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Results based on the carré du champ method (heat flow)
Result based on the generalized carré du champ method
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Constructive stability results

in Gagliardo-Nirenberg-Sobolev

inequalities

A joint work with M. Bonforte, B. Nazaret and N. Simonov
Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows,

regularity and the entropy method
arXiv:2007.03674, to appear in Memoirs of the AMS
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Gagliardo-Nirenberg-Sobolev inequalities on Rd

‖∇f ‖θL2(Rd ) ‖f ‖
1−θ
Lp+1(Rd ) ≥ CGNS(p) ‖f ‖L2p(Rd ) (GNS)

Range of exponents:

1 < p ≤ d

d − 2
⇐⇒ d − 1

d
=: m1 ≤ m < 1

Sobolev inequality: p = d
d−2 , m = m1

Logarithmic Sobolev inequality: p = 1, m = 1
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Entropy – entropy production inequality
Fast diffusion equation (written in self-similar variables)

∂v

∂τ
+∇ ·

(
v
(
∇vm−1 − 2 x

))
= 0 (r FDE)

Generalized entropy (free energy) and Fisher information

F [v ] := − 1

m

∫

Rd

(
vm − Bm −mBm−1 (v − B)

)
dx

I[v ] :=

∫

Rd

v
∣∣∇vm−1 + 2 x

∣∣2 dx

satisfy an entropy – entropy production inequality

I[v ] ≥ 4F [v ]

[del Pino, JD, 2002] so that

F [v(t, ·)] ≤ F [v0] e− 4 t
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The entropy – entropy production inequality I[v ] ≥ 4F [v ] is
equivalent to the Gagliardo-Nirenberg-Sobolev inequalities

‖∇f ‖θL2(Rd ) ‖f ‖
1−θ
Lp+1(Rd ) ≥ CGNS(p) ‖f ‖L2p(Rd ) (GNS)

with equality if and only if

|f (x)|2p = B(x) =
(
1 + |x |2

) 1
m−1

p = 1
2 m−1 ⇐⇒ m = p+1

2 p ∈ [m1, 1) with m1 = d−1
d

u = f 2 p so that um = f p+1 and u
∣∣∇um−1

∣∣2 = (p − 1)2 |∇f |2
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Spectral gap

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

[Denzler, McCann, 2005]
[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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Strategy of the method

Regularity and stability

Our strategy

Choose "> 0, small enough

Get a threshold time t?(")

0 t?(") t
Backward estimate

by entropy methods

Forward estimate

based on a spectral gap

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

E
s

⇐
#↳

Initial time layer Asymptotic time layer
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A constructive stability result (critical case only)
Let 2 p? = 2d/(d − 2) = 2∗, d ≥ 3 and

Wp?(Rd) =
{
f ∈ Lp?+1(Rd) : ∇f ∈ L2(Rd) , |x | f p? ∈ L2(Rd)

}

Theorem

Let d ≥ 3 and A > 0. For any nonnegative f ∈ Wp?(Rd) such that

∫

Rd

(1, x , |x |2) f 2∗
dx =

∫

Rd

(1, x , |x |2) g dx and sup
r>0

rd
∫

|x|>r

f 2∗
dx ≤ A

we have

‖∇f ‖2
L2(Rd ) − S2

d ‖f ‖2
L2∗ (Rd )

≥ C?(A)

4 + C?(A)

∫

Rd

∣∣∣∇f + d−2
2 f

d
d−2 ∇g−

2
d−2

∣∣∣
2

dx

C?(A) = C?(0)
(
1+A1/(2 d)

)−1
and C?(0) > 0 depends only on d
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Sharp stability for Sobolev and
log-Sobolev inequalities,

with optimal dimensional
dependence

A joint work with JD, M.J. Esteban, A. Figalli, R. Frank, M. Loss
Sharp stability for Sobolev and log-Sobolev inequalities, with

optimal dimensional dependence
arXiv: 2209.08651
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Stability results for the Sobolev inequality
Sobolev inequality on Rd with d ≥ 3

‖∇f ‖2
L2(Rd ) ≥ Sd ‖f ‖2

L2∗ (Rd ) ∀ f ∈ Ḣ1(Rd)

with equality on the manifold M of the Aubin–Talenti functions

g(x) = c
(
a + |x − b|2

)− d−2
2 , a ∈ (0,∞) , b ∈ Rd , c ∈ R

Theorem

There is a constant β > 0 with an explicit lower estimate which does not
depend on d such that for all d ≥ 3 and all f ∈ H1(Rd) \M we have

‖∇f ‖2
L2(Rd ) − Sd ‖f ‖2

L2∗ (Rd ) ≥
β

d
inf

g∈M
‖∇f −∇g‖2

L2(Rd )

[JD, Esteban,Figalli, Frank, Loss] Cf. R. Frank’s lecture yesterday
B The “far away” regime and the “neighborhood” of M
B Competing symmetries and a notion of a continuous flow
(based on Steiner’s symmetrization)
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Logarithmic Sobolev

and Gagliardo-Nirenberg-Sobolev

on the sphere

A joint work with G. Brigati and N. Simonov
Logarithmic Sobolev and interpolation inequalities on the

sphere: constructive stability results
arXiv:2211.13180
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(Improved) logarithmic Sobolev inequality

On the sphere Sd with d ≥ 1

∫

Sd
|∇F |2 dµ ≥ d

2

∫

Sd
F 2 log

(
F 2

‖F‖2
L2(Sd )

)
dµ ∀F ∈ H1(Sd , dµ)

(LSI)
dµ: uniform probability measure; equality case: constant functions
Optimal constant: test functions Fε(x) = 1 + ε x · ν, ν ∈ Sd , ε→ 0
B improved inequality under an appropriate orthogonality condition

Theorem

Let d ≥ 1. For any F ∈ H1(Sd , dµ) such that
∫
Sd x F dµ = 0, we have

∫

Sd
|∇F |2 dµ− d

2

∫

Sd
F 2 log

(
F 2

‖F‖2
L2(Sd )

)
dµ ≥ 2

d + 2

∫

Sd
|∇F |2 dµ

Improved ineq.
∫
Sd |∇F |2 dµ ≥

(
d
2 + 1

) ∫
Sd F

2 log
(
F 2/‖F‖2

L2(Sd )

)
dµ

J. Dolbeault Recent results of stability in functional inequalities
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Logarithmic Sobolev inequality: stability (1)
What if

∫
Sd x F dµ 6= 0 ? Take Fε(x) = 1 + ε x · νand let ε→ 0

‖∇Fε‖2
L2(Sd )−

d

2

∫

Sd
F 2
ε log

(
F 2
ε

‖Fε‖2
L2(Sd )

)
dµ = O(ε4) = O

(
‖∇Fε‖4

L2(Sd )

)

Such a behaviour is in fact optimal: carré du champ method

Proposition

Let d ≥ 1, γ = 1/3 if d = 1 and γ = (4 d − 1) (d − 1)2/(d + 2)2 if

d ≥ 2. Then, for any F ∈ H1(Sd , dµ) with ‖F‖2
L2(Sd ) = 1 we have

∫

Sd
|∇F |2 dµ− d

2

∫

Sd
F 2 log F 2 dµ ≥ 1

2

γ ‖∇F‖4
L2(Sd )

γ ‖∇F‖2
L2(Sd ) + d

In other words, if ‖∇F‖L2(Sd ) is small

∫
Sd |∇F |2 dµ− d

2

∫
Sd F

2 log F 2 dµ ≥ γ
2 d ‖∇F‖

4
L2(Sd ) + o

(
‖∇F‖4

L2(Sd )

)

J. Dolbeault Recent results of stability in functional inequalities



Constructive stability estimates on Rd
LSI and GNS inequalities on the sphere: results
LSI and GNS inequalities on the sphere: proofs

Stability results
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Logarithmic Sobolev inequality: stability (2)
Let Π1F denote the orthogonal projection of a function F ∈ L2(Sd) on
the spherical harmonics corresponding to the first eigenvalue on Sd

Π1F (x) =
x

d + 1
·
∫

Sd
y F (y) dµ(y) ∀ x ∈ Sd

B a global (and detailed) stability result

Theorem

Let d ≥ 1. For any F ∈ H1(Sd , dµ), we have

∫

Sd
|∇F |2 dµ− d

2

∫

Sd
F 2 log

(
F 2

‖F‖2
L2(Sd )

)
dµ

≥ Sd

(
‖∇Π1F‖4

L2(Sd )

‖∇F‖2
L2(Sd ) + d

2 ‖F‖
2
L2(Sd )

+ ‖∇(Id− Π1)F‖2
L2(Sd )

)

for some explicit stability constant Sd > 0
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Gagliardo-Nirenberg(-Sobolev) inequalities

∫

Sd
|∇F |2 dµ ≥ d

p − 2

(
‖F‖2

Lp(Sd ) − ‖F‖
2
L2(Sd )

)
∀F ∈ H1(Sd , dµ)

(GNS)
for any p ∈ [1, 2) ∪ (2, 2∗), with dµ: uniform probability measure
2∗ := 2 d/(d − 2) if d ≥ 3 and 2∗ = +∞ otherwise
Optimal constant: test functions Fε(x) = 1 + ε x · ν, ν ∈ Sd , ε→ 0
logarithmic Sobolev inequality: obtained by taking the limit as p → 2

Theorem

Let d ≥ 1. For any F ∈ H1(Sd , dµ) such that
∫
Sd x F dµ = 0, we have

∫

Sd
|∇F |2 dµ− d

p − 2

(
‖F‖2

Lp(Sd ) − ‖F‖
2
L2(Sd )

)
≥ Cd,p

∫

Sd
|∇F |2 dµ

with Cd,p = 2 d−p (d−2)
2 (d+p)
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Gagliardo-Nirenberg inequalities: stability (1)

With Fε(x) = 1 + ε x · ν, the deficit is of order ε4 as ε→ 0

Proposition

Let d ≥ 1 and p ∈ (1, 2) ∪ (2, 2∗). There is a convex function ψ on R+

with ψ(0) = ψ′(0) = 0 such that, for any F ∈ H1(Sd , dµ), we have

∫

Sd
|∇F |2 dµ− d

p − 2

(
‖F‖2

Lp(Sd ) − ‖F‖
2
L2(Sd )

)

≥ ‖F‖2
Lp(Sd ) ψ

(
‖∇F‖2

L2(Sd )

‖F‖2
Lp(Sd )

)

This is also a consequence of the carré du champ method, with an
explicit construction of ψ
There is no orthogonality constraint
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Gagliardo-Nirenberg inequalities: stability (2)

As in the case of the logarithmic Sobolev inequality, the improved
inequality under orthogonality constraint and the stability inequality
arising from the carré du champ method can be combined

Theorem

Let d ≥ 1 and p ∈ (1, 2) ∪ (2, 2∗). For any F ∈ H1(Sd , dµ), we have

∫

Sd
|∇F |2 dµ− d

p − 2

(
‖F‖2

Lp(Sd ) − ‖F‖
2
L2(Sd )

)

≥ Sd,p

(
‖∇Π1F‖4

L2(Sd )

‖∇F‖2
L2(Sd ) + ‖F‖2

L2(Sd )

+ ‖∇(Id− Π1)F‖2
L2(Sd )

)

for some explicit stability constant Sd,p > 0
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Generalized entropy functionals

Ep[F ] :=
‖F‖2

Lp(Sd ) − ‖F‖
2
L2(Sd )

p − 2
if p 6= 2

E2[F ] :=
1

2

∫

Sd
F 2 log

(
F 2

‖F‖2
L2(Sd )

)
dµ

B The key idea is to evolve these quantities by a diffusion flow and
prove the inequalities as a consequence of a monotonicity along the
flow

J. Dolbeault Recent results of stability in functional inequalities
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Heat flow estimates: fixing parmaeters
Let us consider the constant γ given by

γ :=

(
d − 1

d + 2

)2

(p − 1) (2# − p) if d ≥ 2 , γ :=
p − 1

3
if d = 1

and the Bakry-Emery exponent

2# :=
2 d2 + 1

(d − 1)2

Let us define

s? :=
1

p − 2
if p > 2 and s? := +∞ if p ≤ 2

For any s ∈ [0, s?), let

ϕ(s) = 1−(p−2) s−(1−(p−2) s)
− γ

p−2

2−p−γ if γ 6= 2− p and p 6= 2

ϕ(s) = 1
2−p (1 + (2− p) s) log (1 + (2− p) s) if γ = 2− p 6= 0

ϕ(s) = 1
γ (eγ s − 1) if p = 2

J. Dolbeault Recent results of stability in functional inequalities
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Heat flow: stability estimates
[JD, Esteban, Kowalczyk, Loss], [JD, Esteban 2020]

‖∇F‖2
L2(Sd ) ≥ d ϕ

(
Ep[F ]

‖F‖2
Lp(Sd )

)
‖F‖2

Lp(Sd ) ∀F ∈ H1(Sd)

Since ϕ(0) = 0, ϕ′(0) = 1, and ϕ is convex increasing, with an
asymptote at s = s? if p ∈ (2, 2#), we know that ϕ : [0, s?)→ R+ is
invertible and ψ : R+ → [0, s?), s 7→ ψ(s) := s − ϕ−1(s), is convex
increasing with ψ(0) = ψ′(0) = 0, limt→+∞

(
t − ψ(t)

)
= s?, and

ψ′′(0) = ϕ′′(0) = (d−1)2

(d+2)2

(
2# − p

)
(p − 1) > 0 ∀ p ∈ (1, 2#)

First stability estimates for Gagliardo-Nirenberg inequalities

Proposition

With the above notations, d ≥ 1 and p ∈ (1, 2#), we have

‖∇F‖2
L2(Sd ) − d Ep[F ] ≥ d ‖F‖2

Lp(Sd ) ψ

(
1

d

‖∇F‖2
L2(Sd )

‖F‖2
Lp(Sd )

)
∀F ∈ H1(Sd)

If p = 2, notice that ψ is explicit and given by

ψ(t) := t − 1

γ
log(1 + γ t) ∀ t ≥ 0 .

The proof of Proposition 4 follows from the observation that

ψ(t) ≥ γ
2

t2

1+γ t for any t ≥ 0.
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A simpler reformulation

Let d ≥ 1, γ 6= 2− p as above

‖∇F‖2
L2(Sd ) ≥

d

2− p − γ

(
‖F‖2

L2(Sd ) − ‖F‖
2− 2 γ

2−p

Lp(Sd )
‖F‖

2 γ
2−p

L2(Sd )

)
∀F ∈ H1(Sd)

[JD, Esteban 2020]
which is a refinement of the standard Gagliardo-Nirenberg inequality

∫

Sd
|∇F |2 dµ ≥ d

p − 2

(
‖F‖2

Lp(Sd ) − ‖F‖
2
L2(Sd )

)
∀F ∈ H1(Sd , dµ)

... with the restriction p < 2# := 2 d2+1
(d−1)2 < 2∗ := 2 d

d−2 if d ≥ 3

J. Dolbeault Recent results of stability in functional inequalities
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Results based on the carré du champ method (heat flow)
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So far, we considered only the case 1 ≤ p < 2#. Our goal is to cover
also the subcritical range p ∈ [2#, 2∗)

ϕm,p(s) :=

∫ s

0

exp
[
− ζ

(
(1 − (p − 2) z)1−δ − (1 − (p − 2) s)1−δ

)]
dz

provided m is admissible, that is,

m ∈ Ap := Ap :=
{
m ∈ [m−(d , p),m+(d , p)] : 2

p ≤ m < 1 if p < 4
}

m±(d , p) :=
1

(d + 2) p

(
d p + 2±

√
d (p − 1)

(
2 d − (d − 2) p

))

The parameters δ and ζ are defined by

δ := 1 + (m−1) p2

4 (p−2)

ζ :=
(d+2)2 p2 m2−2 p (d+2) (d p+2) m+d2(5 p2−12 p+8)+4 d (3−2 p) p+4

(1−m) (d+2)2 p2

J. Dolbeault Recent results of stability in functional inequalities
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Nonlinear diffusion flow: stability estimates

We consider the inverse function ϕ−1
m,p : R+ → [0, s?) and

ψm,p(s) := s − ϕ−1
m,p(s). Exactly as in the case m = 1, we have the

improved entropy – entropy production inequality

‖∇F‖2
L2(Sd ) ≥ d ‖F‖2

Lp(Sd ) ϕm,p

(
Ep[F ]

‖F‖2
Lp(Sd )

)
∀F ∈ H1(Sd)

Proposition

With above notations, d ≥ 1, p ∈ (2, 2∗) and m ∈ Ap, we have

‖∇F‖2
L2(Sd )−d Ep[F ] ≥ d ‖F‖2

Lp(Sd ) ψm,p

(
‖∇F‖2

L2(Sd )

d ‖F‖2
Lp(Sd )

)
∀F ∈ H1(Sd)

The function ϕm,p can be expressed in terms of the incomplete Γ
function while ψm,p is known only implicitly

J. Dolbeault Recent results of stability in functional inequalities
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(Improved) logarithmic Sobolev inequality

Where is the flow ?

B The case of the logarithmic Sobolev inequality is a limit case
corresponding to p = 2 of the Gagliardo-Nirenberg-Sobolev
inequalities for p 6= 2
B We use the fast diffusion flow (m < 1), porous medium flow
(m > 1) and as a limit case the heat flow (m = 1) given by

∂ρ

∂t
= ∆ρm

where ∆ is the Laplace-Beltrami operator on Rd

... how do we relate ρ and F ?

J. Dolbeault Recent results of stability in functional inequalities
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Algebraic preliminaries

Lv := Hv − 1

d
(∆v) gd and Mv :=

∇v ⊗∇v
v

− 1

d

|∇v |2
v

gd

With a : b = aij bij and ‖a‖2 := a : a, we have

‖Lv‖2 = ‖Hv‖2− 1
d (∆v)2 , ‖Mv‖2 =

∥∥∇v⊗∇v
v

∥∥2− 1
d
|∇v |4
v2 = d−1

d
|∇v |4
v2

A first identity

∫

Sd
∆v
|∇v |2
v

dµ =
d

d + 2

(
d

d − 1

∫

Sd
‖Mv‖2 dµ− 2

∫

Sd
Lv :

∇v ⊗∇v
v

dµ

)

Second identity (Bochner-Lichnerowicz-Weitzenböck formula

∫

Sd
(∆v)2 dµ =

d

d − 1

∫

Sd
‖Lv‖2 dµ+ d

∫

Sd
|∇v |2 dµ
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An estimate

With b = (κ+ β − 1) d−1
d+2 and c = d

d+2 (κ+ β − 1) + κ (β − 1)

K [v ] :=

∫

Sd

(
∆v + κ

|∇v |2
v

)(
∆v + (β − 1)

|∇v |2
v

)
dµ

=
d

d − 1
‖Lv − b Mv‖2 +

(
c − b2

) ∫

Sd

|∇v |4
v2

dµ+ d

∫

Sd
|∇v |2 dµ

Let κ = β (p − 2) + 1. The condition γ := c − b2 ≥ 0 amounts to

γ = d
d+2 β (p − 1) +

(
1 + β (p − 2)

)
(β − 1)−

(
d−1
d+2 β (p − 1)

)2

Lemma

K [v ] ≥ γ
∫

Sd

|∇v |4
v2

dµ+ d

∫

Sd
|∇v |2 dµ

Hence K [v ] ≥ d
∫
Sd |∇v |2 dµ if γ ≥ 0, which is a condition on β
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... and finally, here is the flow

∂u

∂t
= u−p (1−m)

(
∆u + (mp − 1)

|∇u|2
u

)

Check: if m = 1 + 2
p

(
1
β − 1

)
, then ρ = uβp solves ∂ρ

∂t = ∆ρm

d

dt
‖u‖2

Lp(Sd ) = 0 ,
d

dt
‖u‖2

L2(Sd ) = 2 (p − 2)

∫

Sd
u− p (1−m) |∇u|2 dµ ,

d

dt
‖∇u‖2

L2(Sd ) = − 2

∫

Sd

(
β vβ−1 ∂v

∂t

)(
∆vβ

)
dµ = − 2β2 K [v ]

Lemma

Assume that p ∈ (1, 2∗) and m ∈ [m−(d , p),m+(d , p)]. Then

1

2β2

d

dt

(
‖∇u‖2

L2(Sd ) − d Ep[u]
)
≤ − γ

∫

Sd

|∇v |4
v2

dµ ≤ 0
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Admissible parameters

22 J. Dolbeault & M.J. Esteban

Figures
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3.0

Fig. 1. The best constant ∏ 7! µ(∏) in Inequality (1) for d = 3 and p = 3 is represented by
the plain curve (numerical computation). The dashed line is the estimate of Proposition 10
(valid only for ∏∏ 1) and the dotted line is the estimate of Theorem 2.
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Fig. 2. The admissible range for d = 1, 2, 3 (first line), and d = 4, 5 and 10 (from left to
right), as it is deduced from Lemma 13 using (16): the curves p 7! m±(p) enclose the admis-
sible range of the exponent m.

Figure: d = 1, 2, 3 (first line) and d = 4, 5 and 10 (second line): the curves
p 7→ m±(p) determine the admissible parameters (p,m) [JD, Esteban, 2019]
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Inequalities and improved inequalities

From 1
2 β2

d
dt

(
‖∇u‖2

L2(Sd ) − d Ep[u]
)
≤ − γ

∫
Sd
|∇v |4
v2 dµ ≤ 0 and

limt→+∞

(
‖∇u‖2

L2(Sd ) − d Ep[u]
)

= 0, we deduce the inequality

‖∇u‖2
L2(Sd ) ≥ d Ep[u]

[Bakry-Emery, 1984], [Bidaut-Véron, Véron, 1991], [Beckner,1993]

... but we can do better

[Demange, 2008], [JD, Esteban, Kowalczyk, Loss]
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Improved inequalities: flow estimates
With ‖u‖Lp(Sd ) = 1, consider the entropy and the Fisher information

e :=
1

p − 2

(
‖u‖2

Lp(Sd ) − ‖u‖
2
L2(Sd )

)
and i := ‖∇u‖2

L2(Sd )

Lemma

With δ := 2− (4−p) β
2 β (p−2) if p > 2 , δ := 1 if p ∈ [1, 2]

(i− d e)′ ≤ γ i e′
(
1− (p − 2) e

)δ

=⇒ ‖∇F‖2
L2(Sd )−d Ep[F ] ≥ d ψ

(
1
d ‖∇F‖

2
L2(Sd )

)
∀F ∈ H1(Sd) s.t. ‖F‖Lp(Sd ) = 1

With F :=
∫
Sd F dµ, this improves upon [Frank, 2022]

‖∇F‖2
L2(Sd ) − d Ep[F ] ≥ c?(d , p)

(
‖∇F‖2

L2(Sd ) +
∥∥F − F

∥∥2

L2(Sd )

)2

‖∇F‖2
L2(Sd ) + d

p−2 ‖F‖
2
L2(Sd )
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Improved interpolation inequalities under orthogonality

Decomposition of L2(Sd , dµ) into spherical harmonics

L2(Sd , dµ) =
∞⊕

`=0

H`

Let Πk be the orthogonal projection onto
⊕k

`=1H`

Theorem

Assume that d ≥ 1, p ∈ (1, 2∗) and k ∈ N \ {0} be an integer. For some

Cd,p,k ∈ (0, 1) with Cd,p,k ≤ Cd,p,1 = 2 d−p (d−2)
2 (d+p)

∫

Sd
|∇F |2 dµ− d Ep[F ] ≥ Cd,p,k

∫

Sd

∣∣∇(Id− Πk)F
∣∣2 dµ
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Proof

Using the Funk-Hecke formula as in [Lieb, 1983] and following
[Beckner,1993], we learn that

Ep[F ] ≤
∞∑

j=1

ζj(p)

∫

Sd
|Fj |2 dµ ∀F ∈ H1(Sd , dµ)

hold for any p ∈ (1, 2) ∪ (2, 2∗) with

ζj(p) :=
γj
(
d
p

)
− 1

p − 2
and γj(x) :=

Γ(x) Γ(j + d − x)

Γ(d − x) Γ(x + j)

B Use convexity estimates and monotonicity properties of the
coefficients
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Proof of the main results

It remains to combine the improved entropy – entropy production
inequality (carré du champ method) and the improved interpolation
inequalities under orthogonality constraints

Theorem

Let d ≥ 1 and p ∈ (1, 2∗). For any F ∈ H1(Sd , dµ), we have

∫

Sd
|∇F |2 dµ− d Ep[F ]

≥ Sd,p

(
‖∇Π1F‖4

L2(Sd )

‖∇F‖2
L2(Sd ) + ‖F‖2

L2(Sd )

+ ‖∇(Id− Π1)F‖2
L2(Sd )

)

for some explicit stability constant Sd,p > 0

N.B. This relies on the computations of [Frank, 2022] (Bianchi-Egnell)
made quantitative
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The “far away” regime and the “neighborhood” of M
B If ‖∇F‖2

L2(Sd ) / ‖F‖
2
Lp(Sd ) ≥ ϑ0 > 0, by the convexity of ψm,p

‖∇F‖2
L2(Sd ) − d Ep[F ] ≥ d ‖F‖2

Lp(Sd ) ψm,p

(
1

d

‖∇F‖2
L2(Sd )

‖F‖2
Lp (Sd )

)

≥ d

ϑ0
ψm,p

(
ϑ0

d

)
‖∇F‖2

L2(Sd )

B From now on, we assume that ‖∇F‖2
L2(Sd ) < ϑ0 ‖F‖2

Lp(Sd ), take

‖F‖Lp(Sd ) = 1, learn that

‖∇F‖2
L2(Sd ) < ϑ :=

d ϑ0

d − (p − 2)ϑ0
> 0

from the standard interpolation inequality and deduce from the
Poincaré inequality that

d − ϑ
d

<

(∫

Sd
F dµ

)2

≤ 1
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Partial decomposition on spherical harmonics

With M = Π0F and Π1F = εY where Y (x) =
√

d+1
d x · ν for some

given ν ∈ Sd
F = M (1 + εY + η G )

For some explicit constants ap,d , bp,d and c
(±)
p,d

c
(−)
p,d ε

6 ≤ ‖1 + εY ‖pLp(Sd ) −
(
1 + ap,d ε

2 + bp,d ε
4
)
≤ c

(+)
p,d ε

6

We apply to u = 1 + εY and r = η G the estimate

‖u + r‖2
Lp(Sd ) ≤ ‖u‖

2
Lp(Sd )

+
2

p
‖u‖2−p

Lp(Sd )

(
p

∫

Sd
up−1 r dµ+

p

2
(p − 1)

∫

Sd
up−2 r2 dµ

+
∑

2<k<p

C p
k

∫

Sd
up−k |r |k dµ+ Kp

∫

Sd
|r |p dµ

)

Estimate various terms like
∫
Sd (1 + εY )p−1 G dµ,∫

Sd (1 + εY )p−2 |G |2 dµ,
∫
Sd (1 + εY )p−k |G |k dµ, etc.
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... conclusion

With explicit expressions for all constants we obtain

∫

Sd
|∇F |2 dµ−d Ep[F ] ≥M 2

(
A ε4 − B ε2 η + C η2 −Rp,d

(
ϑp + ϑ5/2

))

under the condition that ε2 + η2 < ϑ...
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
B Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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