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Outline

@ Entropy and the fast di usion equation: from functional
inequalities and characterization of optimal rates to best
matching Barenblatt functions and improved inequalities

@ Fast di usion equations on manifolds and sharp functional
inequalities: rigidity results, the care du champ or Bakry-Emery
method, and the use of nonlinear di usion equations

@ An equivalent point of view: optimal Keller-Lieb-Thirring
estimateson manifolds

@ Symmetry and symmetry breaking in Ca arelli-Kohn-Nirenberg
inequalities; an introduction to the lecture of Michael Loss
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Entropy and the fast di usion
equation

A summary

B Relative entropy, linearization, functional inequalities,
improvements, improved rates of convergence, delays
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The fast di usion equation

The fast di usion equation corresponds tom < 1
u= u™ x2RY;t>0

Self-similar (Barenblatt) functions attract all solutionsas t! +1
[Friedmann, Kamin]

B Entropy methods allow to measure the speed of convergenceaofy
solution to U in norms which are adapted to the equation
B Entropy methods provide explicit constants

@ The Bakry-Emery method [Carrillo, Toscani], [Juengel,
Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani,
Unterreiter], [Carrillo, \azquez]

@ The variational approach and Gagliardo-Nirenberg inequalities:
[del Pino, JD]

@ Mass transportation and gradient ow issues: [Otto et al.]

@ Large time asymptotics and the spectral approach:[Blanchet,
Bonforte, JD, Grillo, Vazquez] , [Denzler, Koch, McCann] [Seis]

@ Re ned relative entropy methods
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Time-dependent rescaling, free energy

@ Time-dependent rescaling Take u(; y) = R 9( )v (t;y=R( ))
where

3—R:Rd(1 m 1. RO)=1; t=logR

@ The function v solves a Fokker-Planck type equation
v+ (XV); Vi = = W

@ _
@

@_ [Ralston, Newman, 1984]Lyapunov functional:
Generalized entropyor Eree energy

Flv] = " . Lixitv dx E
T o om 1 2™ 0
Entropy production is measured by the Generalized Fisher
information

d z mo 2

EF[V]: I [v]; I[v]:= dv %+x dx

R
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Relative entropy and entropy production

@_ Stationary solution: chooseC such that kv; ki1 = kukis = M > 0

1=(1 m)

xj?

+

1
vi (x):= C+ >m

Relative entropy. Fix Fg sothat F[v; ]=0
@_ Entropy { entropy production inequality

d 3m2[42+1) m>31 mé1

I [v] 2F]v]

Corollary

A solution v with initial data @ 2 L} (R) such thatjxj? up 2 L(RY),
Ug‘ 2 Ll(Rd) satis es F[V(t' )] E [Uo]e 2t

J. Dolbeault Entropy methods and sharp functional inequalities



Fast di usion equations: new points of view s el ave Selivs

Scalings and a concavity property
Best matching

An equivalent formulation: Gagliardo-Nirenberg inetjea

Z Z )
m 1 1 rvm 1
Flv] = + Zjxjv dxF = +x dx= ZI
[v] e M1 2ij v dxF g 5 Rdv X dx 5 [V]
Rewrite it with p= 51—, v=w?, v" = wP as
z z
1 2m T, o
= r dx+ —— d YPax K 0
2 2m 1 Rdj WHaX 1 m Rd M X

[Del Pino, J.D.] With 1< p ;% (fast diusion case) and d 3

il

kaLZp(Rd) C SZ‘ kl‘ WkLZ(Rd) kaLp+1(Rd)
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[Denzler, McCann], [Denzler, Koch, McCann], [Seis]
[Blanchet, Bonforte, J.D., Grillo, \&zquez] , [Bonforte, J.D., Grillo,
\azquez], [J.D., Toscani]

m
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Fast di usion equations:
some recent results

9@ improved inequalities and scalings
@ scalings and a concavity property
Q@ improved rates and best matching
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Gagliardo-Nirenberg inequalities and the FDE

kr kaz(Rd) kaiqff(Rd) CGN kaLZq(Rd)

With the right choice of the constants, the functional

R . . R . R .. —
JW] = 2(0? 1) goir wiZdx+ Lo jwjT*t dx K Cgy  geiwj®dx 7
is nonnegative andJjw] Jw ]=0

Theorem

[Dolbeault-Toscani] For some nonnegative, convex, increasing
R R
Jw] go W jTdx o jwjtt dx

R
for any w2 Lq”(@g) such that ., jr wj?dx < 1 and
re WA jxj2dx = g w2 jxj2 dx

R

4

Consequence for decay rates of relative Renyi entropiesfaster rates of
convergence in intermediate asymptotics for% = uP
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Scalings and a concavity property

B Renyi entropies, the entropy approach without rescaling: [Savae,
Toscani]

B faster rates of convergence[Carrillo, Toscani], [JD, Toscani]
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The fast di usion equation in original variables

Consider the nonlinear di usion equation in RY, d 1
@ m

_ = u
Q@ R
wth |n|t|al datum u(x;t =0)= up(x) Osuchthat .,Updx=1 and
Rd jXj?updx < +1 . The large time behavior of the solutions is

governed by the source-type Barenblatt solutions

1 X
U?(tvx) - tlz d B? tl:
where 5 )
m =
=2+d(m 1); = —
( ) —1
and B-, is the Barenblattgpro le
<G ixe, ™Y ifm>1
Bo(x) = | o 1
Cy + jxj? ifm< 1
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The entropy

The entropy is de ned by
E:= u™ dx
Rd
and the Fisher inf%rmation by
m

— H 12 : — m 1
| := Rdulr pj-dx with p——rn 1u
p is the pressure variable If u solves the fast di usion equation, then
E°=@1 m)l

To compute 1% we will use the fact that

@ )

—=(m 1 +r

@ ( )PP+ jrp

2 1 2 1
F:=E ith = =1+ Z 4 1 ===
w d@ m T m a ™ d1 m

has a linear growth asymptotically ast ! +1
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The concavity property

[Toscani-Savae] Assume that m 1 % ifd>l1landm> 0ifd=1.
Then F(t) is increasing(1 m)F%{t) 0 and

t!Ilgrnl t—F(t)—(l m) t!I|r+n1E =@ m) E, *I,

[Dolbeault-Toscani] The inequality
'FP=g 1 E, 1
is equivalent to the Gagliardo-Nirenberg inequality

kr WkLZ(Rd) kaiq*'l(Rd) CGN kaLZq(Rd)

; 1 e m 1=2 — w — 1
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The proof

If u solves u™ with & m< 1, then
Z

0= d ujr pi2dx= 2 u™ kD?pk?+(m 1)(p) ? dx
dt Rd Rd

(CIg
€]
VA

1
d
Z 2
B E)P=@ m( 1)  ujr pdx
z Rz
1 u™dx  u™(p) 2dx
Rd Rd
Z 1 2
2 uM™dx u™ D% ZplId dx
Rd Rd d
J. Dolbeault Entropy methods and sharp functional inequalities

D%k’ = £ (p) 2+ D% 3 p Id

1
1 m

+m

No |
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Relative entropy and best matching

Consider the family of the Barenblatt pro les
_1
B(X):= ? C+1ljx2™"t 8x2Rd

The BarenblattF@ro le B q;bays the role of alocal Gibbs stateif C, is
chosen so that o, B dx= _4vdx
The relative entropy is de ned by
1 z
F [v]:= —— v B™ mB™ (v B) dx
M= 5 v B)
To minimize F [v] with respect to is equivalentto x  such that
z z Z
jxj?Bidx = jxj’B dx=  jxj?vdx
Rd Rd Rd
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A Csiszar-Kullback(-Pinsker) inequality

Let m2 (%; 1) and consider the relative entropy
1 z
F [u:= —— u™ B™ mB™ (u B) dx
m 1 Rd

[J.D., Toscani] Assume that u is a nonnegative function irt(R%) such
atu™ and xajsz u are both integrable oR?. If kuk gy = M and
e IXjZudx =, jxj?B dx, then

z 2
F [u] p M i o :
wm 8 ~ BP dx Coku B kpigey + — Rde] ju B jdx
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Temperature (fast di usion case)

The second moment functional(%emperature) is de ned by

(t):= 1 jxj? u(t; x) dx
d re

and such that

°=2E

Fast di®usion case

S (s7 e()E,

s (s+ O)E /2

¢0)
o) «—

A(m a)ELT s
|
o

<« a =limg +1 &(9)

J. Dolbeault
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Temperature (porous medium case)

Let U5 be the best matching Barenblattfunction, in the sense of
relative entropy F [ujU3], among all Barenblatt functions (U3)ss o.

1
S (s+ a)E*lz

Porous medium case 12 (s)/

D (s+ () EL 2

S (s+ ¢(0)E. 2
/O | S

t

¢(0) «—>|
> 1 =limg 41 ¢(s)

120}

A
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A result on delays

Assume thatm 1 % and m6 1. The best matching Barenblatt
function of a solution u igt;x) 7! U,(t + (t);x) and the function
t 7! (t) is nondecreasing if m 1 and nonincreasing it % m< 1

With G:= 1t 2z, =d(1 m)=2 , the Renyi entropy power

functional H := 7 E is such that
= H with H= ZzE
HO , _ dE? . o
T m- I dE° = 7+l(q 1) with q.—ﬁ 1
2 — 1 z m 2_ 1 z 2
dE = = X r(umMdx == X ur pdx
d Rd d Rd
1Z Z
= ujxj?dx  ujr pji2dx= 1
d Rd Rd
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Fast di usion equations on manifolds
and sharp functional inequalities

@ The sphere
@ The line
@ Compact Riemannian manifolds

@ The Moser-Trudinger-Onofri inequality on
Riemannian manifolds
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Interpolation inequalities on the
sphere

Joint work with M.J. Esteban, M. Kowalczyk and M. Loss
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A family of interpolation inequalities on the sphere

The following interpolation inequality holds on the sphere

,Z z z -
pT i uj2 d v+ deujz dvg P dyg 8 U2 HY(; dvy)

@ foranyp2 (2;2 Jwith 2 = 2% ifd 3
@ foranyp2(2;1)ifd=2

Here dvg is the uniform probability measure: vg(S*) = 1

@ 1 is the optimal constant, equality achieved by constants

@ p=2 corresponds to Sobolev's inequality...
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Stereographi
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Sobolev's inequality

The stereographic projection ofS" RY R 3 ( ; z) onto RY:

to 2+2z%2=1,z2[ 1;1], 0, 25" ! we associatex 2 RY such
that r = jxj, :%
r2 1 2 2r
z= —— =1 —_— = —
rz+1 rz+1 rz+1

and transform any function u on S into a function v on RY using
P95t 21 42 42
uy)= = 2 v(x)= =5 2 v(x)=(@1 z) 7 v(x)

@p=2,S=1d(d 2)js'j*: Euclidean Sobolev inequality

Z Z 42
ir vizdx Sy jvj©2 dx 8v 2 D2(RY)
d d

R R
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Schwarz symmetrization and the ultraspherical setting

P
(o; it a)2S, a=2, L jij2=1 [Smets-Willem]

Up to a rotation, any minimizer of) depends only ong = z

d
Letd ()= S0—d ,7y:= P72 Bu2 H(QO; Jid )
2
0 22 VA VA 2
., VO Zd + . jv()j*d . jv( )i d
Change of variablesz = cos , v( ) = f(2)
221 Z, Z, z
e if9% dag+  jfj*d g jfiPd g
1 1 1

where 4(z)dz=d 4(z):= Z;* % dz, (2):=1 22

J. Dolbeault Entropy methods and sharp functional inequalities



The sphere
Fast di usion equations on manifolds and sharp functional inequalities The line
Compact Riemannian manifolds
The Moser-Trudinger-Onofri inequality

The ultraspherical operator

With d 4= z,* % 'dz, (2):=1 22 consider the space
L2(( 1;1);d 4) with scalar product

Z, Z, :
Hi;foi = fifad q; kfk, = fPd g4
1 1

The self-adjoint ultraspherical operator is
Lf=(@1 2)f% dzf°= f°°+% of 0

. . X . Rl 0¢0
which satis es hf1;L f,i = Jfof dog

Proposition

Letp2 [L2)[ (22],d 1
Zl 2 2

kik2 k fk

hfiLfi= jf92 dgq d—P 72

1 S
X 0 2 8f 2 H ([ 1,1 d q)
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Flows on the sphere

@ Heat ow and the Bakry-Emery method

@ Fast di usion (porous media) ow and the choice of the exponents

Joint work with M.J. Esteban, M. Kowalczyk and M. Loss
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The sphere

The line

Compact Riemannian manifolds

The Moser-Trudinger-Onofri inequality

Heat ow and the Bakry-Emery method

Fast di usion equations on manifolds and sharp functional inequalities

With g=fP,ie. f =g with =1=p

2 2
(Ineq:) hf;Lfi= hg ;Lgi=:1][g] dkgkl—kzgklz: Flg]

Heat ow

@

— =L

@ g
d d 21
—kgki=0; —kg® ki= 2(p 2JH;Lfi=2(p 2) jf%* d g4
dt dt 1
which nally gives
d

A Co
Grle= =

kg? ko= 2dI[g(t; )]

2o

neq. 0 SFM( 2dFlg ) (= Silo( )] 241 o)
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The equation for g = fP can be rewritten in terms of f as

%_ Lf+(p 1)qu2

Z
1d°1Y o, 1d,. . . . if92
= ljf‘i dg= 5 MiLTi= hLELi+(p 1)th—,Lf
d g%t %3
gl oI+ 2difg(t )= o jff* da+2d i3 da
1 1
Zl .
d jfg4 d 1jf92f00
— 002 2
=2 i+ Voo 20 Dy d g
is nonpositive if
. d jf94 d 1jfg2f0
002
i+ Vg 20 Vg
is pointwise nonnegative, which is granted if
2
d 2d2+1 ., 2d
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. up to the critical exponent: a proof in two slides

%;L u=(Lu’ L u’= 2zu® du°
Zl Zl Zl
(Lw?d 4 = ju’? 2d g+d  jug? dg
1 1 1
Z 4 Z Z .
(L u)] u92 g d Liugs 2 4 ,d 1 Ljug2ue
¢ d+2 ; u? d

d
d+2 ; wu d
On ( 1;1), let us consider theporous medium (fast di usion) ow

1102
u
ut_u22 Lu J(]

u
If = (p 2)+1,theLP norm is conserved
z 1 z 1
— ufPdg= p( (P 2 1 u®juG dg=0

J. Dolbeault Entropy methods and sharp functional inequalities
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f=u, k% * 5% kklg, kfkiyg 07

Zl Zl .
. d 1 jug?
— 092 2 00 2
A = 1ju? d g 2d+2(+ 1) 1u UZ d g
d gl 2
+ 1)+ —d+2( + 1) 1—u2 d g

A is nonnegativefor some if

8d2
W (P D@ p O
A is a sum of squares ip 2 (2;2 ) for an arbitrary choice of ina
certain interval (depending on p and d)
Z, L g2 2
A= u® p+2 juj® 2d 0 ifp=2 and -4

L 6 p u d 6
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The rigidity point of view

; : D02
Which computation have we done ?u; = u? 2 Lu+ &L

jug? _
1) u +p 2u-IO 2u

Multiply by L u and integrate

zZ, Z, o4
Luu d 4= u Ju_Ci d g
1 1 u
. ju%z .
Multiply by 5~ and integrate
Z1 o2
e+ u ]—u(ﬁ d g
1 u

The two terms cancel and we are left only with the two-homogenous
terms

J. Dolbeault Entropy methods and sharp functional inequalities
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Improvements of the inequalities
(subcritical range)

@ as long as the exponent is either in the rang€l; 2) or in the range
(2;2 ), on can establishimproved inequalities

@ An improvement automatically gives an explicit stability result of
the optimal functions in the (non-improved) inequality

@ By duality, this provides a stability result for Keller-Lieb-Tirring
inequalities

J. Dolbeault Entropy methods and sharp functional inequalities
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What does \improvement" mean ?

An improved inequality is
d (&) i 8u2HY(s) st kukfz(sd) =1

for some function suchthat (0)=0 , 90)=1, °> 0and
(s)>sforanys. With ( s):=s L(s)

i de d( ) 8u2HYS) st kukfyg =1
Lemma (Generalized Csiszar-Kullback inequalities)

a4
2

kr uk? g KUK gy K UKE2q)

2(1 1)

k
L ku' Ukl 8u2 HY(S)

d kuk? C
e () Crag, o

s(p) :=maxf2;pgand p 2 (1;2): q(p) :=2=p, r(p) := p; p 2 (2;4):
q=p=2,r=2;p 4q=pAp 2,r=p 2
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Linear ow: improved Bakry-Emery method

Cf. [Arnold, JD]

G2
W = Lw+ va_(i
w
with 2 := 2841
o d 1° . . S _p 1.
1= g3 (P D@ p) it d>10 =
If p2[1;2)[ (2;21] and w is a solution, then
Z
d . tjwg je¥?
&(l de) 1 w2 d g T @ e
Recalling that €= i, we get a di erential inequality
4 g je¥?
1 (p 2)e

After integration: d (e(0)) i(0)

J. Dolbeault Entropy methods and sharp functional inequalities
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Nonlinear ow: the Helder estimate of J. Demange

H 2
we=w??2 Lw+ w
w
de
Forallp2[1;2], = (p 2)+1, % ,wPd d:RO
1 . . 1 0;4
LA AWOR v, W W da ML 7d g

Forallw2 H! ( 1;1);d 4 ,suchthat “,w Pd q=1

R; . Ry .
1 Liw )3 dg iwd? d g
2

1
lWde

.... but there are conditions on

J. Dolbeault Entropy methods and sharp functional inequalities
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Admissibley; ) ford =5

%

1"#

o %"l %" & &4 wy
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The line

@ A rst example of a non-compact manifold

Joint work with M.J. Esteban, A. Laptev and M. Loss
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One-dimensional Gagliardo-Nirenberg-Sobolev ineigsa

kfkior)y  Con (P) Kf K 2y Kfkiom) if P2(251)

kfk zry  Con (p) kf OkLZ(R) kf kip(R) if p2(1;2)
; _p2 _ 2
with = B and = 55
The threshold case corresponding to the limit agp ! 2is the
logarithmic Sobolev inequality

ku%?
2 u? 1 2 2 L2(R)
rUZ100 (e dx 3 kukfygy 109 5 15
L2(R) L2(R)

If p> 2, ux(x) = (coshx) 72 solves
(p 272u®+4u 2pjuf’ 2u=0

If p2 (1;2) consideru (x) = (cos x)ﬁ, x2( =2,=2)
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Flow

Let us de ne on HY(R) the functional

4
FIVIi= kv oy + kakfz(m CkvkZpr) St.F[us]=0
With z(x) :=tanh x, consider the ow
viot 00, 2P _ .o, PIV%? 2
= + — + -+
Vi p—l sz p2zv 5 v ID2v

Theorem (Dolbeault-Esteban-Laptev-Loss)

Letp2 (2;1). Then

d .
aF[v(t)] 0 and t.!llm Flv(t)]=0

FFVOI=0 0 ()= kx x)

Similar results for p 2 (1;2)
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The inequality p > 2) and the ultraspherical operator

@ The problem on the line is equivalent to the critical problenfor the
ultraspherical operator
z Z Z

jv9? dx + jvizdx C  jvjP dx
R R R

oI

4
(b 22
With
z(x)=tanh x; v, =(1 22)9*12 and v(x) = v»(x) f (z(x))
equality is achieved forf =1 and, if we let (z):=1 2z, then
z z z 2
1ljf%2 da+ lljszd T lljfjp da

whered , denotes the probability measured ,(z) := ip 2 dz

d:% 0 p:Z_d2

J. Dolbeault Entropy methods and sharp functional inequalities
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Change of variables = stereographic projection + Emden-Fowler

[m] = =
Entropy methods and sharp functional inequalities

J. Dolbeault
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Compact Riemannian manifolds

@ no sign is required on the Ricci tensor and an improved integral
criterion is established

@ the ow explores the energy landscape... and shows the
non-optimality of the improved criterion
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Riemannian manifolds with positive curvature

(M; g) is a smooth closed compact connected Riemannian manifold
dimensiond, no boundary, 4 is the Laplace-Beltrami operator
vol(M) =1, R is the Ricci tensor, 1= 1( )

= |r,\1nf 2gflR( ;)

Theorem (Licois-\eron, Bakry-Ledoux)

Assumed 2and > 0. If

d _ @ 1 1)
@a ).+ d 1 where = d@ 2+ p 1>0

then for any p2 (2;2 ), the equation

gV + v v =0

p

has a unique positive solution C?(M): v 1
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Riemannian manifolds: rst improvement

Theorem (Dolbeault-Esteban-Loss)

For any p2 (1;2)[ (2;2)
Z n

i
R(r u;r u) dyvy

BTGP
0< < »= inf M R —
u2H2 (M) w Jr uj2dyg

there is a unique positive solution in’QM): u 1

Iimp! 1. (p) =0 :) Iimp! 1. ’)(p) = ,if is bounded
o= 1=d=(d 1)=difM=%since =d 1

(1 )1+d—1 ? 1
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Riemannian manifolds: second improvement

2
Hqu denotes Hessian ofi and = d(?d +12)) J(rpp 1)1
= 9 (d D 1) rur u gijruy?
QgU == Hgu g o T3 5 - 3L

z g £ h i
O ( gu?dyy + kQguk? + R(r u;r u)

2= inf M 4

u2H2%(M )nf Og jr ujzdvg
M

Theorem (Dolbeault-Esteban-Loss)

Assume that », > 0. For any p2 (1;2)[ (2;2 ), the equation has a
unique positive solution in &M) if 2 (0; -):u 1

J. Dolbeault Entropy methods and sharp functional inequalities
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Optimal interpolation inequality

Foranyp2 (1;2)[ (2;2)orp=2 ifd 3
h i
kr ko)  — kvkZom, k VvkZyy 8V 2 HY(M)

©
N

Theorem (Dolbeault-Esteban-Loss)

Assume , > 0. The above inequality holds for some= 2 [ »; 1]
If - < 4, then the optimal constant is such that

2 < 1
fp=1,then =
Usingu=1+ "' as a test function where' we get 1
A minimum of h i

2 2 2
VTLkr Vi) 53 kvkDogwy K VKEz)

under the constraint kvk »vy =1 is negative if > 4
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The ow

The key tool is the ow

e U L g

U = u?

If v=u, then kvk s, =0 and the functional

z "z z 2mp?

Flul:=  jr (u)j’dvg + u? dyg u Pdvg
M p M M

is monotone decaying
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Elementary observations (1/2)

Letd 2,u2 C?(M), and consider the trace free Hessian

Lgyu:=Hgu = gqu

el
d

( gu)?dyg = MkLgukzdvg+ . R(r u;r u)dvg

d

Based on the Bochner-Lichnerovicz-Weitzenbeck formula

i . .
5 r uj? = kHguk?+ 1 ( qu) r u+ R(r u;r u)
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Elementary observations (2/2)

i2
. ir uj dv,
M u
z . z
d JrUJdV 2d [Lu]_rurud
Td+2 oy w2 0 d+2 gy PO ’
Z Z
( gw?dvy 1 jruj®dvg 8u2 H*M)
M M
and ; is the optimal constant in the above inequality
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The key estimates

h i

R 2 4
Gul= , ( gu?+( + 1) qullb+ (1 5L dy

u?

1 d z z
— 2 - .2
52 ZaF[u]— @a ) M( gw?dvy G [u]+ Mjr uj? d v
h —
Qqu = Lgu ldel( + 1) rquJ u %jrum

with = (+ 12 ( 1 (+ 1

d+2
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The end of the proof

Assume thatd 2. If =1, then is nonpositive if

(P) +(P) 8p2(1;2)
— b " a - h(d 1) (p 1)i2 _ d#3 p
where = >—>—=with a=2 p+ 55— andb= 7%

Notice that (p)< +(p)ifp2(@;2)and (2)= +(2)

2
_@ we vy . _ _d+2
dd+2)+p 1 d+3 p

Proposition

Letd 2,p2 (1;2)[ (2;2) (p65 0rd62)
Z

Lew ¢ ) i udy
M

2 24t
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The Moser-Trudinger-Onofri
inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban

@ Extension to compact Riemannian manifolds_of dimensior2...
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We shall also denote byR the Ricci tensor, by Hgu the Hessian ofu
and by

Lqu:= Hqu = u
g g d ¢

the trace free Hessian. Let us denote by Mu the trace free tensor

Mgu:=ru r u %jr uj?
We de ne
Z h i
kLgu 3Mguk®+ R(r u;r u) e “Zdy
2= inf M Z
u2H2(M )nf Og

2 =2
jr uie “dyy
M
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Assume that d=2 and > > 0. If u is a smooth solution to

then u is a constant function if 2 (0; »)

The Moser-TrudingeEOnofri inequality oZn M

1

zlkr Uk 2y + . udyvg log . e'dvy  8u2 HY(M)
for some constant > 0. Let us denote by ; the rst positive
eigenvalue of 4

If d = 2, then the MTO inequality holds with = :=min f4; -g.
Moreover, if is strictly smaller than ;=2, then the optimal constant
in the MTO inequality is strictly larger than

J. Dolbeault Entropy methods and sharp functional inequalities
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The ow

f=2) f=2

@ _ .
a_ ¢ 1jr fj%e
Z z
GI[f]:= y kLgf  IMgf k2e 2dyg + ) R(r f;r f)e "2dy,
Z
jr ije f:ZdVg
M

Then for any » we have
z

d - o fs
qF = 7 of * g(e ') ir fife 72 dy
M

= G [f(t;)]

SinceF is nonnegative andlimy;; F [f(t; )] =0, we obtain that
VA

F [u] ' G [f(t; )] dt
0
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Weighted Moser-Trudinger-Onofri inequalities on the
two-dimensional Euclidean space

On the Euclidean spaceR?, given a general probability measure
does the inequality
1 Z Z z
. 2 u
— r ujcdx lo e'd ud
T g "

hold for some > 0? Let

Assume that is a radially symmetric function. Then any radially
symmetric solution to the EL equation is a constant & , and the
inequality holds with = if equality is achieved among radial functions

J. Dolbeault Entropy methods and sharp functional inequalities
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Ca arelli-Kohn-Nirenberg
iInequalities
|

The symmetry issue

A brief introduction to
the lecture of Michael Loss

B Nonlinear ows (fast di usion equation) can be used as a toolfor
the investigation of sharp functional inequalities

J. Dolbeault Entropy methods and sharp functional inequalities
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Ca arelli-Kohn-Nirenberg inequalities and the symmetr:
breaking issue
n

0
Let Dgp:= Vv2LP RYjxj Pdx :jxj 2jr vj2 L? RY;dx

P jr vj?
Ro jXj2@

jvjP
Re JXjPP

Ca:b

hold under the conditionsthata b a+1ifd 3,a<b a+1
ifd=2,a+1=2<b a+lifd=1,anda< a :=(d 2)=2

B 2d
P=3 2+2(b a)

B With
Vo(x) = 1+ jxjiP 2 3 7 and C2. = M
- - = Gxj ar v, kB
do we haveCyp = C2,, (Symmetry)
or Cgp > CZy (Symmetry breaking) ?

J. Dolbeault Entropy methods and sharp functional inequalities
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di usion equations on manifolds and sharp functional inequalities
Imroducuon to symmetry breaklng in Ca arelli-Kohn-Nire nberglnequalmes
Spectral estimates: Keller-Lieb-Thirring estimates on manifolds

CKN: range of the parameters

Figure: d=3
jvjP
Re JX]OP

2=p ir vj2

Re JXj22

Ca:b

a b a+1ifd 3
a<b a+lifd=2,a+1=2<b a+1lifd=1
anda< a.:=(d 2)=2

2d

~d 2+2(b a)
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The Emden-Fowler transformation and the cylinder

B With an Emden-Fowler transformation, Ca arelli-Kohn-Nir enberg
inequalities on the Euclidean space are equivalent to
Gagliardo-Nirenberg inequalities on a cylinder

v(r;!)=r2 %' (s;1') with r=jxj; s= logr and !:é

With this transformation, the Ca arelli-Kohn-Nirenberg inequalities
can be rewritten as

K@ Kfoqy* ko' Koo+ K ki () K ko 8" 2 HYO
where :=( a. a)? C=R < !and the optimal constant () is

1 p— d P-
= — with a= and b=
() Ca:b %

o |

J. Dolbeault Entropy methods and sharp functional inequalities
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Symmetry vs. symmetry breaking:
the sharp result

A result based on entropies and nonlinear ows

[J.D., Esteban, Loss, 2015] http://arxiv.org/abs/1506.03664
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Spectral estimates on the sphere
Spectral estimates on compact Riemannian manifolds
Spectral estimates on the cylinder

Spectral estimates

@ Spectral estimates on the sphere

@ Spectral estimates on compact Riemannian
manifolds

@ Spectral estimates on the cylinder

J. Dolbeault Entropy methods and sharp functional inequalities
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Spectral estimates on the sphere

@ The Keller-Lieb-Tirring inequality is equivalent to an interpolation
inequality of Gagliardo-Nirenberg-Sobolev type

@ We measure a quantitative deviation with respect to the
semi-classical regime due to nite size e ects

Joint work with M.J. Esteban and A. Laptev
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An introduction to Lieb-Thirring inequalities

Consider the Schredinger operatorH = V on RY and denote by
( k)k 1 its eigenvalues

@ Euclidean case[Keller, 1961]
j 1j Ll; d V+

[Lieb-Thirring, 1976]
X z
j kj L ;d V.,
k1 R
1=2ifd=1, > 0ifd=2 and oifd 3 [Weidl], [Cwikel],
[Rosenbljum], [Aizenman], [Laptev-Weidl], [Hel er], [Robert],
[Dolbeault-Felmer-Loss-Paturel].. [Dolbeault-Laptev-Loss 2008]
@ Compact manifolds: log Sobolev casefFederbusch] [Rothaus];
case =0 (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak}
[Lieb], [Levin], [Ouabaz-Poupaud].. [llyin]

B How does one take into account the nite size e ects in the cas of

J. Dolbeault Entropy methods and sharp functional inequalities
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A Keller-Lieb-Thirring inequality on the sphere

Letd 1,p2 maXfl;d=2g;+1 and
=80 1

Theorem (Dolbeault-Esteban-Laptev)

There exists a convex increasing functiors.t. ( )= if 2 0
and ()> if 2 ;+1  and, for any p< d=2,

i V)j KVKLorey 8V 2 LP(S)

This estimate is optimal

For large values of , we have

()P 2=L} gq(qa )P+ 0(1)

If p=d=2and d 3, the inequality holds with ( )= i 2[0; ]

J. Dolbeault Entropy methods and sharp functional inequalities
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A Keller-Lieb-Thirring inequality: second formulation

Letd 1, =p d=2
Corollary (Dolbeault-Esteban-Laptev)

N|

. . d
i a( V)j . LYy de " oas = kVk $rey L
if either > max0;1 d=2gor =1=2andd=1
However, if = kVk .4 , then we have
L "2(RY) z
Pl owitE vt
S

for any maxf 0;1 d=2g and this estimate is optimal

L! , is the optimal constant in the Euclidean one bound state ineq.
’ z

d
j oLty Pax
Rd

J. Dolbeault Entropy methods and sharp functional inequalities
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Helder duality and link with interpolation inequalities

Consider the Schredinger operator V and the energy
z z
E[u] :=  jr uj? V juj?
s s,

ru? kukfge
( )kUkEZ(Rd) if = kV+ kLp(Rd)

B Is it true that
Kr UKEopay + kUKD 2gay () KUK q(ga)

In other words, what are the properties of the minimum of

2 2
O[] = kr ukLz(Rd) + kukLz(Rd)
= 2
KUK g oy

An important convention (for the numerical value of the constants):
we consider theuniform probability measure on the unit sphere S

J. Dolbeault Entropy methods and sharp functional inequalities
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Q@ asymp( )= % A #=d%s corresponds to the

semi-classical regimeand Kq.q is the optimal constant in the
Euclidean Gagliardo-Nirenberg-Sobolev inequality

Kq;d kaEq(Rd) kl’ VkEZ(Rd) + kaEZ(Rd) 8V 2 Hl(Rd)

@ Let' be a non-trivial eigenfunction of the Laplace-Beltrami
operator corresponding the rst nonzero eigenvalue
' = dl

Consideru=1+ "' as"! 0 Taylor expand Q aroundu=1
Z

() Q [+ 1= +d+ @ o [Pdy+o(?)

By taking " small enough, we get ( ) < forall > d=(q 2)
Optimizing on the value of " > 0 (not necessarily small) provides an
interesting test function...
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Another inequality

Letd 1and > d=2and assume that ! . is the optimal
constant in Z

Nl

9= d+2

Theorem (Dolbeault-Esteban-Laptev)
z

(+ W) LY, w: o as =kw k!, 11
' I L 2(RY)
However,if ~4+1and =kw k ', 1d@2 d+2)
L 2(RY
z
d d
1( aF W) 2 W 2
S

and this estimate is optimal

J. Dolbeault Entropy methods and sharp functional inequalities



Spectral estimates on the sphere
Spectral estimates on compact Riemannian manifolds

Spectral estimates: Keller-Lieb-Thirring estimates on manifolds Spectrallestimatesionithelcylinder

Kq:.q Is the optimal constant in the Gagliardo-Nirenberg-Sobolev
inequality

Kgid KVKComay Kr VKEo(gay + kvkZqgay 8V 2 HY(RY)

2 d ——

1 . i =22 d —=24_
andL” q:= Kgq  With 0=2 5745, = 25 q@ 2

Lemma (Dolbeault-Esteban-Laptev)

Letg2 (0;2) and d 1. There exists a concave increasing function

() 8 >0 and ()< 8 2 ¥i+1
()= 8 2 05% if q2[L2)
( ):Kq;d( q;d ) 1+ o0(1) as I +1
such that

Kr UKZogay + KUKZqgay () Kukfogay 8u2 HY(SY)
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The threshold caseg = 2

Lemma (Dolbeault-Esteban-Laptev)

Let p> max 1;d=2g. There exists a concave nondecreasing function

()= 8 2(0; o) and ()< 8 > o
for some 02 4(p 1);9p,and () 1% as 1 +1
such that, for any u2 H*(S%) with kukg zray = 1

Z
,1ui*logjui* dvg + p log L plog 1+ Lkr ukfy g

4

Corollary (Dolbeault-Esteban-Laptev)

Z -
e M W= e PVWE dy,

() s
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Spectral estimates on the sphere
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Spectral estimates on compact
Riemannian manifolds

Joint work with M.J. Esteban, A. Laptev, and M. Loss

@ The same kind of results as for the sphere. However, estimatesear
not, in general, sharp.
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Manifolds: the rst interpolation inequality

Let us de ne
:= volg(M)! #

Proposition

Assume that @2 (2;2 ) if d
exists a concave increasing functiont R* !
for any ()< for > T3 and

3,org2 (2;1)ifd=1 or2. There
R* suchthat ( )=

q 2’

Kr ukfzpny + Kukfagyy () kukfouy 8u2HY(M)

The asymptotic behaviour of is given by ( )
I +1,with #= d %2 andKgq de ned by

kr vkLz(Rd)

+ kvk?2

KQ;d

l#aS

L2(RY)

v2 H1(Rd)nf Og kvk?2

La(RY)

J. Dolbeault
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Manifolds: the rst Keller-Lieb-Thirring estimate

We considerkVkipmy = 78 ()
z z z
jr uj?dvg Viuildvg+ () jujPdy
M M
ke ukfapy  KukPoy + () kukzgy)

M

p and % are Helder conjugate exponents
Theorem

Letd 1,p2(L;+1)ifd=1andp2 ($;+1)ifd 2andassume
that -, > 0. With the above notations and de nitions, for any
nonnegative V2 LP(M), we have

j i ¢ V)i KVKLom)

Moreover, we have ( )P % =LL, P(1+o0(1) as ! +1 with
Ll;d =(Kqa) P, =p %
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Manifolds: the second Keller-Lieb-Thirring estimate

Theorem

Letd 1,p2 (0;+1 ). There exists an increasing concave function
:R*! R*,satisfying ()= = ,forany 2 (0;%L ) ifp>1,
such that for any positive potential W we have

) _ R 1=p
1+ W) with = W Pdy

Moreover, for large values of, we have
() (Pr2) =1 P(L+o0(1) as ! +1

(p+ $);d

J. Dolbeault Entropy methods and sharp functional inequalities



Fast di usion equations: new points of view

Fast di usion equations on manifolds and sharp functional inequalities
Introduction to symmetry breaking in Ca arelli-Kohn-Nire nberginequalities
Spectral estimates: Keller-Lieb-Thirring estimates on manifolds

Spectral estimates on the sphere
Spectral estimates on compact Riemannian manifolds
Spectral estimates on the cylinder

Spectral estimates on the cylinder

Joint work with M.J. Esteban and M. Loss
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Spectral estimates and the symmetry breaking problen
the cylinder

Let (M;g) be a smooth compact connected Riemannian manifold of
dimensiond 1 (no boundary) with vol g(M) =1, and let

C=R M3x=(s;2)

be the cylinder. ) is the lowest positive eigenvalue of the

Laplace-Beltrami operator, :=infy inf ;o 2Ric( ; )
B Is
( )i=sup F[V]:V 2LYO); kVKiac) =
equal to
2( )=sup  F[V]:V 2 LIYR; kVKiar) = ?

¢[V] is the lowest eigenvalue of @ ¢ Vand @ VonC
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The Keller-Lieb-Thirring inequality on the line

— 1=
p (g q

Assume thatq 2 (1;+1 ), =%, 1:=0q(q 1) Tl:z))

20)=(q 1 =1 8> 0;
If V is a nonnegative real valued potential in l9(R), then we have
RV »(kVKiawr) where o()=(q 1> — 8 > 0
1

and equality holds if and only if, up to scalings, translations and
multiplications by a positive constant,

_a(@ 1) _
V(s) = W—. Vi(s) 8s2R

wherekVik gy = 1, RIVil=(q 1)*and’ (s)=(coshs)! ¢
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2= , where

Theorem

Letd 2and g2 (minf4;d=2g;+1 ). The function 7! ( ) is
convex, positive and such that

( )CI d=2 Lé %;d q as I +1

Moreover, there exists a positive, with
M
1
29 11

?

2(q 1t

?

such that

()= =2() 8 2(0 -] and ( )> () 8 > »

As a special case, M = S¢ 1, inequalities are in fact equalities
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The upper estimate

4

It »()> g, then

sup §IV]:V 2LYO); kVkiag= > ()

j “(s2)jP 2

p 2
K kLp(C)

(si2)=" (9+" ' (97 1(2) and Vi(s;z) =

where 1 is an eigenfunction of ' and' is optimal for ()

w2
4 M 1

TIV-1+ 2() 02 | T 4 o) +0o("?
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The lower estimate

q 1)=2|.2 1)=2},2
v = Ve K @V PPy kr V' DK
= )
V@ D22,

( )=sup JV]:kVkiec) =

With = 71 »( ), let us consider the operatorL such that
Lum:= m @ueZS@ um les +e S um
" m 1 g

wherem =1 % n=2q. To any potential V 0 we associate the
pressurefunction

q 1

pv(r):=rvV(s) @ 8r=e °
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Z 2
-n 1y 00 EO gP 10
Kipl = n Rd T 2(n 1)r2 P "d
z 2
+2 2 1 rgp° rgp pt "d
Ra 2 r .
2 jr gpjz 1 n
+ q 1 '.7( ) R r4 p d

whered is the measure onR* M with density r" !, and ° denotes
the derivative with respect to r

There exists a positive constamtsuch that, if V is a critical point of]
under the constrainkVk ac) = and w, = V(@ =2 then we have

JV +" uvlLu{‘,“] JV] c"K[pv]+o(") as "! O
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Fast di usion equations on manifolds and sharp functional inequalities
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Spectral estimates: Keller-Lieb-Thirring estimates on manifolds

Spectral estimates on the sphere
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These slides can be found at

http://www.ceremade.dauphine.fr/  dolbeaul/Conferences/
B Lectures

Thank you for your attention !
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