Champs magnétiques, interpolation et symétrie

Jean Dolbeault

http://www.ceremade.dauphine.fr/~dolbeaul

Ceremade, Université Paris-Dauphine

March 29, 2019

Séminaire de Mathématiques Appliquées Collège de France

《曰》 《聞》 《臣》 《臣》 三臣 …

Outline

Without magnetic fields: symmetry and symmetry breaking in interpolation inequalities

- \rhd Gagliardo-Nirenberg-Sobolev inequalities on the sphere
- \vartriangleright Keller-Lieb-Thirring inequalities on the sphere
- $\,\triangleright\,$ Caffarelli-Kohn-Nirenberg inequalities

• With magnetic fields in dimensions 2 and 3

- \rhd Interpolation inequalities and spectral estimates
- \rhd Estimates, numerics; an open question on constant magnetic fields

• Magnetic rings: the case of \mathbb{S}^1

 \triangleright A one-dimensional magnetic interpolation inequality

 \rhd Consequences: Keller-Lieb-Thirring estimates, Aharonov-Bohm magnetic fields and a new Hardy inequality in \mathbb{R}^2

• Aharonov-Bohm magnetic fields in \mathbb{R}^2

- \rhd Aharonov-Bohm effect
- \rhd Interpolation and Keller-Lieb-Thirring inequalities in \mathbb{R}^2
- \rhd Aharonov-Symmetry and symmetry breaking

A joint research program (mostly) with...

M.J. Esteban, Ceremade, Université Paris-Dauphine > symmetry, interpolation, Keller-Lieb-Thirring, magnetic fields

M. Loss, Georgia Institute of Technology (Atlanta) ▷ symmetry, interpolation, Keller-Lieb-Thirring, magnetic fields

A. Laptev, Imperial College London ▷ Keller-Lieb-Thirring, magnetic fields

> D. Bonheure, Université Libre de Bruxelles ▷ Aharonov-Bohm magnetic fields

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

A (1) A (1) A (1) A

Symmetry and symmetry breaking in interpolation inequalities without magnetic field

- Gagliardo-Nirenberg-Sobolev inequalities on the sphere
- Keller-Lieb-Thirring inequalities on the sphere
- \blacksquare Caffarelli-Kohn-Nirenberg inequalities on \mathbb{R}^2

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

イロン 不同 とくほう イヨン

A result of uniqueness on a classical example

On the sphere \mathbb{S}^d , let us consider the positive solutions of

$$-\Delta u + \lambda \, u = u^{p-1}$$

$$p \in [1,2) \cup (2,2^*]$$
 if $d \ge 3, 2^* = \frac{2d}{d-2}$

$$p \in [1,2) \cup (2,+\infty)$$
 if $d = 1, 2$

Theorem

If $\lambda \leq d$, $u \equiv \lambda^{1/(p-2)}$ is the unique solution

[Gidas & Spruck, 1981], [Bidaut-Véron & Véron, 1991]

Interpolation on the sphere

Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

Bifurcation point of view and symmetry breaking

Figure: $(p-2)\lambda \mapsto (p-2)\mu(\lambda)$ with d=3 $\|\nabla u\|_{L^{2}(\mathbb{S}^{d})}^{2} + \lambda \|u\|_{L^{2}(\mathbb{S}^{d})}^{2} \ge \mu(\lambda) \|u\|_{L^{p}(\mathbb{S}^{d})}^{2}$ Taylor expansion of $u = 1 + \varepsilon \varphi_1$ as $\varepsilon \to 0$ with $-\Delta \varphi_1 = d \varphi_1$ $\mu(\lambda) < \lambda$ if and only if $\lambda > \frac{d}{p-2}$ \triangleright The inequality holds with $\mu(\lambda) = \lambda = \frac{d}{n-2}$ [Bakry & Emery, 1985] [Beckner, 1993], [Bidaut-Véron & Véron, 1991, Corollary 6.1]

J. Dolbeault

Magnetic fields, interpolation & symmetry

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

The Bakry-Emery method on the sphere

 $Entropy\ functional$

$$\begin{split} \mathcal{E}_p[\rho] &:= \frac{1}{p-2} \left[\int_{\mathbb{S}^d} \rho^{\frac{2}{p}} \, d\mu - \left(\int_{\mathbb{S}^d} \rho \, d\mu \right)^{\frac{2}{p}} \right] & \text{if} \quad p \neq 2 \\ \mathcal{E}_2[\rho] &:= \int_{\mathbb{S}^d} \rho \, \log \left(\frac{\rho}{\|\rho\|_{L^1(\mathbb{S}^d)}} \right) \, d\mu \end{split}$$

Fisher information functional

$$\mathcal{I}_{p}[
ho] := \int_{\mathbb{S}^{d}} |
abla
ho^{rac{1}{p}}|^{2} \ d\mu$$

[Bakry & Emery, 1985] carré du champ method: use the heat flow

$$\frac{\partial \rho}{\partial t} = \Delta \rho$$

and observe that $\frac{d}{dt}\mathcal{E}_{\rho}[\rho] = -\mathcal{I}_{\rho}[\rho]$

$$\frac{d}{dt} \Big(\mathcal{I}_{\rho}[\rho] - d \, \mathcal{E}_{\rho}[\rho] \Big) \leq 0 \quad \Longrightarrow \quad \mathcal{I}_{\rho}[\rho] \geq d \, \mathcal{E}_{\rho}[\rho]$$

with $\rho = |u|^p$, if $p \le 2^{\#} := \frac{2d^2+1}{(d-1)^2}$

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

◆ 臣 ▶ → 臣 ▶ …

3

The evolution under the fast diffusion flow

To overcome the limitation $p \leq 2^{\#}$, one can consider a nonlinear diffusion of fast diffusion / porous medium type

$$\frac{\partial \rho}{\partial t} = \Delta \rho^n$$

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any $\rho \in [1,2^*]$

$$\mathcal{K}_{p}[\rho] := rac{d}{dt} \Big(\mathcal{I}_{p}[\rho] - d \, \mathcal{E}_{p}[\rho] \Big) \leq 0$$

References

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

(人間) システン イラン

■ JD, M. J. Esteban, M. Kowalczyk, and M. Loss. Improved interpolation inequalities on the sphere. Discrete and Continuous Dynamical Systems Series S, 7 (4): 695-724, 2014.

❑ JD, M.J. Esteban, and M. Loss. Interpolation inequalities on the sphere: linear vs. nonlinear flows. Annales de la faculté des sciences de Toulouse Sér. 6, 26 (2): 351-379, 2017

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

Keller-Lieb-Thirring inequalities on the sphere

• The Keller-Lieb-Tirring inequality is equivalent to an interpolation inequality of Gagliardo-Nirenberg-Sobolev type

• We measure a quantitative deviation with respect to the semi-classical regime due to finite size effects

Joint work with M.J. Esteban and A. Laptev

ヘロア 人間 ア ヘヨア ヘヨア

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

An introduction to (Keller)-Lieb-Thirring inequalities in \mathbb{R}^d

(λ_k)_{k≥1}: eigenvalues of the Schrödinger operator H = −Δ − V on ℝ^d
 Euclidean case [Keller, 1961]

$$|\lambda_1|^{\gamma} \leq \mathrm{L}^1_{\gamma,d} \int_{\mathbb{R}^d} V_+^{\gamma+rac{\gamma}{2}}$$

[Lieb-Thirring, 1976]

$$\sum_{k\geq 1} |\lambda_k|^{\gamma} \leq \mathcal{L}_{\gamma,d} \int_{\mathbb{R}^d} V_+^{\gamma+\frac{d}{2}}$$

 $\gamma \geq 1/2$ if d = 1, $\gamma > 0$ if d = 2 and $\gamma \geq 0$ if $d \geq 3$ [Weidl], [Cwikel], [Rosenbljum], [Aizenman], [Laptev-Weidl], [Helffer], [Robert], [JD-Felmer-Loss-Paturel], [JD-Laptev-Loss]...[Frank, Hundertmark, Jex, Nam]

• Compact manifolds: log Sobolev case: [Federbusch], [Rothaus]; case $\gamma = 0$ (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak]; [Lieb], [Levin], [Ouabaz-Poupaud]... [Ilyin]

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

Hölder duality and link with interpolation inequalities

Let
$$p = \frac{q}{q-2}$$
. Consider the Schrödinger energy

$$\begin{split} \int_{\mathbb{S}^d} |\nabla u|^2 - \int_{\mathbb{S}^d} V |u|^2 &\geq \int_{\mathbb{S}^d} |\nabla u|^2 - \mu \|u\|_{\mathrm{L}^q(\mathbb{S}^d)}^2 \\ &\geq -\lambda(\mu) \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \quad \text{if } \mu = \|V_+\|_{\mathrm{L}^p(\mathbb{S}^d)} \end{split}$$

• We deduce from $\|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 + \lambda \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \ge \mu(\lambda) \|u\|_{\mathrm{L}^q(\mathbb{S}^d)}^2$ that $\|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 - \mu(\lambda) \|u\|_{\mathrm{L}^q(\mathbb{S}^d)}^2 \ge -\lambda \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2$

J. Dolbeault

Magnetic fields, interpolation & symmetry

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

イロト イポト イヨト イヨト

A Keller-Lieb-Thirring inequality on the sphere

Let
$$d \geq 1$$
, $p \in \left[\max\{1, d/2\}, +\infty\right)$ and $\mu_* := \frac{d}{2}(p-1)$

Theorem (JD-Esteban-Laptev)

There exists a convex increasing function λ s.t. $\lambda(\mu) = \mu$ if $\mu \in [0, \mu_*]$ and $\lambda(\mu) > \mu$ if $\mu \in (\mu_*, +\infty)$ and, for any p < d/2,

 $|\lambda_1(-\Delta-V)| \leq \lambda ig(\|V\|_{\mathrm{L}^p(\mathbb{S}^d)}ig) \quad orall \, V \in \mathrm{L}^p(\mathbb{S}^d)$

This estimate is optimal

For large values of μ , we have

$$\lambda(\mu)^{p-\frac{d}{2}} = \mathrm{L}^{1}_{p-\frac{d}{2},d} \left(\kappa_{q,d} \, \mu \right)^{p} \left(1 + o(1) \right)$$

If p = d/2 and $d \ge 3$, the inequality holds with $\lambda(\mu) = \mu$ iff $\mu \in [0, \mu_*]$

Symmetry in non-magnetic interpolation inequalities Magnetic interpolation in the Euclidean space Magnetic rings: the one-dimensional periodic case

Keller-Lieb-Thirring inequalities on the sphere

A Keller-Lieb-Thirring inequality: second formulation

Let d > 1, $\gamma = p - d/2$

Corollary (JD-Esteban-Laptev)

$$\begin{split} |\lambda_{1}(-\Delta - V)|^{\gamma} \lesssim \mathrm{L}_{\gamma,d}^{1} \int_{\mathbb{S}^{d}} V^{\gamma + \frac{d}{2}} \quad \text{as} \quad \mu = \|V\|_{\mathrm{L}^{\gamma + \frac{d}{2}}(\mathbb{S}^{d})} \to \infty \\ \text{if either } \gamma > \max\{0, 1 - d/2\} \text{ or } \gamma = 1/2 \text{ and } d = 1 \\ \text{However, if } \mu = \|V\|_{\mathrm{L}^{\gamma + \frac{d}{2}}(\mathbb{S}^{d})} \leq \mu_{*}, \text{ then we have} \\ |\lambda_{1}(-\Delta - V)|^{\gamma + \frac{d}{2}} \leq \int_{\mathbb{S}^{d}} V^{\gamma + \frac{d}{2}} \\ \text{er anus} \geq \max\{0, 1 - d/2\} \text{ and this estimate is entimely} \end{split}$$

for any $\gamma \geq \max\{0, 1 - d/2\}$ and this estimate is optimal

 $L^1_{\alpha,d}$ is the optimal constant in the Euclidean one bound state ineq.

$$|\lambda_1(-\Delta-\phi)|^\gamma \leq \mathrm{L}^1_{\gamma,d}\int_{\mathbb{R}^d} \phi_+^{\gamma+rac{d}{2}} dx$$

References

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

イロト イポト イヨト イヨト

Q JD, M. J. Esteban, and A. Laptev. Spectral estimates on the sphere. Analysis & PDE, 7 (2): 435-460, 2014

Q. JD, M.J. Esteban, A. Laptev, M. Loss. Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates. Comptes Rendus Mathématique, 351 (11-12): 437-440, 2013

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

Caffarelli-Kohn-Nirenberg, symmetry and symmetry breaking results, and weighted nonlinear flows

Joint work with M.J. Esteban and M. Loss

医下口 医下

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

・ロト ・回ト ・ヨト ・

Critical Caffarelli-Kohn-Nirenberg inequality

Let
$$\mathcal{D}_{a,b} := \left\{ v \in \mathrm{L}^p \left(\mathbb{R}^d, |x|^{-b} \, dx \right) \, : \, |x|^{-a} \, |\nabla v| \in \mathrm{L}^2 \left(\mathbb{R}^d, dx \right) \right\}$$
$$\left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{b\,p}} \, dx \right)^{2/p} \leq C_{a,b} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2\,a}} \, dx \quad \forall \, v \in \mathcal{D}_{a,b}$$

holds under conditions on \boldsymbol{a} and \boldsymbol{b}

$$p = \frac{2d}{d - 2 + 2(b - a)} \qquad \text{(critical case)}$$

 \triangleright An optimal function among radial functions:

$$v_{\star}(x) = \left(1 + |x|^{(p-2)(a_c-a)}\right)^{-\frac{2}{p-2}} \quad and \quad \mathsf{C}_{a,b}^{\star} = \frac{\||x|^{-b} v_{\star}\|_{p}^{2}}{\||x|^{-a} \nabla v_{\star}\|_{2}^{2}}$$

 $\textit{Question: } \mathsf{C}_{a,b} = \mathsf{C}^{\star}_{a,b} \textit{ (symmetry) or } \mathsf{C}_{a,b} > \mathsf{C}^{\star}_{a,b} \textit{ (symmetry breaking) ?}$

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

Critical CKN: range of the parameters

n - 2/(h - 2) if d - 2

Magnetic fields, interpolation & symmetry

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

Linear instability of radial minimizers: the Felli-Schneider curve

[Smets], [Smets, Willem], [Catrina, Wang], [Felli, Schneider] The functional

$$C_{a,b}^{\star} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2a}} dx - \left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{bp}} dx \right)^{2/p}$$

is linearly instable at v = v.

Magnetic fields, interpolation & symmetry

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

Symmetry *versus* symmetry breaking: the sharp result in the critical case

イロト イポト イヨト イヨト

Theorem

Let $d \ge 2$ and $p < 2^*$. If either $a \in [0, a_c)$ and b > 0, or a < 0 and $b \ge b_{FS}(a)$, then the optimal functions for the critical Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

The symmetry proof in one slide

• A change of variables:
$$v(|x|^{\alpha-1}x) = w(x)$$
, $D_{\alpha}v = \left(\alpha \frac{\partial v}{\partial s}, \frac{1}{s} \nabla_{\omega}v\right)$

$$\|v\|_{\mathrm{L}^{2p,d-n}(\mathbb{R}^d)} \leq \mathsf{K}_{\alpha,n,p} \, \|\mathsf{D}_{\alpha}v\|_{\mathrm{L}^{2,d-n}(\mathbb{R}^d)}^{\vartheta} \, \|v\|_{\mathrm{L}^{p+1,d-n}(\mathbb{R}^d)}^{1-\vartheta} \quad \forall \, v \in \mathrm{H}^p_{d-n,d-n}(\mathbb{R}^d)$$

• Concavity of the Rényi entropy power: with

$$\mathcal{L}_{\alpha} = -\mathsf{D}_{\alpha}^* \mathsf{D}_{\alpha} = \alpha^2 \left(u'' + \frac{n-1}{s} u' \right) + \frac{1}{s^2} \Delta_{\omega} u \text{ and } \frac{\partial u}{\partial t} = \mathcal{L}_{\alpha} u^m$$

$$\begin{aligned} &-\frac{d}{dt} \mathcal{G}[u(t,\cdot)] \left(\int_{\mathbb{R}^d} u^m \, d\mu \right)^{1-\sigma} \\ &\geq (1-m) \left(\sigma-1\right) \int_{\mathbb{R}^d} u^m \left| \mathcal{L}_\alpha \mathsf{P} - \frac{\int_{\mathbb{R}^d} u \left|\mathsf{D}_\alpha \mathsf{P}\right|^2 d\mu}{\int_{\mathbb{R}^d} u^m \, d\mu} \right|^2 d\mu \\ &+ 2 \int_{\mathbb{R}^d} \left(\alpha^4 \left(1-\frac{1}{n}\right) \left| \mathsf{P}'' - \frac{\mathsf{P}'}{s} - \frac{\Delta_\omega \mathsf{P}}{\alpha^2 (n-1) s^2} \right|^2 + \frac{2 \alpha^2}{s^2} \left| \nabla_\omega \mathsf{P}' - \frac{\nabla_\omega \mathsf{P}}{s} \right|^2 \right) \, u^m \, d\mu \\ &+ 2 \int_{\mathbb{R}^d} \left((n-2) \left(\alpha_{\mathrm{FS}}^2 - \alpha^2 \right) \left| \nabla_\omega \mathsf{P} \right|^2 + c(n,m,d) \, \frac{|\nabla_\omega \mathsf{P}|^4}{\mathsf{P}^2} \right) \, u^m \, d\mu \end{aligned}$$

■ Elliptic regularity and the Emden-Fowler transformation: justifying the integrations by parts

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

The variational problem on the cylinder

 \triangleright With the Emden-Fowler transformation

$$v(r,\omega) = r^{a-a_c} \varphi(s,\omega)$$
 with $r = |x|$, $s = -\log r$ and $\omega = \frac{x}{r}$

the variational problem becomes

$$\Lambda \mapsto \mu(\Lambda) := \min_{\varphi \in \mathrm{H}^{1}(\mathcal{C})} \frac{\|\partial_{s}\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2} + \|\nabla_{\omega}\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2} + \Lambda \|\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2}}{\|\varphi\|_{\mathrm{L}^{p}(\mathcal{C})}^{2}}$$

is a concave increasing function

・日・ ・ヨ・ ・ヨ・

Restricted to symmetric functions, the variational problem becomes

$$\mu_{\star}(\Lambda) := \min_{\varphi \in \mathrm{H}^{1}(\mathbb{R})} \frac{\|\partial_{s}\varphi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} + \Lambda \|\varphi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}}{\|\varphi\|_{\mathrm{L}^{p}(\mathbb{R}^{d})}^{2}} = \mu_{\star}(1)\Lambda^{\alpha}$$

Symmetry means $\mu(\Lambda) = \mu_{\star}(\Lambda)$ Symmetry breaking means $\mu(\Lambda) < \mu_{\star}(\Lambda)$

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

Numerical results

Parametric plot of the branch of optimal functions for p = 2.8, d = 5. Non-symmetric solutions bifurcate from symmetric ones at a bifurcation point Λ_1 computed by V. Felli and M. Schneider. The branch behaves for large values of Λ as shown by F. Catrina and Z.-Q. Wang, $\Lambda_1 = 1$

Interpolation on the sphere Keller-Lieb-Thirring inequalities on the sphere CKN inequalities, symmetry breaking and weighted nonlinear flows

Three references

• Lecture notes on *Symmetry and nonlinear diffusion flows...* a course on entropy methods (see webpage)

• [JD, Maria J. Esteban, and Michael Loss] Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs ... the elliptic point of view: Proc. Int. Cong. of Math., Rio de Janeiro, 3: 2279-2304, 2018.

Q. [JD, Maria J. Esteban, and Michael Loss] Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization... the parabolic point of view Journal of elliptic and parabolic equations, 2: 267-295, 2016.

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d=2 for constant magnetic fields Numerical results and the symmetry issue

Magnetic interpolation inequalities in the Euclidean space

- \triangleright Three interpolation inequalities and their dual forms
- \rhd Estimates in dimension d=2 for constant magnetic fields
 - Lower estimates
 - Upper estimates and numerical results
 - A linear stability result (numerical) and an open question
- Warning: assumptions are not repeated

Estimates are given only in the case p>2 but similar estimates hold in the other cases

Joint work with M.J. Esteban, A. Laptev and M. Loss

イロト イポト イヨト イヨト

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d=2 for constant magnetic fields Numerical results and the symmetry issue

Magnetic Laplacian and spectral gap

In dimensions d = 2 and d = 3: the magnetic Laplacian is

 $-\Delta_{\mathbf{A}}\psi = -\Delta\psi - 2\,i\,\mathbf{A}\cdot\nabla\psi + |\mathbf{A}|^{2}\psi - i\,(\operatorname{div}\mathbf{A})\,\psi$

where the magnetic potential (resp. field) is A (resp. $B = \operatorname{curl} A$) and

$$\mathrm{H}^{1}_{\mathbf{A}}(\mathbb{R}^{d}) := \left\{ \psi \in \mathrm{L}^{2}(\mathbb{R}^{d}) \, : \,
abla_{\mathbf{A}} \psi \in \mathrm{L}^{2}(\mathbb{R}^{d})
ight\} \, , \quad
abla_{\mathbf{A}} :=
abla + i \, \mathbf{A}$$

Spectral gap inequality

 $\|\nabla_{\mathbf{A}}\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \geq \Lambda[\mathbf{B}] \, \|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \quad \forall \, \psi \in \mathrm{H}^{1}_{\mathbf{A}}(\mathbb{R}^{d})$

• A depends only on $\mathbf{B} = \operatorname{curl} \mathbf{A}$ • Assumption: equality holds for some $\psi \in \operatorname{H}^{1}_{\mathbf{A}}(\mathbb{R}^{d})$ • If \mathbf{B} is a constant magnetic field, $\Lambda[\mathbf{B}] = |\mathbf{B}|$ • If d = 2, spec $(-\Delta_{\mathbf{A}}) = \{(2j+1) |\mathbf{B}| : j \in \mathbb{N}\}$ is generated by the Landau levels. The Lowest Landau Level corresponds to j = 0

・ロン ・四 ・ ・ ヨン ・ コン

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

Magnetic interpolation inequalities

$$\begin{split} \|\nabla_{\mathbf{A}}\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} + \alpha \|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \geq \mu_{\mathbf{B}}(\alpha) \|\psi\|_{\mathrm{L}^{p}(\mathbb{R}^{d})}^{2} \quad \forall \psi \in \mathrm{H}_{\mathbf{A}}^{1}(\mathbb{R}^{d}) \\ \text{for any } \alpha \in (-\Lambda[\mathbf{B}], +\infty) \text{ and any } p \in (2, 2^{*}), \\ \|\nabla_{\mathbf{A}}\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} + \beta \|\psi\|_{\mathrm{L}^{p}(\mathbb{R}^{d})}^{2} \geq \nu_{\mathbf{B}}(\beta) \|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \quad \forall \psi \in \mathrm{H}_{\mathbf{A}}^{1}(\mathbb{R}^{d}) \\ \text{for any } \beta \in (0, +\infty) \text{ and any } p \in (1, 2) \end{split}$$

$$\|\nabla_{\mathbf{A}}\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \geq \gamma \int_{\mathbb{R}^{d}} |\psi|^{2} \log\left(\frac{|\psi|^{2}}{\|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}}\right) dx + \xi_{\mathbf{B}}(\gamma) \|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}$$

(limit case corresponding to p = 2) for any $\gamma \in (0, +\infty)$

$$C_{p} := \begin{cases} \min_{u \in H^{1}(\mathbb{R}^{d}) \setminus \{0\}} \frac{\|\nabla u\|_{L^{2}(\mathbb{R}^{d})}^{2} + \|u\|_{L^{2}(\mathbb{R}^{d})}^{2}}{\|u\|_{L^{p}(\mathbb{R}^{d})}^{2}} & \text{if } p \in (2, 2^{*}) \\ \min_{u \in H^{1}(\mathbb{R}^{d}) \setminus \{0\}} \frac{\|\nabla u\|_{L^{2}(\mathbb{R}^{d})}^{2} + \|u\|_{L^{p}(\mathbb{R}^{d})}^{2}}{\|u\|_{L^{2}(\mathbb{R}^{d})}^{2}} & \text{if } p \in (1, 2) \end{cases}$$

 $\mu_{0}(1) = \mathsf{C}_{p} \text{ if } p \in (2, 2^{*}), \ \nu_{0}(1) = \mathsf{C}_{p} \text{ if } p \in (1, 2) \\ \xi_{0}(\gamma) = \gamma \log (\pi \ e^{2}/\gamma) \text{ if } p = 2$

一名 医下口 医下

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

Technical assumptions

$$\mathbf{A} \in \mathrm{L}^{\alpha}_{\mathrm{loc}}(\mathbb{R}^d), \, \alpha > 2 \text{ if } d = 2 \text{ or } \alpha = 3 \text{ if } d = 3 \text{ and}$$

$$\lim_{\sigma \to +\infty} \sigma^{d-2} \int_{\mathbb{R}^d} |\mathbf{A}(x)|^2 e^{-\sigma |x|} dx = 0 \quad \text{if} \quad p \in (2, 2^*)$$
$$\lim_{\sigma \to +\infty} \frac{\sigma^{\frac{d}{2}-1}}{\log \sigma} \int_{\mathbb{R}^d} |\mathbf{A}(x)|^2 e^{-\sigma |x|^2} dx = 0 \quad \text{if} \quad p = 2$$
$$\lim_{\sigma \to +\infty} \sigma^{d-2} \int_{|x| < 1/\sigma} |\mathbf{A}(x)|^2 dx \quad \text{if} \quad p \in (1, 2)$$

These estimates can be found in [Esteban, Lions, 1989]

イロト イポト イヨト イヨト

A statement

Theorem

 $p \in (2, 2^*)$: μ_{B} is monotone increasing on $(-\Lambda[\mathsf{B}], +\infty)$, concave and

 $\lim_{\alpha \to (-\Lambda[\mathbf{B}])_{+}} \mu_{\mathbf{B}}(\alpha) = 0 \quad and \quad \lim_{\alpha \to +\infty} \mu_{\mathbf{B}}(\alpha) \alpha^{\frac{d-2}{2} - \frac{d}{p}} = \mathsf{C}_{p}$

 $p\in(1,2)$: u_{B} is monotone increasing on $(0,+\infty)$, concave and

 $\lim_{\beta \to 0_+} \nu_{\mathbf{B}}(\beta) = \Lambda[\mathbf{B}] \quad and \quad \lim_{\beta \to +\infty} \nu_{\mathbf{B}}(\beta) \beta^{-\frac{2p}{2p+d}(2-p)} = \mathsf{C}_p$

 $\xi_{\mathbf{B}}$ is continuous on $(0, +\infty)$, concave, $\xi_{\mathbf{B}}(0) = \Lambda[\mathbf{B}]$ and

$$\xi_{\mathsf{B}}(\gamma) = rac{d}{2} \, \gamma \, \log ig(rac{\pi \, e^2}{\gamma} ig) (1 + o(1)) \quad \textit{as} \quad \gamma o +\infty$$

Constant magnetic fields: equality is achieved Nonconstant magnetic fields: only partial answers are known

Three interpolation inequalities and their dual forms

Estimates in dimension d = 2 for constant magnetic fields

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

イロト イポト イヨト イヨト

э

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

イロト イポト イヨト イヨト

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

Magnetic Keller-Lieb-Thirring inequalities

 $\lambda_{\mathbf{A},V}$ is the principal eigenvalue of $-\Delta_{\mathbf{A}} + V$ $\alpha_{\mathbf{B}}: (0, +\infty) \to (-\Lambda, +\infty)$ is the inverse function of $\alpha \mapsto \mu_{\mathbf{B}}(\alpha)$

Corollary

(i) For any
$$q = p/(p-2) \in (d/2, +\infty)$$
 and any potential $V \in \mathrm{L}^q_+(\mathbb{R}^d)$

$$\lambda_{\mathbf{A},V} \geq -\alpha_{\mathbf{B}}(\|V\|_{\mathbf{L}^{q}(\mathbb{R}^{d})})$$

 $\lim_{\mu \to 0_{+}} \alpha_{\mathbf{B}}(\mu) = \Lambda \text{ and } \lim_{\mu \to +\infty} \alpha_{\mathbf{B}}(\mu) \mu^{\frac{2(q+1)}{d-2-2q}} = -C_{p}^{\frac{2(q+1)}{d-2-2q}}$ (ii) For any $q = p/(2-p) \in (1, +\infty)$ and any $0 < W^{-1} \in L^{q}(\mathbb{R}^{d})$

$$\lambda_{\mathbf{A},W} \ge \nu_{\mathbf{B}} \left(\| W^{-1} \|_{\mathrm{L}^{q}(\mathbb{R}^{d})}^{-1} \right)$$

(iii) For any $\gamma > 0$ and any $W \ge 0$ s.t. $e^{-W/\gamma} \in L^1(\mathbb{R}^d)$

$$\lambda_{\mathbf{A},W} \geq \xi_{\mathbf{B}}\left(\gamma
ight) - \gamma \log\left(\int_{\mathbb{R}^d} e^{-W/\gamma} dx
ight)$$

Three interpolation inequalities and their dual forms **Proofs for general magnetic fields** Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

Proofs

J. Dolbeault Magnetic fields,interpolation & symmetry

・ロン ・四 と ・ ヨ と ・ ヨ と …

э

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

Interpolation without magnetic field...

Assume that p > 2 and let C_p denote the best constant in

$$\|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}+\|u\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}\geq\mathsf{C}_{\rho}\,\|u\|_{\mathrm{L}^{p}(\mathbb{R}^{d})}^{2}\quad\forall\,u\in\mathrm{H}^{1}(\mathbb{R}^{d})$$

By scaling, if we test the inequality by $u(\cdot / \lambda)$, we find that

$$\|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} + \lambda^{2} \|u\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \geq \mathsf{C}_{\rho} \lambda^{2-d(1-\frac{2}{\rho})} \|u\|_{\mathrm{L}^{\rho}(\mathbb{R}^{d})}^{2} \quad \forall \, u \in \mathrm{H}^{1}(\mathbb{R}^{d}) \quad \forall \, \lambda > 0$$

An optimization on $\lambda > 0$ shows that the best constant in the scale-invariant inequality

$$\|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{d(1-\frac{2}{p})} \|u\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2-d(1-\frac{2}{p})} \geq \mathsf{S}_{p} \|u\|_{\mathrm{L}^{p}(\mathbb{R}^{d})}^{2} \quad \forall \, u \in \mathrm{H}^{1}(\mathbb{R}^{d})$$

is given by

$$S_{p} = rac{1}{2p} \left(2p - d(p-2)
ight)^{1 - d rac{p-2}{2p}} \left(d(p-2)
ight)^{rac{d(p-2)}{2p}} C_{p}$$

イロト イポト イヨト イヨト

Three interpolation inequalities and their dual forms **Proofs for general magnetic fields** Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

... and with magnetic field

Proposition

Let
$$d=2$$
 or 3. For any $p\in(2,+\infty)$, any $\alpha>-\Lambda=-\Lambda[{f B}]<0$

$$\mu_{\mathbf{B}}(\alpha) \ge \mu_{\text{interp}}(\alpha) := \begin{cases} \mathsf{S}_{p}\left(\alpha + \Lambda\right) \Lambda^{-d\frac{p-2}{2p}} \text{ if } \alpha \in \left[-\Lambda, \frac{\Lambda(2p-d(p-2))}{d(p-2)}\right] \\ \mathsf{C}_{p} \alpha^{1-d\frac{p-2}{2p}} \text{ if } \alpha \ge \frac{\Lambda(2p-d(p-2))}{d(p-2)} \end{cases}$$

Diamagnetic inequality: $\|\nabla |\psi|\|_{L^2(\mathbb{R}^d)} \leq \|\nabla_{\mathbf{A}}\psi\|_{L^2(\mathbb{R}^d)}$ Non-magnetic inequality with $\lambda = \frac{\alpha + \Lambda t}{1-t}, t \in [0, 1]$

$$\begin{split} \|\nabla_{\mathbf{A}}\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} + \alpha \|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \geq t \left(\|\nabla_{\mathbf{A}}\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \Lambda \|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}\right) \\ + \left(1 - t\right) \left(\|\nabla|\psi|\|_{\mathrm{L}^{2}(\mathbb{R}^{d})} + \frac{\alpha + \Lambda t}{1 - t} \|\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}\right) \\ \geq C_{\rho} \left(1 - t\right)^{\frac{d(\rho - 2)}{2\rho}} \left(\alpha + t\Lambda\right)^{1 - d\frac{\rho - 2}{2\rho}} \|\psi\|_{\mathrm{L}^{\rho}(\mathbb{R}^{d})}^{2} \\ \end{split}$$
and optimize on $t \in [\max\{0, -\alpha/\Lambda\}, 1]$

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

The special case of constant magnetic field in dimension d = 2

J. Dolbeault Magnetic fields, interpolation & symmetry

(日) (同) (三) (三)

Magnetic interpolation in the Euclidean space Magnetic rings: the one-dimensional periodic case Estimates in dimension d = 2 for constant magnetic fields

Constant magnetic field, d = 2...

Assume that $\mathbf{B} = (0, B)$ is constant, d = 2 and choose

$$\mathbf{A}_1 = \frac{B}{2} x_2, \quad \mathbf{A}_2 = -\frac{B}{2} x_1 \quad \forall \, x = (x_1, x_2) \in \mathbb{R}^2$$

Proposition

[Loss, Thaller, 1997] Consider a constant magnetic field with field strength B in two dimensions. For every $c \in [0, 1]$, we have

$$\int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, dx \geq \left(1 - c^2\right) \int_{\mathbb{R}^2} |\nabla \psi|^2 \, dx + c \, B \int_{\mathbb{R}^2} \psi^2 \, dx$$

and equality holds with $\psi = u e^{iS}$ and u > 0 if and only if

$$\left(-\partial_2 u^2,\,\partial_1 u^2\right)=\frac{2\,u^2}{c}\left(\mathbf{A}+\nabla S\right)$$

イロト イポト イヨト イヨト

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

where $(\nabla u^2)^{\perp} := (-\partial_2 u^2, \partial_1 u^2)$

... a computation (d = 2, constant magnetic field)

$$\int_{\mathbb{R}^2} |\nabla_{\mathbf{A}}\psi|^2 dx = \int_{\mathbb{R}^2} |\nabla u|^2 dx + \int_{\mathbb{R}^2} |\mathbf{A} + \nabla S|^2 u^2 dx$$
$$= (1 - c^2) \int_{\mathbb{R}^2} |\nabla u|^2 dx + \underbrace{\int_{\mathbb{R}^2} (c^2 |\nabla u|^2 + |\mathbf{A} + \nabla S|^2 u^2) dx}_{\geq \int_{\mathbb{R}^2} 2c |\nabla u| |\mathbf{A} + \nabla S| u dx}$$

with equality only if $c |\nabla u| = |\mathbf{A} + \nabla S| u$

$$2 |\nabla u| |\mathbf{A} + \nabla S| u = |\nabla u^2| |\mathbf{A} + \nabla S| \ge (\nabla u^2)^{\perp} \cdot (\mathbf{A} + \nabla S)$$

Equality case: $(-\partial_2 u^2, \partial_1 u^2) = \gamma (\mathbf{A} + \nabla S)$ for $\gamma = 2 u^2/c$ Integration by parts yields

$$\int_{\mathbb{R}^2} \left(c^2 \left| \nabla u \right|^2 + \left| \mathbf{A} + \nabla S \right|^2 u^2 \right) dx \ge B c \int_{\mathbb{R}^2} u^2 dx$$

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

... a lower estimate (d = 2, constant magnetic field)

Proposition

Consider a constant magnetic field with field strength B in two dimensions. Given any $p \in (2, +\infty)$, and any $\alpha > -B$, we have

$$\mu_{\mathbf{B}}(\alpha) \geq \mathsf{C}_{p} \left(1-c^{2}\right)^{1-\frac{2}{p}} \left(\alpha+c B\right)^{\frac{2}{p}} =: \mu_{\mathrm{LT}}(\alpha)$$

with

$$c = c(p, \eta) = rac{\sqrt{\eta^2 + p - 1} - \eta}{p - 1} = rac{1}{\eta + \sqrt{\eta^2 + p - 1}} \in (0, 1)$$

and $\eta = lpha (p - 2)/(2B)$

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

Upper estimate (1): d = 2, constant magnetic field

For every integer $k \in \mathbb{N}$ we introduce the special symmetry class

$$\psi(x) = \left(\frac{x_2 + i x_1}{|x|}\right)^k v(|x|) \quad \forall x = (x_1, x_2) \in \mathbb{R}^2$$
 (C_k)

[Esteban, Lions, 1989]: if $\psi \in \mathcal{C}_k$, then

$$\frac{1}{2\pi} \int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, dx = \int_0^{+\infty} |v'|^2 \, r \, dr + \int_0^{+\infty} \left(\frac{k}{r} - \frac{Br}{2}\right)^2 \, |v|^2 \, r \, dr$$

and optimality is achieved in \mathcal{C}_k

Test function $v_{\sigma}(r) = e^{-r^2/(2\sigma)}$: an optimization on $\sigma > 0$ provides an explicit expression of $\mu_{\text{Gauss}}(\alpha)$ such that

Proposition

If p > 2, then

$$\mu_{\mathbf{B}}(\alpha) \leq \mu_{\mathrm{Gauss}}(\alpha) \quad \forall \, \alpha > -\Lambda[\mathbf{B}]$$

This estimate is not optimal because v_{σ} does not solve the Euler-Lagrange equations

Upper estimate (2): d = 2, constant magnetic field

A more numerical point of view. The Euler-Lagrange equation in \mathcal{C}_0 is

$$-v'' - \frac{v'}{r} + \left(\frac{B^2}{4}r^2 + \alpha\right)v = \mu_{\rm EL}(\alpha)\left(\int_0^{+\infty} |v|^p \, r \, dr\right)^{\frac{2}{p}-1} \, |v|^{p-2} \, v$$

We can restrict the problem to positive solutions such that

$$\mu_{\rm EL}(\alpha) = \left(\int_0^{+\infty} |v|^p \, r \, dr\right)^{1-\frac{2}{p}}$$

and then we have to solve the reduced problem

$$-\mathbf{v}''-\frac{\mathbf{v}'}{\mathbf{r}}+\left(\frac{B^2}{4}\,\mathbf{r}^2+\alpha\right)\mathbf{v}=|\mathbf{v}|^{\mathbf{p}-2}\,\mathbf{v}$$

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

Numerical results and the symmetry issue

(日) (同) (三) (三)

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

Figure: Case d = 2, p = 3, B = 1Upper estimates: $\alpha \mapsto \mu_{\text{Gauss}}(\alpha)$, $\mu_{\text{EL}}(\alpha)$ Lower estimates: $\alpha \mapsto \mu_{\text{interp}}(\alpha)$, $\mu_{\text{LT}}(\alpha)$ The exact value associated with μ_{B} lies in the grey area. Plots represent the curves $\log_{10}(\mu/\mu_{\text{EL}})$

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d=2 for constant magnetic fields Numerical results and the symmetry issue

Asymptotics (1): Lowest Landau Level

Proposition

Let d = 2 and consider a constant magnetic field with field strength B. If ψ_{α} is a minimizer for $\mu_{B}(\alpha)$ such that $\|\psi_{\alpha}\|_{L^{p}(\mathbb{R}^{d})} = 1$, then there exists a non trivial $\varphi_{\alpha} \in LLL$ such that

$$\lim_{\alpha \to (-B)_+} \|\psi_{\alpha} - \varphi_{\alpha}\|_{\mathrm{H}^{1}_{\mathbf{A}}(\mathbb{R}^{2})} = 0$$

Let $\psi_{\alpha} \in \mathrm{H}^{1}_{\mathsf{A}}(\mathbb{R}^{2})$ be an optimal function such that $\|\psi_{\alpha}\|_{\mathrm{L}^{p}(\mathbb{R}^{d})} = 1$ and let us decompose it as $\psi_{\alpha} = \varphi_{\alpha} + \chi_{\alpha}$, where $\varphi_{\alpha} \in \mathrm{LLL}$ and χ_{α} is in the orthogonal of LLL

$$\mu_{\mathbf{B}}(\alpha) \geq (\alpha+B) \|\varphi_{\alpha}\|_{L^{2}(\mathbb{R}^{d})}^{2} + (\alpha+3B) \|\chi_{\alpha}\|_{L^{2}(\mathbb{R}^{d})}^{2} \geq (\alpha+3B) \|\chi_{\alpha}\|_{L^{2}(\mathbb{R}^{d})}^{2} \sim 2B \|\chi_{\alpha}\|_{L^{2}(\mathbb{R}^{d})}^{2}$$
as $\alpha \to (-B)_{+}$ because $\|\nabla\chi_{\alpha}\|_{L^{2}(\mathbb{R}^{d})}^{2} \geq 3B \|\chi_{\alpha}\|_{L^{2}(\mathbb{R}^{d})}^{2}$
Since $\lim_{\alpha \to (-B)_{+}} \mu_{\mathbf{B}}(\alpha) = 0$, $\lim_{\alpha \to (-B)_{+}} \|\chi_{\alpha}\|_{L^{2}(\mathbb{R}^{d})}^{2} = 0$ and
$$\mu_{\mathbf{B}}(\alpha) = (\alpha+B) \|\varphi_{\alpha}\|_{L^{2}(\mathbb{R}^{d})}^{2} + \|\nabla_{\mathbf{A}}\chi_{\alpha}\|_{L^{2}(\mathbb{R}^{d})}^{2} + \alpha \|\chi_{\alpha}\|_{L^{2}(\mathbb{R}^{d})}^{2} \geq \frac{2}{3} \|\nabla_{\mathbf{A}}\chi_{\alpha}\|_{L^{2}(\mathbb{R}^{d})}^{2}$$
concludes the proof

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d=2 for constant magnetic fields Numerical results and the symmetry issue

Asymptotics (2): semi-classical regime

Let us consider the small magnetic field regime. We assume that the magnetic potential is given by

$$\mathbf{A}_1 = \frac{B}{2} x_2 , \quad \mathbf{A}_2 = -\frac{B}{2} x_1 \quad \forall \, x = (x_1, x_2) \in \mathbb{R}^2$$

if d = 2. In dimension d = 3, we choose $\mathbf{A} = \frac{B}{2}(-x_2, x_1, 0)$ and observe that the constant magnetic field is $\mathbf{B} = (0, 0, B)$, while the spectral gap is $\Lambda[\mathbf{B}] = B$.

Proposition

Let d = 2 or 3 and consider a constant magnetic field **B** of intensity *B* with magnetic potential **A** For any $p \in (2, 2^*)$ and any fixed α and $\mu > 0$, we have

$$\lim_{\varepsilon \to 0_+} \mu_{\varepsilon \mathbf{B}}(\alpha) = \mathsf{C}_{p} \, \alpha^{\frac{d}{p} - \frac{d-2}{2}}$$

Consider any function $\psi \in \mathrm{H}^{1}_{\mathbf{A}}(\mathbb{R}^{d})$ and let $\psi(x) = \chi(\sqrt{\varepsilon} x)$, $\sqrt{\varepsilon} \mathbf{A}(x/\sqrt{\varepsilon}) = \mathbf{A}(x)$ with our conventions on $\mathbf{A} = \mathbf{A}(x)$.

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d=2 for constant magnetic fields Numerical results and the symmetry issue

Numerical stability of radial optimal functions

Let us denote by ψ_0 an optimal function in (\mathcal{C}_0) such that

$$-\psi_0'' - \frac{\psi_0'}{r} + \left(\frac{B^2}{4}r^2 + \alpha\right)\psi_0 = |\psi_0|^{p-2}\psi_0$$

and consider the test function

$$\psi_{\varepsilon} = \psi_0 + \varepsilon \, e^{i\,\theta} \, v$$

where v = v(r) and $e^{i\theta} = (x_1 + i x_2)/r$ As $\varepsilon \to 0_+$, the leading order term is

$$2\pi \left[\int_{\mathbb{R}^2} |v'|^2 \, dx + \int_{\mathbb{R}^2} \left(\left(\frac{1}{r} - \frac{Br}{2} \right)^2 + \alpha \right) |v|^2 \, dx - \frac{p}{2} \int_0^{+\infty} |\psi_0|^{p-2} \, v^2 \, r \, dr \right] \varepsilon^2$$

and we have to solve the eigenvalue problem

$$-v'' - \frac{v'}{r} + \left(\left(\frac{1}{r} - \frac{B_r}{2} \right)^2 + \alpha \right) v - \frac{p}{2} |\psi_0|^{p-2} v = \mu v$$

Symmetry in non-magnetic interpolation inequalities	Three interpolation inequalities and their dual forms
Magnetic interpolation in the Euclidean space	Proofs for general magnetic fields
Magnetic rings: the one-dimensional periodic case	Estimates in dimension $d = 2$ for constant magnetic fields
Symmetry in Aharonov-Bohm magnetic fields	Numerical results and the symmetry issue

Figure: Case p = 3 and B = 1: plot of the eigenvalue μ as a function of α A careful investigation shows that μ is always positive, including in the limiting case as $\alpha \rightarrow (-B)_+$, thus proving the numerical stability of the optimal function in C_0 with respect to perturbations in C_1

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d=2 for constant magnetic fields Numerical results and the symmetry issue

An open question of symmetry

• [Bonheure, Nys, Van Schaftingen, 2016] for a fixed $\alpha > 0$ and for **B** small enough, the optimal functions are radially symmetric functions, *i.e.*, belong to C_0 This regime is equivalent to the regime as $\alpha \to +\infty$ for a given **B**, at least if the magnetic field is constant

Numerically our upper and lower bounds are (in dimension d=2, for a constant magnetic field) numerically extremely close

 \blacksquare . The optimal function in \mathcal{C}_0 is linearly stable with respect to perturbations in \mathcal{C}_1

 \triangleright Prove that the optimality case is achieved among radial function if d = 2 and **B** is a constant magnetic field

Reference

Three interpolation inequalities and their dual forms Proofs for general magnetic fields Estimates in dimension d = 2 for constant magnetic fields Numerical results and the symmetry issue

JD, M.J. Esteban, A. Laptev, M. Loss. Interpolation inequalities and spectral estimates for magnetic operators. Annales Henri Poincaré, 19 (5): 1439-1463, May 2018

- 4 同 2 4 日 2 4 日 2

Magnetic interpolation on the circle Proof: how to eliminate the phase Consequences: Keller-Lieb-Thirring and Hardy inequalities

Magnetic rings

 \rhd A magnetic interpolation inequality on $\mathbb{S}^1:$ with p>2

 $\|\psi' + i \, a \, \psi\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} + \alpha \, \|\psi\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} \ge \mu_{a,p}(\alpha) \, \|\psi\|_{\mathrm{L}^{p}(\mathbb{S}^{1})}^{2}$

- \triangleright Consequences
 - A Keller-Lieb-Thirring inequality

 \bullet A new Hardy inequality for Aharonov-Bohm magnetic fields in \mathbb{R}^2

Joint work with M.J. Esteban, A. Laptev and M. Loss

Magnetic interpolation on the circle Proof: how to eliminate the phase Consequences: Keller-Lieb-Thirring and Hardy inequalities

Magnetic flux, a reduction

Assume that $a : \mathbb{R} \to \mathbb{R}$ is a 2π -periodic function such that its restriction to $(-\pi, \pi] \approx \mathbb{S}^1$ is in $L^1(\mathbb{S}^1)$ and define the space

$$X_{\mathsf{a}} := \left\{ \psi \in \mathcal{C}_{\mathrm{per}}(\mathbb{R}) \, : \, \psi' + i \, \mathsf{a} \, \psi \in \mathrm{L}^2(\mathbb{S}^1)
ight\}$$

▲ A standard change of gauge (see *e.g.* [Ilyin, Laptev, Loss, Zelik, 2016])

$$\psi(s)\mapsto e^{i\int_{-\pi}^{s}(a(s)-\bar{a})\,\mathrm{d}\sigma}\,\psi(s)$$

where $\bar{a} := \int_{-\pi}^{\pi} a(s) \, d\sigma$ is the magnetic flux, reduces the problem to

a is a constant function

• For any $k \in \mathbb{Z}$, ψ by $s \mapsto e^{iks} \psi(s)$ shows that $\mu_{a,p}(\alpha) = \mu_{k+a,p}(\alpha)$ $a \in [0, 1]$

•
$$\mu_{a,p}(\alpha) = \mu_{1-a,p}(\alpha)$$
 because
 $|\psi' + i \, a \, \psi|^2 = |\chi' + i \, (1-a) \, \chi|^2 = \left|\overline{\psi}' - i \, a \, \overline{\psi}\right|^2$ if $\chi(s) = e^{-is} \, \overline{\psi(s)}$
 $a \in [0, 1/2]$

Magnetic interpolation on the circle Proof: how to eliminate the phase Consequences: Keller-Lieb-Thirring and Hardy inequalities

Optimal interpolation

We want to characterize the optimal constant in the inequality

$$\|\psi' + i \, a \, \psi\|_{\mathrm{L}^2(\mathbb{S}^1)}^2 + \alpha \, \|\psi\|_{\mathrm{L}^2(\mathbb{S}^1)}^2 \ge \mu_{a,p}(\alpha) \, \|\psi\|_{\mathrm{L}^p(\mathbb{S}^1)}^2$$

written for any p > 2, $a \in (0, 1/2]$, $\alpha \in (-a^2, +\infty)$, $\psi \in X_a$

$$\mu_{a,p}(\alpha) := \inf_{\psi \in X_a \setminus \{0\}} \frac{\int_{-\pi}^{\pi} \left(|\psi' + i \, a \, \psi|^2 + \alpha \, |\psi|^2 \right) \mathrm{d}\sigma}{\|\psi\|_{\mathrm{L}^p(\mathbb{S}^1)}^2}$$

p = -2 = 2 d/(d-2) with d = 1 [Exner, Harrell, Loss, 1998] $p = +\infty$ [Galunov, Olienik, 1995] [Ilyin, Laptev, Loss, Zelik, 2016] $\lim_{\alpha \to -a^2} \mu_{a,p}(\alpha) = 0$ [JD, Esteban, Laptev, Loss, 2016]

Using a Fourier series $\psi(s) = \sum_{k \in \mathbb{Z}} \psi_k e^{iks}$, we obtain that

$$\|\psi' + i \, a \, \psi\|_{\mathrm{L}^2(\mathbb{S}^1)}^2 = \sum_{k \in \mathbb{Z}} (a+k)^2 \, |\psi_k|^2 \ge a^2 \, \|\psi\|_{\mathrm{L}^2(\mathbb{S}^1)}^2$$

 $\psi \mapsto \|\psi' + i \, \mathsf{a} \, \psi\|_{\mathrm{L}^2(\mathbb{S}^1)}^2 + \alpha \, \|\psi\|_{\mathrm{L}^2(\mathbb{S}^1)}^2 \text{ is coercive for any } \alpha > - \, \mathsf{a}^2_{\mathbb{R}^3} + \alpha \, \mathbb{R}^3 + \alpha \, \mathbb{R}^3$

Magnetic interpolation on the circle Proof: how to eliminate the phase Consequences: Keller-Lieb-Thirring and Hardy inequalities

An interpolation result for the magnetic ring

Theorem

For any p > 2, $a \in \mathbb{R}$, and $\alpha > -a^2$, $\mu_{a,p}(\alpha)$ is achieved and (i) if $a \in [0, 1/2]$ and $a^2(p+2) + \alpha(p-2) \le 1$, then $\mu_{a,p}(\alpha) = a^2 + \alpha$ and equality is achieved only by the constant functions (ii) if $a \in [0, 1/2]$ and $a^2(p+2) + \alpha(p-2) > 1$, then $\mu_{a,p}(\alpha) < a^2 + \alpha$ and equality is not achieved by the constant functions If $\alpha > -a^2$, $a \mapsto \mu_{a,p}(\alpha)$ is monotone increasing on (0, 1/2)

Magnetic interpolation on the circle **Proof: how to eliminate the phase** Consequences: Keller-Lieb-Thirring and Hardy inequalities

The proof: how to eliminate the phase

イロト イポト イヨト イヨト

Reformulations of the interpolation problem (1/3)

Any minimizer $\psi \in X_a$ of $\mu_{a,p}(\alpha)$ satisfies the Euler-Lagrange equation

$$(H_a + \alpha)\psi = |\psi|^{p-2}\psi, \quad H_a\psi = -\left(\frac{d}{ds} + ia\right)^2\psi$$
 (*)

up to a multiplication by a constant and $v(s) = \psi(s) e^{ias}$ satisfies the condition

$$v(s+2\pi)=e^{2i\pi s}v(s) \quad \forall s\in \mathbb{R}$$

Hence

$$\mu_{a,p}(\alpha) = \min_{v \in Y_a \setminus \{0\}} \mathsf{Q}_{p,\alpha}[v]$$

where $Y_a := \left\{ v \in C(\mathbb{R}) : v' \in L^2(\mathbb{S}^1), \ (*) \text{ holds} \right\}$ and

$$\mathsf{Q}_{\boldsymbol{\rho},\alpha}[\boldsymbol{v}] := \frac{\|\boldsymbol{v}'\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} + \alpha \|\boldsymbol{v}\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2}}{\|\boldsymbol{v}\|_{\mathrm{L}^{p}(\mathbb{S}^{1})}^{2}}$$

・ロト ・回ト ・ヨト ・

w

Magnetic interpolation on the circle **Proof: how to eliminate the phase** Consequences: Keller-Lieb-Thirring and Hardy inequalities

Reformulations of the interpolation problem (2/3)

With $v = u e^{i\phi}$ the boundary condition becomes

$$u(\pi) = u(-\pi), \quad \phi(\pi) = 2\pi (a+k) + \phi(-\pi)$$
 (**)

for some $k \in \mathbb{Z}$, and $\|v'\|_{L^2(\mathbb{S}^1)}^2 = \|u'\|_{L^2(\mathbb{S}^1)}^2 + \|u\phi'\|_{L^2(\mathbb{S}^1)}^2$ Hence

$$\mu_{a,p}(\alpha) = \min_{(u,\phi)\in Z_{a}\setminus\{0\}} \frac{\|u'\|_{L^{2}(\mathbb{S}^{1})}^{2} + \|u\phi'\|_{L^{2}(\mathbb{S}^{1})}^{2} + \alpha \|u\|_{L^{2}(\mathbb{S}^{1})}^{2}}{\|u\|_{L^{p}(\mathbb{S}^{1})}^{2}}$$

here $Z_{a} := \{(u,\phi)\in C(\mathbb{R})^{2} : u', u\phi'\in L^{2}(\mathbb{S}^{1}), (**)$ holds}

(4回) (4回) (4回)

・ 同 ト ・ ヨ ト ・ ヨ ト

Reformulations of the interpolation problem (3/3)

We use the Euler-Lagrange equations

$$-u'' + |\phi'|^2 u + \alpha u = |u|^{p-2} u$$
 and $(\phi' u^2)' = 0$

Integrating the second equation, and assuming that u never vanishes, we find a constant L such that $\phi' = L/u^2$. Taking (*) into account, we deduce from

$$L\int_{-\pi}^{\pi} \frac{\mathrm{d}s}{u^2} = \int_{-\pi}^{\pi} \phi' \,\mathrm{d}s = 2\pi \left(a+k\right)$$

that

$$\|u\phi'\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} = L^{2} \int_{-\pi}^{\pi} \frac{\mathrm{d}\sigma}{u^{2}} = \frac{(a+k)^{2}}{\|u^{-1}\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2}}$$

Hence

$$\phi(s) - \phi(0) = rac{a+k}{\|u^{-1}\|_{\mathrm{L}^2(\mathbb{S}^1)}^2} \int_{-\pi}^s rac{\mathrm{d} s}{u^2}$$

Magnetic interpolation on the circle **Proof: how to eliminate the phase** Consequences: Keller-Lieb-Thirring and Hardy inequalities

Let us define

$$\mathcal{Q}_{\boldsymbol{a},\boldsymbol{p},\alpha}[\boldsymbol{u}] := \frac{\|\boldsymbol{u}'\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} + \boldsymbol{a}^{2} \|\boldsymbol{u}^{-1}\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} + \alpha \|\boldsymbol{u}\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2}}{\|\boldsymbol{u}\|_{\mathrm{L}^{p}(\mathbb{S}^{1})}^{2}}$$

Lemma

For any $a \in (0, 1/2)$, p > 2, $\alpha > -a^2$,

$$\mu_{\boldsymbol{a},\boldsymbol{p}}(\alpha) = \min_{\boldsymbol{u} \in \mathrm{H}^{1}(\mathbb{S}^{1}) \setminus \{\boldsymbol{0}\}} \mathcal{Q}_{\boldsymbol{a},\boldsymbol{p},\alpha}[\boldsymbol{u}]$$

is achieved by a function u > 0

-

Magnetic interpolation on the circle **Proof: how to eliminate the phase** Consequences: Keller-Lieb-Thirring and Hardy inequalities

Proofs

• The existence proof is done on the original formulation of the problem using the diamagnetic inequality • $\psi(s) e^{ias} = v_1(s) + i v_2(s)$, solves

$$-v_{j}'' + \alpha v_{j} = (v_{1}^{2} + v_{2}^{2})^{\frac{p}{2}-1} v_{j}, \quad j = 1, 2$$

and the Wronskian $w = (v_1 v'_2 - v'_1 v_2)$ is constant so that $\psi(s) = 0$ is incompatible with the twisted boundary condition • if $a^2(p+2) + \alpha(p-2) \le 1$, then $\mu_{a,p}(\alpha) = a^2 + \alpha$ because

$$\begin{split} \|u'\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} + a^{2} \|u^{-1}\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{-2} + \alpha \|u\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} &= (1 - 4 a^{2}) \|u'\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} + \alpha \|u\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} \\ &+ 4 a^{2} \left(\|u'\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2} + \frac{1}{4} \|u^{-1}\|_{\mathrm{L}^{2}(\mathbb{S}^{1})}^{2}\right) \end{split}$$

if $a^2(p+2) + \alpha(p-2) > 1$, the test function $u_{\varepsilon} := 1 + \varepsilon w_1$

$$\mathcal{Q}_{\boldsymbol{a},\boldsymbol{p},\boldsymbol{\alpha}}[\boldsymbol{u}_{\varepsilon}] = \boldsymbol{a}^{2} + \boldsymbol{\alpha} + \left(1 - \boldsymbol{a}^{2}\left(\boldsymbol{p}+2\right) - \boldsymbol{\alpha}\left(\boldsymbol{p}-2\right)\right)\varepsilon^{2} + \boldsymbol{o}(\varepsilon^{2})$$

proves the linear instability of the constants and $\mu_{a,p}(\alpha) < a^2 + \alpha$

Magnetic interpolation on the circle **Proof: how to eliminate the phase** Consequences: Keller-Lieb-Thirring and Hardy inequalities

$$\begin{aligned} \mathcal{Q}_{a,p,\alpha}[u] &:= \frac{\|u'\|_{L^{2}(\mathbb{S}^{1})}^{2} + a^{2} \|u^{-1}\|_{L^{2}(\mathbb{S}^{1})}^{-2} + \alpha \|u\|_{L^{2}(\mathbb{S}^{1})}^{2}}{\|u\|_{L^{p}(\mathbb{S}^{1})}^{2}} \,, \\ \mu_{a,p}(\alpha) &= \min_{u \in \mathrm{H}^{1}(\mathbb{S}^{1}) \setminus \{0\}} \mathcal{Q}_{a,p,\alpha}[u] \\ \mathsf{Q}_{p,\alpha}[u] &= \mathcal{Q}_{a=0,p,\alpha}[u] \,, \quad \nu_{p}(\alpha) := \inf_{v \in \mathrm{H}^{1}_{0}(\mathbb{S}^{1}) \setminus \{0\}} \mathsf{Q}_{p,\alpha}[v] \end{aligned}$$

Proposition

$$\forall p > 2, \alpha > -a^2$$
, we have $\mu_{a,p}(\alpha) < \mu_{1/2,p}(\alpha) \le \nu_p(\alpha) = \mu_{1/2,p}(\alpha)$

Magnetic interpolation on the circle Proof: how to eliminate the phase Consequences: Keller-Lieb-Thirring and Hardy inequalities

Consequences: Keller-Lieb-Thirring inequalities and Hardy inequalities for Aharonov-Bohm magnetic fields

医下口 医下

Magnetic interpolation on the circle Proof: how to eliminate the phase Consequences: Keller-Lieb-Thirring and Hardy inequalities

A Keller-Lieb-Thirring inequality

Magnetic Schrödinger operator $H_a - \varphi = -\left(\frac{d}{ds} + i a\right)^2 \psi - \varphi$

• The function $\alpha \mapsto \mu_{a,p}(\alpha)$ is monotone increasing, concave, and therefore has an inverse, denoted by $\alpha_{a,p} : \mathbb{R}^+ \to (-a^2, +\infty)$, which is monotone increasing, and convex

Corollary

Let p > 2, $a \in [0, 1/2]$, q = p/(p-2) and assume that φ is a non-negative function in $L^q(\mathbb{S}^1)$. Then

$$\lambda_1(H_a - \varphi) \ge -\alpha_{a,p} \left(\|\varphi\|_{\mathrm{L}^q(\mathbb{S}^1)} \right)$$

and $\alpha_{a,p}(\mu) = \mu - a^2$ iff $4a^2 + \mu(p-2) \le 1$ (optimal φ is constant) Equality is achieved

・ロト ・回ト ・ヨト ・ヨト

Magnetic interpolation on the circle Proof: how to eliminate the phase Consequences: Keller-Lieb-Thirring and Hardy inequalities

Aharonov-Bohm magnetic fields

On the two-dimensional Euclidean space \mathbb{R}^2 , let us introduce the polar coordinates $(r, \vartheta) \in [0, +\infty) \times \mathbb{S}^1$ of $\mathbf{x} \in \mathbb{R}^2$ and consider a magnetic potential **a** in a transversal (Poincaré) gauge, or Poincaré gauge

$$(\mathbf{a},\mathbf{e}_r)=0$$
 and $(\mathbf{a},\mathbf{e}_\vartheta)=a_\vartheta(r,\vartheta)$

Magnetic Schrödinger energy

$$\int_{\mathbb{R}^2} |(i\nabla + \mathbf{a})\Psi|^2 \, d\mathbf{x} = \int_0^{+\infty} \int_{-\pi}^{\pi} \left(|\partial_r \Psi|^2 + \frac{1}{r^2} |\partial_\vartheta \Psi + ir \, \mathbf{a}_\vartheta \, \Psi|^2 \right) r \, \mathrm{d}\vartheta \, \mathrm{d}r$$

Aharonov-Bohm magnetic fields: $a_{\vartheta}(r, \vartheta) = a/r$ for some constant $a \in \mathbb{R}$ (a is the magnetic flux), with magnetic field $b = \operatorname{curl} a$

$$\int_{\mathbb{R}^2} |(i \nabla + \mathbf{a}) \Psi|^2 \, d\mathbf{x} \ge \tau \int_{\mathbb{R}^2} \frac{\varphi(\mathbf{x}/|\mathbf{x}|)}{|\mathbf{x}|^2} \, |\Psi|^2 \, \mathrm{d}\mathbf{x} \quad \forall \, \varphi \in \mathrm{L}^q(\mathbb{S}^1) \,, \quad q \in (1, +\infty)$$

$$\implies \tau = \tau \left(\mathbf{a}, \|\varphi\|_{\mathbf{L}^q(\mathbb{S}^1)} \right) ?$$

Magnetic interpolation on the circle Proof: how to eliminate the phase Consequences: Keller-Lieb-Thirring and Hardy inequalities

Hardy inequalities

[Hoffmann-Ostenhof, Laptev, 2015] proved Hardy's inequality

$$\int_{\mathbb{R}^d} |\nabla \Psi|^2 \, \mathrm{d} \mathbf{x} \geq \tau \int_{\mathbb{R}^d} \frac{\varphi(\mathbf{x}/|\mathbf{x}|)}{|\mathbf{x}|^2} \, |\Psi|^2 \, \mathrm{d} \mathbf{x}$$

where the constant τ depends on the value of $\|\varphi\|_{L^q(\mathbb{S}^{d-1})}$ and $d \geq 3$ Aharonov-Bohm vector potential in dimension d = 2

$$\mathbf{a}(\mathbf{x}) = a\left(rac{x_2}{|\mathbf{x}|^2}, rac{-x_1}{|\mathbf{x}|^2}
ight), \quad \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2, \quad a \in \mathbb{R}$$

and recall the inequality [Laptev, Weidl, 1999]

$$\int_{\mathbb{R}^2} |(i \nabla + \mathbf{a}) \Psi|^2 \, \mathrm{d} \mathbf{x} \geq \min_{k \in \mathbb{Z}} (a - k)^2 \int_{\mathbb{R}^2} \frac{|\Psi|}{|\mathbf{x}|^2} \, \mathrm{d} \mathbf{x}$$

イロト 不得 とくほ とくほう

Magnetic interpolation on the circle Proof: how to eliminate the phase Consequences: Keller-Lieb-Thirring and Hardy inequalities

A new Hardy inequality

$$\int_{\mathbb{R}^2} |(i \, \nabla + \mathbf{a}) \, \Psi|^2 \, d\mathbf{x} \geq \tau \int_{\mathbb{R}^2} \frac{\varphi(\mathbf{x}/|\mathbf{x}|)}{|\mathbf{x}|^2} \, |\Psi|^2 \, \mathrm{d}\mathbf{x} \quad \forall \, \varphi \in \mathrm{L}^q(\mathbb{S}^1) \,, \quad q \in (1, +\infty)$$

Corollary

Let p > 2, $a \in [0, 1/2]$, q = p/(p - 2) and assume that φ is a non-negative function in $L^q(\mathbb{S}^1)$. Then the inequality holds with $\tau > 0$ given by

 $\alpha_{\mathbf{a},\mathbf{p}}\left(\tau \,\|\varphi\|_{\mathrm{L}^{q}(\mathbb{S}^{1})}\right) = \mathbf{0}$

Moreover, $au = a^2/\|\varphi\|_{\mathrm{L}^q(\mathbb{S}^1)}$ if $4a^2 + \|\varphi\|_{\mathrm{L}^q(\mathbb{S}^1)}(p-2) \leq 1$

For any $a \in (0, 1/2)$, by taking φ constant, small enough in order that $4 a^2 + \|\varphi\|_{L^q(\mathbb{S}^1)} (p-2) \leq 1$, we recover the inequality

$$\int_{\mathbb{R}^2} |(i \nabla + \mathbf{a}) \Psi|^2 \, \mathrm{d} \mathbf{x} \ge a^2 \int_{\mathbb{R}^2} \frac{|\Psi|^2}{|\mathbf{x}|^2} \, \mathrm{d} \mathbf{x}$$

Magnetic interpolation on the circle Proof: how to eliminate the phase Consequences: Keller-Lieb-Thirring and Hardy inequalities

Proofs (Keller-Lieb-Thirring inequality)

Hölder's inequality

$$\begin{split} \|\psi' + i \, a \, \psi\|_{L^{2}(\mathbb{S}^{d})}^{2} - \int_{-\pi}^{\pi} \varphi \, |\psi|^{2} \, d\sigma \geq \|\psi' + i \, a \, \psi\|_{L^{2}(\mathbb{S}^{d})}^{2} - \mu \, \|\psi\|_{L^{p}(\mathbb{S}^{d})}^{2} \\ \text{where } \mu = \|\varphi\|_{L^{q}(\mathbb{S}^{d})} \text{ and } \frac{1}{q} + \frac{2}{\rho} = 1: \text{ choose } \mu_{a,p}(\alpha) = \mu \\ \|\psi' + i \, a \, \psi\|_{L^{2}(\mathbb{S}^{d})}^{2} - \mu \, \|\psi\|_{L^{p}(\mathbb{S}^{d})}^{2} \geq -\alpha \, \|\psi\|_{L^{2}(\mathbb{S}^{d})}^{2} \end{split}$$

イロト イポト イヨト イヨト

Magnetic interpolation on the circle Proof: how to eliminate the phase Consequences: Keller-Lieb-Thirring and Hardy inequalities

Proofs (Hardy inequality)

Let $\tau \geq 0$, $\mathbf{x} = (r, \vartheta) \in \mathbb{R}^2$ be polar coordinates in \mathbb{R}^2

$$\begin{split} \int_{\mathbb{R}^2} \left(|(i \nabla + \mathbf{a}) \Psi|^2 - \tau \frac{\varphi}{|x|^2} |\Psi|^2 \right) \, \mathrm{d}\mathbf{x} \\ &= \int_0^\infty \int_{\mathbb{S}^1} \left(\underbrace{r \, |\partial_r \Psi|^2}_{\geq 0} + \frac{1}{r} \, |\partial_\vartheta \Psi + i \, \mathbf{a} \Psi|^2 - \tau \frac{\varphi}{r} \, |\Psi|^2 \right) \mathrm{d}\vartheta \, \mathrm{d}r \\ &\geq \lambda_1 \left(H_a - \tau \, \varphi \right) \int_0^\infty \int_{\mathbb{S}^1} \frac{1}{r} \, |\Psi|^2 \, \mathrm{d}\vartheta \, \mathrm{d}r \\ &\geq -\alpha_{a,p} (\tau \, \|\varphi\|_{\mathrm{L}^q(\mathbb{S}^d)}) \int_0^\infty \int_{\mathbb{S}^1} \frac{1}{r} \, |\Psi|^2 \, \mathrm{d}\vartheta \, \mathrm{d}r \end{split}$$

• If $\tau = 0$, then $\alpha_{a,p}(\tau \|\varphi\|_{L^q(\mathbb{S}^d)}) = \alpha_{a,p}(0) = -a^2$ • $\alpha_{a,p}(\tau \|\varphi\|_{L^q(\mathbb{S}^d)}) > 0$ for τ large $\Rightarrow \exists ! \tau > 0$ such that $\alpha_{a,p}(\tau \|\varphi\|_{L^q(\mathbb{S}^d)}) = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Magnetic interpolation on the circle Proof: how to eliminate the phase Consequences: Keller-Lieb-Thirring and Hardy inequalities

Comments

 \triangleright The region $a^2(p+2) + \alpha(p-2) < 1$ is exactly the set where the constant functions are linearly stable critical points

 \rhd The proof of the *rigidity result* is based

- neither on the carré du champ method, at least directly
- nor on a Fourier representation of the operator as it was the case in earlier proofs $(p = +\infty, \text{ or } p > 2 \text{ and } \alpha = 0)$

▷ Magnetic rings: see [Bonnaillie-Noël, Hérau, Raymond, 2017]

▷ Deducing *Hardy's inequality* applied with *Aharonov-Bohm* magnetic fields from a *Keller-Lieb-Thirring inequality* is an extension of [Hoffmann-Ostenhof, Laptev, 2015] to the magnetic case

 \rhd Our results are not limited to the semi-classical regime

Aharonov-Bohm effect Interpolation and Keller-Lieb-Thirring inequalities Symmetry and symmetry breaking

Symmetry in Aharonov-Bohm magnetic fields

- ▲ Aharonov-Bohm effect
- **Q** Interpolation and Keller-Lieb-Thirring inequalities in \mathbb{R}^2
- \triangleright Statements
- \triangleright Constants and numerics
- Symmetry and symmetry breaking

Joint work with D. Bonheure, M.J. Esteban, A. Laptev, & M. Loss

(4回) (日) (日)

Aharonov-Bohm effect Interpolation and Keller-Lieb-Thirring inequalities Symmetry and symmetry breaking

Aharonov-Bohm effect

A major difference between classical mechanics and quantum mechanics is that particles are described by a non-local object, the wave function. In 1959 Y. Aharonov and D. Bohm proposed a series of experiments intended to put in evidence such phenomena which are nowadays called *Aharonov-Bohm effects*

One of the proposed experiments relies on a long, thin solenoid which produces a magnetic field such that the region in which the magnetic field is non-zero can be approximated by a line in dimension d = 3 and by a point in dimension d = 2

 \triangleright [Physics today, 2009] "The notion, introduced 50 years ago, that electrons could be affected by electromagnetic potentials without coming in contact with actual force fields was received with a skepticism that has spawned a flourishing of experimental tests and expansions of the original idea." Problem solved by considering appropriate weak solutions !

 \triangleright Is the wave function a physical object or is the modulus the only relevant quantity ? Decisive experiments have been done only 20

Aharonov-Bohm effect Interpolation and Keller-Lieb-Thirring inequalities Symmetry and symmetry breaking

The interpolation inequality

Let us consider an Aharonov-Bohm vector potential

$$\mathbf{A}(x) = rac{a}{|x|^2} (x_2, -x_1) , \quad x = (x_1, x_2) \in \mathbb{R}^2 \setminus \{0\}, \quad a \in \mathbb{R}$$

Magnetic Hardy inequality [Laptev, Weidl, 1999]

$$\int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, dx \ge \min_{k \in \mathbb{Z}} (a-k)^2 \int_{\mathbb{R}^2} \frac{|\psi|^2}{|x|^2} \, dx$$

where $\nabla_{\mathbf{A}} \psi := \nabla \psi + i \, \mathbf{A} \psi$, so that, with $\psi = |\psi| \, e^{iS}$
 $\int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, dx = \int_{\mathbb{R}^2} \left[(\partial_r \, |\psi|)^2 + (\partial_r S)^2 \, |\psi|^2 + \frac{1}{r^2} (\partial_\theta S + A)^2 \, |\psi|^2 \right] \, dx$

Magnetic interpolation inequality

$$\int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, dx + \lambda \int_{\mathbb{R}^2} \frac{|\psi|^2}{|x|^2} \, dx \ge \mu(\lambda) \left(\int_{\mathbb{R}^2} \frac{|\psi|^p}{|x|^2} \, dx \right)^{2/p}$$

> Symmetrization: [Erdös, 1996], [Boulenger, Lenzmann], [Lenzmann, Sok]

Aharonov-Bohm effect Interpolation and Keller-Lieb-Thirring inequalities Symmetry and symmetry breaking

A magnetic Hardy-Sobolev inequality

Theorem

Let $a \in [0, 1/2]$ and p > 2. For any $\lambda > -a^2$, there is an optimal, monotone increasing, concave function $\lambda \mapsto \mu(\lambda)$ which is such that

$$\int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, dx + \lambda \int_{\mathbb{R}^2} \frac{|\psi|^2}{|x|^2} \, dx \ge \mu(\lambda) \left(\int_{\mathbb{R}^2} \frac{|\psi|^p}{|x|^2} \, dx \right)^{2/p}$$

If
$$\lambda \leq \lambda_{\star} = 4 \frac{1-4 a^2}{p^2-4} - a^2$$
 equality is achieved by

$$\psi(x) = \left(|x|^{\alpha} + |x|^{-\alpha}\right)^{-\frac{2}{p-2}} \quad \forall x \in \mathbb{R}^2, \quad \text{with} \quad \alpha = \frac{p-2}{2}\sqrt{\lambda + a^2}$$

If $\lambda > \lambda_{\bullet}$ with

$$\lambda_{\bullet} := \frac{8\left(\sqrt{p^4 - a^2 \left(p-2\right)^2 \left(p+2\right) \left(3 p-2\right)} + 2\right) - 4 p \left(p+4\right)}{(p-2)^3 \left(p+2\right)} - a^2$$

Aharonov-Bohm effect Interpolation and Keller-Lieb-Thirring inequalities Symmetry and symmetry breaking

A magnetic Keller-Lieb-Thirring estimate

Let $q \in (1, +\infty)$ and denote by $L^q_{\star}(\mathbb{R}^2)$ the space defined using the weighted norm $|||\phi|||_q := \left(\int_{\mathbb{R}^2} |\phi|^q \, |x|^{2(q-1)} \, dx\right)^{1/q}$

Theorem

Let $a \in (0, 1/2)$, $q \in (1, \infty)$ and $\phi \in L^q_*(\mathbb{R}^2)$: $\mu \mapsto \lambda(\mu)$ is a convex monotone increasing function such that $\lim_{\mu \to 0^+} \lambda(\mu) = -\min_{k \in \mathbb{Z}} (a - k)^2$ and

$$\lambda_{1}(-\Delta_{\mathbf{A}}-\phi)\geq-\lambda\left(\left\Vert ert \phi
ight\Vert _{q}
ight)$$

There is an explicit $\mu_{\star} > 0$ such that the equality case is achieved for any $\mu \leq \mu_{\star}$ by

$$\phi(x) = \left(|x|^{lpha} + |x|^{-lpha}
ight)^{-2} \quad orall x \in \mathbb{R}^2\,, \quad \textit{with} \quad lpha = rac{p-2}{2}\,\sqrt{\lambda(\mu) + a^2}$$

There is an explicit $\mu_{\bullet} > \mu_{\star}$ such that the equality case is achieved only by non-radial functions if $\mu > \mu_{\bullet}$

Constants are explicit...

• For a = 1/2, we shall see that $\mu_{\bullet} = \mu_{\star} = -1/4$

• The function $\lambda \mapsto \mu(\lambda)$ is the inverse of $\mu \mapsto \lambda(\mu)$ and

$$\mu_{\star} = h(\lambda_{\star}) \text{ and } \mu_{\bullet} = h(\lambda_{\bullet})$$

with

$$h(\lambda) := \frac{p}{2} (2\pi)^{1-\frac{2}{p}} (\lambda + a^2)^{1+\frac{2}{p}} \left(\frac{2\sqrt{\pi} \, \Gamma(\frac{p}{p-2})}{(p-2) \, \Gamma(\frac{p}{p-2} + \frac{1}{2})} \right)^{1-\frac{2}{p}}$$

-

Aharonov-Bohm effect Interpolation and Keller-Lieb-Thirring inequalities Symmetry and symmetry breaking

Figure: Case p = 4Symmetry breaking region: $\lambda > \lambda_{\bullet}(a)$ Symmetry breaking region: $\lambda < \lambda_{\star}$

Aharonov-Bohm effect Interpolation and Keller-Lieb-Thirring inequalities Symmetry and symmetry breaking

Lemma

Let a
$$\in [0,1/2]$$
 and $\psi = u \, e^{iS} \in {\it C}^1 \cap {\rm H}^1_{\sf A}$ such that $|\psi| > 0$

$$\int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, dx \ge \int_{\mathbb{R}^2} \left(|\partial_r u|^2 + \frac{1}{r^2} \, |\partial_\theta u|^2 + \frac{1}{r^2} \, \frac{a^2}{\int_{\mathbb{S}^2} u^{-2} \, d\sigma} \right) \, dx$$

Equality holds if and only if $\partial_r S \equiv 0$ and

$$\partial_{\theta}S = a - rac{a}{u^2} rac{1}{\int_{\mathbb{S}^2} u^{-2} \, d\sigma}$$

When u does not depend on θ , equality is achieved iff S is constant

Lemma

For all
$$a \in [0, 1/2]$$
 and $\psi \in H^1(\mathbb{S}^1)$ with $u = |\psi|$, we have

$$\int_{\mathbb{S}^2} |\partial_\theta \psi - i \, \mathsf{a} \, \psi|^2 \, \mathsf{d} \sigma \geq \left(1 - 4 \, \mathsf{a}^2\right) \int_{\mathbb{S}^2} |\partial_\theta u|^2 \, \mathsf{d} \sigma + \mathsf{a}^2 \int_{\mathbb{S}^2} u^2 \, \mathsf{d} \sigma$$

Aharonov-Bohm effect Interpolation and Keller-Lieb-Thirring inequalities Symmetry and symmetry breaking

Proof (1/3): the inequality with a non-optimal constant

Diamagnetic inequality: $\|\nabla_{\mathbf{A}}\psi\|_{\mathrm{L}^{2}(\mathbb{R}^{2})} \geq \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{2})}, u = |\psi|$

$$\begin{split} \int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, dx &+ \lambda \int_{\mathbb{R}^2} \frac{|\psi|^2}{|x|^2} \, dx \\ &\geq t \left(\|\nabla_{\mathbf{A}} \psi\|_{\mathrm{L}^2(\mathbb{R}^2)}^2 - a^2 \int_{\mathbb{R}^2} \frac{u^2}{|x|^2} \, dx \right) \\ &+ (1-t) \left(\|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^2)}^2 + \frac{\lambda + a^2 t}{1-t} \int_{\mathbb{R}^2} \frac{u^2}{|x|^2} \, dx \right) \end{split}$$

With $a^2 = \frac{\lambda + a^2 t}{1 - t}$, $t \in (0, 1)$ such that $\lambda + a^2 t > 0$: existence of a positive constant $\mu(\lambda)$

Aharonov-Bohm effect Interpolation and Keller-Lieb-Thirring inequalities Symmetry and symmetry breaking

Proof (2/3): optimal estimate in the symmetry range

With
$$a \in [0, 1/2], \psi \in \mathrm{H}^1(\mathbb{R}^2)$$
 and $u = |\psi|$

$$\int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, dx \ge \int_{\mathbb{R}^2} |\partial_r u|^2 \, dx + (1 - 4 \, a^2) \int_{\mathbb{R}^2} \frac{1}{r^2} \, |\partial_\theta u|^2 \, dx + a^2 \int_{\mathbb{R}^2} u^2 \, dx$$

The relaxed inequality

$$\int_{\mathbb{R}^2} \left(|\partial_r u|^2 + \frac{1-4a^2}{r^2} |\partial_\theta u|^2 \right) dx + (\lambda + a^2) \int_{\mathbb{R}^2} \frac{|u|^2}{|x|^2} dx \ge \mu_{\rm rel}(\lambda) \left(\int_{\mathbb{R}^2} \frac{|u|^p}{|x|^2} dx \right)^{\frac{2}{p}}$$

is rewritten on the cylinder $\mathcal{C}:=\mathbb{R}\times\mathbb{S}^1$ using the Emden-Fowler transformation as

$$\begin{split} \int_{\mathcal{C}} \left(|\partial_s w|^2 + \left(1 - 4 a^2\right) |\partial_\theta w|^2 \right) dy + \left(\lambda + a^2\right) \int_{\mathcal{C}} |w|^2 dy \\ &\geq (2 \pi)^{\frac{2}{p} - 1} \mu_{\text{rel}}(\lambda) \left(\int_{\mathcal{C}} |w|^p dy \right)^{\frac{2}{p}} \end{split}$$

If $(\lambda + a^2) \left(p^2 - 4 \right) \leq 4 \left(1 - 4 a^2 \right) \iff \lambda \leq \lambda_*$, the minimizer is

symmetric

・ 同 ト ・ ヨ ト ・ ヨ ト

Aharonov-Bohm effect Interpolation and Keller-Lieb-Thirring inequalities Symmetry and symmetry breaking

Proof (3/3): symmetry breaking range

$$\begin{split} \mathcal{E}_{a,\lambda}[\psi] &:= \int_{\mathbb{R}^2} |\nabla_{\mathbf{A}} \psi|^2 \, dx + \lambda \int_{\mathbb{R}^2} \frac{|\psi|^2}{|x|^2} \, dx - \mu \left(\int_{\mathbb{R}^2} \frac{|\psi|^p}{|x|^2} \, dx \right)^{2/p} \\ \mu &= \left(2\pi \int_{\mathcal{C}} |w_\star|^p \, dy \right)^{1-2/p}, \, w_\star(s) = \zeta_\star \left(\cosh(\omega \, s) \right)^{-\frac{2}{p-2}} \\ s &= -\log r \text{ and } \psi_\varepsilon(r,\theta) := \left(w_\star(s) + \varepsilon \, \varphi(s,\theta) \right) e^{i \, \varepsilon \, \chi(s,\theta)} \\ \mathcal{E}_{a,\lambda}[\psi_\varepsilon] &= \varepsilon^2 \, \mathcal{Q}[\varphi,\chi] + o(\varepsilon^2) \\ \mathcal{Q}[\varphi,\chi] &= \int_{\mathcal{C}} w_\star^2 \left(|\partial_s \chi|^2 + |\partial_\theta \chi - a|^2 - a^2 \right) \, dy - 4 \, a \int_{\mathcal{C}} w_\star \, \varphi \, \partial_\theta \chi \, dy \\ &\quad + \int_{\mathcal{C}} \left(|\partial_s \varphi|^2 + |\partial_\theta \varphi|^2 + (\lambda + a^2) \, \varphi^2 \right) \, dy \\ &\quad - (p-1) \int_{\mathcal{C}} |w_\star|^{p-2} \, |\varphi|^2 \, dy \\ \varphi(s,\theta) &= \frac{\cos \theta}{\cosh(\omega \, s)^{\frac{p}{p-2}}}, \, \chi(s,\theta) = \frac{\zeta}{\zeta_\star} \, \frac{\sin \theta}{\cosh(\omega \, s)} : \qquad \mathcal{Q}[\varphi,\chi] < 0 \Longrightarrow \lambda > \lambda_\bullet \end{split}$$

These slides can be found at

 $\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/\\ \vartriangleright \ Lectures$

The papers can be found at

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !

- Symmetry in non-magnetic interpolation inequalities
 - Interpolation on the sphere
 - Keller-Lieb-Thirring inequalities on the sphere
 - CKN inequalities, symmetry breaking and weighted nonlinear flows
- 2 Magnetic interpolation in the Euclidean space
 - Three interpolation inequalities and their dual forms
 - Proofs for general magnetic fields
 - Estimates in dimension d = 2 for constant magnetic fields
 - Numerical results and the symmetry issue
- Magnetic rings: the one-dimensional periodic case
 - Magnetic interpolation on the circle
 - Proof: how to eliminate the phase
 - Consequences: Keller-Lieb-Thirring and Hardy inequalities
- 4 Symmetry in Aharonov-Bohm magnetic fields
 - Aharonov-Bohm effect
 - Interpolation and Keller-Lieb-Thirring inequalities
 - Symmetry and symmetry breaking

< ロ > < 同 > < 三 > < 三 >