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Reverse Hardy-Littlewood-Sobolev inequality
Logarithmic Hardy-Littlewood-Sobolev (HLS) inequality

Outline

Hardy-Littlewood-Sobolev and related inequalities

Reverse Hardy-Littlewood-Sobolev inequalities
B an interpolation inequality with a kernel with a positive exponent
[José A. Carrillo, Matias G. Delgadino, Jean Dolbeault, Rupert L. Frank,
and Franca Hoffmann. Reverse Hardy-Littlewood-Sobolev inequalities.
Journal de Mathématiques Pures et Appliquées, 132:133-165, Dec 2019.]

Two-dimensional logarithmic inequalities
B in dimension two, logarithms play a special role for scaling reasons
[Jean Dolbeault, Rupert L. Frank, and Louis Jeanjean. Logarithmic
estimates for mean-field models in dimension two and the
Schrödinger-Poisson system. Preprint arXiv: 2107.00610 & hal-03276199,
to appear in C.R. Mathématiques]
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Reverse HLS inequality
B The inequality and the conformally invariant case
B A proof based on Carlson’s inequality
B The case λ= 2
B Concentration and a relaxed inequality

Existence of minimizers and relaxation
B Existence minimizers if q > 2N/(2N +λ)
B Relaxation and measure valued minimizers

Free Energy
B Free energy: toy model, equivalence with reverse HLS inequalities
B Relaxed free energy
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The reverse HLS inequality

For any λ> 0 and any measurable function ρ ≥ 0 on RN , let

Iλ[ρ] :=
Ï
RN×RN

|x −y |λρ(x)ρ(y)dx dy

N ≥ 1 , 0< q < 1 , α := 2N −q (2N +λ)
N (1−q)

Convention: ρ ∈ Lp(RN) if
∫
RN |ρ(x)|p dx for any p > 0

Theorem

The inequality

Iλ[ρ] ≥CN ,λ,q

(∫
RN
ρdx

)α (∫
RN
ρq dx

)(2−α)/q
(1)

holds for any ρ ∈ L1+∩Lq(RN) with CN ,λ,q > 0 if and only if q >N/(N+λ)
If either N = 1, 2 or if N ≥ 3 and q ≥min

{
1−2/N , 2N/(2N +λ)}, then

there is a radial nonnegative optimizer ρ ∈ L1∩Lq(RN)
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N = 4, region of the parameters (λ,q) for which CN ,λ,q > 0
Optimal functions exist in the light grey area
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The conformally invariant case q = 2N/(2N +λ)

Iλ[ρ]=
Ï
RN×RN

|x −y |λρ(x)ρ(y)dx dy ≥CN ,λ,q

(∫
RN
ρq dx

)2/q
q = 2N/(2N +λ) ⇐⇒ α= 0

[Dou, Zhu 2015] [Ngô, Nguyen 2017]

The optimizers are given, up to translations, dilations and multiplications
by constants, by

ρ(x)=
(
1+|x |2

)−N/q ∀x ∈RN

and the value of the optimal constant is

CN ,λ,q(λ) =
1

π
λ
2

Γ
(
N
2 + λ

2

)
Γ

(
N + λ

2

)
 Γ(N)

Γ
(
N
2

)
1+ λ

N
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The plain, red curve is the conformally invariant case α= 0
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Ï
RN×RN

|x −y |λρ(x)ρ(y)dx dy ≥CN ,λ,q

(∫
RN
ρdx

)α (∫
RN
ρq dx

)(2−α)/q

0 2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

α< 0

0<α< 1

α> 1

J. Dolbeault Two non-conventional inequalities



Reverse Hardy-Littlewood-Sobolev inequality
Logarithmic Hardy-Littlewood-Sobolev (HLS) inequality

The reverse HLS inequality
Existence of minimizers and relaxation
Free energy point of view

A Carlson type inequality

Lemma

Let λ> 0 and N/(N +λ)< q < 1

(∫
RN
ρdx

)1−N (1−q)
λq

(∫
RN

|x |λρdx
)N (1−q)

λq ≥ cN ,λ,q

(∫
RN
ρq dx

) 1
q

cN ,λ,q = 1
λ

(
(N+λ)q−N

q

) 1
q

(
N (1−q)

(N+λ)q−N
)N
λ

1−q
q

(
Γ(N

2 )Γ(
1

1−q )

2π
N
2 Γ( 1

1−q−N
λ )Γ(

N
λ )

) 1−q
q

Equality is achieved if and only if

ρ(x)=
(
1+|x |λ

)− 1
1−q

up to translations, dilations and constant multiples

[Carlson 1934] [Levine 1948]
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Proposition

Let λ> 0. If N/(N +λ)< q < 1, then CN ,λ,q > 0

By rearrangement inequalities: prove the reverse HLS inequality for
symmetric non-increasing ρ’s so that∫

RN
|x −y |λρ(y)dx ≥

∫
RN

|x |λρdx for all x ∈RN

implies

Iλ[ρ]≥
∫
RN

|x |λρdx
∫
RN
ρdx

In the range N
N+λ < q < 1

Iλ[ρ]

(
∫
RN ρ(x)dx)

α ≥
(∫
RN
ρdx dx

)1−α∫
RN

|x |λρdx ≥ c2−α
N ,λ,q

(∫
RN
ρq dx

) 2−α
q

and conclude with Carlson’s inequality
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N = 4, region of the parameters (λ,q) for which CN ,λ,q > 0. The dashed, red
curve is the threshold case q =N/(N +λ)

Rearrangement inequalities: ρ is symmetric non-increasing,
∫
RN x ρdx = 0

I2[ρ]= 2
∫
RN ρdx

∫
RN |x |2ρdx
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The threshold case q =N/(N +λ) and below

Proposition

If 0< q ≤N/(N +λ), then CN ,λ,q = 0= limq→N/(N+λ)+ CN ,λ,q

Let ρ, σ≥ 0 such that
∫
RN σdx = 1, smooth (+ compact support)

ρε(x) := ρ(x)+M ε−N σ(x/ε)

Then
∫
RN ρεdx = ∫

RN ρdx +M and, as ε→ 0+∫
RN
ρ
q
ε dx →

∫
RN
ρq dx+

Iλ[ρε]→ Iλ[ρ]+2M
∫
RN

|x |λρdx

If 0< q <N/(N +λ), i.e., α> 1, take ρε as a trial function,

CN ,λ,q ≤
Iλ[ρ]+2M

∫
RN |x |λρdx

(
∫
RN ρdx +M)α (

∫
RN ρ

q dx)(2−α)/q
=:Q[ρ,M]

and let M →+∞... The threshold case: ρR(x) := |x |−(N+λ)
11≤|x |≤R(x)
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A relaxed inequality

Iλ[ρ]+2M
∫
RN

|x |λρdx ≥CN ,λ,q

(∫
RN
ρdx +M

)α (∫
RN
ρq dx

)(2−α)/q
(2)

Proposition

If q >N/(N +λ), the relaxed inequality (2) holds with the same optimal
constant CN ,λ,q as (1) and admits an optimizer (ρ,M)

Heuristically, this is the extension of the reverse HLS inequality (1)

Iλ[ρ] ≥CN ,λ,q

(∫
RN
ρdx

)α (∫
RN
ρq dx

)(2−α)/q
to measures of the form ρ+M δ

J. Dolbeault Two non-conventional inequalities



Reverse Hardy-Littlewood-Sobolev inequality
Logarithmic Hardy-Littlewood-Sobolev (HLS) inequality

The reverse HLS inequality
Existence of minimizers and relaxation
Free energy point of view

Existence of minimizers and
relaxation

J. Dolbeault Two non-conventional inequalities



Reverse Hardy-Littlewood-Sobolev inequality
Logarithmic Hardy-Littlewood-Sobolev (HLS) inequality

The reverse HLS inequality
Existence of minimizers and relaxation
Free energy point of view

Existence of a minimizer: first case
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The α< 0 case: dark grey region

Proposition

If λ> 0 and 2N
2N+λ < q < 1, there is a minimizer ρ for CN ,λ,q

The limit case α= 0, q = 2N
2N+λ is the conformally invariant case: see [Dou,

Zhu 2015] and [Ngô, Nguyen 2017]
Tools: radial functions, Helly’s selection theorem, dominated convergence
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Existence of a minimizer: second case

If N/(N +λ)< q < 2N/(2N +λ) we consider the relaxed inequality

Iλ[ρ]+2M
∫
RN |x |λρdx ≥CN ,λ,q (

∫
RN ρdx +M)α (

∫
RN ρ

q dx)(2−α)/q
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The 0<α< 1 case: dark grey region

Proposition

If q >N/(N +λ), the relaxed inequality holds with the same optimal
constant CN ,λ,q as (1) and admits an optimizer (ρ,M)
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Optimizers are positive

Q[ρ,M] := Iλ[ρ]+2M
∫
RN |x |λρdx

(
∫
RN ρdx +M)α (

∫
RN ρ

q dx)(2−α)/q

Lemma

Let λ> 0 and N/(N +λ)< q < 1. If ρ ≥ 0 is an optimal function for some
M > 0, then ρ is radial (up to a translation), monotone non-increasing
and positive a.e. on RN

If ρ vanishes on a set E ⊂RN of finite, positive measure, then

Q
[
ρ,M +ε1E

]=Q[ρ,M]

(
1− 2−α

q

|E |∫
RN ρ(x)

q dx
εq +o(εq)

)
as ε→ 0+, a contradiction if (ρ,M) is a minimizer of Q
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Euler–Lagrange equation and regularity

Euler–Lagrange equation for a minimizer (ρ∗,M∗)

2
∫
RN |x −y |λρ∗(y)dy +M∗|x |λ
Iλ[ρ∗]+2M∗

∫
RN |y |λρ∗dy

− α∫
RN ρ∗dy +M∗

− (2−α)ρ∗(x)−1+q∫
RN ρ∗(y)q dy

= 0

We can reformulate the question of the optimizers of (1) as: when is it true
that M∗ = 0 ? We already know that M∗ = 0 if

2N
2N +λ < q < 1

Proposition (regularity)

If N ≥ 3, λ> 2N/(N −2) and

N

N +λ < q <min
{
N −2
N

,
2N

2N +λ
}

,

and (ρ∗,M∗) ∈ LN (1−q)/2(RN)× [0,+∞) is a minimizer, then M∗ = 0

J. Dolbeault Two non-conventional inequalities
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Uniqueness N = 4
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[Lopes, 2017] Iλ[h]≥ 0 if 2≤λ≤ 4, for all h such that∫
RN

(
1+|x |λ) |h|dx <∞ with

∫
RN hdx = 0 and

∫
RN x hdx = 0...
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Uniqueness N = 10
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... or geodesic convexity in the Wasserstein-p metric for p ∈ (1,2)
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A toy model

Assume that u solves the fast diffusion with external drift V given by

∂u

∂t
=∆uq + ∇· (u∇V )

To fix ideas: V (x)= 1+ 1
2 |x |2+ 1

λ |x |λ. Free energy functional

F [u] :=
∫
RN

V udx − 1
1−q

∫
RN

uq dx

Under the mass constraint M = ∫
RN udx , smooth minimizers are

uµ(x)=
(
µ+V (x)

)− 1
1−q

The equation can be seen as a gradient flow

d

dt
F [u(t, ·)]=−

∫
RN

u
∣∣∣ q
1−q∇uq−1−∇V

∣∣∣2 dx
J. Dolbeault Two non-conventional inequalities
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A toy model (continued)

If λ= 2, the so-called Barenblatt profile uµ has finite mass if and only if

q > qc := N −2
N

For λ> 2, the integrability condition is q > 1−λ/N but q = qc is a

threshold for the regularity: the mass of uµ = (µ+V )1/(1−q) is

M(µ) :=
∫
RN

uµdx ≤M? =
∫
RN

(
1
2 |x |2+ 1

λ |x |λ
)− 1

1−q
dx

If one tries to minimize the free energy under the mass contraint∫
RN udx =M for an arbitrary M >M?, the limit of a minimizing sequence

is the measure (
M −M?

)
δ+u−1
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A model for nonlinear springs: heuristics

V = ρ∗Wλ , Wλ(x) := 1
λ |x |λ

is motivated by the study of the nonnegative solutions of the evolution
equation

∂ρ

∂t
=∆ρq + ∇· (ρ∇Wλ∗ρ)

Optimal functions for (1) are energy minimizers (eventually measure
valued) for the free energy functional

F [ρ] := 1
2

∫
RN
ρ (Wλ∗ρ)dx −

1
1−q

∫
RN
ρq dx = 1

2λ
Iλ[ρ]−

1
1−q

∫
RN
ρq dx

under a mass constraint M = ∫
RN ρdx while smooth solutions obey to

d

dt
F [ρ(t, ·)]=−

∫
RN
ρ

∣∣∣ q
1−q∇ρq−1−∇Wλ∗ρ

∣∣∣2 dx
J. Dolbeault Two non-conventional inequalities
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Further recent results

Chuqi Cao, Xingyu Li. Large Time Asymptotic Behaviors of Two Types of
Fast Diffusion Equations. arXiv:2011.02343

J.A. Carrillo, M. Delgadino, R. Frank, M. Lewin. Fast diffusion leads to
partial mass concentration in Keller-Segel type stationary solutions.
arXiv:2012.08586
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A critical nonlinear Schrödinger-Poisson system on R2

i
∂ψ

∂t
=∆ψ+αV ψ+βW ψ+ γ log |ψ|2ψ

−∆W = |ψ|2
The critical case

B dimension d = 2 so that W has a logarithmic growth as |x |→+∞
B the logarithmic nonlinearity log |ψ|2 (as e.g. a limit case of power law
nonlinearities)... soliton-like solutions of Gaussian shape called Gaussons
B an external potential with critical growth

V (x)= 2 log
(
1+|x |2

)
∀x ∈R2

Energy

E [ψ] :=
∫
R2

|∇ψ|2dx+α
∫
R2

V |ψ|2dx+2πβ
∫
R2

W |ψ|2dx+γ
∫
R2

|ψ|2 log |ψ|2dx

Standing waves
ψ(t,x)= e i E t u(x)

J. Dolbeault Two non-conventional inequalities
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Minimize

E [u] :=
∫
R2

|∇u|2dx+α
∫
R2

V |u|2dx+2πβ
∫
R2

W |u|2dx+γ
∫
R2

|u|2 log |u|2dx
on

HM :=
{
u ∈ H1(R2) : ‖u‖22 =M

}
B What are the conditions on α, β, γ ∈R for which E is bounded from
below ?

V (x)= 2 log
(
1+|x |2

)
∀x ∈R2

Poisson equation
−∆W = |u|2

means that W is defined only up to an additive constant: choice
W = (−∆)−1|u|2 with Green kernel

G (x ,y)=− 1
2π

log |x −y | ∀(x ,y) ∈R2×R2

so that

W (x)∼− ‖u‖22
2π

log |x | as |x |→+∞
J. Dolbeault Two non-conventional inequalities
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Logarithmic Hardy-Littlewood-Sobolev (HLS) inequality

For any ρ ∈ L1+(R2) such that
∫
R2 ρdx =M > 0∫

R2
ρ log

( ρ
M

)
dx + 2

M

Ï
R2×R2

ρ(x)ρ(y) log |x −y |dx dy +M (1+ logπ)≥ 0

[E. Carlen and M. Loss, 1992] [W. Beckner, 1993]
Equality is achieved by

ρ?(x) := M

π(1+|x |2)2
∀x ∈R2

Invariances: homogeneity, scalings, translations

B fast diffusion flows [E. Carlen, J.A. Carrillo, M. Loss, 2010] [JD,
G. Jankowiak, 2014]
B Duality and relations with Onofri type inequalities [Onofri, 1982]
[Calvez, Corrias, 2008] [JD, M.J. Esteban, G. Jankowiak, 2015]
B rearrangement-free proof using reflection positivity [R. Frank, E. Lieb,
2011]
B a useful lower bound on the free energy in the Keller-Segel
model [A. Blanchet, JD, B. Perthame, 2006]
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Generalized log-HLS inequalities

With V = logρ?+Const, for any ρ ∈ L1+(R2) with M = ∫
R2 ρdx > 0

∫
R2
ρ log

( ρ
M

)
dx +2τ

∫
R2

log
(
1+|x |2

)
ρdx +M (1−τ+ logπ)

≥ 2
M

(τ−1)
Ï
R2×R2

ρ(x)ρ(y) log |x −y |dx dy ∀τ≥ 0

[JD, X. Li, 2019]
If τ ∈ [0,1]: an interpolation between log-HLS and Jensen:∫

R2 ρ log
(

ρ
M ρ?

)
dx ≥ 0

B What happens in the limit as τ→+∞
Lemma

For any function ρ ∈ L1+(R2) such that
∫
R2 ρdx =M

2
∫
R2

log
(
1+|x |2

)
ρdx −M ≥ 2

M

Ï
R2×R2

ρ(x)ρ(y) log |x −y |dx dy

with equality if and only if ρ = ρ?J. Dolbeault Two non-conventional inequalities
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A free energy of Keller-Segel type

Fa,b[ρ] :=
∫
R2
ρ log

( ρ
M

)
dx +a

∫
R2

log
(
1+|x |2

)
ρdx

− b
M

Ï
R2×R2

ρ(x)ρ(y) log |x −y |dx dy

for any ρ ∈ L1+(R2) such that
∫
R2 ρdx =M

Keller-Segel with an external potential of critical growth

∂ρ

∂t
=∆ρ+∇·

[
ρ

(
a
2
∇V +4π

b
M

∇W
)]

B Range of the parameters a and b such that

Fa,b[ρ]≥C (a,b)M ∀ρ ∈ L1
+(R

2) such that
∥∥ρ∥∥

1 =M

J. Dolbeault Two non-conventional inequalities
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Boundedness from below of the free energy

[JD, R. Frank, L. Jeanjean, 2021]

Theorem

C (a,b)>−∞ if either a= 0 and b=−2, or

a> 0 , −2≤ b< a−1 and b≤ 2a−2

If 0≤ a< 1 and b= 2a−2, there is no minimizer and

C (a,2a−2)=− log
( eπ

1−a

)
If either a< 0 or b<−2 or b>min{a−1,2a−2} or (a,b)= (1,0), then

inf
ρ∈X1

Fa,b[ρ]=−∞

J. Dolbeault Two non-conventional inequalities
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2.2. Boundedness from below of the free energy functional. Let us consider the free
energy functional defined by

Fa,b[⇢] :=

Z

R2

⇢ log
⇣ ⇢

M

⌘
dx+a

Z

R2

log
�
1 + |x|2

�
⇢ dx� b

M

ZZ

R2⇥R2

⇢(x) ⇢(y) log |x�y| dx dy

for any ⇢ 2 L1
+(R2) such that

R
R2 ⇢ dx = M . We look for the range of the parameters a and b

such that
Fa,b[⇢] � C(a, b) M 8 ⇢ 2 L1

+(R2) such that k⇢k1 = M (8)
for some constant C(a, b). Inequality (5) with ⌧ � 0 is obtained as the special case a = 2 ⌧

and b = 2 (⌧ � 1), with C(a, b) = M (⌧ � 1 � log ⇡), according to [24]. As a consequence,
we also know that (8) holds for some C(a, b) > �1 if a � 2 ⌧ and b = 2 (⌧ � 1), that is,
0  b + 2  a. This range can be improved. For instance, if b = 0, it is clear from Lemma 2
that the threshold is at a = 1 and not a = 2. Our result (see Fig. 1) is as follows.

Theorem 3. Inequality (8) holds for some C(a, b) > �1 if either a = 0 and b = �2, or

a > 0 , �2  b < a � 1 and b  2 a � 2 .

If either a < 0 or b < �2 or b > min{a � 1, 2 a � 2} or (a, b) = (1, 0), then

inf
⇢2X1

Fa,b[⇢] = �1 .

If 0  a < 1 and b = 2 a � 2, then

C(a, 2 a � 2) = � log

✓
e ⇡

1 � a

◆
.

Moreover, if a > 0 there is no minimizer for C(a, 2 a � 2).

-1 1 2 3

-3

-2

-1

1

2

a

b

b = min{a � 1, 2 a � 2}

b = a � 2

(1, 0)

(0,�2)

Figure 1. White (resp. grey) area corresponds to the domain in which (8) holds for
some finite constant C(a, b) (resp. C(a, b) = �1). We also know that C

�
a, 2 (a�1)

�
=

� log (e ⇡/(1 � a)) if 0  a < 1 and C(1, 0) = �1, while the boundedness from below
of Fa,b is not known in the threshold case b = a � 1 > 0. On the dotted half-line
b = a � 2 � �2, optimality is achieved by ⇢? and Inequality (8) corresponds to (5)
with a = 2 ⌧ , b = 2 (⌧ � 1), and ⌧ � 0.

The boundedness from below of Fa,b is unknown only in the case b = a � 1 > 0. If
b = 2 a� 2 < 0, we do not only show the semi-boundedness of Fa,b, but we actually compute

Fa,b[ρ]=
∫
R2 ρ log

( ρ
M

)
dx +a

∫
R2 log

(
1+|x |2)

ρdx − b
M

Î
R2×R2 ρ(x)ρ(y) log |x −y |dx dy

J. Dolbeault Two non-conventional inequalities
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Proofs

a< 0: use translations∫
R2

log
(
1+|x |2

)
ρx0(x)dx ∼ 2 log |x0|

∫
R2
ρdx as |x0|→+∞

b+2−2a> 0: use scalings of ρλ(x)=λ2ρ(λx) to get

Fa,b[ρλ]∼ (b+2−2a) logλ

b+1−a> 0: take ρ such that that ρ(x)= 0 if |x | 6∈ [1,2], let

ρε,λ(x)= (1−ε)ρ(x)+λ2 ερ (λx)

J. Dolbeault Two non-conventional inequalities
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Proofs (continued)

Lemma

If 0≤ a< 1 and b= 2a−2,

C (a,b)= inf
ρ∈L1+(R2),M=1

(∫
R2
ρ logρdx +2a

∫
R2

log |x |ρdx

+2(a−1)
Ï
R2×R2

ρ(x) log
1

|x −y | ρ(y)dx dy
)

and there is no minimizer of the l.h.s.
The infimum of the r.h.s. is achieved if and only if, for some λ> 0,

ρ(x)= 1−a
π

λ2

|x |2a
(
λ2+|x |2(1−a)

)2
Hints
1. consider ρλ(x)=λ−2σ(x/λ) with λÀ 1
2. use symmetric decreasing rearrangement, set ρ0(x) := |x |2aρ(x) and

then τ(z)= ρ0
(
|z |1/(1−a)

)
, use Newton’s theorem and log-HLS

J. Dolbeault Two non-conventional inequalities
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A slightly more general free energy

F c
a,b[ρ] := a

∫
R2
log

(
1+|x |2

)
ρdx

− b
M

Ï
R2×R2

ρ(x)ρ(y) log |x −y |dx dy +c
∫
R2
ρ log

( ρ
M

)
dx

By homogeneity: boundedness from below for any c> 0 if
−2c≤ b<min{a−c,2a−2c}

B What about c< 0 ?

Proposition

For any (a,b) ∈R2 and M > 0, with the above notations, if c< 0, then

infF c
a,b[ρ]=−∞

Rε,n(x) := 1
n2

n∑
k ,`=1

ε−2ρ
(
ε−1 (

x − (k ,`)
))

and take ε= n−A for some A> 0 large enoughJ. Dolbeault Two non-conventional inequalities
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Back to Schrödinger energies
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More interpolations

Euclidean logarithmic Sobolev inequality in scale invariant form

‖u‖22 log
(
1
πe

‖∇u‖22
‖u‖22

)
≥

∫
R2

|u|2 log
(
|u|2
‖u‖22

)
dx

Combined with log-HLS...

Proposition

For any function u ∈ H1(R2), we have

2π
∫
R2

|u|2 (−∆)−1|u|2dx ≤ ‖u‖42 log
(‖∇u‖2
‖u‖2

)

J. Dolbeault Two non-conventional inequalities
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Bounds on the Schrödinger energy

Let γ+ :=max{γ,0} and consider

E [u] :=
∫
R2

|∇u|2dx+α
∫
R2

V |u|2dx+2πβ
∫
R2

W |u|2dx+γ
∫
R2

|u|2 log |u|2dx

Theorem

Let α, β, γ be real parameters and assume that M > 0. Then
(i) E is not bounded from below on HM if one of the following

conditions is satisfied:

(a) α< 0

(b) α≥ 0 and Mβ>min
{
2α−γ,4α−2γ

}
(ii) E is bounded from below on HM if either α= 0, β≤ 0 and

Mβ+2γ≤ 0, or α> 0 and one of the following conditions is satisfied:

(a) γ≤ 0 and Mβ≤ 2α
(b) γ> 0 , Mβ≤ 4α−2γ and Mβ< 2α−γ

J. Dolbeault Two non-conventional inequalities
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(ii) E is bounded from below on HM if either ↵ = 0, �  0 and M � + 2 �  0, or ↵ > 0

and one of the following conditions is satisfied:

(a) �  0 and M �  2↵ ,

(b) � > 0 , M �  4↵� 2 � and M � < 2↵� � .

Two cases covered by Theorem 10 are shown in Fig. 2.

-2 -1 1 2 3 4

-4

-2

2

4

-2 2 4 6

-4

-2

2

4

6

�

�/↵

?
?

↵ = 0 ↵ = 1
M � M �/↵

Figure 2. White (resp. dark grey) area corresponds to the domain in which E is
bounded (resp. unbounded) from below with ↵ = 0 on the left and ↵ = 1 on the right.
Whether E is bounded in the light grey domain or not is open so far.

Proof. Let us start by the proof of (i), i.e., the cases for which inf{E [u] : u 2 HM} = �1.
Case (a) corresponds to ↵ < 0 and can be dealt with using translations as in the proof of
Lemma 5: lim|x0|!+1 E [u(· � x0)] = �1. Next let u�(x) := �u(�x) and notice that

Z

R2

|ru�|2 dx = �2

Z

R2

|ru|2 dx = o(log �) as �! 0+ ,

so that, with ⇢� = |u�|2,

E [u�] ⇠ 2↵

Z

R2

log
�
1 + |x|2

�
⇢� dx + 2⇡ �

Z

R2

⇢� (��)�1⇢� dx + �

Z

R2

⇢� log ⇢� dx .

By arguing as in Lemma 5, we obtain that lim�!0+ E [u�] = �1 in case (b).
Concerning (ii), the boundedness from below of E is as follows. From (12) and (15), we

learn that Z

R2

|ru|2 dx � 1

2�2
1

Z

R2

|u|2 log

✓ |u|2
M

◆
dx +

log
�
2⇡ e2 �2

1

�

2�2
1

M (20)

and Z

R2

|ru|2 dx � 2⇡

M �2
2

Z

R2

|u|2 (��)�1|u|2 dx +
log
�
2 e �2

2

�

2�2
2

M (21)

with kuk2
2 = M . Here �1 and �2 are two arbitrary positive parameters. Let us distinguish

various cases:

(1) If ↵ = 0, �  0 and �  0, the boundedness from below of E is a direct consequence
of (20) and (21). The case ↵ = 0, � < 0 and � > 0 can be reduced to the case ↵ = 0

and � = 0 using (3) if M � + 2 �  0.
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
B Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !

J. Dolbeault Two non-conventional inequalities

https://www.ceremade.dauphine.fr/~dolbeaul/Lectures/
https://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/
mailto:dolbeault@ceremade.dauphine.fr


Reverse Hardy-Littlewood-Sobolev inequality
Logarithmic Hardy-Littlewood-Sobolev (HLS) inequality

Logarithmic Schrödinger-Poisson system onR2
Free energy point of view
More interpolations and the Schrödinger energy

1 Reverse Hardy-Littlewood-Sobolev inequality
The reverse HLS inequality
Existence of minimizers and relaxation
Free energy point of view

2 Logarithmic Hardy-Littlewood-Sobolev (HLS) inequality
Logarithmic Schrödinger-Poisson system on R2

Free energy point of view
More interpolations and the Schrödinger energy

J. Dolbeault Two non-conventional inequalities


	Reverse Hardy-Littlewood-Sobolev inequality
	The reverse HLS inequality
	Existence of minimizers and relaxation
	Free energy point of view

	Logarithmic Hardy-Littlewood-Sobolev (HLS) inequality
	Logarithmic Schrödinger-Poisson system on R2
	Free energy point of view
	More interpolations and the Schrödinger energy


