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Definition of the ϕ-entropies

E[w] :=
∫
Rd
ϕ(w) dγ

ϕ is a nonnegative convex continuous function on R+ such that
ϕ(1) = 0 and 1/ϕ′′ is concave on (0,+∞):

ϕ′′ ≥ 0 , ϕ ≥ ϕ(1) = 0 and (1/ϕ′′)′′ ≤ 0

Classical examples

ϕp(w) := 1
p−1

(
wp − 1− p (w − 1)

)
p ∈ (1, 2]

ϕ1(w) := w logw − (w − 1)

The invariant measure
dγ = e−ψ dx

where ψ is a potential such that e−ψ is in L1(Rd , dx)
dγ is a probability measure

J. Dolbeault Hypocoercivity
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Diffusions
Ornstein-Uhlenbeck equation or backward Kolmogorov equation

∂w
∂t = Lw := ∆w −∇ψ · ∇w

−
∫
Rd

(Lw1)w2 dγ =
∫
Rd
∇w1 · ∇w2 dγ ∀w1, w2 ∈ H1(Rd , dγ)

1 =
∫
Rd

w0 dγ =
∫
Rd

w(t, ·) dγ and limt→+∞ w(t, ·) = 1
d
dt E[w] = −

∫
Rd
ϕ′′(w) |∇xw|2 dγ =: − I[w] (Fisher information)

If for some Λ > 0: entropy – entropy production inequality
I[w] ≥ ΛE[w] ∀w ∈ H1(Rd , dγ)
E[w(t, ·)] ≤ E[w0] e−Λ t ∀ t ≥ 0

Fokker-Planck equation : u = w γ converges to u? = γ

∂u
∂t = ∆u +∇x · (u∇xψ)

J. Dolbeault Hypocoercivity
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Generalized Csiszár-Kullback-Pinsker inequality

(Pinsker), (Csiszár 1967), (Kullback 1967), (Cáceres, Carrillo, JD,
2002)

Proposition

Let p ∈ [1, 2], w ∈ L1 ∩ Lp(Rd , dγ) be a nonnegative function, and
assume that ϕ ∈ C 2(0,+∞) is a nonnegative strictly convex function
such that ϕ(1) = ϕ′(1) = 0. If A := infs∈(0,∞) s2−p ϕ′′(s) > 0, then

E[w] ≥ 2−
2
p A min

{
1, ‖w‖p−2

Lp(Rd ,dγ)

}
‖w − 1‖2

Lp(Rd ,dγ)
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Convexity, tensorization and sub-additivity
∫
Rdi

ϕ′′(w) |∇w|2 dγi =: Iγi [w] ≥ Λi Eγi [w] ∀w ∈ H1(Rdi , dγi)

Theorem

If dγ1 and dγ2 are two probability measures on Rd1 × Rd2 , then

Iγ1⊗γ2 [w] =
∫
Rd1×Rd2

ϕ′′(w) |∇w|2 dγ1 dγ2

≥ min{Λ1,Λ2}Eγ1⊗γ2 [w] ∀w ∈ H1(Rd1 × Rd2 , dγ)

Iγ1 ⊗ γ2[w] =
∫
Rd2

Iγ1[w] dγ2 +
∫
Rd1

Iγ2[w] dγ1

Eγ1⊗γ2 [w] ≤
∫
Rd2

Eγ1 [w] dγ2 +
∫
Rd1

Eγ2 [w] dγ1 ∀w ∈ L1(dγ1 ⊗ γ2)
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Perturbation (Holley-Stroock type) results

With w :=
∫
Rd w dγ, assume that

Λ
[∫

Rd
ϕ(w) dγ − ϕ(w)

]
≤
∫
Rd
ϕ′′(w)|∇w|2 dγ ∀w ∈ H1(dγ)

and, for some constants a, b ∈ R,

e−b dγ ≤ dµ ≤ e−a dγ

Lemma

If ϕ is a C 2 function such that ϕ′′ > 0 and w̃ :=
∫
Rd w dµ /

∫
Rd dµ,

then

ea−b Λ
∫
Rd

[
ϕ(w)− ϕ(w̃)− ϕ′(w̃)(w − w̃)

]
dµ ≤

∫
Rd
ϕ′′(w) |∇w|2 dµ
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Entropy – entropy production inequalities, linear flows
On a smooth convex bounded domain Ω, consider

∂w
∂t = Lw := ∆w −∇ψ · ∇w , ∇w · ν = 0 on ∂Ω

d
dt

∫
Ω

wp − 1
p − 1 dγ = −4

p

∫
Ω
|∇z|2 dγ and z = wp/2

d
dt

∫
Ω
|∇z|2 dγ ≤ − 2Λ(p)

∫
Ω
|∇z|2 dγ

where Λ(p) > 0 is the best constant in the inequality
2
p (p − 1)

∫
Ω
|∇X |2 dγ +

∫
Ω
Hessψ : X ⊗X dγ ≥ Λ(p)

∫
Ω
|X |2 dγ

Proposition

∫
Ω

wp − 1
p − 1 dγ ≤ 4

pΛ

∫
Ω
|∇wp/2|2 dγ for any w s.t.

∫
Ω
w dγ = 1

(Bakry, Emery 1985) J. Dolbeault Hypocoercivity



From ϕ-entropies to H1 hypocoercivity
An abstract result and mode-by-mode hypocoercivity

Diffusion and kinetic transport with very weak confinement
Vlasov-Poisson-Fokker-Planck system

ϕ-entropies and diffusions
ϕ-hypocoercivity (H1 framework)

An interpolation inequality

Corollary

Assume that q ∈ [1, 2). With Λ = Λ(2/q), we have

‖f ‖2
L2(Rd ,dγ) − ‖f ‖

2
Lq(Rd ,dγ)

2− q ≤ 1
Λ

∫
Rd
|∇f |2 dγ ∀ f ∈ H1(Rd , dγ)
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Improved entropy – entropy production inequalities
In the special case ψ(x) = |x|2/2, with z = wp/2, we obtain that

1
2

d
dt

∫
Rd
|∇z|2 dγ +

∫
Rd
|∇z|2 dγ ≤ − 2

p κp

∫
Rd

|∇z|4

z2 dγ

with κp = (p − 1) (2− p)/p
Cauchy-Schwarz:

(∫
Rd |∇z|2 dγ

)2 ≤
∫
Rd
|∇z|4

z2 dγ
∫
Rd z2 dγ

d
dt I[w] + 2 I[w] ≤ −κp

I[w]2

1 + (p − 1)E[w]

Proposition

Assume that q ∈ (1, 2) and dγ = (2π)−d/2 e−|x|2/2 dx. There exists a
strictly convex function F such that F(0) = 0 and F ′(0) = 1 and

F
(
‖f ‖2

L2(Rd ,dγ) − 1
)
≤ ‖∇f ‖2

L2(Rd ,dγ) if ‖f ‖Lq(Rd ,dγ) = 1
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ϕ-hypocoercivity (H1 framework)

B adapt the strategy of ϕ-entropies to kinetic equations

B Villani’s strategy: derive H1 estimates (using a twisted Fisher
information) and then use standard interpolation inequalities to
establish entropy decay rates

The twisted Fisher information is not the derivative of the ϕ-entropy

J. Dolbeault Hypocoercivity
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The kinetic Fokker-Planck equation, or Vlasov-Fokker-Planck
equation:

∂f
∂t + v · ∇x f −∇xψ · ∇vf = ∆vf +∇v · (v f ) (1)

with ψ(x) = |x|2/2 and ‖f ‖L1(Rd×Rd) = 1 has a unique nonnegative
stationary solution

f?(x, v) = (2π)−d e−
1
2 (|x|2+|v|2)

and the function g = f /f? solves the kinetic Ornstein-Uhlenbeck
equation

∂g
∂t + Tg = L g

with transport operator T and Ornstein-Uhlenbeck operator L given
by

Tg := v · ∇xg − x · ∇vg and L g := ∆vg − v · ∇vg

J. Dolbeault Hypocoercivity
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Sharp rates for the kinetic Fokker-Planck equation

Let ψ(x) = |x|2/2, dµ := f? dx dv, E[g] :=
∫∫

Rd×Rd
ϕp(g) dµ

Proposition

Let p ∈ [1, 2] and consider a nonnegative solution g ∈ L1(Rd × Rd) of
the kinetic Fokker-Planck equation. There is a constant C > 0 such
that

E[g(t, ·, ·)] ≤ C e−t ∀ t ≥ 0

and the rate e−t is sharp as t → +∞

(Villani), (Arnold, Erb): a twisted Fisher information functional

Jλ[h] = (1−λ)
∫
Rd
|∇vh|2 dµ+(1−λ)

∫
Rd
|∇xh|2 dµ+λ

∫
Rd
|∇xh +∇vh|2 dµ

(Arnold, Erb) relies on λ = 1/2 and d
dt J1/2[h(t, ·)] ≤ − J1/2[h(t, ·)]

J. Dolbeault Hypocoercivity
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Improved rates (in the large entropy regime)
Rewrite the decay of the Fisher information functional as

− 1
2
d
dt

∫
Rd

X⊥ ·M0 X dµ =
∫
Rd

X⊥ ·M1 X dµ+
∫
Rd

Y⊥ ·M2 Y dµ

where X = (∇vh,∇xh) , Y = (Hvv,Hxv,Mvv,Mxv)

M0 =
(

1 λ
λ ν

)
⊗ IdRd , M1 =

(
1− λ 1+λ−ν

2
1+λ−ν

2 λ

)
⊗ IdRd

M2 =


1 λ −κ2 −κλ2
λ ν −κλ2 −κ ν2
−κ2 −κλ2 2κ 2κλ
−κλ2 −κ ν2 2κλ 2κν

⊗ IdRd×Rd

With constant coefficients

λ?(λ, ν) = max
{
min

X

X⊥ ·M1 X
X⊥ ·M0 X

: (λ, ν) ∈ R2 s.t. M2 ≥ 0
}

J. Dolbeault Hypocoercivity
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For (λ, ν) = (1/2), λ? = 1/2 and the eigenvalues of M2( 1
2 , 1) are given

as a function of κ = 8 (2− p)/p ∈ [0, 8] are all nonnegative

2 4 6 8

0.5

1.0

1.5

λ1(κ)

λ2(κ)

λ3(κ)

λ4(κ)

κ
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We know that
Y⊥ ·M2 Y ≥ λ1(p, λ) |Y |2

for some λ1(p, λ) > 0 and |Y |2 ≥ ‖Mvv‖2 so that, by Cauchy-Schwarz,(∫
Rd
|∇vh|2 dµ

)2
≤
∫
Rd

h2 dµ
∫
Rd
‖Mvv‖2 dµ ≤ c0

∫
Rd
‖Mvv‖2 dµ

Theorem

Let p ∈ (1, 2) and h be a solution of the kinetic Ornstein-Uhlenbeck
equation. Then there exists a function λ : R+ → [1/2, 1) such that
λ(0) = limt→+∞ λ(t) = 1/2 and a function ρ > 1/2 s.t.

d
dt Jλ(t)[h(t, ·)] ≤ − 2 ρ(t) Jλ(t)[h(t, ·)]

As a consequence, for any t ≥ 0 we have the global estimate

Jλ(t)[h(t, ·)] ≤ J1/2[h0] exp
(
− 2

∫ t

0
ρ(s) ds

)
J. Dolbeault Hypocoercivity
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Let us define a := et ∫
Rd |∇vh|2 dµ, b := et ∫

Rd ∇vh · ∇xh dµ,
c := et ∫

Rd |∇xh|2 dµ and j := a + b + c
d a
dt ≤ a− 2 (j− c) , d c

dt ≤ 2 (j− a)− c and d j
dt ≤ 0

with the constraints a ≥ 0, c ≥ 0 and b2 ≤ a c

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0
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An abstract hypocoercivity result
and mode-by-mode hypocoercivity

B Abstract statement, toy model and a global L2 hypocoercivity
result

B Mode-by-mode hypocoercivity

B Application to the torus and numerics

B Decay rates in the whole space

Collaboration with E. Bouin, S. Mischler, C. Mouhot, C. Schmeiser
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An abstract evolution equation

Let us consider the equation

dF
dt + TF = LF (2)

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (H, 〈·, ·〉)

A :=
(
1 + (TΠ)∗TΠ

)−1(TΠ)∗

∗ denotes the adjoint with respect to 〈·, ·〉

Π is the orthogonal projection onto the null space of L

J. Dolbeault Hypocoercivity
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The assumptions
λm, λM , and CM are positive constants such that, for any F ∈ H

B microscopic coercivity:
−〈LF ,F〉 ≥ λm ‖(1−Π)F‖2 (H1)

B macroscopic coercivity:
‖TΠF‖2 ≥ λM ‖ΠF‖2 (H2)

B parabolic macroscopic dynamics:
ΠTΠF = 0 (H3)

B bounded auxiliary operators:
‖AT(1−Π)F‖+ ‖ALF‖ ≤ CM ‖(1−Π)F‖ (H4)

The estimate
1
2

d
dt ‖F‖

2 = 〈LF ,F〉 ≤ −λm ‖(1−Π)F‖2

is not enough to conclude that ‖F(t, ·)‖2 decays exponentially
J. Dolbeault Hypocoercivity



From ϕ-entropies to H1 hypocoercivity
An abstract result and mode-by-mode hypocoercivity

Diffusion and kinetic transport with very weak confinement
Vlasov-Poisson-Fokker-Planck system

An abstract hypocoercivity result
Mode-by-mode hypocoercivity
Application to the torus and some numerical results
Decay rates in the whole space

Equivalence and entropy decay
For some δ > 0 to be determined later, the L2 entropy / Lyapunov
functional is defined by

H[F ] := 1
2 ‖F‖

2 + δRe〈AF ,F〉
as in (J.D.-Mouhot-Schmeiser) so that 〈ATΠF ,F〉 ∼ ‖ΠF‖2 and

− d
dtH[F ] = : D[F ]

= − 〈LF ,F〉+ δ 〈ATΠF ,F〉
− δRe〈TAF ,F〉+ δRe〈AT(1−Π)F ,F〉 − δRe〈ALF ,F〉

B entropy decay rate: for any δ > 0 small enough and λ = λ(δ)
λH[F ] ≤ D[F ]

B norm equivalence of H[F ] and ‖F‖2

2− δ

4 ‖F‖2 ≤ H[F ] ≤ 2 + δ

4 ‖F‖2

J. Dolbeault Hypocoercivity
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Exponential decay of the entropy

λ = λM
3 (1+λM ) min

{
1, λm,

λm λM
(1+λM ) C2

M

}
, δ = 1

2 min
{
1, λm,

λm λM
(1+λM ) C2

M

}
h1(δ, λ) := (δCM )2 − 4

(
λm − δ − 2 + δ

4 λ

)(
δ λM

1 + λM
− 2 + δ

4 λ

)

Theorem

Let L and T be closed linear operators (respectively Hermitian and
anti-Hermitian) on H. Under (H1)–(H4), for any t ≥ 0

H[F(t, ·)] ≤ H[F0] e−λ?t

where λ? is characterized by

λ? := sup
{
λ > 0 : ∃ δ > 0 s.t. h1(δ, λ) = 0 , λm − δ − 1

4 (2 + δ)λ > 0
}

J. Dolbeault Hypocoercivity
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Sketch of the proof
Since ATΠ =

(
1 + (TΠ)∗TΠ

)−1 (TΠ)∗TΠ, from (H1) and (H2)

−〈LF ,F〉+ δ 〈ATΠF ,F〉 ≥ λm ‖(1−Π)F‖2 + δ λM

1 + λM
‖ΠF‖2

By (H4), we know that

|Re〈AT(1−Π)F ,F〉+ Re〈ALF ,F〉| ≤ CM ‖ΠF‖ ‖(1−Π)F‖

The equation G = AF is equivalent to (TΠ)∗F = G + (TΠ)∗ TΠG

〈TAF ,F〉 = 〈G, (TΠ)∗ F〉 = ‖G‖2 + ‖TΠG‖2 = ‖AF‖2 + ‖TAF‖2

〈G, (TΠ)∗ F〉 ≤ ‖TAF‖ ‖(1−Π)F‖ ≤ 1
2µ ‖TAF‖2 + µ

2 ‖(1−Π)F‖2

‖AF‖ ≤ 1
2 ‖(1−Π)F‖ , ‖TAF‖ ≤ ‖(1−Π)F‖ , |〈TAF ,F〉| ≤ ‖(1−Π)F‖2

With X := ‖(1−Π)F‖ and Y := ‖ΠF‖

D[F ]−λH[F ] ≥ (λm− δ)X2+ δ λM

1 + λM
Y 2− δCM X Y−2 + δ

4 λ (X2+Y 2)

J. Dolbeault Hypocoercivity
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Hypocoercivity

Corollary

For any δ ∈ (0, 2), if λ(δ) is the largest positive root of h1(δ, λ) = 0 for
which λm − δ − 1

4 (2 + δ)λ > 0, then for any solution F of (2)

‖F(t)‖2 ≤ 2 + δ

2− δ
e−λ(δ) t ‖F(0)‖2 ∀ t ≥ 0

From the norm equivalence of H[F ] and ‖F‖2

2− δ

4 ‖F‖2 ≤ H[F ] ≤ 2 + δ

4 ‖F‖2

We use 2− δ
4 ‖F0‖2 ≤ H[F0] so that λ? ≥ supδ∈(0,2) λ(δ)

J. Dolbeault Hypocoercivity



From ϕ-entropies to H1 hypocoercivity
An abstract result and mode-by-mode hypocoercivity

Diffusion and kinetic transport with very weak confinement
Vlasov-Poisson-Fokker-Planck system

An abstract hypocoercivity result
Mode-by-mode hypocoercivity
Application to the torus and some numerical results
Decay rates in the whole space

Formal macroscopic (diffusion) limit
Scaled evolution equation

ε
dF
dt + TF = 1

ε
LF

on the Hilbert space H. Fε = F0 + εF1 + ε2 F2 + O(ε3) as ε→ 0+

ε−1 : LF0 = 0 ,
ε0 : TF0 = LF1 ,

ε1 : dF0
dt + TF1 = LF2

The first equation reads as F0 = ΠF0
The second equation is simply solved by F1 = − (TΠ)F0
After projection, the third equation is

d
dt (ΠF0)− ΠT (TΠ)F0 = ΠLF2 = 0

∂tu + (TΠ)∗ (TΠ) u = 0

is such that d
dt ‖u‖

2 = − 2 ‖(TΠ) u‖2 ≤ − 2λM ‖u‖2

J. Dolbeault Hypocoercivity
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A toy problem

du
dt = (L−T) u , L =

(
0 0
0 −1

)
, T =

(
0 −k
k 0

)
, k2 ≥ Λ > 0

Non-monotone decay, a well known picture:
see for instance (Filbet, Mouhot, Pareschi, 2006)

H-theorem: d
dt |u|

2 = − 2 u2
2

macroscopic limit: du1
dt = − k2 u1

generalized entropy: H(u) = |u|2 − δ k
1+k2 u1 u2

dH
dt = −

(
2− δ k2

1 + k2

)
u2

2 −
δ k2

1 + k2 u2
1 + δ k

1 + k2 u1 u2

≤ −(2− δ) u2
2 −

δΛ
1 + Λ u2

1 + δ

2 u1u2
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Plots for the toy problem
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Mode-by-mode hypocoercivity

B Fokker-Planck equation and scattering collision operators

B A mode-by-mode hypocoercivity result

B Enlargement of the space by factorization

B Application to the torus and some numerical results

(Bouin, J.D., Mischler, Mouhot, Schmeiser)
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Fokker-Planck equation with general equilibria
We consider the Cauchy problem

∂tf + v · ∇x f = Lf , f (0, x, v) = f0(x, v) (3)
for a distribution function f (t, x, v), with position variable x ∈ Rd or
x ∈ Td the flat d-dimensional torus

Fokker-Planck collision operator with a general equilibrium M

Lf = ∇v ·
[
M ∇v

(
M−1 f

) ]
Notation and assumptions: an admissible local equilibrium M is
positive, radially symmetric and∫

Rd
M (v) dv = 1 , dγ = γ(v) dv := dv

M (v)
γ is an exponential weight if

lim
|v|→∞

|v|k

γ(v) = lim
|v|→∞

M (v) |v|k = 0 ∀ k ∈ (d,∞)
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Definitions

Θ = 1
d

∫
Rd
|v|2 M (v) dv =

∫
Rd

(v · e)2 M (v) dv

for an arbitrary e ∈ Sd−1∫
Rd

v ⊗ v M (v) dv = Θ Id

Then
θ = 1

d ‖∇vM‖2
L2(dγ) = 4

d

∫
Rd
|∇v
√
M
∣∣2 dv <∞

If M (v) = e−
1
2 |v|

2

(2π)d/2 , then Θ = 1 and θ = 1

σ := 1
2
√
θ/Θ

Microscopic coercivity property (Poincaré inequality): for all
u = M−1 F ∈ H1(M dv)∫

Rd
|∇u|2 M dv ≥ λm

∫
Rd

(
u −

∫
Rd

u M dv
)2

M dv
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Scattering collision operators
Scattering collision operator

Lf =
∫
Rd
σ(·, v′)

(
f (v′)M (·)− f (·)M (v′)

)
dv′

Main assumption on the scattering rate σ: for some positive, finite σ

1 ≤ σ(v, v′) ≤ σ ∀ v, v′ ∈ Rd

Example: linear BGK operator

Lf = Mρf − f , ρf (t, x) =
∫
Rd

f (t, x, v) dv

Local mass conservation ∫
Rd

Lf dv = 0

and we have ∫
Rd
|Lf |2 dγ ≤ 4σ2

∫
Rd
|Mρf − f |2 dγ
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The symmetry condition∫
Rd

(
σ(v, v′)− σ(v′, v)

)
M (v′) dv′ = 0 ∀ v ∈ Rd

implies the local mass conservation
∫
Rd Lf dv = 0

Micro-reversibility, i.e., the symmetry of σ, is not required

The null space of L is spanned by the local equilibrium M
L only acts on the velocity variable

Microscopic coercivity property: for some λm > 0

1
2

∫∫
Rd×Rd

σ(v, v′)M (v)M (v′) (u(v)− u(v′))2 dv′ dv

≥ λm

∫
Rd

(u − ρu M )2 M dv

holds according to Proposition 2.2 of (Degond, Goudon, Poupaud,
2000) for all u = M−1 F ∈ L2(M dv). If σ ≡ 1, then λm = 1
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Fourier modes
In order to perform a mode-by-mode hypocoercivity analysis, we
introduce the Fourier representation with respect to x,

f (t, x, v) =
∫
Rd

f̂ (t, ξ, v) e−i x·ξ dµ(ξ)

dµ(ξ) = (2π)−d dξ and dξ is the Lesbesgue measure if x ∈ Rd

dµ(ξ) = (2π)−d ∑
z∈Zd δ(ξ − z) is discrete for x ∈ Td

Parseval’s identity if ξ ∈ Zd and Plancherel’s formula if x ∈ Rd read

‖f (t, ·, v)‖L2(dx) =
∥∥∥f̂ (t, ·, v)

∥∥∥
L2(dµ(ξ))

The Cauchy problem is now decoupled in the ξ-direction

∂t f̂ + Tf̂ = Lf̂ , f̂ (0, ξ, v) = f̂0(ξ, v)

Tf̂ = i (v · ξ) f̂
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For any fixed ξ ∈ Rd , let us apply the abstract result with

H = L2 (dγ) , ‖F‖2 =
∫
Rd
|F |2 dγ , ΠF = M

∫
Rd

F dv = M ρF

and Tf̂ = i (v · ξ) f̂ , TΠF = i (v · ξ) ρF M ,

‖TΠF‖2 = |ρF |2
∫
Rd
|v · ξ|2 M (v) dv = Θ |ξ|2 |ρF |2 = Θ |ξ|2 ‖ΠF‖2

(H2) Macroscopic coercivity ‖TΠF‖2 ≥ λM ‖ΠF‖2 : λM = Θ |ξ|2

(H3)
∫
Rd v M (v) dv = 0

The operator A is given by

AF =
− i ξ ·

∫
Rd v′ F(v′) dv′

1 + Θ |ξ|2 M
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A mode-by-mode hypocoercivity result

‖AF‖ = ‖A(1−Π)F‖ ≤ 1
1 + Θ |ξ|2

∫
Rd

|(1−Π)F |√
M

|v · ξ|
√
M dv

≤ 1
1 + Θ |ξ|2 ‖(1−Π)F‖

(∫
Rd

(v · ξ)2 M dv
)1/2

=
√

Θ |ξ|
1 + Θ |ξ|2 ‖(1−Π)F‖

Scattering operator ‖LF‖2 ≤ 4σ2 ‖(1−Π)F‖2

Fokker-Planck (FP) operator

‖ALF‖ ≤ 2
1 + Θ |ξ|2

∫
Rd

|(1−Π)F |√
M

|ξ·∇v
√
M | dv ≤

√
θ |ξ|

1 + Θ |ξ|2 ‖(1−Π)F‖

In both cases with κ =
√
θ (FP) or κ = 2σ

√
Θ we obtain

‖ALF‖ ≤ κ |ξ|
1 + Θ |ξ|2 ‖(1−Π)F‖
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TAF(v) = − (v · ξ)M
1 + Θ |ξ|2

∫
Rd

(v′ · ξ) (1−Π)F(v′) dv′

is estimated by

‖TAF‖ ≤ Θ |ξ|2

1 + Θ |ξ|2 ‖(1−Π)F‖

(H4) holds with CM = κ |ξ|+Θ |ξ|2
1+Θ |ξ|2

Two elementary estimates

Θ |ξ|2

1 + Θ |ξ|2 ≥
Θ

max{1,Θ}
|ξ|2

1 + |ξ|2

λM

(1 + λM )C 2
M

= Θ (1 + Θ |ξ|2)
(κ+ Θ |ξ|)2 ≥

Θ
κ2 + Θ
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Mode-by-mode hypocoercivity with exponential weights

Theorem
Let us consider an admissible M and a collision operator L satisfying
Assumption (H), and take ξ ∈ Rd. If f̂ is a solution such that
f̂0(ξ, ·) ∈ L2(dγ), then for any t ≥ 0, we have∥∥∥f̂ (t, ξ, ·)

∥∥∥2

L2(dγ)
≤ 3 e−µξ t

∥∥∥f̂0(ξ, ·)
∥∥∥2

L2(dγ)

where

µξ := Λ |ξ|2

1 + |ξ|2 and Λ = Θ
3 max{1,Θ} min

{
1, λm Θ
κ2 + Θ

}
with κ = 2σ

√
Θ for scattering operators

and κ =
√
θ for (FP) operators

J. Dolbeault Hypocoercivity



From ϕ-entropies to H1 hypocoercivity
An abstract result and mode-by-mode hypocoercivity

Diffusion and kinetic transport with very weak confinement
Vlasov-Poisson-Fokker-Planck system

An abstract hypocoercivity result
Mode-by-mode hypocoercivity
Application to the torus and some numerical results
Decay rates in the whole space

Exponential convergence to equilibrium in Td

The unique global equilibrium in the case x ∈ Td is given by

f∞(x, v) = ρ∞M (v) with ρ∞ = 1
|Td |

∫∫
Td×Rd

f0 dx dv

Theorem

Assume that γ has an exponential growth. We consider an admissible
M, a collision operator L satisfying Assumption (H). There exists a
positive constant C such that the solution f of (3) on Td × Rd with
initial datum f0 ∈ L2(dx dγ) satisfies

‖f (t, ·, ·)− f∞‖L2(dx dγ) ≤ C ‖f0 − f∞‖L2(dx dγ) e− 1
4 Λ t ∀ t ≥ 0
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Enlargement of the space by factorization
A simple case (factorization of order 1) of the factorization method
of (Gualdani, Mischler, Mouhot)

Theorem

Let B1, B2 be Banach spaces and let B2 be continuously imbedded in
B1, i.e., ‖ · ‖1 ≤ c1‖ · ‖2. Let B and A + B be the generators of the
strongly continuous semigroups eB t and e(A+B) t on B1. If for all
t ≥ 0,∥∥∥e(A+B) t

∥∥∥
2→2
≤ c2 e−λ2 t ,

∥∥eBt∥∥
1→1 ≤ c3 e−λ1 t , ‖A‖1→2 ≤ c4

where ‖ · ‖i→j denotes the operator norm for linear mappings from Bi
to Bj. Then there exists a positive constant C = C (c1, c2, c3, c4) such
that, for all t ≥ 0,

∥∥∥e(A+B) t
∥∥∥

1→1
≤

{
C (1 + |λ1 − λ2|−1) e−min{λ1,λ2} t for λ1 6= λ2

C (1 + t) e−λ1 t for λ1 = λ2
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Integrating the identity d
ds
(
e(A+B) s eB (t−s)) = e(A+B) s A eB (t−s)

with respect to s ∈ [0, t] gives

e(A+B) t = eB t +
∫ t

0
e(A+B) s A eB (t−s) ds

The proof is completed by the straightforward computation

∥∥e(A+B) t∥∥
1→1 ≤ c3 e−λ1 t + c1

∫ t

0

∥∥e(A+B) s A eB (t−s)∥∥
1→2 ds

≤ c3 e−λ1 t + c1 c2 c3 c4 e−λ1 t
∫ t

0
e(λ1−λ2) s ds
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Weights with polynomial growth

Let us consider the measure

dγk := γk(v) dv where γk(v) = πd/2 Γ((k−d)/2)
Γ(k/2)

(
1 + |v|2

)k/2

for an arbitrary k ∈ (d,+∞)

We choose B1 = L2(dγk) and B2 = L2(dγ)

Theorem

Let Λ = Θ
3 max{1,Θ} min

{
1, λm Θ

κ2+Θ

}
and k ∈ (d,∞]. For any ξ ∈ Rd if

f̂ is a solution with initial datum f̂0(ξ, ·) ∈ L2(dγk), then there exists a
constant C = C (k, d, σ) such that∥∥∥f̂ (t, ξ, ·)

∥∥∥2

L2(dγk)
≤ C e−µξ t

∥∥∥f̂0(ξ, ·)
∥∥∥2

L2(dγk)
∀ t ≥ 0
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Fokker-Planck: AF = N χRF and BF = − i (v · ξ)F + LF − AF
N and R are two positive constants, χ is a smooth cut-off function
and χR := χ(·/R)
For any R and N large enough, according to Lemma 3.8 of (Mischler,
Mouhot, 2016) ∫

Rd
(L− A)(F)F dγk ≤ −λ1

∫
Rd

F2 dγk

for some λ1 > 0 if k > d, and λ2 = µξ/2 ≤ 1/4

Scattering operator:

AF(v) = M (v)
∫
Rd
σ(v, v′)F(v′) dv′

BF(v) = −
[
i (v · ξ) +

∫
Rd
σ(v, v′)M (v′) dv′

]
F(v)

Boundedness: ‖AF‖L2(dγ) ≤ σ
(∫

Rd γ
−1
k dv

)1/2 ‖F‖L2(dγk)
λ1 = 1 and λ2 = µξ/2 ≤ 1/4
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Exponential convergence to equilibrium in Td

The unique global equilibrium in the case x ∈ Td is given by

f∞(x, v) = ρ∞M (v) with ρ∞ = 1
|Td |

∫∫
Td×Rd

f0 dx dv

Theorem

Assume that k ∈ (d,∞] and γ has an exponential growth if k =∞.
We consider an admissible M, a collision operator L satisfying
Assumption (H), and Λ given by (11)
There exists a positive constant Ck such that the solution f of (3) on
Td × Rd with initial datum f0 ∈ L2(dx dγk) satisfies

‖f (t, ·, ·)− f∞‖L2(dx dγk) ≤ Ck ‖f0 − f∞‖L2(dx dγk) e− 1
4 Λ t ∀ t ≥ 0
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If we represent the flat torus Td by the box [0, 2π)d with periodic
boundary conditions, the Fourier variable satisfies ξ ∈ Zd . For ξ = 0,
the microscopic coercivity implies∥∥∥f̂ (t, 0, ·)− f̂∞(0, ·)

∥∥∥
L2(dγ)

≤
∥∥∥f̂0(0, ·)− f̂∞(0, ·)

∥∥∥
L2(dγ)

e−t

Otherwise µξ ≥ Λ/2 for any ξ 6= 0

Parseval’s identity applies, with measure dγ(v) and C∞ =
√
3

The result with weight γk follows from the factorization result for
some Ck > 0
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Computation of the constants
B A more numerical point of view

Two simple examples: L denotes either the Fokker-Planck operator

L1f := ∆vf +∇v · (v f )

or the linear BGK operator

L2f := Πf − f

Πf = ρf M is the projection operator on the normalized Gaussian
function

M (v) = e− 1
2 |v|

2

(2π)d/2

and ρf :=
∫
Rd f dv is the spatial density
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Where do we have space for improvements ?
With X := ‖(1−Π)F‖ and Y := ‖ΠF‖, we wrote

D[F ]− λH[F ]

≥ (λm − δ)X2 + δ λM

1 + λM
Y 2 − δCM X Y − λ

2
(
X2 + Y 2 + δX Y

)
≥ (λm − δ)X2 + δ λM

1 + λM
Y 2 − δCM X Y − 2 + δ

4 λ (X2 + Y 2)

We can directly study the positivity condition for the quadratic
form

(λm − δ)X2 + δ λM

1 + λM
Y 2 − δCM X Y − λ

2
(
X2 + Y 2 + δX Y

)
λm = 1, λM = |ξ|2 and CM = |ξ| (1 + |ξ|)/(1 + |ξ|2)
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With λm = 1, λM = |ξ|2 and CM = |ξ| (1 + |ξ|)/(1 + |ξ|2), we
optimize λ under the condition that the quadratic form

(λm − δ)X2 + δ λM

1 + λM
Y 2 − δCM X Y − λ

2
(
X2 + Y 2 + δX Y

)
is positive, thus getting a λ(ξ)

By taking also δ = δ(ξ) where ξ is seen as a parameter, we get a
better estimate of λ(ξ)
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By taking δ = δ(ξ), for each value of ξ we build a different Lyapunov
function, namely

Hξ[F ] := 1
2 ‖F‖

2 + δ(ξ)Re〈AF ,F〉

where the operator A is given by

AF =
− i ξ ·

∫
Rd v′ F(v′) dv′

1 + |ξ|2 M

We can consider

AεF =
− i ξ ·

∫
Rd v′ F(v′) dv′

ε+ |ξ|2 M

and look for the optimal value of ε...
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The dependence of λ in ε is monotone, and the limit as ε→ 0+ gives
the optimal estimate of λ. The operator

A0F =
− i ξ ·

∫
Rd v′ F(v′) dv′

|ξ|2
M

is not bounded anymore, but estimates still make sense
and limξ→0 δ(ξ) = 0 (see below)
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Theorem (Hypocoercivity on Td with exponential weight)

Assume that L = L1 or L = L2. If f is a solution, then

‖f (t, ·, ·)− f∞‖2
L2(dx dγ) ≤ C? ‖f0‖2

L2(dx dγ) e−λ?t ∀ t ≥ 0

with f∞(x, v) = M (v)
∫∫

Td×Rd f0(x, v) dx dv

C? ≈ 1.75863 and λ? = 2
13 (5− 2

√
3) ≈ 0.236292.

(work in progress)

J. Dolbeault Hypocoercivity



From ϕ-entropies to H1 hypocoercivity
An abstract result and mode-by-mode hypocoercivity

Diffusion and kinetic transport with very weak confinement
Vlasov-Poisson-Fokker-Planck system

An abstract hypocoercivity result
Mode-by-mode hypocoercivity
Application to the torus and some numerical results
Decay rates in the whole space

Some comments on recent works

A more algebraic approach based on the spectral analysis of
symmetric and non-symmetric operators

On BGK models
(Achleitner, Arnold, Carlen)

On Fokker-Planck models
(Arnold, Erb)
(Arnold, Stürzer)
(Arnold, Einav, Wöhrer)
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Algebraic decay rates in Rd

On the whole Euclidean space, we can define the entropy
H[f ] := 1

2 ‖f ‖
2
L2(dx dγk) + δ 〈Af , f 〉dx dγk

Replacing the macroscopic coercivity condition by Nash’s inequality

‖u‖2
L2(dx) ≤ CNash ‖u‖

4
d+2
L1(dx) ‖∇u‖

2 d
d+2
L2(dx)

proves that

H[f ] ≤ C
(

H[f0] + ‖f0‖2
L1(dx dv)

)
(1 + t)− d

2

Theorem
Assume that γk has an exponential growth (k =∞) or a polynomial
growth of order k > d

There exists a constant C > 0 such that, for any t ≥ 0

‖f (t, ·, ·)‖2
L2(dx dγk) ≤ C

(
‖f0‖2

L2(dx dγk) + ‖f0‖2
L2(dγk ; L1(dx))

)
(1 + t)− d

2
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A direct proof... Recall that µξ = Λ |ξ|2
1+|ξ|2

By the Plancherel formula

‖f (t, ·, ·)‖2
L2(dx dγk) ≤ C

∫
Rd

(∫
Rd

e−µξ t |f̂0|2 dξ
)

dγk

if |ξ| < 1, then µξ ≥ Λ
2 |ξ|

2

∫
|ξ|≤1

e−µξ t |f̂0|2 dξ ≤ C ‖f0(·, v)‖2
L1(dx)

∫
Rd
e− Λ

2 |ξ|
2 t dξ

≤ C ‖f0(·, v)‖2
L1(dx) t− d

2

if |ξ| ≥ 1, then µξ ≥ Λ/2 when |ξ| ≥ 1∫
|ξ|>1

e−µξ t |f̂0|2 dξ ≤ C e−Λ
2 t ‖f0(·, v)‖2

L2(dx)
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Improved decay rate for zero average solutions

Theorem
Assume that f0 ∈ L1

loc(Rd × Rd) with
∫∫

Rd×Rd f0(x, v) dx dv = 0 and
C0 := ‖f0‖2

L2(dγk+2; L1(dx)) + ‖f0‖2
L2(dγk ; L1(|x| dx)) + ‖f0‖2

L2(dx dγk) <∞

Then there exists a constant ck > 0 such that

‖f (t, ·, ·)‖2
L2(dx dγk) ≤ ck C0 (1 + t)−(1+ d

2 )
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Step 1: Decay of the average in space, factorization

x-average in space

f•(t, v) :=
∫
Rd

f (t, x, v) dx

with
∫
Rd f•(t, v) dv = 0 and observe that f• solves a Fokker-Planck

equation
∂tf• = Lf•

From the microscopic coercivity property, we deduce that

‖f•(t, ·)‖2
L2(dγ) ≤ ‖f•(0, ·)‖

2
L2(dγ) e−λm t

Factorisation

‖f•(t, ·)‖2
L2(|v|2 dγk) ≤ C ‖f0‖2

L2(|v|2 dγk ;L1(dx)) e−λ t
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Step 2: Improved decay of f
Let us define g := f − f• ϕ, with ϕ(x) := (2π)−d/2 e−|x|2/2

The Fourier transform ĝ solves
∂t ĝ + Tĝ = Lĝ − f• Tϕ̂ with Tϕ̂ = i (v · ξ) ϕ̂

Duhamel’s formula

ĝ = e i(L−T) t ĝ0︸ ︷︷ ︸
C e−

1
2 µξ t ‖ĝ0(ξ,·)‖L2(dγk)

+
∫ t

0
e i(L−T) (t−s) (−f•(s, v) Tϕ̂(ξ))︸ ︷︷ ︸

C e−
µξ
2 (t−s)‖f•(s,·)‖L2(|v|2 dγk)|ξ| |ϕ̂(ξ)|

ds

ĝ0(ξ, v) = ĝ0(0, v)︸ ︷︷ ︸
=0

+
∫ |ξ|

0
ξ
|ξ| · ∇ξ ĝ0

(
η ξ
|ξ| , v

)
dη yields

|ĝ0(ξ, v)| ≤ |ξ| ‖∇ξ ĝ0(·, v)‖L∞(dv) ≤ |ξ| ‖g0(·, v)‖L1(|x| dx)

µξ = Λ |ξ|2/(1 + |ξ|2) ≥ Λ/2 if |ξ| > 1 (contribution O(e−Λ
2 t)) and∫

|ξ|≤1
∫
Rd

∣∣e i(L−T) t ĝ0
∣∣2 dγk dξ ≤

∫
Rd
|ξ|2 e−Λ

2 |ξ|
2 t dξ︸ ︷︷ ︸

=O(t−(d+2))

‖g0‖2
L2(dγk ; L1(|x| dx))
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Diffusion and kinetic transport with
very weak confinement

In collaboration with Emeric Bouin and Christian Schmeiser
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The macroscopic Fokker-Planck equation

∂u
∂t = ∆xu +∇x · (∇xV u) = ∇x

(
e−V ∇x

(
eV u

))
Here x ∈ Rd , d ≥ 3, and V is a potential such that e−V 6∈ L1(Rd)
corresponding to a very weak confinement

e−V dx is an unbounded invariant measure

Two examples

V1(x) = γ log |x| and V2(x) = γ log〈x〉

with γ < d and 〈x〉 :=
√
1 + |x|2 for any x ∈ Rd
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A first decay result

Theorem

Assume that either d ≥ 3, γ < (d − 2)/2 and V = V1 or V = V2
F any solution u with initial datum u0 ∈ L1

+ ∩ L2(Rd),

‖u(t, ·)‖2
2 ≤

‖u0‖2
2

(1 + c t) d
2

with c := 4
d min

{
1, 1− 2 γ

d−2

}
C−1

Nash
‖u0‖4/d

2

‖u0‖4/d
1

Here CNash denotes the optimal constant in Nash’s inequality

‖u‖2+ 4
d

2 ≤ CNash ‖u‖
4
d
1 ‖∇u‖

2
2 ∀ u ∈ L1 ∩ H1(Rd)

J. Dolbeault Hypocoercivity



From ϕ-entropies to H1 hypocoercivity
An abstract result and mode-by-mode hypocoercivity

Diffusion and kinetic transport with very weak confinement
Vlasov-Poisson-Fokker-Planck system

Diffusion with very weak confinement
The kinetic Fokker-Planck equation

An extended range of exponents: with moments

Theorem

Let d ≥ 1, 0 < γ < d, V = V1 or V = V2, and u0 ∈ L1
+ ∩ L2(eV )

with
∥∥|x|ku0

∥∥
1 <∞ for some k ≥ max{2, γ/2}

∀ t ≥ 0 , ‖u(t, ·)‖2
L2(eV dx) ≤ ‖u0‖2

L2(eV dx) (1 + c t)−
d−γ
2

for some c depending on d, γ, k, ‖u0‖L2(eV dx), ‖u0‖1, and
∥∥|x|ku0

∥∥
1
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An extended range of exponents: in self-similar variables

u?(t, x) = c?
(1 + 2 t) d−γ

2
|x|−γ exp

(
− |x|2

2 (1 + 2 t)

)
Here the initial data need have a sufficient decay...
c? is chosen such that ‖u?‖1 = ‖u0‖1

Theorem

Let d ≥ 1, γ ∈ (0, d), V = V1 assume that

∀ x ∈ Rd , 0 ≤ u0(x) ≤ K u?(0, x)

for some constant K > 1

∀ t ≥ 0 , ‖u(t, ·)− u?(t, ·)‖p ≤ K c1− 1
p

? ‖u0‖
1
p
1

(
e

2 |γ|

) γ
2

(
1− 1

p
)

(1+2 t)−ζp

for any p ∈ [1,+∞), where ζp := d
2
(
1− 1

p
)

+ 1
2 p min

{
2, d

d−γ
}
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Proofs: basic case

d
dt

∫
Rd

u2 dx = − 2
∫
Rd
|∇u|2 dx +

∫
Rd

∆V |u|2 dx

with either V = V1 or V = V2 and

∆V1(x) = γ
d − 2
|x|2 and ∆V2(x) = γ

d − 2
1 + |x|2 + 2 γ

(1 + |x|2)2

For γ ≤ 0: apply Nash’s inequality
d
dt ‖u‖

2
2 ≤ − 2 ‖∇u‖2

2 ≤ −
2

CNash
‖u0‖−4/d

1 ‖u‖2+4/d
2

For 0 < γ < (d − 2)/2: Hardy-Nash inequalities

Lemma

Let d ≥ 3 and δ < (d − 2)2/4

‖u‖2+ 4
d

2 ≤ Cδ

(
‖∇u‖2

2 − δ
∫
Rd

u2

|x|2 dx
)
‖u‖

4
d
1 ∀ u ∈ L1 ∩ H1(Rd)

with Cδ = CNash/
(
1− 4 δ

(d−2)2

)J. Dolbeault Hypocoercivity



From ϕ-entropies to H1 hypocoercivity
An abstract result and mode-by-mode hypocoercivity

Diffusion and kinetic transport with very weak confinement
Vlasov-Poisson-Fokker-Planck system

Diffusion with very weak confinement
The kinetic Fokker-Planck equation

Proofs: moments

Growth of the moment

Mk(t) :=
∫
Rd
|x|ku dx

From the equation

M ′k = k
(
d + k − 2− γ

) ∫
Rd

u |x|k−2 dx ≤ k
(
d + k − 2− γ

)
M

2
k

0 M 1− 2
k

k

then use the Caffarelli-Kohn-Nirenberg inequality∫
Rd
|x|γ u2 dx ≤ C

(∫
Rd
|x|−γ |∇ (|x|γu)|2 dx

)a (∫
Rd
|x|k |u| dx

)2(1−a)

+ similar estimates in the non-homogeneous case, based on a
non-homogeneous Caffarelli-Kohn-Nirenberg inequality
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Proofs: self-similar solutions

The proof relies on uniform decay estimates + Poincaré inequality in
self-similar variables

Proposition

Let γ ∈ (0, d) and assume that

0 ≤ u(0, x) ≤ c?
(
σ + |x|2

)−γ/2 exp
(
−|x|

2

2

)
∀ x ∈ Rd

with σ = 0 if V = V1 and σ = 1 if V = V2. Then

0 ≤ u(t, x) ≤ c?
(1 + 2 t) d−γ

2

(
σ + |x|2

)−γ/2 exp
(
− |x|2

2 (1 + 2 t)

)
for any x ∈ Rd and t ≥ 0
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The kinetic Fokker-Planck equation

Let us consider the kinetic equation

∂tf + v · ∇x f −∇xV · ∇vf = Lf

where Lf is one of the two following collision operators
(a) a Fokker-Planck operator

Lf = ∇v ·
(
M ∇v

(
M−1 f

) )
(b) a scattering collision operator

Lf =
∫
Rd
σ(·, v′)

(
f (v′)M (·)− f (·)M (v′)

)
dv′
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Decay rates

∀ (x, v) ∈ Rd×Rd , M(x, v) = M (v) e−V (x) , M (v) = (2π)− d
2 e− 1

2 |v|
2

(H1) 1 ≤ σ(v, v′) ≤ σ , ∀ v , v′ ∈ Rd , for some σ ≥ 1

(H2)
∫
Rd

(
σ(v, v′)− σ(v′, v)

)
M (v′) dv′ = 0 ∀ v ∈ Rd

Theorem

Let d ≥ 1, V = V2 with γ ∈ [0, d), k > max {2, γ/2} and
f0 ∈ L2(M−1dx dv) such that∫∫

Rd×Rd 〈x〉k f0 dx dv +
∫∫

Rd×Rd |v|k f0 dx dv < +∞

If (H1)–(H2) hold, then there exists C > 0 such that

∀ t ≥ 0 , ‖f (t, ·, ·)‖2
L2(M−1dx dv) ≤ C (1 + t)−

d−γ
2
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The Vlasov-Poisson-Fokker-Planck
system:

linearization and hypocoercivity
In collaboration with Lanoir Addala, Xingyu Li and Lazhar M. Tayeb

J. Dolbeault Hypocoercivity



From ϕ-entropies to H1 hypocoercivity
An abstract result and mode-by-mode hypocoercivity

Diffusion and kinetic transport with very weak confinement
Vlasov-Poisson-Fokker-Planck system

Linearized Vlasov-Poisson-Fokker-Planck system
The Vlasov-Poisson-Fokker-Planck system in presence of an external
potential V is

∂tf + v · ∇x f − (∇xV +∇xφ) · ∇vf = ∆vf +∇v · (v f )

−∆xφ = ρf =
∫
Rd

f dv
(VPFP)

Linearized problem around f?: f = f? (1 + η h),
∫∫

Rd×Rd h f? dx dv = 0

∂th + v · ∇xh − (∇xV +∇xφ?) · ∇vh + v · ∇xψh −∆vh + v · ∇vh = η∇xψh · ∇vh

−∆xψh =
∫
Rd

h f? dv

Drop the O(η) term : linearized Vlasov-Poisson-Fokker-Planck system

∂th + v · ∇xh − (∇xV +∇xφ?) · ∇vh + v · ∇xψh −∆vh + v · ∇vh = 0

−∆xψh =
∫
Rd

h f? dv ,
∫∫

Rd×Rd
h f? dx dv = 0

(VPFPlin)
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Hypocoercivity

Let us define the norm

‖h‖2 :=
∫∫

Rd×Rd
h2 f? dx dv +

∫
Rd
|∇xψh|2 dx

Theorem

Let us assume that d ≥ 1, V (x) = |x|α for some α > 1 and M > 0.
Then there exist two positive constants C and λ such that any solution
h of (VPFPlin) with an initial datum h0 of zero average with
‖h0‖2

<∞ is such that

‖h(t, ·, ·)‖2 ≤ C ‖h0‖2 e−λt ∀ t ≥ 0
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Diffusion limit
Linearized problem in the parabolic scaling

ε ∂th + v · ∇xh − (∇xV +∇xφ?) · ∇vh + v · ∇xψh −
1
ε

(
∆vh − v · ∇vh

)
= 0

−∆xψh =
∫
Rd

h f? dv ,
∫∫

Rd×Rd
h f? dx dv = 0

(VPFPscal)
Expand hε = h0 + ε h1 + ε2 h2 + O(ε3) as ε→ 0+. With W? = V + φ?

ε−1 : ∆vh0 − v · ∇vh0 = 0
ε0 : v · ∇xh0 −∇xW? · ∇vh0 + v · ∇xψh0 = ∆vh1 − v · ∇vh1

ε1 : ∂th0 + v · ∇xh1 −∇xW? · ∇vh1 = ∆vh2 − v · ∇vh2

With u = Πh0, −∆ψ = u ρ?, w = u + ψ, equations simply mean

u = h0 , v · ∇xw = ∆vh1 − v · ∇vh1

from which we deduce that h1 = − v · ∇xw and

∂tu −∆w +∇xW? · ∇u = 0
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Further results

Theorem

Let us assume that d ≥ 1, V (x) = |x|α for some α > 1 and M > 0.
For any ε > 0 small enough, there exist two positive constants C and
λ, which do not depend on ε, such that any solution h of (VPFPscal)
with an initial datum h0 of zero average and such that ‖h0‖2

<∞
satisfies

‖h(t, ·, ·)‖2 ≤ C ‖h0‖2 e−λt ∀ t ≥ 0

Corollary

Assume that d = 1, V (x) = |x|α for some α > 1 and M > 0. If f
solves (VPFP) with initial datum f0 = (1 + h0) f? such that h0 has
zero average, ‖h0‖2

<∞ and (1 + h0) ≥ 0, then

‖h(t, ·, ·)‖2 ≤ C ‖h0‖2 e−λt ∀ t ≥ 0

holds with h = f /f? − 1 for some positive constants C and λ
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