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Outline of the talk
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Kinetic BGK Model: Formulation
Motivations and references
Main results and assumptions

Existence and uniqueness
Drift diffusion limit
Convergence to equilibrium

Examples
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Porous medium flow
Fast diffusion

Fermi-Dirac statistics

@ Bose-Einstein statistics
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Outline of the talk, II

Application to a flat rotating system of gravitating particles
(coll. J. Fernandez

@ Kinetic description of a system in rotation at constant
angular speed

@ Polytropes, critical points, reduced variational problem
@ Results and open questions
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BGK models

@ BGK model of gas dynamics

L p(ib‘,t) —|U—U(Qf,t)‘2
atf T - vxf _ (27_‘_T)n/2 €xp ( QT(Q?,t) ) T f )

where p(z,t) (position density), u(zx,t) (local mean
velocity) and T'(z, t) (temperature) are chosen such that
they equal the corresponding quantities associated to f.

[Perthame,Pulvirenti]: Weighted L°° bounds and uniqueness for the Boltzmann BGK
model, 1993

@ Linear BGK model in semiconductor physics
Vv, = P& L)
Of +0-Vaf = ViV Vol = 55005 exp( 2!v|> f.
where p(x,t) equals the position density of f.

[Poupaud]: Mathematical theory of kinetic equations for transport modelling in

semiconductors, 1994
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BGK-type kinetic equation

SO +ev - Vafs —eV,V(x) - Voft = Gy — f°,
flavt=0 = fi(z,v), =zveR’,
o)

with the Gibbs equilibrium G :=~ (7 + V(x) — Mpf(x,t)) .

The Fermi energy 1, (z,t) is implicitly defined by
[ (54 V@) = o wt) o= [ fte0.0d0 = oyl
R3 R3

fe(z,v,t) ... phase space particle density
V(x) ... potential
¢ ... mean free path.
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Motivations, |

@ Local Gibbs states in stellar dynamics (polytropic
distribution functions) and semiconductor theory
(Fermi-Dirac distributions).

Collisions : short time scale

@ Monotone energy profiles are natural for the study of
stability: monotonicity < convex Lyapunov functional,
Global Gibbs states

@ (Goal: derive the nonlinear diffusion limit consistently
with the Gibbs state: a relaxation-time kernel
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Motivations, li

@ Gibbs states <« generalized entropies

@ nonlinear diffusion equations are difficult to justify
directly

@ global Gibbs states have the same macroscopic density
at the kinetic / diffusion levels

@ they have the ‘same’ Lyapunov functionals
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@ Formal expansions (generalized Smoluchowski
equation):
[Ben Abdallah, J.D.], [Chavanis-Laurencot, Lemoul],
[Chavanis et al.], [Degond, Ringhofer]

@ Astrophysics:
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Main result

Theorem 1. For any € > 0, the equation has a unique weak solution
€€ C(0,00; L' N LP(RY)) forallp < 0o. Ase — 0, f€ weakly
converges to a local Gibbs state f 0 given by

1 _
Oz, 0,t) =7 (5 v]? — u(p(x,t))>
where p is a solution of the nonlinear diffusion equation
Orp = V- (Vav(p) +p Ve V()

with initial data p(z,0) = pr(z) == [ps f1(z,v)

V(o) = /O " l(s) ds
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Assumptions on the energy profile

@ (E) € CYH((E1, Es),RT) where —oco < Ey < Ey < oo.
@~ monotonically decreasing and limg_.g, v(E) = 0.

N

.

|
< ) — - i I
E =-c \/ £ E =0 E, \ £ E=w E E E

>
|

(a) Asymptotically exponen- (b) Asymptotically expo- (c) By < 0.

tial lower bound. nential upper bound..
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Initial condition

@ f(z,0,t=0)= fr(z,0)

@ The total mass M := [ f1(z,v) dv dx is preserved by
the evolution.

Q@ Ju*s.t 0L frlx,v) < ff(x,v) =7 (@ + Vi(x) — ,u*)

@ Maximal macroscopic density

1
p:= lim (—vz—ﬁ)dv.
pi= dm f 7 51|

Observe p = > if £ = —oo0.
@ If p < oo we require p* () := [ f*dv < pVz € R.
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Fermi energy

The Fermi-energy u,.(x,t) ensures local mass
conservation,

,02
[ora=[ 2%+ v@-mwt  Jdo=plo)
R3 R3 2 S ~ <

=:—[(ps(x,t)) (quasi Fermi level’)

@ Compute i in terms of ~ N
0 =472 [ 2= 0Edp
= i(p) : (0,p) — (—FE92, —FE1), Increasing.
@ Differentiation leads to an Abelian equation = ~ In

terms of j: , i 1
1 = (nm)(e
(B) d (m=)6) .,
V22r2dE? | o V/—E —0
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Assumptions on the potential

@ Boundedness from below
V(:E) Z Vmin — O)

@ Regularity
Ve bR
@ Potential is confining in the sense that

//R6 <1+_+V( )> <|2}2|2+V( ) — *>Jdvd:17<oo.

\
V
:f*
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Existence and uniqueness

Proposition 1. Let 1 < p < oo, then the problem has a unique solution
inV = {f cC(0,00; (L' N LP)(RY)) : 0 < f < f*,Vt >0 ae.}.
The proof uses a fixpoint argument on the map f — g,

where ¢ satisfies
(V) 2 .
Y (% — M(Pf)> -9,

f[(ZC,?J) )

where p¢(z,t) = flx,v,t) dv .
R3

528tg +ev-Vgeg—eV,V-Vyug

g(t=0,z,0v)

f< = fely,,pe Ly, andif f* has compact support

in R>, this will also be true for f (porous medium case).
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Formal asymptotics

20 f +ev-Vuf — eV V() Vof = Qlf]

Expand f=>"2 f'c", p' = [os [P dv, Gy = 2, G'". Then
GY = y([o|*/2 = (")) = v(Jv[?/2+V — ).
O(1): GY = 9.
Oe):v-Vofl =V, V -V, f0 =Gt - f!
= fl=v- Vo0 (50* + V() — p0(x,1)) + G
= Jpsvftdv=—p"Vu°
O(E?) : 0t f + v - Vo fl =V, V-V, fl =G* — f?
= O’ =V (Vi) = Av(p?) + V- (p°V,V)

where p(z,t) = [ps fO(z,v,t)dv, po(xﬂ 0) = Jps f1(z,v)dv.

The nonlinearity v is given by v(p) := / o (p) dp
0
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Free energy

@ Define the free energy (convex functional)

://RG _(|U2|2+V( ))f—/ofv_l(f)df_ dv dz.

Q Production of free energy

() = / / WEr) — ) (Epe — (v")(f7)) dvda <0,
2
with Ef = % -+ V( ) pse (ZC,t) : Gfs — ’y(Efs)

@ Free energy is finite, V¢ € Ry:

00 < F(f*) < F(Gpo(o ) € F((ornnt)) < F(f1) < 00

as F(f>) ffRGW( +V —pu )(,uoo—%)<ooby
assumptions on the potential.
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Perturbations of moments

@ Perturbations of 1st and 2nd moments
£ fg R Gf8

E_G .
G = v dv and &° ::/ v®vf .
R3 E

R3 E
@ = VU open and bounded 3 uniform bounds,

177 22,y < My and 5722, ) < M

@ Proof uses production of free energy

_ ///{Gfo()} (G — £) (=7~ (f*)da do di+

+ ///{ (Ef: — Ea+ Ep — Yy Hf) [ de dv dt.

G e=0 ~ Vv Vv
re=0} 5 >0
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ond moments of local Gibbs states

Q Let

o) = [ 2 (GlP - al) do.

=V'(p) = pi(p).
@ On [0, p™a := 1 (u*)] for some C > 0:
either /(p) >C or 1/V(p)>C .

@ If By < oo ("porous medium case"): lim,_,g v/(p) = 0.
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Strong convergence of p, |

Proposition 2. p° — p" in LY strongly for allp € (1, 00).

loc

The proof uses compensated compactness theory applying
the Div-Curl-Lemma to

Ue:=(p°,5°), V°:=(v(p),0,0,0).

Rewrite the equations for the mass and momentum
densities (using (curlw);; := w}, — wz,)

din,ng — 8,5,05 + V., °j€ = 0,
(curly 2 V)12..4 =Vv(p™) = \—f —p°V,V —eVy, - k5 — 52(%]"3

precompactin  H_ '

x,t

as j°, k® and p° € L2'e

x,t
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Strong convergence of p, li

The Div-Curl-Lemma yields

pU=pT.

where

et ... YOUNg measure associated with p7 = 5
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Strong convergence of p, lll

The mean value theorem yields

v(p) = v(p) +v'(p)(p — D)

for some p € (0, p™#). Conclude

0=pr—pV =
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Weak formulation of the pde |

Lemma 1. Let ¢ — U then fV = G o ae. .
Lemma 2. Let j5 — Y in Dy 4, then 70 = —V.v(p?) — "V, V.
Proof. Multiply the kinetic equation by 1,

E_Ga
O fS+v-Vift =V, V-V, f° = —f - /
lin D'(R"
v-Vefl =V, V-V, f0 =
=0v-V;Gp —V,V-V,Gpo = —1°

Using uniform boundedness of x* we prove

Dy ¢
jo vV dy = — (pOVxV + V;,;V(po)) .
RB
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Weak formulation of the pde |l

Proposition 3. p := fR3 £V dv satisfies a weak formulation of the
formal macroscopic limit.

Integrate the kinetic equation w.r. to v,

€_G€
vf fdv:
R3 e

8tp5+Vx- 8tp€—|—vx°j620.

In the limit as =« — 0 we obtain
Op’ = Av(p’) +Vu- (p°ViV),

Pzt =0) = fr(z,v)dv.
R3

0
with v(p) = [ pi(7) dp
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Convergence to equilibrium, |

If > < oo we additionally require that V' is uniformly convex.

We consider the evolution in time of solutions of the
problem with e =1

Of +v-Vaf —VeV(2) Vof =G — f |

Proposition 4. For every sequence t,, — 0O, there exists a
subsequence (again denoted by t,,) such that

2
fn(t,ilf7’0) L= f(tn+t,:1:,v) — foo — GOO =y <|U2| + V( ) Iuoo)

where ,u is the unique constant Fermi energy which satisfies
Js 1 1 (p>® =V (z))de =M = Jge frdvdz.
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Velocity averaging

@ Let¢ € Dy, then (of) € L7, and

Or(of™) +v-Va(of™) =
= ¢G" + " (O +v - Vo — ¢ — ViV - Vyop) +
+ Vo (0f"V,V) = g" € L2, (H;Y) .

@ Golse, Perthame, Sentis '85:

Ph = / fdv
vI<R

@ As (f"), is weakly precompact in L (U x R?):

L :(U)

. A0
/IOR

1p>° = lim p% = lim p" In Li)t(U).

R—o0 n—oo
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Convergence to equilibrium, Il

By boundedness of the free energy from below and
integrating the production of free energy we obtain

o< [ [[ oE) - N -y ) dvdrdr < oo

Hence

0= tim [ [] (B = g =7 ) do e
Finally implying > = G*°. Boundedness in L' and L* on
RY x [0,T) and choosing particular test-functions in the

weak formulation of the problem yields
° v|?

f"=G*=n (‘% - u(poo(:vyt))> = (7 + V(@) - NOO) -
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Ex. 1, fast diffusion case

o Maxwellian is a negative power of the
energy, v(F) := E’“ D >0andk >5/2.

vvvvvvvvvvvvvvvvvvvv

5/2
Q = Op =V - (@(k)V(p”z 3/2 ) + pVV)
Observe 0 < z:gg <land v (p) =0%=2p =1 220,
@ Sufficient confinement of the potential
3

V()= Clal?, ae.for [¢|>R with ¢>
2
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Ex. 2, borderline case

Maxwell distribution v(F) = exp(—F)
@ l|eads to the linear kinetic BGK model
(simplified version).

@ = Linear drift-diffusion equation
Op=V-(Vp+pVV).

@ v(p) = p and the diffusivity v/(p) = 1.
@ Growth of the potential

V(x) > qlog(|x|), a.e.for |z|>R with g¢> 3.
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Ex. 3, porous medium case

Cut-off power as Gibbs state:
% — ]
YE)=(E2—E), k>0 ]

@ = Porous medium equation

Sp— - (@(kw(pﬁ???) ' pvv)

k+5/2
k+3/2

5 /N 2kts 53 PO
1< < g and v (p) = O553p"7 — 0.

@ Potential (* is the upper bound for the Fermi enery)
1

« 3
(Eo+u —V(:L“)) =0 (\x! ) a.e., q > YD as |z| — oo

Nonlinear diffusions as limits of BGK-type kinetic equations
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EX. 4, Fermi-Dirac statistics

For the Fermi-Dirac distribution

1
exp(F) + «

V(E) =

we obtain  9;p =V - (D(p)Vp+ pVV).

D(p) = vV'(p) = . ——
(27T)3/2 L11/2((L13/12)((27r)i52))
— 1+\/§ P L0, as p—0.

4 (27‘()3/2

with the polylogarithmic function Li, (z) := 332, 4.
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EX. 5, Bose-Einstein statistics

For the Bose-Einstein distribution

1
NE) = exp(F) — «
the diffusivity is given by
+ 0
D(p) = v'(p) = . — 4
(277-)3/2 L11/2((L13/12)((2_;)?52))
\/§ ap 2
= 1- 1 2n) +O0(p”), as p—0.
The maximal density p is given by p = (2”)3;2“%) . (Riemann

Zeta function ¢(s) := Lis(1) = > 7 | ).
Observe: lim, ;5 /(p) =0 and lim, .o /(p) =1
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Extension

@ An extended model with local energy conservation:

1
= (st (Gl + V@) 4yt ) = 1

where the parameter functions p¢(z,t) and a(x,t) are

adjusted to the position density and to the energy
density of f.

@ The diffusion limit of this equation is an energy
transport model, see [Degond, Génieys, Jungel, 1997].
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Application to a flat rotating system
of gravitating particles




Preliminaries: a Kinetic description

Consider the gravitational Vlasov-Poisson-Boltzmann
system

OF +v-ViF —Vath - Vo F = Qu(F)

where the potential ¢ is given as a solution of the Poisson
equation

A) = F dv dw
R2xR
the distribution function is concentrated on
{(z,2),(v,w)) € (RExR)x (R*xR) : 2=0, w=0} and
Q. (F) is a collision kernel which depends on the angular
velocity w, to be specified later

1

Y(t,x) = “ I * /1@2 F(t,x,v) dv
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Rotation at constant angular speec

Reduced problem in R?
(z,v) — (2™, (v +iwz) e“t) = Ry (2, 0)

F(t,z,v) =: f(t,ze™", (v+iwr) ™) = f o Ry (x,0) .
The equation satisfied by f can be written as

Oif +v-Vof +w’z-Vyof +2Re (iwv Vyf) = Vaeo- Vo f = Q(f)

where the collision kernel ) is defined by
Q(f) :== Qu(F) o R} and the potential ¢ is given by

o(t,xr) = f(t x,v) dv

47T|:1:\
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In the rotating reference frame...

Written in cartesian coordinates, the equation satisfied by f
IS

Oif +v-Vaof +w’x-Vyf +200 AVyf —Vaud - Vof = Q(f)
6= ———x [ fav

*
dmlz|  JRr

wherea Ab:=at - b= (—CLQ, a1) - (bl, bg) — a1bo — asby =
Re(i(m + 17 az)(bl — ibz))
Local Gibbs state and collision kernel:

1 1
Gylts,0) = (0P + 6(t,2) = 2 ol + st 2))

/RQGf(t,:C,’U) dv = f(t,x,v) dv QUf)=Gs—f

RQ
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Polytropes

Of +v-Vaof +wx - Vof + 200 AVyf — Vet - Vof =G¢— f

1
%k
477@\ R

6= - f dv

For simplicity: case of the polytropic gases, Or polytropes:

—S
E+1

)i and ji(p) = —(k+1) (%)#1

0= [t =) nor ().

v(s) = (
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A priori estimates

Mass:

M:// fdxdv >0
R2 xR2

Free energy functional: with 3(s) f v~ (o) do

//RMRQ [ ( ]2 — %uﬂ z)? + ; gb) 5(]6)] dz dv

IS such that
-/ /R (G- - ) dean
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Critical points

k

Polytropes: ~(s) := (k——ﬁ)+ Local Lagrange multiplier
1 1
pp(tox) = 56— 5P lal’ = filp)

“Global” Gibbs state (on a ball)

Pe(e0) = (P + (@) - g o - ©)
with ¢ (z) = _#\fﬂ\ % [oo [(z,v) dv

£°° is a critical point of F under the constraint
ffRQXRQ foo(il?, U) drdv =M
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Stationary solutions

1
k
1

4| x|

¢:_

xp with p= <¢——w2\x|2 )

C'is determined by the condition: |.. pdz =

1 \aa
G(s) =2m (_q s) = —qqlpq_1—|—¢eﬁ—C:O
q _

on the support of p, where the effective potential is

1 I o o
b S — — .
et

qbeff(x) =

Nonlinear diffusions as limits of BGK-type kinetic equations
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Reduced variational problem

Free energy of a local Gibbs state

1

FlG,l =:Glp] with G (z,v) =7 (5 v]* + /L(,O))

Reduced variational problem takes the form

Glol = [ |1o)+ (860 = 52 1o ) o d

o) i= [ |@o) (S0P +a0)) + 510 (G 10P +00) | a

= 2n [ [(Bo)(s+ Alp) + 5705+ o) ds
0

Polytropes: h(p) = %= p™ with m = —é




Results

w = 0: [Rein] Under the mass constraint, both functionals F
and G have a radial minimizer

[Schaeffer]: the radial minimizer is unique

[J.D., Ben Abdallah,...], [J.D., J. Fernandez]: dynamical
stability holds for both models

w # 0: [J.D., J. Fernandez] (work in progress)

Theorem 2. For any M > 0, there exists an angular velocity (M)
such that for any w € (0,0(M)), there is a stationary solution, which is
a minimizer of the localized energy. This solution is never radially
symmetric

Schwarz foliated symmetry

For any M > 0, there exists an angular velocity w(M') such
that for any w € (0,0(M)), there is a radial stationary
solution
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Open questions

Systematic construction of stationary solutions with higher
Morse indices ?

Dynamical stability of these solutions (at the diffusion level
and at the kinetic level) for w £ 0 ?
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