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e From p-entropies to H' hypocoercivity
> @-entropies and diffusions
> ¢-hypocoercivity (H! framework)

An L2 abstract result and mode-by-mode hypocoercivity
> Abstract statement, toy model, global L? hypocoercivity result
> Diffusion limit, application to the torus and a more numerical
point of view

>> Decay rates in the Euclidean space without confinement

o Diffusion and kinetic transport with very weak
confinement

o The Vlasov-Poisson-Fokker-Planck system: linearization
and hypocoercivity
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From g-entropies to H! hypocoercivity
An abstract result and mode-by-mode hypocoercivity @-entropies and diffysions
Diffusion and kinetic tran rery weak confinemen t  ¢@-hypocoercivity (H' framework)
Vlasov-Poisson

From o-entropies to
H' hypocoercivity

> Some references of related works

(Chafai 2004), (Bolley, Gentil 2010)

(Baudoin 2017)

(Monmarché), (Evans, 2017)

(Arnold, Erb, 2014), (Arnold, Stiirzer), (Achleitner, Arnold, Stiirzer,
2016), (Achleitner, Arnold, Carlen, 2017), (Arnold, Einav, Wohrer,
2017)

> In collaboration with X. Li
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From g-entropies to H1 hypocoercivity
An abstract result and mode-by-mode hypocoercivity -entropies and diffysions
Diffusion and kinetic transport with very weak confinement  @-hypocoercivity (H* framework)
Vlasov-Poi Fokke Planck system

Definition of the w-entropies

efu] = [ ow) iy

 is a nonnegative convex continuous function on R™ such that
©(1) =0 and 1/¢" is concave on (0, +00):

" >0, p>p(1)=0 and (1/¢")" <0
Classical examples
op(w) := ﬁ (w?—1—p(w—1)) pe(1,2]

p1(w) == wlogw — (w—1)

The invariant measure

dy=e ¥ dz
where 1 is a potential such that e~ is in L'(R?, dr)
d~ is a probability measure
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From ¢-entropies to H! hypocoercivity
-entropies and diffysions
@-hypocoercivity (H1 framework)

Diffusions

Ornstein- Uhlenbeck equation or backward Kolmogorov equation

0
8%“ = Lw:=Aw— V¢ Vuw
Q —/ (Lwy) wp dy = Vuwy - Vwg dy YV wy, wo EHl(Rd, dv)
R4 R4
Q 1= / wo dy = / w(t,-) dy and limg, oo w(t, ) =1
Rd R

e %S[w] = —/ ¢ (w)|Vow* dy =: —I[w] (Fisher information)
Rd

If for some A > 0: entropy — entropy production inequality
Jw] > A&[w] Ywe HY(R?, dy)
Elw(t,)] < E[wo] et V>0

Fokker-Planck equation : u = w~y converges to u, = v

ou
5 = Au+ V- (uVz1)
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From ¢-entropies to H! hypocoercivity
-entropies and diffysions
@-hypocoercivity (H1 framework)

Generalized Csiszar-Kullback-Pinsker inequality

(Pinsker), (Csiszar 1967), (Kullback 1967), (Céceres, Carrillo, JD,
2002)

Proposition

Let p € [1,2], w € L! N LP(RY, dv) be a nonnegative function, and
assume that ¢ € C?(0,+00) is a nonnegative strictly convex function
such that p(1) = ¢’ (1) = 0. If A :=inf (g 00) > F " (s) > 0, then

_2 q -2 2
efu] 2 27% A min {1, |l g0y } 10 = 113000,
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From ¢-entropies to H! hypocoercivity
-entropies and diffysions
@-hypocoercivity (H1 framework)

Convexity, tensorization and sub-additivity

/ o (w) [Vul? dy; =: 9y [w] > As €. [u] Ve H'(RY, dy,)
R

Theorem

If dv, and d~ys are two probability measures on R4 x R% | then

T omaltt] = / o' (1) |Vuol? dyy dra
RY1 x R92

> min{A1, A2} € g4, [w] Yw e HHRM x R%, dy)

o’

T ® yalu] = / T[] dra + / Tralw] dm
Rd2 R91

el < [ Enluldre+ [ Enfuldn YweLlldn o)
Rd2 R4
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From ¢-entropies to H! hypocoercivity
-entropies and diffysions
@-hypocoercivity (H1 framework)

Perturbation (Holley-Stroock type) results

With @ := [, w dv, assume that

A [ e ar-vm] < [ p@ivep s voen)
Rd Rd
and, for some constants a, b € R,

e Vdy <dp<e dy

If ¢ is a C? function such that ¢" >0 and @ := [p, wdp/ [p. dp,
then

A [ fotw) = ol@ ¢ @(w=D)] du < | ¢ (w) Vol du
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From ¢-entropies to H! hypocoercivity
-entropies and diffysions
@-hypocoercivity (H1 framework)

Entropy — entropy production inequalities, linear flows

On a smooth convex bounded domain §2, consider

Z—T:Lw::Aw—Vw-Vw, Vw-v=0 on 90
d P—1 4

21z d7:—7/|Vz\2d'y and z = wP/?
dt Jo p—1 P Ja

d
G [ < =20) [ ViR ay
dt Jo Q

where A(p) > 0 is the best constant in the inequality

2
E(pfl)/ |VX|2d’y+/Hessd):X@deyzA(p)/|X|2d’y
Q Q Q

Proposition

wP — 1 4 /212
dy < — | |[VwP?|*dy  for any w s.t. wdy=1
o p—1 pA Jo Q

/™ — ERaYa Y
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From g-entropies to H1 hypocoercivity
-entropies and diffysions
@-hypocoercivity (H1 framework)

An interpolation inequality

Assume that q € [1,2). With A = A(2/q), we have

Hin?(]Rd,d'y) - ||f||iQ(Rd,dv) < l/ |Vf|2 dy Vfe Hl(Rd dv)
< A iy Y , @Y

2—q
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From ¢-entropies to H! hypocoercivity
-entropies and diffysions
@-hypocoercivity (H! framework)

Improved entropy — entropy production inequalities

In the special case 9(z) = |z|?/2, with z = wP/?, we obtain that

1d ) ) 2 V2[4
- ¢ d dy< - = d
th/Rd|Vz| V—I—/Rd\Vz| v < pnp/Rd ekl

with r, = (p—1)(2-p)/p .
Cauchy-Schwarz: ([, |Vz|? d'y)2 < Jga V2] dy [ga 2% dy

22

d I[w]?

prlCU Rl Rl wray e sy

Assume that q € (1,2) and dy = (2r)~%/? e 17*/2 4y There exists a
strictly convex function F such that F(0) =0 and F'(0) =1 and

2 2 .
F (”fHL?(Rd,dfy) - 1) < ||foL2(]Rd,d»y) if ||fHLq(]Rd,d'y) =1
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From g-entropies to H1 hypocoercivity
An abstract result and mode-by-mode hypocoercivity p-entropies and diffysions
Diffusion and kinetic transport with very weak confinement  @p-hypocoercivity (H~ framework)

Vlasov-Poisson-Fokker-Planck system

p-hypocoercivity (H! framework)

> adapt the strategy of p-entropies to kinetic equations

> Villani’s strategy: derive H! estimates (using a twisted Fisher
information) and then use standard interpolation inequalities to
establish entropy decay rates

The twisted Fisher information is not the derivative of the w-entropy
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From g-entropies to H1 hypocoercivity
(-entropies and diffysions
@-hypocoercivity (H* framework)

The kinetic Fokker-Planck equation, or Vlasov-Fokker-Planck
equation:

of

a""v'vxf_vxw'vvf:Avf"‘vv'(Uf) (1)
with 9 (z) = |z|?/2 and [[fllr1 (axrey =1 has a unique nonnegative
stationary solution

f(@,v) = (2m) 4 e~ 3Uel P10

and the function g = f/f, solves the kinetic Ornstein-Uhlenbeck
equation

dg
2 4 Tg=L
5; TT9=Lyg

with transport operator T and Ornstein-Uhlenbeck operator L given
by
Tg:=v-Vyg—2-V,ug and Lg:=A,9—v-V,ug

J. Dolbeault Hypocoercivity



From ¢-entropies to H! hypocoercivity
-entropies and diffysions
@-hypocoercivity (H* framework)

Sharp rates for the kinetic Fokker-Planck equation

Lot w(a) = [of? /2, dpi= o dodo, 2ol = [ oyo) du

Proposition

Let p € [1,2] and consider a nonnegative solution g € L}(R? x R?) of
the kinetic Fokker-Planck equation. There is a constant € > 0 such
that

Elg(t, ) <Cet V>0

and the rate e~ is sharp as t — +o0

(Villani), (Arnold, Erb): a twisted Fisher information functional
NS (1—>\)/ |Vuh|2du+(1—/\)/ |th\2du+/\/ |Voh+ Vh|* dp
R R4 R

(Arnold, Erb) relies on A = 1/2 and £dy 2[h(t,-)] < —J1/2[h(t, )]
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From ¢-entropies to H! hypocoercivity
(-entropies and diffysions
@-hypocoercivity (H* framework)

Improved rates (in the large entropy regime)

Rewrite the decay of the Fisher information functional as
d
—1— | Xt M Xdu= Xl-sledqu/ Yoo, Vdu
dt Rd Rd Rd

where X = (Vvh, Vzh) 5 Y = (Hm;a Hzm Mvm Mxv)

1 ) 1—\ 1+ —v
— — 2
f)ﬁo — ( )\ v ) ® Ide7 9:711 == ( 1_;'_3_,/ )\ ) ® Ide

A
1 2
Ao =y
My = :
2 —5  —EA 2K 2K ® ldrixmi
—EA BV 2k 2kv

With constant coefficients
Xt oo X

A*(A, V) = Imax {m}}n m : ()\7 V) S R2 s.t. mg 2 0}
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From g-entropies to H! hypocoercivity
An abstract result and mode-by-mode hypocoercivity p-entropies and diffysions
Diffusion and kinetic transport with very weak confinement  ¢-hypocoercivity (H~ framework)
Vlasov-Poisson-Fokker-Planck system

For (A\,v) = (1/2), A, = 1/2 and the eigenvalues of My(3,1) are given
as a function of k = 8 (2 — p)/p € [0, 8] are all nonnegative

)\4 (Fi)

Az (k)

10
+ )\Q(K)

K
n n n | n n n | n n n | n n N
>

0.5
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From ¢-entropies to H! hypocoercivity
-entropies and diffysions
@-hypocoercivity (H* framework)

We know that
YoM Y > M(p N Y
for some A1 (p,A) > 0 and |Y|? > |[M,,||? so that, by Cauchy-Schwarz,

2
([ an) < [ [ Mol du<a [ Mol a
R4 Rd R4 Rd

Theorem

Let p € (1,2) and h be a solution of the kinetic Ornstein-Uhlenbeck
equation. Then there exists a function X : RT — [1/2,1) such that
A(0) = lims—y 100 A(t) = 1/2 and a function p > 1/2 s.t.

Aol )] < = 26(0) Bolh(t, )]

As a consequence, for any t > 0 we have the global estimate

Ineey [Pt )] < F1/2lho] exp (— Q/Otp(s) ds>
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From g-entropies to H! hypocoercivity
An abstract result and mode-by-mode hypocoercivity p-entropies and diffysions
Diffusion and kinetic transport with very weak confinement  ¢-hypocoercivity (H~ framework)
Vlasov-Poisson-Fokker-Planck system

Let us define a:= e’ [, |V h|? dp, b= e [, Voh - Vihdp,
ci=¢" [pu|Vzh|*dpand j:=a+b+c

da . dc . dj
dtga 2(j—c), dt<2(J a)— c and dtSO
with the constraints a > 0, ¢ > 0 and b?<ac
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From @-entropies to H! hypocoercivity An abstract hypocoercivity result
An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Diffusion and kinetic transport with very weak confinement  Application to the torus and some numerical results
Vlasov-Poisson-Fokker-Planck system Decay rates in the whole space

An abstract hypocoercivity result
and mode-by-mode hypocoercivity

> Abstract statement, toy model and a global L2 hypocoercivity
result

> Mode-by-mode hypocoercivity
> Application to the torus and numerics

> Decay rates in the whole space

Collaboration with E. Bouin, S. Mischler, C. Mouhot, C. Schmeiser
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An abstract hypocoercivity result

An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Application to the torus and some numerical results
Decay rates in the whole space

An abstract evolution equation

Let us consider the equation

dF
4+ TF=LF 2
Frs (2)

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (X, (-, -))

A= (1+ (TI)*TI) ™ (TI)*
* denotes the adjoint with respect to (-, )

IT is the orthogonal projection onto the null space of L
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An abstract hypocoercivity result

An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Application to the torus and some numerical results
Decay rates in the whole space

The assumptions

Am, A, and C)y are positive constants such that, for any F € H
> microscopic coercivity:

—(LF,F) 2 Ay |1 - I F||? (H1)
> macroscopic coercivity:
ITILF [ > Apy | ILF |2 (H2)
> parabolic macroscopic dynamics:
OTIIF =0 (H3)
> bounded auziliary operators:

[AT(L —I)F|| + [ALF]| < Cum [|(1 = I F| (H4)
The estimate

F||? = (LF,F) < =\ ||(1 = I F|]?
2dtll == ) (1 —1I0) F|

is not enough to conclude that || F(t,-)||?> decays exponentially
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I ypies to H! hypocoercivit An abstract hypocoercivity result

An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Diffusion and kinetic transport with very weak confinement  App on to the torus and some numerical results
Vlasov-Poisson-Fokker-Planck system Decay rates in the whole space

Equivalence and entropy decay

For some 6 > 0 to be determined later, the L? entropy / Lyapunov
functional is defined by

H[F] := L ||F|® + 6 Re(AF, F)
as in (J.D.-Mouhot-Schmeiser) so that (ATILF, F) ~ ||[IIF||* and

~ Ly = oA

dt
— (LF, F) + 6 (ATIIF, F)
— §Re(TAF, F) + 6 Re(AT(1 —II)F, F) — 6 Re(ALF, F)

> entropy decay rate: for any 6 > 0 small enough and A = A(9)
AH[F] < D[F]
> norm equivalence of H[F] and ||F||?

2—90 246
=L IFIP < HIF < 222 R
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An abstract hypocoercivity result
An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Application to the torus and some numerical results
Decay rates in the whole space

Exponential decay of the entropy

— A i _AmAm =1 __AmAm
A= 3(14+Am) min {17 )\m’ (14+Am) C]%l }7 0= 2 min {17)\m7 (14+Aum) C}%/I}

2 249 0 AMm 2446
= —4 — _— R —
h(5,7) i= (5 Cur) ()\m 6= )\) ( e A)

Theorem

Let L and T be closed linear operators (respectively Hermitian and
anti-Hermitian) on H. Under (H1)—(H4), for any t >0

H[F(t, )] < H[Fo] e

where A\, is characterized by

Ae=sup{A>0:365>0st h(6A) =0, A\p—6—1(2+0)A>0}
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An abstract hypocoercivity result

An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Application to the torus and some numerical results
Decay rates in the whole space

Sketch of the proof

@ Since ATII = (1 + (TH)*TH)_1 (TID)*TI, from (H1) and (H2)
0 A

—(LF,F) +§ (ATIF, F) > X\, |(1 =) F||> + ——
14+ Ay

[TLF*

@ By (H4), we know that
[Re(AT(1 —II)F, F) + Re(ALF, F)| < Cp || ILF|| ||(1 — II) F||
@ The equation G = AF is equivalent to (TII)*F = G+ (TI)* TII G
(TAF, F) = (G, (TI)" F) = || G||* + ||'|'HG||2 IAF|* + | TAF|?

(G, (TI)" F) < | TAF|[|(1 = I F|| < ﬂ ITAF + 5 Ll —mF|?

1
IAF|| < 5111 = IDF], |TAF| < [|(1 = IDF], (TAF, F)] < (1~ 1) F||?
@ With X :=[|(1 -~ II)F| and Y := ||HF||

DIF|=AH[F] > (A ) X242 y2_ g0 x v 250 )\ (24 v2)
l-l-)\M 4
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An abstract hypocoercivity result

An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Application to the torus and some numerical results
Decay rates in the whole space

Hypocoercivity

For any 0 € (0,2),
which Ay, — 6 — 2 (24 6) X > 0, then for any solution F of (2)

if X(9) is the largest positive root of hi (0, ) =0 for

246 _
& 3_5° AR Vi>0

From the norm equivalence of H[F] and ||F||?

2

-0 2+5
=L P < HIF) <

17I?

We use 232 || Fy||? < H[Fy)] so that A, > SUP;e(0,2) AM(9)
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An abstract hypocoercivity result

An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Application to the torus and some numerical results
Decay rates in the whole space

Formal macroscopic (diffusion) limit

Scaled evolution equation

a%-}-TF_fLF

on the Hilbert space H. F. = Fo+e Fy +e2 Fy + O(e3) as e — 0
671 : LF[) = O,
80 : TFO = LF1 s
el Lo 4 TP, =LF,

The first equation reads as Fy = I1Fy
The second equation is simply solved by Fy = — (TII) Fy
After projection, the third equation is
4 (I1Fy) — IOT(TI) Fy = IILF, =0

Oru+ (TID* (TI) uw =0
is such that 2{|ul|? = — 2||(TI) u/[®> < — 2 Ay [|ul?
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From p-entropies to H! hypocoercivity An abstract hypocoercivity result
An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Diffusion and kinetic transport with very weak confinement. Application to the torus and some numerical results
kker-Planck system Decay rates in the whole space

Vlasov-Poisson

A toy problem

du (0 0 (0 —k )
= =(L-Tu, L_<O _1), T—(k 0 ) K >A>0

Non-monotone decay, a well known picture:
see for instance (Filbet, Mouhot, Pareschi, 2006)

L ody,)2 — 2
o H-theorem: % |ul* = —2uj
@ macroscopic limit: % =k

e generalized entropy: H(u) = |ul? — % Uy U

dH__<2 5k2>2 5K, Sk

g BN A I e TR R e R
SA
< _(2_6)US_H——AU%+EU1UQ
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From @-entropies to H! hypocoercivity An abstract hypocoercivity result
An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Diffusion and kinetic transport with very weak confinement  Application to the torus and some numerical results
Vlasov-Poisson-Fokker-Planck system Decay rates in the whole space

Plots for the toy problem

ul? ul1?+u2?
1 0.7
0.8 0.6
0.5
0.6 0.4
0.4 0.3
0.2
0.2 0.1
1 2 3 4 5 6 1 2 3 4 5
u1? H
1 u1?+u2? 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
1 2 3 4 5 6 1 2 3 4 5
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From ¢-entropies to H! hypocoercivity An abstract hypocoercivity result
An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Diffusion and kinetic transport with very weak confinement Application to the torus and some numerical results
Vlasov-Poisson-Fokker-Planck system Decay rates in the whole space

Mode-by-mode hypocoercivity

> Fokker-Planck equation and scattering collision operators
> A mode-by-mode hypocoercivity result
> Enlargement of the space by factorization

> Application to the torus and some numerical results

(Bouin, J.D., Mischler, Mouhot, Schmeiser)
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An abstract hypocoercivity result

An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Application to the torus and some numerical results
Decay rates in the whole space

Fokker-Planck equation with general equilibria

We consider the Cauchy problem
8tf+vvzf: I—f7 f(07 Z, U) :fO(xa U) (3)

for a distribution function f(t, z, v), with position variable z € R¢ or
z € T? the flat d-dimensional torus

Fokker-Planck collision operator with a general equilibrium M
Lf = Vo (MY, (M) ]

Notation and assumptions: an admissible local equilibrium M is
positive, radially symmetric and

dv
M) a=1, iy =) do= 51
v is an exponential weight if
k
im C — i M) |[v* =0 Ve (d,o0)
|v]— o0 ’)/(U) |v]—o00
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From ¢-entropies to H! hypocoercivity An abstract hypocoercivity result

An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Diffusion and kinetic transport with very weak confinement  Application to the torus and some numerical results
Vlasov-Poisson-Fokker-Planck system Decay rates in the whole space
Definitions

! 2 = )2 M(v) dv
@:E/Rdm M(v)dv—/Rd(v &) M(v) d

for an arbitrary e € S?~!
/ v®vM(v)dv=01d
R4
Then
- Hv M2 4y = / IV VM[* dv < oo

_1,
IfM(U):%,then@:land9=1

_ 1
7= g 0/0

Microscopic coercivity property (Poincaré inequality): for all
u=M"1*F e H M dv)

2
/ |Vu\2Mdv2)\m/ (u—/ uMdv) M dv
Rd R Rd

J. Dolbeault Hypocoercivity



Fr ntropies to H! hypocoercivity An abstract hypocoercivity result

A et Zomnlh f snetbiprnede hypococrc]vlty Mode-by-mode hypocoercivity
Diffusion and kinetic transport with very weak confinement Application to the torus and some numerical results
\ lasov-Poi n-Fokk Planck system Decay rates in the whole space

Scattering collision operators

Scattering collision operator
Lf = [ o) () MC) = £ M)
R
Main assumption on the scattering rate o: for some positive, finite &
1<o(v,v)<7 VYo, v cR?

Example: linear BGK operator

Lf=Mp =1, prltia) = [ Ftdo

/ Lf dv=0
Rd

(LR ay<az® [ Mo = pPay

Local mass conservation

and we have
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An abstract it Ced) meak- e mode hypococrc]vlty Mode-by-mode hypocoercivity
Diffusion and kinetic transport with very weak confinement  Application to the torus and some numerical results
\ lasov-Poisson \-M\\‘w I \ anck system Decay rates in the whole space

The symmetry condition
/ (o(v,v') —o(v/,0)) M(v))dv' =0 YveR?
Rd

implies the local mass conservation fRd Lfdv=0
Micro-reversibility, i.e., the symmetry of ¢, is not required

The null space of L is spanned by the local equilibrium M
L only acts on the velocity variable

Microscopic coercivity property: for some A\, > 0

. / / N2 g
5//11@“@ o(v,v") M(v) M(v") (u(v) — u(v")” dv’ dv

>Am | (u—pun)® M dv
Rd

holds according to Proposition 2.2 of (Degond, Goudon, Poupaud,
2000) for all u = M~' F € L3*(M dv). If 0 = 1, then \,, =

J. Dolbeault Hypocoercivity



An abstract hypocoercivity result

An abstract result and mode-by-mode hypocoercivity Mode-by-mode hypocoercivity
Application to the torus and some numerical results
Decay rates in the whole space

Fourier modes

In order to perform a mode-by-mode hypocoercivity analysis, we
introduce the Fourier representation with respect to z,

f(t7 Z, U) = ” }(t7€’ U) e it d:u(g)

du(€) = (2m)~4 d¢ and d€ is the Lesbesgue measure if z € R?
du(€) = (2m) =4 >, 6(€ — 2) is discrete for z € T

Parseval’s identity if £ € Z? and Plancherel’s formula if z € R? read

Gt o)y = [ ]|

The Cauchy problem is now decoupled in the ¢-direction
O +TF=LF, J0,60) = o)
Tf=i(v-8]f
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Fr opies tc Hl hy pocoercivity An abstract hypocoercivity result
An ab:.tx‘u:t rt,sult s} modc by—rnod(_ hypoc()crclvlty Mode- by-mode hypocoercivity
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For any fixed & € R?, let us apply the abstract result with

=12, PP~ [ 1FRay, TP =M [ Pav=bpr

and Tf = i(v-&) f, THF = i(v-&) pr M,
IITHFH2=IpFIQ/RdIvfI2 M(v)dv = O ¢ |pr|* = © [¢]? |[TIF|>

(H2) Macroscopic coercivity | TILF||? > Xy [|[LF||? : Ay = © [€)?
(H3) [qavM(v)dv=0
The operator A is given by

— i€ [pa V' F(V') dv/

AF =
14+ 042

M
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A mode-by-mode hypocoercivity result

AR = 1A =107 < gy [ OS2 o VAT o

1+ 0?2 VM
1 , 1/2
< w“(l—H)FH (/Rd(v'f) Md”)
VO
*WHO*H)FH

@ Scattering operator ||LF||? <452 |(1 —1II)F|?
@ Fokker-Planck (FP) operator

2 (1 - mF Ve
IALFI < e / A eV d < R I -1

In both cases with & = v/@ (FP) or kK = 25 v/© we obtain

IALFI < 1 10— TDF
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(v-O M

TAF() = =170 TeE J

(- A -I)F () df
is estimated by

O ¢)?
ITAFI < 1 i I = F

2
(FI4) holds with Cyy = “EEOHL
Two elementary estimates

ol _ e P
1+ 02 — max{1,0} 1+ [£|?

i _©(1+0) e
(I+2) C3r  (k+0E))* ~ R2+0O
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Mode-by-mode hypocoercivity with exponential weights

Theorem

Let us consider an admissible M and a collision operator L satisfying
Assumption (H), and take £ € RY. If f is a solution such that
fo(&,-) € L2(dy), then for any t > 0, we have

~ 2 N 2
t & < 3e Het .
Hf( 757 )‘ L2(dv) S o€ Hf0(57 )‘ L2(dv)
where
Alg? S . Am ©
= A= ——— 1. 2=
He =T o 3max{1,0} | k2+06

with k = 27 \/© for scattering operators
and k& = /0 for (FP) operators
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Exponential convergence to equilibrium in T%

The unique global equilibrium in the case 2 € T¢ is given by

1
foo(@,0) = poo M(v)  With  pog = // fo dz dv
|T | Td x R4

Theorem

Assume that v has an exponential growth. We consider an admissible
M, a collision operator L satisfying Assumption (H). There exists a
positive constant C such that the solution f of (3) on T% x R® with
initial datum fy € L2(dx dvy) satisfies

1
1F(t, ) = foollzaz ayy < C Mo = foollLz(az aqy € iAo VE>0
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Enlargement of the space by factorization

A simple case (factorization of order 1) of the factorization method
of (Gualdani, Mischler, Mouhot)

Theorem

Let By, By be Banach spaces and let Bo be continuously imbedded in
B, e, |||l < el - |l2- Let B and A + B be the generators of the
strongly continuous semigroups e®t and e+t on By, If for all
t>0,

< cge 2t

(A+B) ¢ Bt —Ni ¢

o], s < <
where || - ||;—; denotes the operator norm for linear mappings from B;
to B;. Then there exists a positive constant C' = C(c1, ¢z, c3, c4) such

that, for all t >0,

He(m—i_%)tu - C(]. aF |)\1 — )‘2|_1) e~ min{A1,Az} ¢ fO?" o 7& Ao
1517 | C(1+t)e Mt for A1 = Xy
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Integrating the identity £ (e(+%)s ¢® (t=9)) = (A+B) s 9 ¢ (t=)
with respect to s € [0, t] gives

t
LB _ B +/ (A8 s o B (1-5) g
0

The proof is completed by the straightforward computation
¢
R R A L
0

t
<ceze™MP4cieacgee ™ t/ er1—22) s g
0
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Weights with polynomial growth

An abstract result and mode-by-mode hypocoercivity

Let us consider the measure

_ k/2
dyg == ve(v) dv  where (v) = 7% % (14 |0]?) /

for an arbitrary k € (d, +00)
We choose By = L2(dv;) and By = L2(dv)

Theorem

Let A = m min{l7 %} and k € (d,o0]. For any & € R? if

f is a solution with initial datum Jy(€,-) € L2(dvy), then there exists a
constant C = C(k, d,7) such that

2 2

Vt>0

lFct.e.0)

< ceet )

L2(dyx) L2(dx)
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@ Fokker-Planck: AF = N xpF and BF = —i(v-§) F +LF —AF
N and R are two positive constants, x is a smooth cut-off function
and xr := x(-/R)

For any R and N large enough, according to Lemma 3.8 of (Mischler,
Mouhot, 2016)

/(L%(F)Fmsm/ F vy,
R4 R4

for some A\ > 01if k > d, and Ay = pe/2 < 1/4

Q@ Scattering operator:

AF(v) = M(v) /Rd o(v,v") F(v') dv

BF(v) - {z (v-&) +/Rd o(v, o) M) dv'| F(v)

_ _ 1/2
Boundedness: || %F|12(4y) <7 (fpa v - dv) / 17|12 (dye)
)\1 =1 and A2 = ,Uf/Q S 1/4
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Exponential convergence to equilibrium in T%

The unique global equilibrium in the case 2 € T¢ is given by

1
foo(T,0) = poo M(v) with  pec = // fo dz dv
|T | Tdx R4

Theorem

Assume that k € (d, 0] and v has an exponential growth if k = oco.
We consider an admissible M, a collision operator L satisfying
Assumption (H), and A given by (11)

There exists a positive constant Cy, such that the solution f of (3) on
T x R with initial datum fy € L2(dz dvyy) satisfies

_1
1FCE ) = foollta(as vy < O o = foolliaqasayy € 74° VE20
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If we represent the flat torus T? by the box [0, 27)¢ with periodic
boundary conditions, the Fourier variable satisfies £ € Z%. For & = 0,
the microscopic coercivity implies

[F(t.0.) = F(0.)

< [50.) = (0|

L2(dv) L2(dv) ‘

Otherwise p¢ > A/2 for any £ # 0

Parseval’s identity applies, with measure dv(v) and Cs = /3
The result with weight 4 follows from the factorization result for
some Cp >0
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Computation of the constants

> A more numerical point of view

Two simple examples: L denotes either the Fokker-Planck operator
Lif == Auf+ V- (vf)
or the linear BGK operator
Lof :=T1If — f
Ilf = py M is the projection operator on the normalized Gaussian
function

6_%|v|2

(2 7T) d/2
and py := fRd f dv is the spatial density

M(v) =
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Where do we have space for improvements 7
@ With X :=|(1 -II)F| and Y := ||IIF|, we wrote

D[F] — AH[F]
0 Am

1+ Ay

2
0 A —6CMXY—%6)\(X2+Y2)

> A — 0) X2+ Y2—5OMXY—%(X2+Y2+5XY)

> (A — 0) X2+ ——

1+)\M

@ We can directly study the positivity condition for the quadratic
form

0 Am

1+ Ay

Am =1, Ay = €2 and Cur = €] (1 + [€])/(1 + |€]?)

(Am — 0) X%+ Y2—6CMXY—%(X2+Y2+5XY)
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With A, =1, Ayr = [€]* and Cy = [€] (1 + [¢])/(1 + []?), we
optimize A under the condition that the quadratic form

0 Am

Am — 0) X2 4+ 22
( ) +1+>\M

A
V-0 XY -2 (X4 Y7 +0XY)
is positive, thus getting a A(£)

@ By taking also § = 0(&) where £ is seen as a parameter, we get a
better estimate of A(§)
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By taking § = §(&), for each value of £ we build a different Lyapunov
function, namely

He[F] := 5 | FII* + 6(¢) Re(AF, F)
where the operator A is given by

AR — — i [pa 0 F(V') dvf
14 [¢[?

@ We can consider

AF — —i&- [ra V' F(V') dv/
e+ ¢

and look for the optimal value of ...
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The dependence of X in € is monotone, and the limit as € — 04 gives
the optimal estimate of A\. The operator
—i&- [pa v F(V) dv

GE

is not bounded anymore, but estimates still make sense
and limg_,9 (&) = 0 (see below)

AgF =
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Theorem (Hypocoercivity on T? with exponential wei g

Assume that L =11 or L= Ly. If f is a solution, then
||f(t7 %y ) - fOOHIzﬂ(dz dv) S e* ||f0||I242(dz dv) e At Vi 2 0
with foo (z,v) = M(0) [[1ay g fo(2, v) dz dv

€, ~ 1.75863 and A\ = & (5 — 2/3) ~ 0.236292.

(work in progress)
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Some comments on recent works

A more algebraic approach based on the spectral analysis of
symmetric and non-symmetric operators

@ On BGK models
(Achleitner, Arnold, Carlen)

@  On Fokker-Planck models
(Arnold, Erb)

(Arnold, Stiirzer)

(Arnold, Einav, Wohrer)
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Algebraic decay rates in R?

On the whole Euclidean space, we can define the entropy

H[ﬂ = % ”fH%?(d;cd'yk) + d <Afaf>dxdfyk

Replacing the macroscopic coercivity condition by Nash’s inequality
4
Nl gy < Coxast Il V052,
proves that

HIf < © (HIAT+ 1ol (aoay) (1+ 8)7F

Theorem

Assume that vg has an exponential growth (k= 0o) or a polynomial
growth of order k > d

There exists a constant C > 0 such that, for any t > 0

_4d
1t Moty < € (IoUE 8 ey + ol cangy ) (1 + )2

J. Dolbeault Hypocoercivity
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A direct proof... Recall that pe = 1

By the Plancherel formula

1My < € [ ([ e a2 ) an

@ if €] <1, then pe > 2 [¢?

/§ e <t fo2 dg < C [lfo(v) I () /Rd@_%lglztdﬁ

[<1
4
<C ”f()('av)“il(dz) L2

@ if [¢] > 1, then pg > A/2 when [¢] > 1

B A _A
/€ 1 e et fPde< Ce 2t HfO('av)Hi?(dz)
>
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Improved decay rate for zero average solutions

Theorem
Assume that fo € Lij (R x R?) with [[pa, g4 fo(z,v) dzdv =0 and

2 z 2
Co 1= Iolliaaresa; 1 aay) + Mol s ot ) + ol (s aniy < 0

Then there exists a constant c; > 0 such that

_ da
Hf(ta ) )||i2(da: dyr) S CL eo (]_ —+ t) (1+2)
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Step 1: Decay of the average in space, factorization

Q@ z-average in space
fo(t,v) = | f(t,z,v)dz
Rd

with [o, fo(t, v) dv = 0 and observe that f, solves a Fokker-Planck
equation

Ofe = Lfe
From the microscopic coercivity property, we deduce that
2 2 —Am
”f'(tv ')||L2(d'y) < ||ﬁ(07')||L2(d7) € '
Q@ Factorisation
Y

2 2
150 2oz am) S C IolT2 (o2 dye st (an)) €
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Step 2: Improved decay of f

Let us define g := f — fo ¢, with ¢(z) := (2m)~4/2 ¢~1oI*/2
The Fourier transform § solves

O g+ Tg=Li—fTowithTo=4i(v-&) ¢

Duhamel’s formula

t
= D%+ / e D) (f(5,0) TRE))  ds
1 0 w
Ce 2" 190(€,) 12 (ayy) Ce 3 “*”Hf-(sv')ﬂm(w\z i) €112(9)]
Q (& v) = +f|§| Vggo(?] e v) dn yields
:0

190(& ) < 1E1 1Vedo (s )l oo (awy < €] 1190 (5 )l 1o da:)
@ e = AEJ2/(1+|€]2) > A2 if |€] > 1 (contribution O(e~21)) and

S ~ 12 _A 2 2
Jie1<1 S | =D g |" dyy, d€ < /Rd > =2 €7t ag 19011%.2 (dryp 11 (1] )
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Diffusion with very weak confinement
The kinetic Fokker-Planck equation

Diffusion and kinetic transport with
very weak confinement

In collaboration with Emeric Bouin and Christian Schmeiser

J. Dolbeault
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The macroscopic Fokker-Planck equation

g;‘ — Ayu+ Y, (Vo Vu) =V, (e V, (¢¥ u))

Here 2 € R?, d > 3, and V is a potential such that e~V ¢ L!(R%)
corresponding to a very weak confinement

e~V dz is an unbounded invariant measure
Two examples
Vi(z) =~ loglz| and Va(z) =~ log(z)

with v < d and (z) := /1 + |z|? for any 2 € R?
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A first decay result

Theorem

Assume that either d >3, vy < (d—2)/2 and V. =Vi or V=V,
F any solution w with initial datum uy € L} NL2(RY),

2 4/d

2 [[ ol g 4 . 1 luoll
llu(t, )| < ——2+ with c:= y mm{l, il = ﬂ} (;’Nish ™ ||‘21/d
0ll1

T (1+ct)? =2

Here Cnasn denotes the optimal constant in Nash’s inequality

244 4
ully ™™ < Cxaan [Jull{ [Vull; 7w e Ltn HY(RY)
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An extended range of exponents: with moments

Theorem

Let d>1,0<y<d, V=Vyor V=V, anduOEL_lFﬁLQ(eV)
with ”|:1:|ku0||1 < oo for some k > max{2,v/2}

2 2 _d=
Vi > 07 ||U(t, ')HL?(evdm) < ||U'0||L2(evdx) (]‘ + Ct) 2

for some c depending on d, v, k, ||U0HL2(ede): lluolly, and H|x|ku0H1
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An extended range of exponents: in self-similar variables

Cx |z[?
ur(t2) = el e (<50 )
11205 2(1+27)
Here the initial data need have a sufficient decay...
¢, 18 chosen such that ||u.||1 = [Juoll1

Theorem

Let d > 1, v € (0,d), V = V; assume that
VzeR?, 0< u(z) <K ul(0,z)

for some constant K > 1

5 1
-3, b \#05) _
wzo,wm»—mwNuSK@|wm(mJ (1+21)7%

for any p € [1,+00), where ¢, := £ (1 — ) + 5= min {2, 7% 'v}
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Proofs: basic case

4 qum:—Q/ \Vu|2dx+/ AV |u|? dx

dt Jpa R Rd
with either V = V; or V = V5 and
d—2 2y
TP T 1+ o)

AVl(([;):’y and AVQ( )

|z[?
For v < 0: apply Nash’s inequality

—4/d y 2+4/d

2wl < ~ 201 vul < - e— lwolly " ul3™

For 0 < v < (d — 2)/2: Hardy-Nash inequalities

Let d >3 and § < (d —2)?/4

2
244 u 4
™ < e (1vul -0 [ o)l vuerin @Y
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Proofs: moments

Growth of the moment
M;(¢) ::/ |z|Fu da
Rd

From the equation

M,Q:k(dJrkaf'y)/ u|x|k*2d:1:§k(d+kf2ffy)M0% ,:_%
d

R

then use the Caffarelli-Kohn-Nirenberg inequality

/|a:|m2dmge</ o~ |v<|x|’vu)|2dm> (/ |xk|u|d:c)
R4 R4 R4

+ similar estimates in the non-homogeneous case, based on a
non-homogeneous Caffarelli-Kohn-Nirenberg inequality

2(1—a)
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Proofs: self-similar solutions

The proof relies on uniform decay estimates + Poincaré inequality in
self-similar variables

Proposition

Let v € (0,d) and assume that
2\—7/2 |22 d
0 < u(0,2) < ¢ (0 +|2z°) exp | ——- VreR

witho =014 V=Vyando=1if V=V, Then

Cx

2
0<ulte) < — (o4 |g)2)"? (-'x—)

for any z € RY and t > 0
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The kinetic Fokker-Planck equation

Let us consider the kinetic equation
Ouf +v-Vuf =V, V-V, f=Lf

where Lf is one of the two following collision operators

(a) a Fokker-Planck operator

Lf =V (MY, (M)

(b) a scattering collision operator

Lf= [ o(0) (F(v)) M() = f() M(v)) o'

J. Dolbeault Hypocoercivity



Diffusion with very weak confinement
Diffusion and kinetic transport with very weak confinement The kinetic Fokker-Planck equation

Decay rates

V(z,v) € RIxR?, M(z,v) = M(v)e V@, M(v) = (271')7% g2 v
(H1) 1<o(v,v) <7, Vo,v €¢R% forsome 7>1

(H2) /Rd (o(v,v') —o(v/,0)) M(v')dv' =0 VoveR?

Theorem

Let d > 1, V = Vy withy € [0,d), k> max{2,v/2} and
fo € L3(M~tdx dv) such that

ffR,ide@)kfo de dv+ [[paypa |v|® fo dx dv < 4+00

If (H1)—(H2) hold, then there exists C > 0 such that

_d=
Vi> 07 ||f(t7 ) '>||i2(3v[*1dzdv) < C(l + t) 2
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The Vlasov-Poisson-Fokker-Planck

system:
linearization and hypocoercivity

In collaboration with Lanoir Addala, Xingyu Li and Lazhar M. Tayeb

J. Dolbeault Hypocoercivity



Vlasov-Poisson-Fokker-Planck system

Linearized Vlasov-Poisson-Fokker-Planck system

The Viasov-Poisson-Fokker-Planck system in presence of an external
potential V is

Of +v-Vauf = (Vo V4 Vu0) - Vof = Auf + V- (vf)
Dao=p= [ o
Rd
Linearized problem around f,: f = f, (L4+nh), [[pu, g hfx dzdv =0
Oth+v-Vih— (Vo V4 Vb)) Voh+0v- Vb, — Avh+v-Voh =0V, - Vioh
—A,p :/ hfi dv
Rd

(VPFP)

Drop the O(n) term : linearized Vlasov-Poisson-Fokker-Planck system
Oth+v-Vih— (Vo V4 Vade) Voh+v- Vb, —Ayh+v-Vy,h=0
—Amz/)h:/ h fe dv, // hf.drdv=20
Rd Ré xR

(VPFPlin)
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Vlasov-Poisson-Fokker-Planck system

Hypocoercivity

Let us define the norm

|h))? = // K2 f, dxdv+/ |V oton|? da
R xRd Rd

Theorem

Let us assume that d > 1, V(z) = |z|® for some a > 1 and M > 0.
Then there exist two positive constants C and A such that any solution
h of (VPFPlin) with an initial datum hy of zero average with

lholl® < oo is such that

1 (t, )" < € [[ho]|* e W0
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Vlasov-Poisson-Fokker-Planck system

Diffusion limit

Linearized problem in the parabolic scaling

1
€0h+ v Voh—(VaV + Vo) - Vol - Vit — = (Avh— v V,h) =0

*A:rwh:\/ hf* d’U, // hf* drdv=0
R4 Rd xR

(VPFPscal)
Expand he = hg +ehy +%2hy + O(e®) as ¢ — 0. With W, = V + ¢,
el Ayhg —v-Vyhg =0
€Y. v-Vghyg =V W, - Viyho+v-Vathp, = Ayhy —v- Vb
el Othg +v-Vihy — VW, -Vyhy = Ayhs —v-Viyhs

With u = IThg, —AY = u py, w = u + 1, equations simply mean
u="hy, v-Vew=Ah —v -V lq
from which we deduce that hy = —v- V,w and
Ou—Aw+V,W,-Vu=0
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Further results

Theorem

Let us assume that d > 1, V(z) = |z|* for some a > 1 and M > 0.
For any € > 0 small enough, there exist two positive constants C and
A, which do not depend on e, such that any solution h of (VPFPscal)
. o 2
with an initial datum hy of zero average and such that ||ho]” < oo
satisfies
2 2 _
1A(t, - IIF < € lhol” e VE>0

A

Corollary

Assume that d =1, V(z) = |z|® for some a« > 1 and M > 0. If f
solves (VPFP) with initial datum fo = (1 + ho) fi such that hy has
zero average, ||hol|> < 0o and (1 + ho) > 0, then

1R(t, -, )* < C [lho[* e Vi>0

holds with h = f/f, — 1 for some positive constants C and A
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