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Outline

@ Three recent and constructive stability results
e Stability for Gagliardo-Nirenberg-Sobolev inequalities on R
e Stability for subcritical Gagliardo-Nirenberg inequalities on S?
e Stability results for Sobolev and log-Sobolev inequalities on R?

@ Stability for Sobolev: main steps of the proof
@ Analysis close to the manifold of optimizers

o “Far away”: competing symmetries, continuous symmetrization
@ Sign changing solutions

© Dimensional dependence and stability results for the log-Sobolev
inequality
e From Sobolev to log-Sobolev as d — +o00
o A stability result for the log-Sobolev inequality

@ Optimal dimensional dependence in the stability result for the
Sobolev inequality
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Stability for subcritical Gagliardo-Nirenberg inequalities on 9

Stability for Sobolev: main steps of the proof
esults for the log-Sobolev inequalit Stability results for Sobolev and log-Sobolev inequalities on R

Three recent and constructive stability results

Dimensional dependence and stabilit

Constructive stability results
in Gagliardo-Nirenberg-Sobolev
inequalities

A joint work with M. Bonforte, B. Nazaret and N. Simonov

Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows,
regularity and the entropy method

arXiv:2007.03674, to appear in Memoirs of the AMS
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Stability results for Sobolev and log-Sobolev inequalities on RY

Gagliardo-Nirenberg-Sobolev inequalities on RY

IV Aoy £ 0oy = Cons(p) [ Flley  (GNS)

Strategy. Rewrite (GNS) in non-scale invariant form
2 1
IV F I Eageay + 1 FIEr ey = Kens(P) IF1I5mme)

Use the fast diffusion flow

dp
=Ap™ (t,x) e R xR

5 = A" (.X)

with initial datum p(t = 0,-) = |f|?P and apply entropy methods

Range of exponents

1<p Sdi <— %::m1§m<1
@ Sobolev inequality: p = d 5, M=
@ Logarithmic Sobolev inequality: p=1, m=1
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Stability for Gagliardo-Nirenberg-Sobolev inequalities on RY
Stability for subcritical Gagliardo-Nirenberg inequalities on sd

Three recent and constructive stability results
Stability results for Sobolev and log-Sobolev inequalities on R

Stability for Sobolev: main steps of the proof
results for the log-Sobolev inequalit

Dimensional dependence and stabilit;

Entropy — entropy production inequality

Fast diffusion equation (written in self-similar variables)

(r FDE)

or

Generalized entropy (free energy) and Fisher information

VT (v (T~ 2x)) =0

Flv] = —% » (v —B™ —mB™ ! (v—B)) dx

Z|v] ::/ vIvvTTl 4 2X|2 dx
R

satisfy an entropy — entropy production inequality

Ilv] > 4 F[V]

[del Pino, JD, 2002] so that
Flv(t,)] < Flw]e **

J. Dolbeault Recent results of stability in functional inequalities



Three recent and constructive stability results Stability for Gagliardo-Nirenberg-Sobolev inequalities on RY
Stability for Sobolev: main steps of the proof Stability for subcritical Gagliardo-Nirenberg inequalities on S
Dimensional dependence and stability results for the log-Sobolev inequality Stability results for Sobolev and log-Sobolev inequalities on R

The entropy — entropy production inequality
Z|v] > 4 Flv]
is equivalent to the Gagliardo-Nirenberg-Sobolev inequalities
IV FIIZ2re) IFllLoi(gay = Cans(p) [fllpeneay (GNS)
with equality if and only if |f|?P is the Barenblatt profile such that
PP = B(x) = (1+ [x?) ™

v = f2P so that v™ = fP*! and v |Vv"”1|2 =(p—1)2|VF?
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Three recent and constructive stability results Stability for Gagliardo-Nirenberg-Sobolev inequalities on RY

Stability for Sobolev: main steps of the proof Stability for subcritical Gagliardo-Nirenberg inequalities on sd
Dimensional dependence and stability results for the log-Sobolev inequality Stability results for Sobolev and log-Sobolev inequalities on R'
Spectral gap and Taylor expansion around B
y(m)
/ ’
my = j;%
_ d+4
T A6

2
e Caase 1
— Case 2
e Caise 3
0 m
1

[Denzler, McCann, 2005]
[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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Strategy of the method

Choosde > 0, small enough

Get a threshold time t(¢)

tx (€ t
‘ Backward estimate ‘* Forward estimate
by entropy methods based on a spectral gap
Initial time layer Asymptotic time layer
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A constructive stability result (subcritical case)

The stability in the entropy - entropy production estimate
Z[v] — 4 F[v] > ¢ F|[v] also holds in a stronger sense

Ilv] — 4 F|

d(m—mc)
Alp] =supr @=m / pdx <A< o0
|x|>r

r>0

Let d > 1 and p € (1, p*). There is an explicit C = C[f] > 0 such that,
for any f € L?P(R?, (1 + |x[?) dx) s.t. Vf € L?(R?) and A[f?F] < oo

d—p(d—2)
p+1

> C[f] inf — 1) Vf + P VP d
> Clf] inf, Rd’(P ) VF + P V' =P|" dx

IF11E

2 2
(p—1)* [ Vlle(ee) + 4 Do gy — Kans IFIIT5(ge

V.

T = — = =
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~d
d

A constructive stability result (critical case)

Let 2p* =2d/(d —2) =2*,d > 3 and
Wy (RY) = {f € LP"TH(RY) : VF € L2(RY), |x|fP" € LA(RY)}

Let d >3 and A > 0. For any nonnegative f € W,«(R9) such that

/ (1,x, |x[?) ¥ dx = / (1,x, |x|*) g dx and sup rd/ 2 dx < A
Rd Rd |x|>r

r>0

we have
2 2
IVl Loy = Sa I lIer (mo)
SO
- 4+C*(A) Rd

C.(A) = C.(0) (1+AVC d))fl and C,(0) > 0 depends only on d

T = = =

d=2 (3%, — [
Vf + 4 Vg~ 72| dx
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Three recent and constructive stability results
Stability for Sobolev: main steps of the proof
Dimensional dependence and stability results for the log-Sobolev inequality

Logarithmic Sobolev

and Gagliardo-Nirenberg inequalities
on the sphere

A joint work with G. Brigati and N. Simonov

Logarithmic Sobolev and interpolation inequalities on the
sphere: constructive stability results
arXiv:2211.13180
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Stability for subcritical GNS inequalities on S¢

For any p € [1,2) U (2,2*), with du: uniform probability measure
2*:=2d/(d —2)if d > 3 and 2* = +o0 otherwise

Joo IV FP di = 52 (IF IRy = I Flioeey) Y F € HY(S?, dp)

Optimal constant: test functions F.(x) =1+ex-v, v €S9, ¢ — 0
logarithmic Sobolev inequality: obtained by taking the limit as p — 2

Letd > 1 and p € (1,2) U (2,2*). For any F € HY(SY, du), we have

d
I GRE =t (G P [

. IV F 1 f2s0)
2 ‘fd,P 2 2
IVFIILasay + I1FIILa(sey

+ [|V(Id — My) F||i2(§d)>

o
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Three recent and constructive stability results
Stability for Sobolev: main steps of the proof

lev inequality

Dimensional dependence and stability results for the log-Sobole

Sharp stability for Sobolev and
log-Sobolev inequalities,

with optimal dimensional
dependence

A joint work with JD, M.J. Esteban, A. Figalli, R. Frank, M. Loss

Sharp stability for Sobolev and log-Sobolev inequalities, with
optimal dimensional dependence
arXiv: 2209.08651
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Stability results for the Sobolev inequality

Sobolev inequality on RY with d > 3
IVFIIaey = Sa IF17er gy ¥ € HY(RY)
with equality on the manifold M of the Aubin-Talenti functions

g(X):c(a+\x—b|2)_%, a€(0,x), beRI, ceR

There is a constant 3 > 0 with an explicit lower estimate which does not
depend on d such that for all d > 3 and all f € HY(R?) \ M we have

B .
||Vf||i2(Rd) — S ||f||iz*(Rd) > d glen/f/l [VF— ngiz(Rd)

[JD, Esteban, Figalli, Frank, Loss]

Some important features of this result:

@ The (estimate of the) constant S is explicit
@ No compactness argument is involved
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Dimensional dependence and stability res

Some history

IVFIIEa ey = Sallfllfer ey VF € HY(RY)
> 2* = 2d/(d — 2) is the critical Sobolev exponent
> Sg = 1 d(d—2)[S?* is the sharp Sobolev constant
[Rodemich, 1966], [Rosen, 1971], [Aubin, 1976] and [Talenti, 1976] >
Sobolev deficit

IV FI1E2 ey — Sa IF T2 oy

> [Brezis, Lich, 1985]: is it possible to bound the deficit on H*(R?)
from below by some distance to M ?
> [Lions, 1985] if the deficit is small for some function f, then f has

to be close to M
> [Bianchi, Egnell, 1991] for any d > 3 there is a constant cgg > 0 s.t.

g(f) — HVinz(Rd) — Sd ||f||i2*(Rd)

infge/\/[ ||Vf - vg||i2(Rd)
> [Konig, 2022] cpg is achieved and cgg < 4/(d + 4)
> [Figalli, 2013] for more historical details
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Comments

> The power two of the distance to M is optimal.

> The strategy of Bianchi-Egnell is based

@ on a local analysis in a neighborhood of M (spectral analysis)

Q@ on a reduction of the global estimate to a local estimate by the
concentration-compactness method based on Lions’s analysis

> The method is widely applicable to many problems in the Calculus
of Variations

> Because of either compactness estimates or arguments by
contradiction, no estimate of cgg was known so far

Our strategy is to make both steps of the strategy of Bianchi-Egnell
constructive and based on

> The “far away” regime and the “neighborhood” of M

> Competing symmetries and a notion of a continuous flow

(based on Steiner’s symmetrization) to reduce the global estimate to a
local estimate
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Analysis close to the manifold of optimizers
Stability for Sobolev: main steps of the proof “Far away": competing symmetries, continuous symmetrization
Sign changing solutions

Stability for Sobolev:
main steps of the proof

2 2 B 2
||Vf||L2(Rd) — 54 ”fHL?*(Rd) 2 d gQ/(d V- vg”LZ(]Rd)

The proof is divided into several steps

> We prove the inequality for nonnegative functions close to M with
an explicit remainder term (without dimensional dependence)

> We prove the inequality for nonnegative functions far from M using
the method of competing symmetries and a continuous symmetrization
> The inequality for sign changing functions is deduced from the
inequality for nonnegative functions by convexity arguments

> To get the asymptotic dependence in the dimension requires a
refined analysis of the local step: a cutting at various scales, uniform
bounds on spherical harmonics, and some concavity properties
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Analysis close to the manifold of optimizers
Stability for Sobolev: main steps of the proof “Far away": competing symmetries, continuous symmetrization
Sign changing solutions

The sphere and the stereographic projection

We denote by w = (w1,ws, . ..,wd11) the coordinates in RI+?
Stereographic coordinates on the unit sphere S¢ ¢ R9+1
2 X . 1—|x]?
Wy J jzl,...,d, Wd+1 = | ‘

T 14X 1+|x2

To a function f on R? we associate a function F on S via
d—2
f(x) <1+|><|2)2 d
F(w) = , x)i=—— VxeR
( ) g*(X) g*( ) 2

If dy is the uniform probability measure on S9, then the sharp
Sobolev inequality on S¢ for any F € HY(SY, du) is

2/2*
[ (wre e arR) az a( [ 172 an)
Sd Sd

with A = 1 d(d — 2). Equality holds exactly for the functions

d—2

Gw)=c(a+b-w) =
and a > 0, b € R? and ¢ € R are constants
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Stability for Sobolev: main steps of the proof “Far away": competing symmetries, continuous symmetrization
Sign changing solutions

A preliminary result (without optimal dependence in d)

IVEIF2gey = Sa lflIF
E[f] = ) E) ) =y
InngM ”Vf - VgHL2(Rd) 1-9

[JD, Esteban, Figalli, Frank, Loss] Let d > 3, g =2d/(d —2). If
f € HY(R?) is a non-negative function, then

E[f] > sup 0 pu()
0<o<1

where p(6) > m(v(6)) and

m(v) = gt — 20772 if d>6
m(zz)::%H—%(q—l)(q—Q)y—gqu if d=4,5
my):=%-2y-5,2-2,2-1,* it d=3

e s = = ,J
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Three nt and constructi ability results Analysis close to the manifold of optimizers
Stablllty for Sobolev main steps of the proof “Far away”: competing symmetries, continuous symmetrization
Dimensional dependence and stabi ults for the log-Sobole Sign changing solutions

Strategy: two regions

Q Taylor expansion, spectral estimates: in the region
infgerm || VF — Vg||L2(Rd <46 ||Vl"||L2 Rey> Prove that

E[f] = ()

@ Continuous flow argument: [Christ, 2017] if
inngM ||Vf vg”LZ(Rd >4 ”foLz RY) build a flow ( )0<T<OO s.t.

fo="F, |fllermey = Iflles ey, 7= [VEllLage) is N\

lim inf ||V(f, — g)[|f2ne) =0

T—00 geEM
£l > 197 oy =S iy _ 1 o Wiy o IVl =Sl Frlze o
= N VI s ey — N
for some 7 (it exists ?) s.t. infgen ||V (fr, — )||L2(Rd) =6V, |2, (R9)

. then E[f] > £(£,) > 6 u(0)

J. Dolbeault Recent results of stability in functional inequalities



Analysis close to the manifold of optimizers
Stability for Sobolev: main steps of the proof “Far away": competing symmetries, continuous symmetrization
Sign changing solutions

Step 1: Taylor expansion in the neighborhood of M

Let v >0, r € H(SY) such that 1 +r >0, ||r||e(ey < v and

Joordp=0= [Guwirdp, j=1,...,d+1

/Sd (IVrP+AQ+r)?) du—A (/Sd ot dp>2/q

> m(v) éd (IVr?+Ar?) du

m(v) = gt — 20972 if d>6
m(z/)::d%u‘—%(q—l)(q—2)l/—%l/q_2 if d=4,5
m(y)::%—%y—S 2—21/3—%y4 if d=3

- - .
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Analysis close to the manifold of optimizers

Proposition

Let X be a measure space and u,r € LI(X) for some g > 2 with u > 0
and u—+r > 0. Assume also that fx uIlrdx =0. If2< q <3, then

2
o el < Nl 4 12 (= 1) [ w22 a4 2 [ o)
X X

2<qg= dz—_dz < 3 means d > 6 and is the most difficult case for Taylor

Let g=2*, 0 < f € HY(RY) and u € M which realizes
infger [|[VF — Vel
Set r:=f —uand o :=|r|q/||ullg- Ifd>6, we have

IV F(13—Sa 11112 z/ (1972=Sa (a=1) ull =9 w92 ) dx—2 | Vr[3 092
Rd

v

= -y = =3 -
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Stability for Sobolev: main steps of the proof “Far away": competing symmetries, continuous symmetrization
Sign changing solutions

Spectral gap estimate

Cf. [Rey, 1990] and [Bianchi, Egnell, 1991]

Let d >3, g =2*% f € HY(RY) and u € M be such that
IVf —Vu| =infgem ||VF — Vgl||. Then r :=f — u satisfies

L (Ve = Sata =) el el ) x> o [ wri e
Rd
v
Let g =2* and 0 < f € HY(RY). Set D[f] := infzem |VF — Vgl2 and
7 := D[f]/(IVfl3 — DIf]?)/2. Ifd > 6, we have

IVFIZ = Sa I llg = (335 — £ 797%) DIFP?

.

J. Dolbeault Recent results of stability in functional inequalities
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Dimensional dependence and stability results for the log-Sobolev inequality Sign changing solutions

Step 2: The “far away” regime for nonnegative solutions

> We prove the inequality for nonnegative functions far from M using
the method of competing symmetries and a continuous symmetrization

J. Dolbeault Recent results of stability in functional inequalities
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Stability for Sobolev: main steps of the proof “Far away": competing symmetries, continuous symmetrization

Dimensional dependence and stability results for the log-Sobolev inequali Sign changing solutions

Competing symmetries

[Carlen, Loss, 1990]
@ Conformal rotation

(UF)(S) = F(Sl, 52,43 5d+1, —Sd)

On RY, the function that corresponds to UF on RY is given by

d—2
_ 2 7 X1 Xd— |X|2*1
W) = () F (R e et
where e = (0,...,0,1) € RY and £(Uf) = &[f]

Q Symmetric decreasing rearrangement: if £ > 0, let
Rf(x) =*(x)

f and f* are equimeasurable and |[Vf*|2 < [[Vf]|2
. continuous Steiner symmetrization

J. Dolbeault Recent results of stability in functional inequalities
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Stability for Sobolev: main steps of the proof “Far away”: competing symmetries, continuous symmetrization
Sign changing solutions

On RY, let

d—2 2 2
— S92 [ —Z

[Carlen, Loss| Let f € L2 (R?) be a non-negative function. Consider
the sequence (f,)nen of functions

f, = (RU)"f

Then hs = ||f]

2+ g« € M and

lim ||f, — hell2- =0
n—o0

If £ € HY(RY), then (||Vfy||2)nen is a non-increasing sequence

J. Dolbeault Recent results of stability in functional inequalities
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Stability for Sobolev: main steps of the proof “Far away”: competing symmetries, continuous symmetrization
Sign changing solutions

Define M to be the set of the elements in M with 2*-norm equal to 1

2
i _ 2 _ 2 2% —1
ot 97 = Velp = 9715 - Sa sup (£, )

| <

For the sequence (f,)nen of the Theorem of [Carlen, Loss] we have that

n > infgen ||VF, — Vgl|3. is strictly decreasing

2
2%

lim inf |[Vf,— Vg|2 = i fall5 — Sa || f
Jim_inf [V, —Vellz = lim [[Vill; — Sallf]

.
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Analysis close to the manifold of optimizers
“Far away": competing symmetries, continuous symmetrization

Stability for Sobolev: main steps of the proof
Sign changing solutions

Two alternatives

Let 0 < f € HY(RY) \ M s.t. infgep [|[VF — Vgl > ||VF|3
One of the following alternatives holds:

(a) for all n=0,1,2... infeen ||V — Vg3 > || VH]3
(b) Jng € N such that

inf [|[VF, —Vgl|?>4d|VHh |3 d inf ||[VF,1—Vg|? < 8|VE 1ll?
glenMIIV o—Velz >0 Vislz an glenMIIV o+1— Vg2 <6 ||Vl

V.

In case (a) we have

2 _
infger ||VF — Vg

because by the Theorem of [Carlen, Loss]

3o IVFAIE=Sallfl3- o IVAIE—Sallfl3- -
F IV£1I3 B VI3 N

1 1
. 2 . . _ 2 _ - . 2 B 2
Jm [V&lz < 5 lim - inf |[VE-Vell = 5 (ngmm IVHll2 = Sq ||f||2*)

J. Dolbeault Recent results of stability in functional inequalities
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Stability for Sobolev: main steps of the proof “Far away”: competing symmetries, continuous symmetrization
Sign changing solutions

Continuous rearrangement

Let fo = U f,, and denote by (f;)o<r<oo the continuous rearrangement
starting at fo and ending at foo = f 41
We find 79 € [0, 00) such that

Jnf IVEn — Vi3 =8| VE 1

and conclude using

lIfo
Vol

[LE8
IVir|

2

2%
2
2

%* =5 ||Vf7'o||% B Sd HfTOH%*

£(fo) > 1S, S =
2

>1-54

- > 6 u(d
infpen [V, — vg[g = 1)

Existence of 19 not granted: a discussion is needed !
(use a semi-continuity property)

J. Dolbeault Recent results of stability in functional inequalities
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Stablllty for Sobolev main steps of the proof “Far away”: competing symmetries, continuous symmetrization
Dimensional dependence and stabi ults for the log-Sobole Sign changing solutions

Step 3: removing the positivity assumption

The Bianchi-Egnell stability estimate
1912y = Sa IFI2e oy 2 c_inf [V = VEaqesy

Nonnegative functions: cfp > 0 u(6) and cpp < cfp < 74

Sign-changing solutions. Take m := ||u_ ||%;*(Rd) and assume that
1-m= ||u+||i;(Rd). We argue that 2 h(1/2) m < h(m) if

h(m):=m'~3 + (1 —m)'=7 —1
With D(v) := || VV|[foge) = Sa lIV]{2+ (gey and (...), we obtain

2 h(1/2)

> pos 22
( ) B ||VU+ Vg+||L (]Rd 2 h(1/2) _|_§

2
IV u—[f2(re)

CBE Z % 5/1((5)
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Three recent and constructive stability results
Stability for Sobolev: main steps of the proof
Dimensional dependence and stability results for the log-Sobolev inequality

From Sobolev to log-Sobolev as d — +oo

A stability result for the log-Sobolev inequality

Optimal dimensional dependence in the stability result for the Sobolev inequality

Dimensional dependence and
stability results
for the log-Sobolev inequality

o (w1 =
J. Dolbeault Recent results of stability in functional inequalities



From Sobolev to log-Sobolev as d — +oo
A stability result for the log-Sobolev inequality
Dimensional dependence and stability results for the log-Sobolev inequality Optimal dimensional dependence in the stability result for the Sobolev inequality

An equivalent form of the stability inequality

Bianchi-Egnell stability estimate
B(d) .
A I e U L

We know that B, = liminfg_ o0 5(d) > 0
_d
With the Aubin-Talenti function g.(x) := (1 + \x|2)1 2 and u="f/g,

/|vu|2gfdx+d(d—2)/ lul? g% dx
Rd Rd

2/2*
2*_2 * *
- d(@=2) Ll [ 10 6 o)
R

zﬂ(d)</ |vu|2g3dx+d(d—2)/ |u—1|2F3*dx)
d Rd R4

J. Dolbeault Recent results of stability in functional inequalities
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or Sobolev: main steps of the pro A stability result for the log-Sobolev inequality

Dimensional dependence and stability results for the log-Sobolev mequallty Optimal dimensional dependence in the stability result for the Sobolev inequality

A rescaling

u(x) =v(rgx) VxeRY, rg=4/—

27
2 2 2
[ 9vR (14 & R) dua
Rd ?
2/2*

>r(@=2)|( [ W dua) = [ v g

R4 R4

d

+6()(/ |Vv|2dud+(d—2)/ |v—1|2dud)
d RY Rd

where dug = Z; 1 gf* dx is the probability measure given by

—d 21—d d %
dpg(x) == Z;* (1 + L x| ) dx with Zg= T\{E (2>

()

J. Dolbeault Recent results of stability in functional inequalities



From Sobolev to log-Sobolev as d — +oo
A stability result for the log-Sobolev inequality
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The large dimensions limit in the Sobolev inequality

Let us consider a function v(x) which actually depends only on
y € RV, where we write that x = (y,z) € RN x RI"N ~ RN for some
integer N such that 1 < N < d. With |x|? = |y|> + |z]? and

22
=145 (yP+12P) = (1 + 5 |y|2> (1 + ,3'+|'y|2>

we can integrate over the z variable and notice that

N+d

limgsoe (14 2 y2) ° =embP
d
limg—+o0 f]Rd |V(Y)|2 dug = f]RN |V|2 dy

2
M s o0 [ |V V]2 (1 +3 |x|2) dpig = [ou |VV[2 dy

where dy(y) :==e™ " Iy[? dy is a standard Gaussian probability measure
Gaussian logarithmic Sobolev inequality

1 v[?
Vv|2d 27/ v2|og<>d’y
JotovRan=3 [ oF e (s
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Gaussian logarithmic Sobolev inequality

2
/ |Vv|? dy > 7T/ [v[?In # dy
RN RN ||V||L2(7)

The constant 7 is optimal
[Carlen, 1991] equality holds if and only if
a-x

v(x)=ce

for some a € RN and c € R

There is an explicit constant 1 > 0 such that VN € N and Vv € H!(v)

2
/ |Vv|? d’)/—ﬂ'/ v2In # dy >k inf (v—ce®™)?dy
RN RN ||VHL2(’y) a€RN, ceR Jrn

— = = = =
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Step 4 for Sobolev stability: optimal dependence

Refinement of Step 1: cutting r into pieces
(1+r7—-1—-gqr

for real numbers r in terms of three numbers
rno=min{r,v}, r:=mn{(r—7)+, M-~} and r:=(r—M);
where v and M are parameters such that 0 <~y < M

9::q—2:2*—2=ﬁ—>0 as d— 4oo

Given q € [2,3], r € [-1,00) and M € [\/e, +0), we have

(L+r9—-1—gqr
< %q(q—1)(r1+r2)2+2(r1+r2)r3+ <1+CM9W_1 Inm) rf

a4 (%’79!’12 aF CM,W0r22> IL{,gM} T CM,WG M? ]l{,>M}
4
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/sd (IVrP+A(L+r)?) du— A (/Sd(l—i—r)"du)yc7

> 960/ (IVr?P+Ar?) du—l—Zlk
k=1

(1-0c) foo (IVRP+AR)du—A(g—1+e) oo rf du+Acel [ou (73 + r2)
(1-0€) Jou (IVRP+Ar2)du—A(qg—14 (00 + Coe) 0) Jou 3 dt
(1-0€0) fou (V|2 + Ar2) dpu — gA (1+e0) fourfdu—Acel [y ridu

for some parameter og > 0

I: spectral gap estimates

I5: use the Sobolev inequality. The extra coefficient % < 1 gives us

enough room to accomodate all error terms h: an improved spectral
gap inequality using that p({r, > 0}) is small
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These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Lectures/
> Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list /
> Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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