Spectral estimates and entropy methods

Jean Dolbeault

http://www.ceremade.dauphine.fr/~dolbeaul

Ceremade, Université Paris-Dauphine

April 21, 2015, Besançon

Spectral theory and kinetic equations

April 20-24, 2015

Scope

We prove sharp estimates for Schrödinger operators using

- a duality which reduces the problem to a nonlinear interpolation inequality
- rigidity methods based on a nonlinear flow
- generalized entropies and generalized Fisher informations

We start with compact manifolds for which rigidity statements are easy and extend the method to non-compact settings which are much more difficult

- Spectral estimates on the sphere
- Interpolation inequalities on the sphere
- A nonlinear flow and improvements of the inequalities
- The line
- Compact manifolds
- The cylinder
- ${\color{orange} { \underline{ \hspace{0.5cm} \square}}}$ Symmetry breaking issues in Caffarelli-Kohn-Nirenberg inequalities

Spectral estimates on the sphere

- The Keller-Lieb-Tirring inequality is equivalent to an interpolation inequality of Gagliardo-Nirenberg-Sobolev type
- We measure a quantitative deviation with respect to the semi-classical regime due to finite size effects

Joint work with M.J. Esteban and A. Laptev

An introduction to Lieb-Thirring inequalities

Consider the Schrödinger operator $H = -\Delta - V$ on \mathbb{R}^d and denote by $(\lambda_k)_{k\geq 1}$ its eigenvalues

• Euclidean case [Keller, 1961]

$$|\lambda_1|^{\gamma} \leq \mathcal{L}^1_{\gamma,d} \int_{\mathbb{R}^d} V_+^{\gamma + \frac{d}{2}}$$

[Lieb-Thirring, 1976]

$$\sum_{k\geq 1} |\lambda_k|^{\gamma} \leq L_{\gamma,d} \int_{\mathbb{R}^d} V_+^{\gamma + \frac{d}{2}}$$

 $\gamma \geq 1/2$ if $d=1, \gamma>0$ if d=2 and $\gamma\geq 0$ if $d\geq 3$ [Weidl], [Cwikel], [Rosenbljum], [Aizenman], [Laptev-Weidl], [Helffer], [Robert], [Dolbeault-Felmer-Loss-Paturel]... [Dolbeault-Laptev-Loss 2008]

- \bullet Compact manifolds: log Sobolev case: [Federbusch], [Rothaus]; case $\gamma=0$ (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak]; [Lieb], [Levin], [Ouabaz-Poupaud]... [Ilyin]
- ► How does one take into account the finite size effects in the case of compact manifolds?

A Keller-Lieb-Thirring inequality on the sphere

Let $d \ge 1$, $p \in [\max\{1, d/2\}, +\infty)$ and

$$\mu_* := \frac{d}{2} \left(p - 1 \right)$$

Theorem (Dolbeault-Esteban-Laptev)

There exists a convex increasing function α s.t. $\alpha(\mu) = \mu$ if $\mu \in [0, \mu_*]$ and $\alpha(\mu) > \mu$ if $\mu \in (\mu_*, +\infty)$ and, for any p < d/2,

$$|\lambda_1(-\Delta - V)| \le \alpha(\|V\|_{L^p(\mathbb{S}^d)}) \quad \forall \ V \in L^p(\mathbb{S}^d)$$

This estimate is optimal

For large values of μ , we have

$$\alpha(\mu)^{p-\frac{d}{2}} = L^1_{p-\frac{d}{2},d} (\kappa_{q,d} \, \mu)^p (1+o(1))$$

If p=d/2 and $d\geq 3$, the inequality holds with $\alpha(\mu)=\mu$ iff $\mu\in [0,\mu_*]$

A Keller-Lieb-Thirring inequality: second formulation

Let
$$d \geq 1$$
, $\gamma = p - d/2$

Corollary (Dolbeault-Esteban-Laptev)

$$\begin{split} |\lambda_1(-\Delta-V)|^\gamma \lesssim \mathrm{L}_{\gamma,d}^1 \, \int_{\mathbb{S}^d} V^{\gamma+\frac{d}{2}} \quad \text{as} \quad \mu = \|V\|_{\mathrm{L}^{\gamma+\frac{d}{2}}(\mathbb{S}^d)} \to \infty \\ & \text{if either } \gamma > \max\{0,1-d/2\} \text{ or } \gamma = 1/2 \text{ and } d = 1 \end{split}$$

However, if $\mu = \|V\|_{L^{\gamma + \frac{d}{2}}(\mathbb{S}^d)} \le \mu_*$, then we have

$$|\lambda_1(-\Delta-V)|^{\gamma+rac{d}{2}} \leq \int_{\mathbb{S}^d} V^{\gamma+rac{d}{2}}$$

for any $\gamma \ge \max\{0, 1 - d/2\}$ and this estimate is optimal

 $L^1_{\gamma,d}$ is the optimal constant in the Euclidean one bound state ineq.

$$|\lambda_1(-\Delta-\phi)|^{\gamma} \leq \mathrm{L}^1_{\gamma,d} \int_{\mathbb{R}^d} \phi_+^{\gamma+\frac{d}{2}} \; \mathrm{d} x$$

Hölder duality and link with interpolation inequalities

Consider the Schrödinger operator $-\Delta-V$ and the energy

$$\begin{split} \mathcal{E}[u] &:= \int_{\mathbb{S}^d} |\nabla u|^2 - \int_{\mathbb{S}^d} V |u|^2 \\ &\geq \int_{\mathbb{S}^d} |\nabla u|^2 - \mu \|u\|_{L^q(\mathbb{S}^d)}^2 \\ &\geq -\alpha(\mu) \|u\|_{L^2(\mathbb{S}^d)}^2 \quad \text{if } \mu = \|V_+\|_{L^p(\mathbb{S}^d)} \end{split}$$

 \triangleright Is it true that

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 + \alpha \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \ge \mu(\alpha) \|u\|_{\mathrm{L}^q(\mathbb{S}^d)}^2 ?$$

In other words, what are the properties of the minimum of

$$\mathcal{Q}_{\alpha}[u] := \frac{\|\nabla u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + \alpha \|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2}}{\|u\|_{\mathrm{L}^{q}(\mathbb{S}^{d})}^{2}} ?$$

An important convention (for the numerical value of the constants): we consider the uniform probability measure on the unit sphere \mathbb{S}^d

 $\mathfrak{Q} = \mu_{\text{asymp}}(\alpha) := \frac{\mathsf{K}_{q,d}}{\kappa_{q,d}} \alpha^{1-\vartheta}, \, \vartheta := d \, \frac{q-2}{2 \, q} \text{ corresponds to the } semi-classical regime and <math>\mathsf{K}_{q,d}$ is the optimal constant in the Euclidean Gagliardo-Nirenberg-Sobolev inequality

$$K_{q,d} \|v\|_{L^{q}(\mathbb{R}^{d})}^{2} \leq \|\nabla v\|_{L^{2}(\mathbb{R}^{d})}^{2} + \|v\|_{L^{2}(\mathbb{R}^{d})}^{2} \quad \forall v \in H^{1}(\mathbb{R}^{d})$$

 \blacksquare Let φ be a non-trivial eigenfunction of the Laplace-Beltrami operator corresponding the first nonzero eigenvalue

$$-\Delta\varphi = d\,\varphi$$

Consider $u=1+\varepsilon\,\varphi$ as $\varepsilon\to 0$ Taylor expand \mathcal{Q}_α around u=1

$$\mu(\alpha) \leq \mathcal{Q}_{\alpha}[1 + \varepsilon \varphi] = \alpha + [d + \alpha (2 - q)] \varepsilon^{2} \int_{\mathbb{S}^{d}} |\varphi|^{2} d v_{g} + o(\varepsilon^{2})$$

By taking ε small enough, we get $\mu(\alpha) < \alpha$ for all $\alpha > d/(q-2)$ Optimizing on the value of $\varepsilon > 0$ (not necessarily small) provides an interesting test function...

Another inequality

Let $d \ge 1$ and $\gamma > d/2$ and assume that $\mathcal{L}^1_{-\gamma,d}$ is the optimal constant in

$$\lambda_1(-\Delta + \phi)^{-\gamma} \le L^1_{-\gamma,d} \int_{\mathbb{R}^d} \phi^{\frac{d}{2}-\gamma} dx$$
 $q = 2\frac{2\gamma - d}{2\gamma - d + 2} \quad \text{and} \quad p = \frac{q}{2-q} = \gamma - \frac{d}{2}$

Theorem (Dolbeault-Esteban-Laptev)

$$\left(\lambda_1(-\Delta+W)\right)^{-\gamma}\lesssim \mathrm{L}^1_{-\gamma,d}\int_{\mathbb{S}^d}W^{\frac{d}{2}-\gamma}\quad \text{as}\quad \beta=\|W^{-1}\|_{\mathrm{L}^{\gamma-\frac{d}{2}}(\mathbb{S}^d)}^{-1}\to\infty$$

However, if
$$\gamma \geq \frac{d}{2}+1$$
 and $\beta = \|W^{-1}\|_{\mathrm{L}^{\gamma-\frac{d}{2}}(\mathbb{S}^d)}^{-1} \leq \frac{1}{4} d\left(2\,\gamma-d+2\right)$

$$\left(\lambda_1(-\Delta+W)\right)^{rac{d}{2}-\gamma} \leq \int_{\mathbb{S}^d} W^{rac{d}{2}-\gamma}$$

and this estimate is optimal

 $\mathsf{K}_{q,d}^*$ is the optimal constant in the Gagliardo-Nirenberg-Sobolev inequality

$$\mathsf{K}_{q,d}^* \, \| v \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \leq \| \nabla v \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 + \| v \|_{\mathrm{L}^q(\mathbb{R}^d)}^2 \quad \forall \, v \in \mathrm{H}^1(\mathbb{R}^d)$$

and
$$\mathcal{L}_{-\gamma,d}^1 := \left(\mathsf{K}_{q,d}^*\right)^{-\gamma}$$
 with $q = 2\,\frac{2\,\gamma - d}{2\,\gamma - d + 2},\, \delta := \frac{2\,q}{2\,d - q\,(d - 2)}$

Lemma (Dolbeault-Esteban-Laptev)

Let $q \in (0,2)$ and $d \ge 1$. There exists a concave increasing function ν

$$u(\beta) \le \beta \quad \forall \beta > 0 \quad \text{and} \quad \nu(\beta) < \beta \quad \forall \beta \in \left(\frac{d}{2-q}, +\infty\right)$$

$$\nu(\beta) = \beta \quad \forall \beta \in \left[0, \frac{d}{2-q}\right] \quad \text{if} \quad q \in [1, 2)$$

$$\nu(\beta) = \mathsf{K}^*_{q,d} \; \left(\kappa_{q,d} \; \beta\right)^\delta \; (1 + o(1)) \quad \text{as} \quad \beta \to +\infty$$

such that

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 + \beta \|u\|_{\mathrm{L}^q(\mathbb{S}^d)}^2 \ge \nu(\beta) \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \quad \forall \, u \in \mathrm{H}^1(\mathbb{S}^d)$$

The threshold case: q = 2

Lemma (Dolbeault-Esteban-Laptev)

Let $p > \max\{1, d/2\}$. There exists a concave nondecreasing function ξ

$$\xi(\alpha) = \alpha \quad \forall \ \alpha \in (0, \alpha_0) \quad \text{and} \quad \xi(\alpha) < \alpha \quad \forall \ \alpha > \alpha_0$$

for some $\alpha_0 \in \left[\frac{d}{2} \left(p-1\right), \frac{d}{2} p\right]$, and $\xi(\alpha) \sim \alpha^{1-\frac{d}{2p}}$ as $\alpha \to +\infty$ such that, for any $u \in H^1(\mathbb{S}^d)$ with $\|u\|_{L^2(\mathbb{S}^d)} = 1$

$$\int_{\mathbb{S}^d} |u|^2 \log |u|^2 \ d \ v_g + p \ \log \left(\frac{\xi(\alpha)}{\alpha} \right) \le p \ \log \left(1 + \frac{1}{\alpha} \|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \right)$$

Corollary (Dolbeault-Esteban-Laptev)

$$e^{-\lambda_1(-\Delta-W)/\alpha} \leq \frac{\alpha}{\xi(\alpha)} \left(\int_{\mathbb{S}^d} e^{-pW/\alpha} \ dv_g \right)^{1/p}$$

Interpolation inequalities on the sphere

Joint work with M.J. Esteban, M. Kowalczyk and M. Loss

A family of interpolation inequalities on the sphere

The following interpolation inequality holds on the sphere:

$$\frac{p-2}{d}\int_{\mathbb{S}^d}|\nabla u|^2\ dv_g+\int_{\mathbb{S}^d}|u|^2\ dv_g\geq \left(\int_{\mathbb{S}^d}|u|^p\ dv_g\right)^{2/p}\quad\forall\ u\in\mathrm{H}^1(\mathbb{S}^d,dv_g)$$

- for any $p \in (2,2^*]$ with $2^* = \frac{2d}{d-2}$ if $d \ge 3$
- for any $p \in (2, \infty)$ if d = 2

Here dv_g is the uniform probability measure: $v_g(\mathbb{S}^d)=1$

- 1 is the optimal constant, equality achieved by constants
- \bigcirc $p = 2^*$ corresponds to Sobolev's inequality...

Stereographic projection

Sobolev inequality

The stereographic projection of $\mathbb{S}^d \subset \mathbb{R}^d \times \mathbb{R} \ni (\rho \phi, z)$ onto \mathbb{R}^d : to $\rho^2 + z^2 = 1$, $z \in [-1, 1]$, $\rho \geq 0$, $\phi \in \mathbb{S}^{d-1}$ we associate $x \in \mathbb{R}^d$ such that r = |x|, $\phi = \frac{x}{|x|}$

$$z = \frac{r^2 - 1}{r^2 + 1} = 1 - \frac{2}{r^2 + 1}$$
, $\rho = \frac{2r}{r^2 + 1}$

and transform any function u on \mathbb{S}^d into a function v on \mathbb{R}^d using

$$u(y) = \left(\frac{r}{\rho}\right)^{\frac{d-2}{2}} v(x) = \left(\frac{r^2+1}{2}\right)^{\frac{d-2}{2}} v(x) = (1-z)^{-\frac{d-2}{2}} v(x)$$

 $\bigcirc p=2^*,\, \mathsf{S}_d=\frac{1}{4}\,d\left(d-2\right)|\mathbb{S}^d|^{2/d}\colon$ Euclidean Sobolev inequality

$$\int_{\mathbb{R}^d} |\nabla v|^2 \ dx \ge \mathsf{S}_d \left[\int_{\mathbb{R}^d} |v|^{\frac{2d}{d-2}} \ dx \right]^{\frac{d-2}{d}} \quad \forall \, v \in \mathcal{D}^{1,2}(\mathbb{R}^d)$$

Extended inequality

$$\int_{\mathbb{S}^d} |\nabla u|^2 \ dv_g \geq \frac{d}{p-2} \left[\left(\int_{\mathbb{S}^d} |u|^p \ dv_g \right)^{2/p} - \int_{\mathbb{S}^d} |u|^2 \ dv_g \right] \quad \forall \ u \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$$

is valid

- \bullet for any $p \in (1,2) \cup (2,\infty)$ if d=1,2
- for any $p \in (1,2) \cup (2,2^*]$ if $d \ge 3$
- \bigcirc Case p = 2: Logarithmic Sobolev inequality

$$\int_{\mathbb{S}^d} |\nabla u|^2 \ d \, \mathsf{v}_\mathsf{g} \geq \frac{d}{2} \int_{\mathbb{S}^d} |u|^2 \ \log \left(\frac{|u|^2}{\int_{\mathbb{S}^d} |u|^2 \ d \, \mathsf{v}_\mathsf{g}} \right) \, d \, \mathsf{v}_\mathsf{g} \quad \forall \, \, u \in \mathrm{H}^1(\mathbb{S}^d, d \mu)$$

 \bigcirc Case p = 1: Poincaré inequality

$$\int_{\mathbb{S}^d} |\nabla u|^2 \ d \ \mathsf{v}_{\mathsf{g}} \geq d \int_{\mathbb{S}^d} |u - \bar{u}|^2 \ d \ \mathsf{v}_{\mathsf{g}} \quad \text{with} \quad \bar{u} := \int_{\mathbb{S}^d} u \ d \ \mathsf{v}_{\mathsf{g}} \quad \forall \ u \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$$

Optimality: a perturbation argument

 \bigcirc For any $p \in (1, 2^*]$ if $d \ge 3$, any p > 1 if d = 1 or 2, it is remarkable that

$$Q[u] := \frac{(p-2) \|\nabla u\|_{L^{2}(\mathbb{S}^{d})}^{2}}{\|u\|_{L^{p}(\mathbb{S}^{d})}^{2} - \|u\|_{L^{2}(\mathbb{S}^{d})}^{2}} \ge \inf_{u \in H^{1}(\mathbb{S}^{d}, d\mu)} Q[u] = \frac{1}{d}$$

is achieved in the limiting case

$$\mathcal{Q}[1+\varepsilon \, v] \sim \frac{\|\nabla v\|_{\mathrm{L}^2(\mathbb{S}^d)}^2}{\|v\|_{\mathrm{L}^2(\mathbb{S}^d)}^2} \quad \text{as} \quad \varepsilon \to 0$$

when ν is an eigenfunction associated with the first nonzero eigenvalue of $\Delta_{\mathfrak{g}}$, thus proving the optimality

- \bigcirc p < 2: a proof by semi-groups using Nelson's hypercontractivity lemma. p > 2: no simple proof based on spectral analysis is available: [Beckner], an approach based on Lieb's duality, the Funk-Hecke formula and some (non-trivial) computations
- \bigcirc elliptic methods / Γ_2 formalism of Bakry-Emery / nonlinear flows

Schwarz symmetrization and the ultraspherical setting

$$(\xi_0, \, \xi_1, \dots \xi_d) \in \mathbb{S}^d, \, \xi_d = z, \, \sum_{i=0}^d |\xi_i|^2 = 1 \, [\text{Smets-Willem}]$$

Lemma

Up to a rotation, any minimizer of Q depends only on $\xi_d = z$

• Let $d\sigma(\theta) := \frac{(\sin \theta)^{d-1}}{Z_d} d\theta$, $Z_d := \sqrt{\pi} \frac{\Gamma(\frac{d}{2})}{\Gamma(\frac{d+1}{2})}$: $\forall v \in H^1([0,\pi], d\sigma)$

$$\frac{p-2}{d}\int_0^{\pi}|v'(\theta)|^2\ d\sigma+\int_0^{\pi}|v(\theta)|^2\ d\sigma\geq \left(\int_0^{\pi}|v(\theta)|^p\ d\sigma\right)^{\frac{2}{p}}$$

• Change of variables $z = \cos \theta$, $v(\theta) = f(z)$

$$\frac{p-2}{d} \int_{-1}^{1} |f'|^2 \nu \ d\nu_d + \int_{-1}^{1} |f|^2 \ d\nu_d \ge \left(\int_{-1}^{1} |f|^p \ d\nu_d \right)^{\frac{2}{p}}$$

where $\nu_d(z) dz = d\nu_d(z) := Z_d^{-1} \nu^{\frac{d}{2}-1} dz$, $\nu(z) := 1 - z^2$

The ultraspherical operator

With $d\nu_d = Z_d^{-1} \nu^{\frac{d}{2}-1} dz$, $\nu(z) := 1 - z^2$, consider the space $L^2((-1,1), d\nu_d)$ with scalar product

$$\langle f_1, f_2 \rangle = \int_{-1}^1 f_1 f_2 d\nu_d, \quad \|f\|_p = \left(\int_{-1}^1 f^p d\nu_d\right)^{\frac{1}{p}}$$

The self-adjoint *ultraspherical* operator is

$$\mathcal{L} f := (1 - z^2) f'' - dz f' = \nu f'' + \frac{d}{2} \nu' f'$$

which satisfies $\langle f_1, \mathcal{L} f_2 \rangle = -\int_{-1}^1 f_1' f_2' \nu \ d\nu_d$

Proposition

Let
$$p \in [1,2) \cup (2,2^*]$$
, $d \ge 1$

$$-\langle f, \mathcal{L} f \rangle = \int_{-1}^{1} |f'|^2 \ \nu \ d\nu_d \ge d \ \frac{\|f\|_p^2 - \|f\|_2^2}{p-2} \quad \forall \ f \in \mathrm{H}^1([-1,1], d\nu_d)$$

Flows on the sphere

- Heat flow and the Bakry-Emery method
- Fast diffusion (porous media) flow and the choice of the exponents

Joint work with M.J. Esteban, M. Kowalczyk and M. Loss

Heat flow and the Bakry-Emery method

With $g = f^p$, i.e. $f = g^{\alpha}$ with $\alpha = 1/p$

(Ineq.)
$$-\langle f, \mathcal{L}f \rangle = -\langle g^{\alpha}, \mathcal{L}g^{\alpha} \rangle =: \mathcal{I}[g] \geq d \frac{\|g\|_{1}^{2\alpha} - \|g^{2\alpha}\|_{1}}{p-2} =: \mathcal{F}[g]$$

Heat flow

$$\frac{\partial g}{\partial t} = \mathcal{L} g$$

$$\frac{d}{dt} \|g\|_{1} = 0 , \quad \frac{d}{dt} \|g^{2\alpha}\|_{1} = -2(p-2) \langle f, \mathcal{L} f \rangle = 2(p-2) \int_{-1}^{1} |f'|^{2} \nu \ d\nu_{d}$$

which finally gives

$$\frac{d}{dt}\mathcal{F}[g(t,\cdot)] = -\frac{d}{p-2}\frac{d}{dt}\|g^{2\alpha}\|_1 = -2\,d\,\mathcal{I}[g(t,\cdot)]$$

Ineq.
$$\iff \frac{d}{dt}\mathcal{F}[g(t,\cdot)] \leq -2\,d\,\mathcal{F}[g(t,\cdot)] \iff \frac{d}{dt}\mathcal{I}[g(t,\cdot)] \leq -2\,d\,\mathcal{I}[g(t,\cdot)]$$

The equation for $g = f^p$ can be rewritten in terms of f as

$$\frac{\partial f}{\partial t} = \mathcal{L} f + (p-1) \frac{|f'|^2}{f} \nu$$

$$-\frac{1}{2}\frac{d}{dt}\int_{-1}^{1}|f'|^{2}\ \nu\ d\nu_{d}=\frac{1}{2}\frac{d}{dt}\left\langle f,\mathcal{L}\,f\right\rangle =\left\langle \mathcal{L}\,f,\mathcal{L}\,f\right\rangle +\left(p-1\right)\left\langle \frac{|f'|^{2}}{f}\ \nu,\mathcal{L}\,f\right\rangle$$

$$\frac{d}{dt}\mathcal{I}[g(t,\cdot)] + 2 d\mathcal{I}[g(t,\cdot)] = \frac{d}{dt} \int_{-1}^{1} |f'|^{2} \nu \, d\nu_{d} + 2 d \int_{-1}^{1} |f'|^{2} \nu \, d\nu_{d}$$

$$= -2 \int_{-1}^{1} \left(|f''|^{2} + (p-1) \frac{d}{d+2} \frac{|f'|^{4}}{f^{2}} - 2(p-1) \frac{d-1}{d+2} \frac{|f'|^{2} f''}{f} \right) \nu^{2} \, d\nu_{d}$$

is nonpositive if

$$|f''|^2 + (p-1)\frac{d}{d+2}\frac{|f'|^4}{f^2} - 2(p-1)\frac{d-1}{d+2}\frac{|f'|^2f''}{f}$$

is pointwise nonnegative, which is granted if

$$\left[(p-1)\frac{d-1}{d+2} \right]^2 \le (p-1)\frac{d}{d+2} \iff p \le \frac{2d^2+1}{(d-1)^2} = 2^\# < \frac{2d}{d-2} = 2^*$$

... up to the critical exponent: a proof in two slides

$$\left[\frac{d}{dz},\mathcal{L}\right] u = \left(\mathcal{L} u\right)' - \mathcal{L} u' = -2 z u'' - d u'$$

$$\int_{-1}^{1} (\mathcal{L} u)^{2} d\nu_{d} = \int_{-1}^{1} |u''|^{2} \nu^{2} d\nu_{d} + d \int_{-1}^{1} |u'|^{2} \nu d\nu_{d}$$

$$\int_{-1}^{1} (\mathcal{L} u) \frac{|u'|^{2}}{u} \nu d\nu_{d} = \frac{d}{d+2} \int_{-1}^{1} \frac{|u'|^{4}}{u^{2}} \nu^{2} d\nu_{d} - 2 \frac{d-1}{d+2} \int_{-1}^{1} \frac{|u'|^{2} u''}{u} \nu^{2} d\nu_{d}$$

On (-1,1), let us consider the porous medium (fast diffusion) flow

$$u_t = u^{2-2\beta} \left(\mathcal{L} u + \kappa \frac{|u'|^2}{u} \nu \right)$$

If $\kappa = \beta (p-2) + 1$, the L^p norm is conserved

$$\frac{d}{dt} \int_{-1}^{1} u^{\beta p} d\nu_{d} = \beta p (\kappa - \beta (p - 2) - 1) \int_{-1}^{1} u^{\beta (p - 2)} |u'|^{2} \nu d\nu_{d} = 0$$

$$f = u^{\beta}, \|f'\|_{L^{2}(\mathbb{S}^{d})}^{2} + \frac{d}{p-2} \left(\|f\|_{L^{2}(\mathbb{S}^{d})}^{2} - \|f\|_{L^{p}(\mathbb{S}^{d})}^{2} \right) \ge 0 ?$$

$$\mathcal{A} := \int_{-1}^{1} |u''|^{2} \nu^{2} d\nu_{d} - 2 \frac{d-1}{d+2} (\kappa + \beta - 1) \int_{-1}^{1} u'' \frac{|u'|^{2}}{u} \nu^{2} d\nu_{d}
+ \left[\kappa (\beta - 1) + \frac{d}{d+2} (\kappa + \beta - 1) \right] \int_{-1}^{1} \frac{|u'|^{4}}{u^{2}} \nu^{2} d\nu_{d}$$

 \mathcal{A} is nonnegative for some β if

$$\frac{8 d^2}{(d+2)^2} (p-1) (2^*-p) \ge 0$$

 \mathcal{A} is a sum of squares if $p \in (2, 2^*)$ for an arbitrary choice of β in a certain interval (depending on p and

$$\mathcal{A} = \int_{-1}^{1} \left| u'' - \frac{p+2}{6-p} \frac{|u'|^2}{u} \right|^2 \nu^2 \ d\nu_d \ge 0 \quad \text{if } p = 2^* \text{ and } \beta = \frac{4}{6-p}$$

The rigidity point of view

Which computation have we done? $u_t = u^{2-2\beta} \left(\mathcal{L} u + \kappa \frac{|u'|^2}{u} \nu \right)$

$$-\mathcal{L} u - (\beta - 1) \frac{|u'|^2}{u} \nu + \frac{\lambda}{p - 2} u = \frac{\lambda}{p - 2} u^{\kappa}$$

Multiply by $\mathcal{L} u$ and integrate

$$\dots \int_{-1}^{1} \mathcal{L} u u^{\kappa} d\nu_{d} = -\kappa \int_{-1}^{1} u^{\kappa} \frac{|u'|^{2}}{u} d\nu_{d}$$

Multiply by $\kappa \frac{|u'|^2}{u}$ and integrate

$$\dots = +\kappa \int_{-1}^{1} u^{\kappa} \frac{|u'|^2}{u} d\nu_d$$

The two terms cancel and we are left only with the two-homogenous terms

Improvements of the inequalities (subcritical range)

- An improvement automatically gives an explicit stability result of the optimal functions in the (non-improved) inequality
- \blacksquare By duality, this provides a stability result for Keller-Lieb-Tirring inequalities

What does "improvement" mean?

An *improved* inequality is

$$d \Phi(e) \le i \quad \forall u \in \mathrm{H}^1(\mathbb{S}^d) \quad \mathrm{s.t.} \quad \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 = 1$$

for some function Φ such that $\Phi(0)=0, \, \Phi'(0)=1, \, \Phi'>0$ and $\Phi(s)>s$ for any s. With $\Psi(s):=s-\Phi^{-1}(s)$

$$\mathsf{i} - d\,\mathsf{e} \geq d\; (\Psi \circ \Phi)(\mathsf{e}) \quad \forall\, u \in \mathrm{H}^1(\mathbb{S}^d) \quad \mathrm{s.t.} \quad \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 = 1$$

Lemma (Generalized Csiszár-Kullback inequalities)

$$\begin{split} \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} &- \frac{d}{p-2} \left[\|u\|_{\mathrm{L}^{p}(\mathbb{S}^{d})}^{2} - \|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \right] \\ &\geq d \|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \left(\Psi \circ \Phi \right) \left(C \frac{\|u\|_{\mathrm{L}^{5}(\mathbb{S}^{d})}^{2}}{\|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2}} \|u^{r} - \bar{u}^{r}\|_{\mathrm{L}^{q}(\mathbb{S}^{d})}^{2} \right) \quad \forall \, u \in \mathrm{H}^{1}(\mathbb{S}^{d}) \end{split}$$

$$s(p) := \max\{2, p\} \text{ and } p \in (1, 2): \ q(p) := 2/p, \ r(p) := p; \ p \in (2, 4): \ q = p/2, \ r = 2; \ p \ge 4: \ q = p/(p-2), \ r = p-2$$

Linear flow: improved Bakry-Emery method

Cf. [Arnold, JD]

$$w_t = \mathcal{L} \, w + \kappa \, \frac{|w'|^2}{w} \, \nu$$

With $2^{\sharp} := \frac{2 d^2 + 1}{(d-1)^2}$

$$\gamma_1 := \left(\frac{d-1}{d+2}\right)^2 (p-1)(2^\# - p) \quad \text{if} \quad d > 1 \,, \quad \gamma_1 := \frac{p-1}{3} \quad \text{if} \quad d = 1$$

If $p \in [1,2) \cup (2,2^{\sharp}]$ and w is a solution, then

$$\frac{d}{dt}(i-de) \le -\gamma_1 \int_{-1}^{1} \frac{|w'|^4}{w^2} d\nu_d \le -\gamma_1 \frac{|e'|^2}{1-(p-2)e}$$

Recalling that e' = -i, we get a differential inequality

$${\sf e}'' + d\,{\sf e}' \ge \gamma_1 \, rac{|{\sf e}'|^2}{1 - (
ho - 2)\,{\sf e}}$$

After integration: $d \Phi(e(0)) \leq i(0)$

Nonlinear flow: the Hölder estimate of J. Demange

$$w_t = w^{2-2\beta} \left(\mathcal{L} w + \kappa \frac{|w'|^2}{w} \right)$$

For all
$$p \in [1, 2^*]$$
, $\kappa = \beta (p - 2) + 1$, $\frac{d}{dt} \int_{-1}^{1} w^{\beta p} d\nu_d = 0$
 $-\frac{1}{2\beta^2} \frac{d}{dt} \int_{-1}^{1} \left(|(w^{\beta})'|^2 \nu + \frac{d}{p-2} \left(w^{2\beta} - \overline{w}^{2\beta} \right) \right) d\nu_d \ge \gamma \int_{-1}^{1} \frac{|w'|^4}{w^2} \nu^2 d\nu_d$

Lemma

For all $w\in \mathrm{H}^1ig((-1,1),d
u_dig)$, such that $\int_{-1}^1 w^{eta p}\ d
u_d=1$

$$\int_{-1}^{1} \frac{|w'|^4}{w^2} \, \nu^2 \; d\nu_d \geq \frac{1}{\beta^2} \, \frac{\int_{-1}^{1} |(w^\beta)'|^2 \, \nu \; d\nu_d \int_{-1}^{1} |w'|^2 \, \nu \; d\nu_d}{\left(\int_{-1}^{1} w^{2\beta} \; d\nu_d\right)^{\delta}}$$

.... but there are conditions on β

Admissible (p, β) for d = 5

The line

 ${\color{red} { \underline{ \bullet} } }$ A first example of a non-compact manifold

Joint work with M.J. Esteban, A. Laptev and M. Loss

One-dimensional Gagliardo-Nirenberg-Sobolev inequalities

$$\begin{split} & \|f\|_{\mathrm{L}^{p}(\mathbb{R})} \leq \mathsf{C}_{\mathrm{GN}}(p) \, \|f'\|_{\mathrm{L}^{2}(\mathbb{R})}^{\theta} \, \|f\|_{\mathrm{L}^{2}(\mathbb{R})}^{1-\theta} \quad \mathrm{if} \quad p \in (2, \infty) \\ & \|f\|_{\mathrm{L}^{2}(\mathbb{R})} \leq \mathsf{C}_{\mathrm{GN}}(p) \, \|f'\|_{\mathrm{L}^{2}(\mathbb{R})}^{\eta} \, \|f\|_{\mathrm{L}^{p}(\mathbb{R})}^{1-\eta} \quad \mathrm{if} \quad p \in (1, 2) \end{split}$$

with
$$\theta = \frac{p-2}{2p}$$
 and $\eta = \frac{2-p}{2+p}$

The threshold case corresponding to the limit as $p \to 2$ is the logarithmic Sobolev inequality

$$\int_{\mathbb{R}} u^2 \log \left(\frac{u^2}{\|u\|_{\mathrm{L}^2(\mathbb{R})}^2} \right) dx \le \frac{1}{2} \|u\|_{\mathrm{L}^2(\mathbb{R})}^2 \log \left(\frac{2}{\pi e} \frac{\|u'\|_{\mathrm{L}^2(\mathbb{R})}^2}{\|u\|_{\mathrm{L}^2(\mathbb{R})}^2} \right)$$

If
$$p > 2$$
, $u_{\star}(x) = (\cosh x)^{-\frac{2}{p-2}}$ solves
$$-(p-2)^2 u'' + 4 u - 2 p |u|^{p-2} u = 0$$

If
$$p \in (1,2)$$
 consider $u_*(x) = (\cos x)^{\frac{2}{2-p}}, x \in (-\pi/2, \pi/2)$

Let us define on $H^1(\mathbb{R})$ the functional

$$\mathcal{F}[v] := \|v'\|_{L^{2}(\mathbb{R})}^{2} + \frac{4}{(p-2)^{2}} \|v\|_{L^{2}(\mathbb{R})}^{2} - C \|v\|_{L^{p}(\mathbb{R})}^{2} \quad \text{s.t. } \mathcal{F}[u_{\star}] = 0$$

With $z(x) := \tanh x$, consider the flow

$$v_t = \frac{v^{1-\frac{p}{2}}}{\sqrt{1-z^2}} \left[v'' + \frac{2p}{p-2} z v' + \frac{p}{2} \frac{|v'|^2}{v} + \frac{2}{p-2} v \right]$$

${\sf Theorem}$ (Dolbeault-Esteban-Laptev-Loss)

Let $p \in (2, \infty)$. Then

$$\frac{d}{dt}\mathcal{F}[v(t)] \leq 0$$
 and $\lim_{t \to \infty} \mathcal{F}[v(t)] = 0$

$$\frac{d}{dt}\mathcal{F}[v(t)] = 0 \iff v_0(x) = u_{\star}(x - x_0)$$

Similar results for $p \in (1,2)$

The inequality (p > 2) and the ultraspherical operator

• The problem on the line is equivalent to the critical problem for the ultraspherical operator

$$\int_{\mathbb{R}} |v'|^2 \ dx + \frac{4}{(p-2)^2} \int_{\mathbb{R}} |v|^2 \ dx \ge C \left(\int_{\mathbb{R}} |v|^p \ dx \right)^{\frac{2}{p}}$$

With

$$z(x) = \tanh x$$
, $v_{\star} = (1 - z^2)^{\frac{1}{p-2}}$ and $v(x) = v_{\star}(x) f(z(x))$

equality is achieved for f = 1 and, if we let $\nu(z) := 1 - z^2$, then

$$\int_{-1}^{1} |f'|^2 \nu \ d\nu_d + \frac{2 p}{(p-2)^2} \int_{-1}^{1} |f|^2 \ d\nu_d \ge \frac{2 p}{(p-2)^2} \left(\int_{-1}^{1} |f|^p \ d\nu_d \right)^{\frac{2}{p}}$$

where $d\nu_p$ denotes the probability measure $d\nu_p(z) := \frac{1}{\zeta_-} \nu^{\frac{2}{p-2}} dz$

$$d = \frac{2p}{p-2} \iff p = \frac{2d}{d-2}$$

Change of variables = stereographic projection + Emden-Fowler

Compact Riemannian manifolds

- no sign is required on the Ricci tensor and an improved integral criterion is established
- the flow explores the energy landscape... and shows the non-optimality of the improved criterion

Riemannian manifolds with positive curvature

 (\mathfrak{M},g) is a smooth compact connected Riemannian manifold dimension d, no boundary, Δ_g is the Laplace-Beltrami operator $\operatorname{vol}(\mathfrak{M})=1,\,\mathfrak{R}$ is the Ricci tensor, $\lambda_1=\lambda_1(-\Delta_g)$

$$\rho := \inf_{\mathfrak{M}} \inf_{\xi \in \mathbb{S}^{d-1}} \mathfrak{R}(\xi, \xi)$$

Theorem (Licois-Véron, Bakry-Ledoux)

Assume $d \ge 2$ and $\rho > 0$. If

$$\lambda \leq (1- heta)\,\lambda_1 + heta\,rac{d\,
ho}{d-1} \quad ext{where} \quad heta = rac{\left(d-1
ight)^2\left(p-1
ight)}{d\left(d+2
ight) + p-1} > 0$$

then for any $p \in (2, 2^*)$, the equation

$$-\Delta_g v + \frac{\lambda}{p-2} \left(v - v^{p-1} \right) = 0$$

has a unique positive solution $v \in C^2(\mathfrak{M})$: $v \equiv 1$

Riemannian manifolds: first improvement

Theorem (Dolbeault-Esteban-Loss)

For any $p \in (1,2) \cup (2,2^*)$

$$0 < \lambda < \lambda_{\star} = \inf_{u \in \mathrm{H}^{2}(\mathfrak{M})} \frac{\int_{\mathfrak{M}} \left[(1 - \theta) \left(\Delta_{g} u \right)^{2} + \frac{\theta d}{d - 1} \mathfrak{R}(\nabla u, \nabla u) \right] d v_{g}}{\int_{\mathfrak{M}} |\nabla u|^{2} d v_{g}}$$

there is a unique positive solution in $C^2(\mathfrak{M})$: $u \equiv 1$

$$\lim_{p\to 1_+} \theta(p) = 0 \Longrightarrow \lim_{p\to 1_+} \lambda_{\star}(p) = \lambda_1 \text{ if } \rho \text{ is bounded}$$
$$\lambda_{\star} = \lambda_1 = d \, \rho/(d-1) = d \text{ if } \mathfrak{M} = \mathbb{S}^d \text{ since } \rho = d-1$$

$$(1-\theta)\lambda_1 + \theta \frac{d\rho}{d-1} \le \lambda_{\star} \le \lambda_1$$

Riemannian manifolds: second improvement

$$H_g u$$
 denotes Hessian of u and $\theta = \frac{(d-1)^2(p-1)}{d(d+2)+p-1}$

$$Q_g u := H_g u - \frac{g}{d} \Delta_g u - \frac{(d-1)(p-1)}{\theta(d+3-p)} \left[\frac{\nabla u \otimes \nabla u}{u} - \frac{g}{d} \frac{|\nabla u|^2}{u} \right]$$

$$\Lambda_{\star} := \inf_{u \in \mathrm{H}^2(\mathfrak{M}) \setminus \{0\}} \frac{(1-\theta) \int_{\mathfrak{M}} (\Delta_g u)^2 \, d \, v_g + \frac{\theta \, d}{d-1} \int_{\mathfrak{M}} \left[\| \mathrm{Q}_g u \|^2 + \mathfrak{R}(\nabla u, \nabla u) \right]}{\int_{\mathfrak{M}} |\nabla u|^2 \, d \, v_g}$$

Theorem (Dolbeault-Esteban-Loss)

Assume that $\Lambda_* > 0$. For any $p \in (1,2) \cup (2,2^*)$, the equation has a unique positive solution in $C^2(\mathfrak{M})$ if $\lambda \in (0,\Lambda_*)$: $u \equiv 1$

Optimal interpolation inequality

For any $p \in (1,2) \cup (2,2^*)$ or $p = 2^*$ if $d \ge 3$

$$\|\nabla v\|_{\mathrm{L}^2(\mathfrak{M})}^2 \geq \frac{\lambda}{p-2} \left[\|v\|_{\mathrm{L}^p(\mathfrak{M})}^2 - \|v\|_{\mathrm{L}^2(\mathfrak{M})}^2 \right] \quad \forall \, v \in \mathrm{H}^1(\mathfrak{M})$$

Theorem (Dolbeault-Esteban-Loss)

Assume $\Lambda_{\star} > 0$. The above inequality holds for some $\lambda = \Lambda \in [\Lambda_{\star}, \lambda_1]$ If $\Lambda_{\star} < \lambda_1$, then the optimal constant Λ is such that

$$\Lambda_{\star} < \Lambda \leq \lambda_1$$

If
$$p = 1$$
, then $\Lambda = \lambda_1$

Using $u = 1 + \varepsilon \varphi$ as a test function where φ we get $\lambda \leq \lambda_1$ A minimum of

$$v \mapsto \|\nabla v\|_{\mathrm{L}^2(\mathfrak{M})}^2 - \frac{\lambda}{p-2} \left[\|v\|_{\mathrm{L}^p(\mathfrak{M})}^2 - \|v\|_{\mathrm{L}^2(\mathfrak{M})}^2 \right]$$

under the constraint $||v||_{L^p(\mathfrak{M})} = 1$ is negative if $\lambda > \lambda_1$

The flow

The key tools the flow

$$u_t = u^{2-2\beta} \left(\Delta_g u + \kappa \frac{|\nabla u|^2}{u} \right), \quad \kappa = 1 + \beta (p-2)$$

If $v=u^{\beta},$ then $\frac{d}{dt}\|v\|_{\mathrm{L}^{p}(\mathfrak{M})}=0$ and the functional

$$\mathcal{F}[u] := \int_{\mathfrak{M}} |\nabla(u^{\beta})|^2 dv_g + \frac{\lambda}{p-2} \left[\int_{\mathfrak{M}} u^{2\beta} dv_g - \left(\int_{\mathfrak{M}} u^{\beta p} dv_g \right)^{2/p} \right]$$

is monotone decaying

■ J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature, J. Funct. Anal., 254 (2008), pp. 593–611. Also see C. Villani, Optimal Transport, Old and New

Elementary observations (1/2)

Let $d \geq 2$, $u \in C^2(\mathfrak{M})$, and consider the trace free Hessian

$$L_g u := H_g u - \frac{g}{d} \Delta_g u$$

Lemma

$$\int_{\mathfrak{M}} (\Delta_g u)^2 dv_g = \frac{d}{d-1} \int_{\mathfrak{M}} \|\operatorname{L}_g u\|^2 dv_g + \frac{d}{d-1} \int_{\mathfrak{M}} \mathfrak{R}(\nabla u, \nabla u) dv_g$$

Based on the Bochner-Lichnerovicz-Weitzenböck formula

$$\frac{1}{2}\Delta |\nabla u|^2 = \|\mathbf{H}_g u\|^2 + \nabla(\Delta_g u) \cdot \nabla u + \Re(\nabla u, \nabla u)$$

Elementary observations (2/2)

Lemma

$$\int_{\mathfrak{M}} \Delta_{g} u \, \frac{|\nabla u|^{2}}{u} \, dv_{g}$$

$$= \frac{d}{d+2} \int_{\mathfrak{M}} \frac{|\nabla u|^{4}}{u^{2}} \, dv_{g} - \frac{2 \, d}{d+2} \int_{\mathfrak{M}} \left[L_{g} u \right] : \left[\frac{\nabla u \otimes \nabla u}{u} \right] \, dv_{g}$$

Lemma

$$\int_{\mathfrak{M}} (\Delta_g u)^2 dv_g \ge \lambda_1 \int_{\mathfrak{M}} |\nabla u|^2 dv_g \quad \forall u \in \mathrm{H}^2(\mathfrak{M})$$

and λ_1 is the optimal constant in the above inequality

The key estimates

$$\mathcal{G}[u] := \int_{\mathfrak{M}} \left[\theta \left(\Delta_g u \right)^2 + \left(\kappa + \beta - 1 \right) \Delta_g u \, \frac{|\nabla u|^2}{u} + \kappa \left(\beta - 1 \right) \frac{|\nabla u|^4}{u^2} \right] d \, v_g$$

Lemma

$$\frac{1}{2\beta^2}\frac{d}{dt}\mathcal{F}[u] = -(1-\theta)\int_{\mathfrak{M}} (\Delta_g u)^2 dv_g - \mathcal{G}[u] + \lambda \int_{\mathfrak{M}} |\nabla u|^2 dv_g$$

$$\mathrm{Q}_{g}^{ heta}u := \mathrm{L}_{g}u - rac{1}{ heta}rac{d-1}{d+2}(\kappa+eta-1)\left[rac{
abla u \otimes
abla u}{u} - rac{g}{d}rac{|
abla u|^{2}}{u}
ight]$$

Lemma

$$\mathcal{G}[u] = \frac{\theta d}{d-1} \left[\int_{\mathfrak{M}} \|Q_g^{\theta} u\|^2 dv_g + \int_{\mathfrak{M}} \mathfrak{R}(\nabla u, \nabla u) dv_g \right] - \mu \int_{\mathfrak{M}} \frac{|\nabla u|^4}{u^2} dv_g$$
with $\mu := \frac{1}{\theta} \left(\frac{d-1}{d+2}\right)^2 (\kappa + \beta - 1)^2 - \kappa (\beta - 1) - (\kappa + \beta - 1) \frac{d}{d+2}$

The end of the proof

Assume that $d \geq 2$. If $\theta = 1$, then μ is nonpositive if

$$\beta_{-}(p) \leq \beta \leq \beta_{+}(p) \quad \forall p \in (1, 2^*)$$

where
$$\beta_{\pm} := \frac{b \pm \sqrt{b^2 - a}}{2 \, a}$$
 with $a = 2 - p + \left[\frac{(d-1)(p-1)}{d+2} \right]^2$ and $b = \frac{d+3-p}{d+2}$
Notice that $\beta_{-}(p) < \beta_{+}(p)$ if $p \in (1, 2^*)$ and $\beta_{-}(2^*) = \beta_{+}(2^*)$

$$\theta = \frac{(d-1)^2(p-1)}{d(d+2) + p - 1}$$
 and $\beta = \frac{d+2}{d+3-p}$

Proposition

Let
$$d \ge 2$$
, $p \in (1,2) \cup (2,2^*)$ $(p \ne 5 \text{ or } d \ne 2)$

$$\frac{1}{2\beta^2}\,\frac{d}{dt}\mathcal{F}[u] \leq (\lambda - \Lambda_\star) \int_{\mathfrak{M}} |\nabla u|^2\,d\,v_g$$

Spectral consequences

Joint work with M.J. Esteban, A. Laptev, and M. Loss

• The same kind of results as for the sphere. However, estimates are not, in general, sharp.

Manifolds: the first interpolation inequality

Let us define

$$\kappa := \operatorname{vol}_g(\mathfrak{M})^{1-2/q}$$

Proposition

Assume that $q \in (2,2^*)$ if $d \geq 3$, or $q \in (2,\infty)$ if d=1 or 2. There exists a concave increasing function $\mu: \mathbb{R}^+ \to \mathbb{R}^+$ such that $\mu(\alpha) = \kappa \, \alpha$ for any $\alpha \leq \frac{\Lambda}{q-2}$, $\mu(\alpha) < \kappa \, \alpha$ for $\alpha > \frac{\Lambda}{q-2}$ and

$$\|\nabla u\|_{\mathrm{L}^2(\mathfrak{M})}^2 + \alpha \|u\|_{\mathrm{L}^2(\mathfrak{M})}^2 \ge \mu(\alpha) \|u\|_{\mathrm{L}^q(\mathfrak{M})}^2 \quad \forall \, u \in \mathrm{H}^1(\mathfrak{M})$$

The asymptotic behaviour of μ is given by $\mu(\alpha) \sim \mathsf{K}_{q,d} \, \alpha^{1-\vartheta}$ as $\alpha \to +\infty$, with $\vartheta = d \, \frac{q-2}{2 \, q}$ and $\mathsf{K}_{q,d}$ defined by

$$\mathsf{K}_{q,d} := \inf_{v \in \mathrm{H}^1(\mathbb{R}^d) \setminus \{0\}} \frac{\|\nabla v\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 + \|v\|_{\mathrm{L}^2(\mathbb{R}^d)}^2}{\|v\|_{\mathrm{L}^q(\mathbb{R}^d)}^2}$$

Manifolds: the first Keller-Lieb-Thirring estimate

We consider $||V||_{L^p(\mathfrak{M})} = \mu \mapsto \alpha(\mu)$

$$\int_{\mathfrak{M}} |\nabla u|^{2} dv_{g} - \int_{\mathfrak{M}} V |u|^{2} dv_{g} + \alpha(\mu) \int_{\mathfrak{M}} |u|^{2} dv_{g}$$

$$\geq \|\nabla u\|_{L^{2}(\mathfrak{M})}^{2} - \mu \|u\|_{L^{q}(\mathfrak{M})}^{2} + \alpha(\mu) \|u\|_{L^{2}(\mathfrak{M})}^{2}$$

p and $\frac{q}{2}$ are Hölder conjugate exponents

Theorem

Let $d \geq 1$, $p \in (1, +\infty)$ if d = 1 and $p \in (\frac{d}{2}, +\infty)$ if $d \geq 2$ and assume that $\Lambda_{\star} > 0$. With the above notations and definitions, for any nonnegative $V \in L^p(\mathfrak{M})$, we have

$$|\lambda_1(-\Delta_g - V)| \le \alpha(\|V\|_{L^p(\mathfrak{M})})$$

Moreover, we have $\alpha(\mu)^{p-\frac{d}{2}} = L^1_{\gamma,d} \mu^p (1+o(1))$ as $\mu \to +\infty$ with $L^1_{\gamma,d} := (K_{a,d})^{-p}, \ \gamma = p - \frac{d}{2}$

Manifolds: the second Keller-Lieb-Thirring estimate

Theorem

Let $d \geq 1$, $p \in (0, +\infty)$. There exists an increasing concave function $\nu : \mathbb{R}^+ \to \mathbb{R}^+$, satisfying $\nu(\beta) = \beta/\kappa$, for any $\beta \in (0, \frac{p+1}{2} \kappa \Lambda)$ if p > 1, such that for any positive potential W we have

$$\lambda_1(-\Delta+W) \ge \nu(\beta)$$
 with $\beta = \left(\int_{\mathfrak{M}} W^{-p} \, dv_g\right)^{1/p}$

Moreover, for large values of β , we have $\nu(\beta)^{-(p+\frac{d}{2})} = L^1_{-(p+\frac{d}{2}),d} \beta^{-p} (1+o(1))$ as $\beta \to +\infty$

The Moser-Trudinger-Onofri inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban

• Extension to compact Riemannian manifolds of dimension 2...

We shall also denote by $\mathfrak R$ the Ricci tensor, by $\mathbf H_g u$ the Hessian of u and by

$$L_g u := H_g u - \frac{g}{d} \Delta_g u$$

the trace free Hessian. Let us denote by $M_g u$ the trace free tensor

$$M_g u := \nabla u \otimes \nabla u - \frac{g}{d} |\nabla u|^2$$

We define

$$\lambda_{\star} := \inf_{u \in \mathrm{H}^{2}(\mathfrak{M}) \setminus \{0\}} \frac{\int_{\mathfrak{M}} \left[\| \operatorname{L}_{g} u - \frac{1}{2} \operatorname{M}_{g} u \|^{2} + \mathfrak{R}(\nabla u, \nabla u) \right] e^{-u/2} d v_{g}}{\int_{\mathfrak{M}} |\nabla u|^{2} e^{-u/2} d v_{g}}$$

Theorem

Assume that d=2 and $\lambda_{\star}>0$. If u is a smooth solution to

$$-\frac{1}{2}\Delta_g u + \lambda = e^u$$

then u is a constant function if $\lambda \in (0, \lambda_{\star})$

The Moser-Trudinger-Onofri inequality on ${\mathfrak M}$

$$\frac{1}{4} \|\nabla u\|_{\mathrm{L}^2(\mathfrak{M})}^2 + \lambda \int_{\mathfrak{M}} u \, d \, v_g \geq \lambda \, \log \left(\int_{\mathfrak{M}} e^u \, d \, v_g \right) \quad \forall \, u \in \mathrm{H}^1(\mathfrak{M})$$

for some constant $\lambda>0$. Let us denote by λ_1 the first positive eigenvalue of $-\Delta_g$

Corollary

If d=2, then the MTO inequality holds with $\lambda=\Lambda:=\min\{4\,\pi,\lambda_\star\}$. Moreover, if Λ is strictly smaller than $\lambda_1/2$, then the optimal constant in the MTO inequality is strictly larger than Λ

The flow

$$\frac{\partial f}{\partial t} = \Delta_g(e^{-f/2}) - \frac{1}{2} |\nabla f|^2 e^{-f/2}$$

$$\mathcal{G}_{\lambda}[f] := \int_{\mathfrak{M}} \| \operatorname{L}_{g} f - \frac{1}{2} \operatorname{M}_{g} f \|^{2} e^{-f/2} d v_{g} + \int_{\mathfrak{M}} \mathfrak{R}(\nabla f, \nabla f) e^{-f/2} d v_{g}$$
$$- \lambda \int_{\mathfrak{M}} |\nabla f|^{2} e^{-f/2} d v_{g}$$

Then for any $\lambda \leq \lambda_{\star}$ we have

$$\frac{d}{dt}\mathcal{F}_{\lambda}[f(t,\cdot)] = \int_{\mathfrak{M}} \left(-\frac{1}{2}\Delta_{g}f + \lambda\right) \left(\Delta_{g}(e^{-f/2}) - \frac{1}{2}|\nabla f|^{2}e^{-f/2}\right) dv_{g}$$

$$= -\mathcal{G}_{\lambda}[f(t,\cdot)]$$

Since \mathcal{F}_{λ} is nonnegative and $\lim_{t\to\infty} \mathcal{F}_{\lambda}[f(t,\cdot)] = 0$, we obtain that

$$\mathcal{F}_{\lambda}[u] \geq \int_0^{\infty} \mathcal{G}_{\lambda}[f(t,\cdot)] dt$$

Weighted Moser-Trudinger-Onofri inequalities on the two-dimensional Euclidean space

On the Euclidean space \mathbb{R}^2 , given a general probability measure μ does the inequality

$$\frac{1}{16\pi} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx \ge \lambda \left[\log \left(\int_{\mathbb{R}^2} e^u \, d\mu \right) - \int_{\mathbb{R}^2} u \, d\mu \right]$$

hold for some $\lambda > 0$? Let

$$\Lambda_{\star} := \inf_{\mathbf{x} \in \mathbb{R}^2} \frac{-\Delta \log \mu}{8 \pi \mu}$$

Theorem

Assume that μ is a radially symmetric function. Then any radially symmetric solution to the EL equation is a constant if $\lambda < \Lambda_\star$ and the inequality holds with $\lambda = \Lambda_\star$ if equality is achieved among radial functions

Spectral estimates on the cylinder

Joint work with M.J. Esteban and M. Loss

Spectral estimates and the symmetry breaking problem on the cylinder

Let (\mathfrak{M}, g) be a smooth compact connected Riemannian manifold of dimension d-1 (no boundary) with $\operatorname{vol}_g(\mathfrak{M})=1$, and let

$$\mathcal{C}:=\mathbb{R}\times\mathfrak{M}\ni x=(s,z)$$

be the cylinder. $\lambda_1^{\mathfrak{M}}$ is the lowest positive eigenvalue of the Laplace-Beltrami operator, $\kappa := \inf_{\mathfrak{M}} \inf_{\xi \in \mathbb{S}^{d-2}} \operatorname{Ric}(\xi, \xi)$

 \triangleright Is

$$\Lambda(\mu) := \sup \left\{ \lambda_1^{\mathcal{C}}[V] : V \in \mathrm{L}^q(\mathcal{C}) \,, \ \|V\|_{\mathrm{L}^q(\mathcal{C})} = \mu \right\}$$

equal to

$$\Lambda_{\star}(\mu) := \sup \left\{ \lambda_1^{\mathbb{R}}[V] : V \in L^q(\mathbb{R}, \|V\|_{L^q(\mathbb{R})} = \mu \right\} ?$$

 $-\lambda_1^{\mathcal{C}}[V]$ is the lowest eigenvalue of $-\partial_{\mathfrak{s}}^2-\,\Delta_g-V$ and $-\partial_{\mathfrak{s}}^2-\,V$ on \mathcal{C}

The Keller-Lieb-Thirring inequality on the line

Assume that
$$q \in (1, +\infty)$$
, $\beta = \frac{2q}{2q-1}$, $\mu_1 := q(q-1)\left(\frac{\sqrt{\pi} \Gamma(q)}{\Gamma(q+1/2)}\right)^{1/q}$.

$$\Lambda_{\star}(\mu) = (q-1)^2 \left(\mu/\mu_1\right)^{\beta} \quad \forall \, \mu > 0 \,,$$

If V is a nonnegative real valued potential in $L^q(\mathbb{R})$, then we have

$$\lambda_1^{\mathbb{R}}[V] \leq \Lambda_{\star}(\|V\|_{\mathrm{L}^q(\mathbb{R})}) \quad ext{where} \quad \Lambda_{\star}(\mu) = (q-1)^2 \left(rac{\mu}{\mu_1}
ight)^{eta} \quad orall \, \mu > 0$$

and equality holds if and only if, up to scalings, translations and multiplications by a positive constant,

$$V(s) = rac{q(q-1)}{(\cosh s)^2} =: V_1(s) \quad orall \, s \in \mathbb{R}$$

where
$$||V_1||_{\mathrm{L}^q(\mathbb{R})} = \mu_1$$
, $\lambda_1^{\mathbb{R}}[V_1] = (q-1)^2$ and $\varphi(s) = (\cosh s)^{1-q}$

$$\begin{split} \lambda_{\theta} &:= \left(1 + \delta \, \theta \, \frac{d-1}{d-2} \right) \kappa + \delta \left(1 - \theta \right) \lambda_{1}^{\mathfrak{M}} \quad \text{with} \quad \delta = \frac{n-d}{(d-1) \, (n-1)} \\ \lambda_{\star} &:= \lambda_{\theta_{\star}} \quad \text{where} \quad \theta_{\star} := \frac{\left(d-2\right) \, (n-1) \, \left(3 \, n+1-d \, (3 \, n+5) \right)}{(d+1) \, \left(d \, (n^{2}-n-4)-n^{2}+3 \, n+2 \right)} \end{split}$$

Theorem

Let $d \ge 2$ and $q \in (\min\{4, d/2\}, +\infty)$. The function $\mu \mapsto \Lambda(\mu)$ is convex, positive and such that

$$\Lambda(\mu)^{q-d/2} \sim \operatorname{L}^1_{q-rac{d}{2},\,d} \mu^q$$
 as $\mu o +\infty$

Moreover, there exists a positive μ_{\star} with

$$\frac{\lambda_{\star}}{2\left(q-1\right)}\,\mu_{1}^{\beta} \leq \mu_{\star}^{\beta} \leq \frac{\lambda_{1}^{\mathfrak{M}}}{2\,q-1}\,\mu_{1}^{\beta}$$

such that

$$\Lambda(\mu) = \Lambda_{\star}(\mu) \quad \forall \, \mu \in (0, \mu_{\star}] \quad \text{and} \quad \Lambda(\mu) > \Lambda_{\star}(\mu) \quad \forall \, \mu > \mu_{\star}$$

As a special case, if $\mathfrak{M} = \mathbb{S}^{d-1}$, inequalities are in fact equalities

The upper estimate

Lemma

If
$$\Lambda_{\star}(\mu) > \frac{4\lambda_1^{\mathfrak{M}}}{\rho^2 - 4}$$
, then
$$\sup \left\{ \lambda_1^{\mathcal{C}}[V] \, : \, V \in \mathrm{L}^q(\mathcal{C}) \, , \, \|V\|_{\mathrm{L}^q(\mathcal{C})} = \mu \right\} > \Lambda_{\star}(\mu)$$

$$\phi_{\varepsilon}(s,z) := \varphi_{\mu}(s) + \varepsilon \left(\varphi_{\mu}(s)\right)^{p/2} \psi_{1}(z) \quad \text{and} \quad V_{\varepsilon}(s,z) := \mu \frac{|\phi_{\varepsilon}(s,z)|^{p-2}}{\|\phi_{\varepsilon}\|_{L^{p}(\mathcal{C})}^{p-2}}$$

where ψ_1 is an eigenfunction of $\lambda_1^{\mathfrak{M}}$ and φ_{μ} is optimal for $\Lambda_{\star}(\mu)$

$$-\lambda_1^{\mathcal{C}}[V_{\varepsilon}] + \Lambda_{\star}(\mu) \leq \frac{4 \, \varepsilon^2}{p+2} \left(\lambda_1^{\mathfrak{M}} - \tfrac{1}{4} \left(\rho^2 - 4\right) \Lambda_{\star}(\mu)\right) + o(\varepsilon^2)$$

The lower estimate

$$\mathsf{J}[V] := \frac{\|V\|_{\mathrm{L}^q(\mathcal{C})}^q - \|\partial_{\mathsf{s}} V^{(q-1)/2}\|_{\mathrm{L}^2(\mathcal{C})}^2 - \|\nabla_{\mathsf{g}} V^{(q-1)/2}\|_{\mathrm{L}^2(\mathcal{C})}^2}{\|V^{(q-1)/2}\|_{\mathrm{L}^2(\mathcal{C})}^2}$$

Lemma

$$\Lambda(\mu) = \sup \left\{ \mathsf{J}[V] : \|V\|_{\mathsf{L}^q(\mathcal{C})} = \mu \right\}$$

With $\alpha = \frac{1}{q-1} \sqrt{\Lambda_{\star}(\mu)}$, let us consider the operator \mathfrak{L} such that

$$\mathfrak{L} u^m := -\frac{m}{m-1} \, \partial_s \Big(u \, e^{-2\alpha s} \, \partial_s \, \big(u^{m-1} \, e^{\alpha s} \big) \, \Big) + e^{-\alpha s} \, \Delta_g \, u^m$$

where $m = 1 - \frac{1}{n}$, n = 2 q. To any potential $V \ge 0$ we associate the *pressure* function

$$\mathsf{p}_V(r) := r \, V(s)^{-\frac{q-1}{4\,q}} \quad \forall \, r = e^{-\alpha s}$$

$$\begin{aligned} \mathsf{K}[\mathsf{p}] &:= \frac{n-1}{n} \, \alpha^4 \int_{\mathbb{R}^2} \left| \mathsf{p}'' - \frac{\mathsf{p}'}{r} - \frac{\Delta_g \mathsf{p}}{\alpha^2 \left(n-1 \right) \, r^2} \right|^2 \mathsf{p}^{1-n} \, d\mu \\ &+ 2 \, \alpha^2 \, \int_{\mathbb{R}^2} \frac{1}{r^2} \left| \nabla_g \mathsf{p}' - \frac{\nabla_g \mathsf{p}}{r} \right|^2 \mathsf{p}^{1-n} \, d\mu \\ &+ \left(\lambda_\star - \frac{2}{q-1} \, \Lambda_\star(\mu) \right) \int_{\mathbb{R}^2} \frac{\left| \nabla_g \mathsf{p} \right|^2}{r^4} \, \mathsf{p}^{1-n} \, d\mu \end{aligned}$$

where $d\mu$ is the measure on $\mathbb{R}^+ \times \mathfrak{M}$ with density r^{n-1} , and ' denotes the derivative with respect to r

Lemma

There exists a positive constant c such that, if V is a critical point of J under the constraint $\|V\|_{L^q(\mathcal{C})} = \mu$ and $u_V = V^{(q-1)/2}$, then we have

$$J[V + \varepsilon u_V^{-1} \mathfrak{L} u_V^m] - J[V] \ge c \varepsilon K[p_V] + o(\varepsilon)$$
 as $\varepsilon \to 0$

Caffarelli-Kohn-Nirenberg inequalities

Joint work with M.J. Esteban and M. Loss

Caffarelli-Kohn-Nirenberg inequalities and the symmetry breaking issue

$$\begin{split} \operatorname{Let} \, \mathcal{D}_{a,b} &:= \Big\{ \, v \in \operatorname{L}^p \left(\mathbb{R}^d, |x|^{-b} \, dx \right) \, : \, |x|^{-a} \, |\nabla v| \in \operatorname{L}^2 \left(\mathbb{R}^d, dx \right) \, \Big\} \\ & \left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{b\,p}} \, dx \right)^{2/p} \leq \, C_{a,b} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2\,a}} \, dx \quad \forall \, v \in \mathcal{D}_{a,b} \end{split}$$

hold under the conditions that $a \le b \le a+1$ if $d \ge 3$, $a < b \le a+1$ if d = 2, $a + 1/2 < b \le a + 1$ if d = 1, and $a < a_c := (d - 2)/2$

$$p = \frac{2d}{d-2+2(b-a)}$$

With

$$v_{\star}(x) = \left(1 + |x|^{(p-2)(a_c - a)}\right)^{-\frac{2}{p-2}} \quad and \quad \mathsf{C}^{\star}_{a,b} = \frac{\|\,|x|^{-b} \, v_{\star} \,\|_{p}^{2}}{\|\,|x|^{-a} \, \nabla v_{\star} \,\|_{2}^{2}}$$

do we have $C_{a,b} = C_{a,b}^{\star}$ (symmetry) or $C_{a,b} > C_{a,b}^{\star}$ (symmetry breaking)?

The Emden-Fowler transformation and the cylinder

$$v(r,\omega) = r^{a-a_c} \varphi(s,\omega)$$
 with $r = |x|$, $s = -\log r$ and $\omega = \frac{x}{r}$

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities can be rewritten as

$$\|\partial_s \varphi\|_{\mathrm{L}^2(\mathcal{C}_1)}^2 + \|\nabla_\omega \varphi\|_{\mathrm{L}^2(\mathcal{C}_1)}^2 + \Lambda \|\varphi\|_{\mathrm{L}^2(\mathcal{C}_1)}^2 \geq \mu(\Lambda) \|\varphi\|_{\mathrm{L}^\rho(\mathcal{C}_1)}^2 \quad \forall \, \varphi \in \mathrm{H}^1(\mathcal{C})$$

where $\Lambda := (a_c - a)^2$, $C = \mathbb{R} \times \mathbb{S}^{d-1}$ and the optimal constant $\mu(\Lambda)$ is

$$\mu(\Lambda) = \frac{1}{C_{a,b}}$$
 with $a = a_c \pm \sqrt{\Lambda}$ and $b = \frac{d}{p} \pm \sqrt{\Lambda}$

Numerical results

Parametric plot of the branch of optimal functions for p=2.8, d=5, $\theta=1$. Non-symmetric solutions bifurcate from symmetric ones at a bifurcation point computed by V. Felli and M. Schneider. The branch behaves for large values of Λ as predicted by F. Catrina and Z.-Q. Wang

The symmetry result

$$b_{\text{FS}}(a) := \frac{d(a_c - a)}{2\sqrt{(a_c - a)^2 + d - 1}} + a - a_c$$

Theorem

Let $d \geq 2$ and $p \leq 4$. If either $a \in [0,a_c)$ and b>0, or a<0 and $b\geq b_{\rm FS}(a)$, then the optimal functions for the Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

The Felli-Schneider region, or symmetry breaking region, appears in dark grey and is defined by a < 0, $a \le b < b_{\rm FS}(a)$. We prove that symmetry holds in the light grey region defined by $b \ge b_{\rm FS}(a)$ when a < 0 and for any $b \in [a, a+1]$ if $a \in [0, a_c)$

A summary

• the sphere: the flow tells us what to do, and provides a simple proof (*choice of the exponents / of the nonlinearity*) once the problem is reduced to the ultraspherical setting + improvements

• the spectral point of view on the inequality: how to measure the deviation with respect to the *semi-classical* estimates, a nice example of bifurcation (and *symmetry breaking*)

• Riemannian manifolds: no sign is required on the Ricci tensor and an improved integral criterion is established. We extend the theory from pointwise criteria to a non-local Schrödinger type estimate (Rayleigh quotient). The flow explores the energy landscape... and generically shows the non-optimality of the improved criterion

• the flow is a nice way of exploring an energy space: it explain how to produce a good test function at *any* critical point. A *rigidity* result tell you that a local result is actually global because otherwise the flow would relate (far away) extremal points while keeping the energy minimal

http://www.ceremade.dauphine.fr/~dolbeaul > Preprints (or arxiv, or HAL)

- Q. J.D., Maria J. Esteban, Ari Laptev, and Michael Loss. Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates, C.R. Math., 351 (11-12): 437−440, 2013.
- Q. J.D., Maria J. Esteban, and Michael Loss. Nonlinear flows and rigidity results on compact manifolds. Journal of Functional Analysis, 267 (5): 1338-1363, 2014.
- Q J.D., Maria J. Esteban and Ari Laptev. Spectral estimates on the sphere. Analysis & PDE, 7 (2): 435-460, 2014.
- Q. J.D., Maria J. Esteban, Michal Kowalczyk, and Michael Loss. Sharp interpolation inequalities on the sphere: New methods and consequences. Chinese Annals of Mathematics, Series B, 34 (1): 99-112, 2013.
- Q. J.D., Maria J. Esteban, Ari Laptev, and Michael Loss. One-dimensional Gagliardo-Nirenberg-Sobolev inequalities: Remarks on duality and flows. Journal of the London Mathematical Society, 2014.

http://www.ceremade.dauphine.fr/~dolbeaul > Preprints (or arxiv, or HAL)

- Q. J.D., Maria J. Esteban, Michal Kowalczyk, and Michael Loss. Improved interpolation inequalities on the sphere, Preprint, 2013. Discrete and Continuous Dynamical Systems Series S (DCDS-S), 7 (4): 695724, 2014.
- Q. J.D., Maria J. Esteban, Gaspard Jankowiak. The Moser-Trudinger-Onofri inequality, Preprint, 2014
- Q. J.D., Maria J. Esteban, Gaspard Jankowiak. Rigidity results for semilinear elliptic equation with exponential nonlinearities and Moser-Trudinger-Onofri inequalities on two-dimensional Riemannian manifolds, Preprint, 2014
- J.D., Michal Kowalczyk. Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities, and spectral estimates, Preprint, 2014
- Q. J.D., and Maria J. Esteban. Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations. Nonlinearity, 27 (3): 435, 2014.
- J.D., Maria J. Esteban, and Michael Loss. Keller-Lieb-Thirring inequalities for Schrödinger operators on cylinders. Preprint, 2015

These slides can be found at

 $\label{lem:http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/} $$ begin{subarray}{c} $$ Lectures \end{subarray}$

Thank you for your attention!