x'_{i}|^{2}$$

Generic case: all masses are different

►
$$N = 2$$
:
 $|x_1 - x_2| = \left(\frac{M}{4\pi \omega^2}\right)^{1/3}$ and $m_1 x_1 + m_2 x_2 = 0$, with $M = m_1 + m_2$

► *N* = 3:

- Lagrange solutions: masses are located at the vertices of an equilateral triangle, and the distance between each point is $(M/(4\pi \omega^2))^{1/3}$ with $M = m_1 + m_2 + m_3$: two classes of solutions corresponding to the two orientations of the triangle when labeled by the masses

• $N \ge 4$: solutions made of aligned points are *Moulton's solutions* • $N \ge 4$: Lagrange solutions (all particles are located at the vertices of a regular *N*-polygon) exists if and only if all masses are equal

• Standard variational setting [Smale]: for $m = (m_1, \ldots, m_N) \in \mathbb{R}^N_+$, consider the manifold $(q_1, \ldots, q_N) \in \mathbb{R}^{2N}$ such that

$$\sum_{i=1}^{N} m_i q_i = 0, \ \frac{1}{2} \sum_{i=1}^{N} m_i |q_i|^2 = 1, \ q_i \neq q_j \text{ if } i \neq j$$

quotiented by the equivalence classes associated to the invariances: rotations and scalings

dim (S_m) = 2N - 3, relative equilibria are critical points on S_m of the potential

$$U_m(q_1, \dots, q_N) = -rac{1}{8\pi} \sum_{i
eq j=1}^N rac{m_i \, m_j}{|q_j - q_i|}$$

Relative equilibria: classification (3/3)

For $N \ge 4$, various classification results have been achieved by [Palmore]

- For $N \ge 3$, the index of a relative equilibrium is always greater or equal than N 2. This bound is achieved by Moulton's solutions
- For N ≥ 3, there are at least µ_i(N) := (^N_i)(N − 1 − i) (N − 2)! distinct relative equilibria in S_m of index 2N − 4 − i if U_m is a Morse function. As a consequence, there are at least

$$\sum_{i=0}^{N-2} \mu_i(N) = [2^{N-1}(N-2)+1](N-2)!$$

distinct relative equilibria in S_m if U_m is a Morse function

- ▶ For every $N \ge 3$ and for almost all masses $m \in \mathbb{R}^N_+$, U_m is a Morse function
- ▶ There are only finitely many classes of relative equilibria for every $N \ge 3$ and for almost all masses $m \in \mathbb{R}^N_+$
- ▶ If $N \ge 4$, the set of masses for which there exist degenerate classes of relative equilibria has positive *k*-dimensional Hausdorff measure if $0 \le k \le N-1$

The kinetic problem

Vlasov-Poisson system in the rotating frame

Gravitational Vlasov-Poisson system (with centrifugal and Coriolis forces):

$$\begin{aligned} \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f - \nabla_{\mathbf{x}} \phi \cdot \nabla_{\mathbf{v}} f - \omega^{2} \mathbf{x}' \cdot \nabla_{\mathbf{v}} f + 2\Omega \wedge \mathbf{v} \cdot \nabla_{\mathbf{v}} f = 0 \\ \Delta \phi = \rho := \int_{\mathbb{R}^{3}} f \, d\mathbf{v} \end{aligned}$$

Boundary conditions: $\phi = -\frac{1}{4\pi |\cdot|} * \rho$ Change of coordinates: $f(t, x, v) = F(t, z, w), \ \phi(t, x) = \Phi(t, z)$

$$x = \exp(\omega t A) z$$
, $v = \Omega \wedge x + \exp(\omega t A) w$ with $A := \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

For some arbitrary convex function β , critical points of the *free energy*

$$\mathcal{F}[f] := \iint_{\mathbb{R}^3 \times \mathbb{R}^3} \beta(f) \, dx \, dv + \frac{1}{2} \iint_{\mathbb{R}^3 \times \mathbb{R}^3} \left(|v|^2 - \omega^2 \, |x'|^2 \right) f \, dx \, dv - \frac{1}{2} \int_{\mathbb{R}^3} |\nabla \phi|^2 \, dx$$

give stationary solutions under the constraint $\iint_{\mathbb{R}^3 \times \mathbb{R}^3} f \, dx \, dv = M$ For $\omega \neq 0$: no minimizers [Binney-Tremaine] A typical example of such a function is

 $\beta(f) = \kappa f^q$

A critical point of $\mathcal F$ such that $\iint_{\mathbb R^3 imes \mathbb R^3} f \ dx \ dv = M$ is given by

$$f(x, v) = \gamma \left(\lambda + \frac{1}{2} |v|^2 + \phi(x) - \frac{1}{2} \omega^2 |x'|^2 \right)$$

where $\gamma(s) = (\beta')^{-1}(-s)$: $\gamma(s) = (-s)^{1/(q-1)}_+$ The problem is reduced to solve a non-linear Poisson equation

$$egin{aligned} \Delta \phi &= g \left(\lambda + \phi(x) - rac{1}{2} \, \omega^2 \, |x'|^2
ight) \, \chi_{ ext{supp}(
ho} \ &g(\mu) := \int_{\mathbb{R}^3} \gamma ig(\mu + rac{1}{2} \, |v|^2 ig) \, dv \end{aligned}$$

Variational approach:

$$\mathcal{J}[\phi] := \frac{1}{2} \int_{\mathbb{R}^3} |\nabla \phi|^2 \, dx + \int_{\mathbb{R}^3} G\left(\lambda + \phi(x) - \frac{1}{2} \, \omega^2 \, |x'|^2\right) \, dx - \int_{\mathbb{R}^3} \lambda \, \rho \, dx$$

where $\lambda = \lambda[x, \phi]$ is now a functional which is constant on each connected component K_i of the support of $\rho(x)$

The total mass is $M = \sum_{i=1}^{N} m_i$ $\int_{\mathcal{K}_i} g\left(\lambda_i + \phi(x) - \frac{1}{2}\omega^2 |x'|^2\right) dx = m_i$ $\mathcal{J}[\phi] = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla \phi|^2 dx + \sum_{i=1}^{N} \left[\int_{\mathcal{K}_i} G\left(\lambda_i + \phi(x) - \frac{1}{2}\omega^2 |x'|^2\right) dx - m_i \lambda_i \right]$

Heuristics. The various components K_i are far away from each other so that the dynamics of their center of mass is described by the *N*-body point particles system, at first order. On each component K_i , the solution is a perturbation of an isolated minimizer of \mathcal{F} (without angular rotation) under the constraint that the mass is equal to m_i . Alternatively, we consider a critical point of \mathcal{J} obtained as the perturbation of a superposition of single components critical points of \mathcal{J} of mass m_i , which are supported in a neighborhood of K_i , for all $i = 1, 2, \ldots N$, provided the centers of mass x_i of each of the components are close enough of a critical point of \mathcal{V}_{ω} , with $\omega > 0$, small

 $\omega = 0$: [Guo et al.], [Lemou-Méhats-Raphaël], [Rein et al.], [Sánchez et al.], [Soler et al.], [Schaeffer], [Wolansky], [JD-Fernández] = $\omega_{0,0}$

The first result

The spatial density $\rho^{\omega} := \int_{\mathbb{R}^3} f^{\omega} \, dv$ has exactly N disjoint connected components K_i^{ω} and

$$m_i^{\omega} = \int_{K_i^{\omega}} \rho^{\omega} \, dx \,, \quad z_i^{\omega}(t) = \exp\left(-\omega \, t \, A\right) \, x_i^{\omega} \quad \text{where} \quad x_i^{\omega} := \frac{1}{m_i^{\omega}} \int_{K_i^{\omega}} x \, \rho^{\omega} \, dx$$

$$\rho_i(x) := \frac{1}{\lambda_i^p} \rho^{\omega} \left(\lambda_i^{(1-p)/2} (x + x_i^{\omega}) \right) \chi_{\kappa_i^{\omega}} \left(\lambda_i^{(1-p)/2} (x + x_i^{\omega}) \right)$$

converges to a density function $\rho_* = (w-1)^p_+$ given by

$$-\Delta w = (w-1)^p_+$$
 in \mathbb{R}^3 , $\lim_{|x|\to\infty} w(x) = 0$

Theorem

For any $N \ge 2$, any $p \in (1,5)$, any positive numbers $\lambda_1, \lambda_2, \ldots \lambda_N$ and any $\omega > 0$ small enough, there is a relative equilibrium solution F^{ω} s.t.

$$\lim_{\omega\to 0_+} m_i^{\omega} = \lambda_i^{(3-p)/2} m_* =: m_i$$

for $m_* = \int_{\mathbb{R}^3} \rho_* dx$. The center of mass $z_i^{\omega}(t)$ of each component is such that $\lim_{\omega \to 0_+} \omega^{2/3} z_i^{\omega}(t) =: z_i(t)$ is a relative equilibrium of the N-body problem (Newton's equations)

Let $x = (x', x_3) \in \mathbb{R}^2 imes \mathbb{R}$, fix $\lambda_1, \ldots \lambda_N$ and $\omega > 0$, small: the problem is

$$-\Delta u = \sum_{i=1}^{N} \rho_i \quad \text{in } \mathbb{R}^3, \quad \rho_i := \left(u - \lambda_i + \frac{1}{2}\omega^2 |x'|^2\right)_+^p \chi_i \qquad (3)$$

where χ_i denotes the characteristic function of K_i Boundary condition $\lim_{|x|\to\infty} u(x) = 0$

Mass and center of mass associated to each component by

$$m_i := \int_{\mathbb{R}^3} \rho_i \, dx$$
 and $x_i := \frac{1}{m_i} \int_{\mathbb{R}^3} x \, \rho_i \, dx$

We shall say that two solutions u_1 and u_2 are equivalent if there is a rotation $R \in SO(2) \times \{Id\}$, *i.e.* a rotation in the plane orthogonal to the direction of rotation, such that $u_2(x) = u_1(Rx)$ for any $x \in \mathbb{R}^3$. We shall say that u_1 and u_2 are distinct if they are not equivalent

Theorem

• For ω small enough, and for almost every positive $(\lambda_1, \ldots, \lambda_N) \in (0, \infty)^N$, (3) has at least $[2^{N-1}(N-2)+1](N-2)!$ distinct solutions which continuoulsy depend on ω

• If u^{ω} is such a solution, there are points $\xi_1^{\omega}, \ldots, \xi_N^{\omega} \in \mathbb{R}^3$ such that as $\omega \to 0$, $|\xi_j^{\omega} - \xi_i^{\omega}| \to \infty$ for any $j \neq i$ and $u^{\omega}(\cdot + \xi_i^{\omega})$ locally converges to the unique radial nonnegative solution of

$$-\Delta w = (w - \lambda_i)_+^p$$
 in \mathbb{R}^3

Q For $\omega > 0$ small enough, the support of ρ^{ω} has N connected components

$$\lim_{\omega \to 0} m_i^{\omega} = \lambda_i^{(3-p)/2} m_* =: m_i \quad \text{and} \quad \lim_{\omega \to 0} \omega^{2/3} \xi_i^{\omega} := \xi_i$$

and (ξ_1, \ldots, ξ_N) is a relative equilibrium with masses $(m_i)_{1 \le i \le N}$ The scaling invariance is recovered only in the limit $\omega \to 0_+$

$$-\Delta w = (w-1)_+^{\rho} \quad \text{in } \mathbb{R}^3 \tag{4}$$

Lemma

Under the condition $\lim_{|x|\to\infty} w(x) = 0$, Equation (4) has a unique solution, up to translations, which is positive and radially symmetric. It is a non-degenerate critical point of $\frac{1}{2} \int_{\mathbb{R}^3} |\nabla w|^2 dx + \frac{1}{p+1} \int_{\mathbb{R}^3} (w-1)_+^{p+1} dx$

$$w_i(x) := w^{\lambda_i}(x-\xi_i) \ , \quad W_{\xi} := \sum_{i=1}^N w_i$$

Compatibility condition: for a large, fixed $\mu > 0$, and all small $\omega > 0$,

$$|\xi_i| < \mu \, \omega^{-\frac{2}{3}}, \quad |\xi_i - \xi_j| > \mu^{-1} \omega^{-\frac{2}{3}}$$
 (5)

Ansatz: we look for a solution of (3) of the form

$$u = W_{\xi} + \phi$$

with $\mathrm{supp}\,(w^{\lambda_i}-\lambda_i)_+\subset B(0,R)$ for all $i=1,\ldots\,N$ for R>0 large

$$\Delta \phi + \sum_{i=1}^{N} p \left(W_{\xi} - \lambda_i + \frac{1}{2} \omega^2 |x'|^2 \right)_+^{p-1} \chi_i \phi = -\mathsf{E} - \mathsf{N}[\phi]$$

We want to solve

$$\Delta \phi + \sum_{i=1}^{N} p \left(W_{\xi} - \lambda_i + \frac{1}{2} \omega^2 |\mathbf{x}'|^2 \right)_+^{p-1} \chi_i \phi = -\mathsf{E} - \mathsf{N}[\phi]$$

where

$$\mathsf{E} := \Delta W_{\xi} + \sum_{i=1}^{N} \left(W_{\xi} - \lambda_{i} + \frac{1}{2} \,\omega^{2} \,|x'|^{2} \right)_{+}^{p} \chi_{i}$$

$$\mathsf{N}[\phi] := \sum_{i=1}^{N} \left[\left(W_{\xi} - \lambda_{i} + \frac{1}{2} \,\omega^{2} \,|x'|^{2} + \phi \right)_{+}^{p} - \left(W_{\xi} - \lambda_{i} + \frac{1}{2} \,\omega^{2} \,|x'|^{2} \right)_{+}^{p} \right.$$

$$\left. - p \left(W_{\xi} - \lambda_{i} + \frac{1}{2} \,\omega^{2} \,|x'|^{2} \right)_{+}^{p-1} \phi \right] \chi_{i}$$

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @

The variational scheme

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- A linear theory
- The projected nonlinear problem (Lagrange multipliers)
- The variational reduction
- A variational approach in finite dimension

[Floer-Weinstein 1986] + many others...

A linear theory

$$\|\phi\|_{*} = \sup_{x \in \mathbb{R}^{3}} \left(\sum_{i=1}^{N} |x - \xi_{i}| + 1 \right) |\phi(x)| , \quad \|h\|_{**} = \sup_{x \in \mathbb{R}^{3}} \left(\sum_{i=1}^{N} |x - \xi_{i}|^{4} + 1 \right) |h(x)|$$

Consider the projected problem

$$\mathsf{L}[\phi] = h + \sum_{i=1}^{N} \sum_{j=1}^{3} c_{ij} \, Z_{ij} \, \chi_i$$

where $Z_{ij} := \partial_{x_j} w_i$, subject to orthogonality conditions

$$\int_{\mathbb{R}^3} \phi \, Z_{ij} \, \chi_i \, dx = 0 \quad \forall \, i \, , \, j = 1, \, 2 \dots N$$

Lemma

Assume that (5) holds. Given h with $||h||_{**} < +\infty$, there is a unique solution $\phi =: T[h]$ and there exists a positive constant C, which is independent of ξ such that, for $\omega > 0$ small enough,

$$\|\phi\|_* \leq C \|h\|_{**}$$

Find ϕ with $\|\phi\|_* < +\infty$, solution of

$$\mathsf{L}[\phi] = -\mathsf{E} - \mathsf{N}[\phi] + \sum_{i=1}^{N} \sum_{j=1}^{3} c_{ij} Z_{ij} \chi_i$$

such that $\phi(x) \to 0$ as $|x| \to +\infty$ and

$$\int_{\mathbb{R}^3} \phi \, Z_{ij} \, \chi_i \; dx = 0 \quad \text{ for all } i \, , \, j \; .$$

To do this analysis we have to measure the size of the error E. We recall that

$$\mathsf{E} = \sum_{i=1}^{N} \left[(w_i + \sum_{j \neq i} w_j - \lambda_i + \frac{1}{2} \,\omega^2 \,|x'|^2)_+^p - (w_i - \lambda_i)_+^p \right] \chi_i$$

$$= \sum_{i=1}^{N} p \left(w_i - \lambda_i + t \left(\sum_{j \neq i} w_j + \frac{1}{2} \,\omega^2 \,|x'|^2 \right) \right)_+^{p-1} \left(\sum_{j \neq i} w_j + \frac{1}{2} \,\omega^2 \,|x'|^2 \right) \chi_i$$
for some $t \in (0, 1)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$|\mathsf{E}| \le C \sum_{i=1}^{N} \left[\sum_{j \ne i} \frac{1}{|\xi_i - \xi_j|} + \frac{1}{2} \omega^2 |\xi_i|^2 \right] \chi_i \le C \omega^{\frac{2}{3}} \sum_{i=1}^{N} \chi_i$$

Thus $\|\mathsf{E}\|_{**} \leq C\omega^{\frac{2}{3}}$. Moreover, for $\|\phi\|_{*} \leq 1$,

$$|\mathsf{N}[\phi]| \leq C \sum_{i=1}^{N} |\phi|^{\gamma} \chi_i , \quad \gamma = \min\{p, 2\}$$

 $\begin{aligned} \|\mathsf{N}[\phi]\|_{**} &\leq C \|\phi\|_*^{\gamma} \text{ and } \|\mathsf{N}(\phi_1) - \mathsf{N}(\phi_2)\|_{**} \leq o(1) \|\phi_1 - \phi_2\|_*^{\gamma} \\ \text{We look for a fixed point } \phi = \mathcal{A}[\phi] &:= -\mathsf{T}\big[\mathsf{E} + \mathsf{N}[\phi]\big] \text{ on the region} \end{aligned}$

$$\mathcal{B} = \left\{ \phi : \|\phi\|_* \le \mathcal{K}\omega^{\frac{2}{3}} \right\}$$

Lemma

 $\exists ! \phi_{\xi} = \phi(\xi_1, \dots, \xi_k)$ which depends continuously on its parameters for the $\| \|_*$ -norm and $\| \phi_{\xi} \|_* \leq C \omega^{\frac{2}{3}}$,

$$\phi_{e^{\theta A}\xi} = \phi_{\xi}(e^{-\theta A}\cdot)$$
 and $c_{i.}(e^{\theta A}\xi) = e^{-\theta A}c_{i.}$

Lemma

We have that $c_{ij} = 0$ for all i, j if and only if the k-tuple (ξ_1, \dots, ξ_N) is a critical point of the functional

$$(\xi_1,\ldots,\xi_N)\mapsto \Lambda(\xi_1,\ldots,\xi_N):=J(W_{\xi}+\phi_{\xi})$$

A Taylor expansion

$$J(W_{\xi}) = J(W_{\xi} + \phi_{\xi}) - DJ(W_{\xi} + \phi_{\xi})[\phi_{\xi}] + \frac{1}{2} \int_{0}^{1} D^{2} J(W_{\xi} + (1 - t)\phi_{\xi})[\phi_{\xi}]^{2} dt$$
$$D^{2} J(W_{\xi} + (1 - t)\phi_{\xi})[\phi_{\xi}]^{2} = O(\omega^{\frac{4}{3}})$$
$$\Lambda(\xi) = \sum_{i=1}^{N} \lambda_{i}^{5-\rho} e_{*} - \left[\frac{1}{2} \sum_{i \neq j} \frac{m_{i} m_{j}}{|\xi_{i} - \xi_{j}|} + \frac{1}{2} \omega^{2} \sum_{i=1}^{N} m_{i} |\xi_{i}|^{2}\right] + O(\omega^{\frac{4}{3}})$$

▲ロ▶ ▲御▶ ▲注▶ ▲注▶ 注目 - 釣�?

In the region

$$\mathfrak{B} = \left\{ (\xi_1, \dots \, \xi_k) \ : \ |\xi_i - \xi_j| > \rho \, \omega^{-\frac{2}{3}}, \quad |\xi_i| < \rho^{-1} \, \omega^{-\frac{2}{3}} \text{ for all } i \, , \, j \right\}$$

where $\rho > 0$ is chosen small enough and fixed, we have that

$$\sup_{\mathfrak{B}}\Lambda > \sup_{\partial\mathfrak{B}}\Lambda$$

so that this functional has a local maximum somewhere in \mathfrak{B} . Hence a critical point of this functional does exist in \mathfrak{B}

Lemma

For any $\lambda_i > 0$, ξ_i , we have found a critical point of Λ , i.e. a solution of

$$\mathsf{L}[\phi] = -\mathsf{E} - \mathsf{N}[\phi]$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

A variational approach in finite dimension

$$U_m(q_1, \ldots, q_N) = -\frac{1}{8\pi} \sum_{i \neq j=1}^N \frac{m_i m_j}{|q_j - q_i|}$$

is a Morse function on S_m . Take a local system of coordinates $(\eta_1, ..., \eta_{2N-4})$ on a neighborhood of a critical point \bar{q} and for $\alpha > 0$, let

$$\xi(\alpha, p, \eta) = (\alpha(q_1(\eta) + p), \dots \alpha(q_N(\eta) + p))$$
$$\Phi(\alpha, p, \eta) = \omega^{-\frac{2}{3}} \Lambda(\xi(\omega^{-\frac{2}{3}}\alpha, p, q(\eta)))$$

$$\nabla \Phi(\alpha, p, \eta) = \nabla \Big(-\frac{1}{2} \sum_{i \neq j=1}^{N} \frac{m_i m_j}{\alpha |q_j(\eta) - q_i(\eta)|} - \frac{1}{2} \alpha^2 \sum_{i=1}^{N} m_i |q_i(\eta)|^2 \\ + \frac{1}{2} \alpha^2 |p|^2 \sum_{i=1}^{N} m_i \Big) + O(\omega^{\frac{2}{3}})$$

 $(\bar{\lambda}^{\frac{1}{3}}, 0, \bar{\eta})$ is nondegenerate, so the local degree $\deg(\nabla \tilde{\Phi}, \mathcal{U}, 0)$ is well defined and nonzero: there exists a critical point (α^*, p^*, η^*) as $\omega \to 0$

A flat (non-local) model: theory and numerical results

[JD-Fernández] Written in cartesian coordinates, the equation is

$$\partial_t f + \mathbf{v} \cdot \nabla_x f + \omega^2 \mathbf{x} \cdot \nabla_v f + 2\,\omega\,\mathbf{v}\wedge\nabla_v f - \nabla_x \phi \cdot \nabla_v f = 0$$

$$\phi = -\frac{1}{4\pi\,|\mathbf{x}|} * \int_{\mathbb{R}^2} f \,d\mathbf{v}$$

where $a \wedge b := a^{\perp} \cdot b = a_1 b_2 - a_2 b_1$ and $x, v \in \mathbb{R}^2$

Definition

A localized minimizer is a critical point ρ of \mathcal{G}_{ω} which is compactly supported in a ball $B(0, R - \varepsilon)$ for some R > 0 and $\varepsilon \in (0, R)$, and which is a minimizer of \mathcal{G}_{ω} restricted to the set

$$\left\{\rho\in L^1_+(\mathbb{R}^2)\ :\ \mathrm{supp}(\rho)\subset B(0,R)\ \mathrm{and}\ \int_{\mathbb{R}^2}\rho\ dx=M\right\}$$

◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 包 ◆ ○ ◆

Theorem

For any M > 0, there exists $\omega_*(M) = \omega_* > 0$ and $\omega^*(M) = \omega^* > 0$ with $\omega_* \le \omega^*$ such that

(i) If $\omega \in [-\omega_*, \omega_*]$, the reduced free energy functional

$$\mathcal{G}_{\omega}[\rho] := \frac{\kappa}{m-1} \int_{\mathbb{R}^2} \rho^m \, dx - \frac{\omega^2}{2} \int_{\mathbb{R}^2} |x|^2 \, \rho \, dx - \frac{1}{8\pi} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} \frac{\rho(x) \, \rho(y)}{|x-y|} \, dx \, dy$$

admits a localized minimizer

(ii) If $|\omega| > \omega^*$, $\mathcal{G}_{\omega}[\rho]$ admits no localized minimizer

More detailed results in the radial case. How does symmetry breaking occur ?

Goal: investigate the energy landscape [JD-Fernández-Salomon]

- Local minimizers (under appropriate constraints) have a very small basin of attraction
- Compact support has to be enforced at each step
- Iteration method inspired by mean-field models in quantum mechanics work, with similar difficulties: the Cancès-LeBris method of relaxation has to be introduced to achieve convergence
- \blacktriangleright how branches of solutions vary in terms of ω is open

Mean field gravitational models in quantum mechanics (with temperature) – Boson stars

A physical state of the system is represented by a density matrix operator: ρ is a positive self-adjoint trace class operator on $L^2(\mathbb{R}^3; \mathbb{C})$

$$\rho = \sum_{j \in \mathbb{N}} \lambda_j |\psi_j\rangle \langle \psi_j |$$

 $\lambda_j \in \ell^1$ are the *occupation probabilities*, $(\psi_j)_{j \in \mathbb{N}}$ is a complete orthonormal basis of $L^2(\mathbb{R}^3)$. Particle density is given by

$$n_
ho(x) = \sum_{j\in\mathbb{N}} \lambda_j \, |\psi_j(x)|^2 \in L^1_+(\mathbb{R}^3) \,, \quad \int_{\mathbb{R}^3} n_
ho(x) \,\mathrm{d}x = M = \sum_{j\in\mathbb{N}} \lambda_j \,.$$

Hartree energy of the system is given by

$$\mathcal{E}_{\mathcal{H}}[\rho] := \mathcal{E}_{\mathrm{kin}}[\rho] - \mathcal{E}_{\mathrm{pot}}[\rho] = \mathrm{tr}(-\Delta \rho) - rac{1}{2} \operatorname{tr}(V_{
ho} \
ho) \ , \quad V_{
ho} = n_{
ho} * rac{1}{| \ \cdot \ |}$$

$$\mathcal{E}_{H}[\rho] = \sum_{j \in \mathbb{N}} \lambda_{j} |\nabla \psi_{j}(x)|^{2} - \frac{1}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{n_{\rho}(x) n_{\rho}(y)}{|x - y|} \, \mathrm{d}x \, \mathrm{d}y$$

The free energy functional given by

$$\mathcal{F}_{\mathcal{T}}[\rho] := \mathcal{E}_{\mathcal{H}}[\rho] - \mathcal{T} \mathcal{S}[\rho]$$

 $T \ge 0$ denotes the temperature, $\beta(s) \in \mathbb{R}_+$ is a convex *entropy* generating function, and $S[\rho]$ is the *entropy* functional

$$\mathcal{S}[
ho]:=-\operatorname{tr}eta(
ho)=-\sum_{j\in\mathbb{N}}eta(\lambda_j)$$

Define $i_{M,T} := \inf_{\mathrm{tr}\,\rho=M} \mathcal{F}_T[\rho]$. A useful *a priori* estimate

$$\mathcal{E}_{
m pot}[
ho] \le C \, \|n_{
ho}\|_{L^{1}}^{3/2} \operatorname{tr}(-\Delta
ho)^{1/2}$$

 $\mathcal{F}_{\mathcal{T}}[
ho] \ge \operatorname{tr}(-\Delta
ho) - C \, \mathcal{M}^{3/2} \, \operatorname{tr}(-\Delta
ho)^{1/2} \ge -\frac{1}{4} \, C^{2} \, \mathcal{M}^{3}$

Binding inequality: if there are minimizers for $i_{M_1,T}$ and $i_{M_2,T}$, then

$$i_{M_1+M_2,T} < i_{M_1,T} + i_{M_2,T}$$

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

$$\mathfrak{H}_{M} = \left\{ \rho \in \mathfrak{S}_{1} : \rho^{*} = \rho \geq 0, \ \sqrt{-\Delta} \rho \sqrt{-\Delta} \in \mathfrak{S}_{1}, \ \mathrm{tr} \ \rho = M \right\}$$
$$i_{M,T} = \inf_{\rho \in \mathfrak{H}_{M}} \mathcal{F}_{T}[\rho] , \quad T^{*}(M) := \sup\{T > 0 : i_{M,T} < 0\}$$

 β is strictly convex, nonnegative with $\beta(0) = \beta'(0) = 0$ and of class C^1 on its domain: $\beta(s) = s^p$, 1 , for instance

Theorem

[Aki, JD, Sparber] Let M > 0: $T^* = T^*(M) > 0$, possibly infinite, is the maximal temperature

- (i) For all $T < T^*$, there exists $\rho \in \mathfrak{H}_M$ such that $\mathcal{F}_T[\rho] = i_{M,T}$
- (ii) The set of all minimizers is orbitally stable under the dynamics
- (iii) Minimizer $\rho \in \mathfrak{M}_M$ are pure states (density matrix operators of rank one) if and only if $T \in [0, T_c]$, for some critical temperature $T_c > 0$

- Maximal temperature: if p ∈ (1,7/5) and β(s) = s^p, then the maximal temperature, T^{*}(M), is finite
- Interpolation and Lieb-Thirring inequalities: proving the boundedness from below of the free energy in presence of a general potential amounts to establish interpolation inequalities of Gagliardo-Nirenberg type, which are themselves equivalent to Lieb-Thirring inequalities: [JD, Felmer, Loss, Paturel]
- Application in chemistry: [JD, Felmer, Mayorga], [JD, Felmer, Lewin]
- Relative equilibria ? Likely to occur
- Boson stars: a crude model. Physics has to be better understood (temperature)
- ► Relativistic models (take √1 − Δ instead of −Δ in the kinetic term) and critical mass issues (Chandrasekhar): [Lenzmann, Lewin]

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□▶

- In nonlinear PDEs, symmetry breaking usually occurs because of a competition between the nonlinearity and an external potential
- A classical example is the (PDE) Hénon problem in elliptic PDEs
- The case covered by the theorem of [Gidas-Ni-Nirenberg] is the trivial one: the nonlinearity and an external potential cooperate
- Symmetry breaking is usually achieved by eigenvalue considerations
- Here we have an example based on multiscale analysis (new)
- Main issue (especially in gravitation) is dynamical / orbital stability Constrained (localized) minimization and mass transport methods [McCann] but new ideas are required. Non-locality !
- Building examples of periodic solutions (choregraphies ?) would be an intermediate step

Thank you for your attention !

