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Gagliardo-Nirenberg-Sobolev inequalities on Rd

‖∇f ‖θL2(Rd ) ‖f ‖
1−θ
Lp+1(Rd ) ≥ CGNS(p) ‖f ‖L2p(Rd ) (GNS)

Strategy. Rewrite (GNS) in non-scale invariant form

‖∇f ‖2L2(Rd ) + ‖f ‖p+1
Lp+1(Rd ) ≥ KGNS(p) ‖f ‖2p γL2p(Rd )

Use the fast diffusion flow

∂ρ

∂t
= ∆ρm (t, x) ∈ R+ × Rd

with initial datum ρ(t = 0, ·) = |f |2p and apply entropy methods

Range of exponents

1 < p ≤ d
d−2 ⇐⇒ d−1

d =: m1 ≤ m < 1

Sobolev inequality: p = d
d−2 , m = m1

Logarithmic Sobolev inequality: p = 1, m = 1
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Entropy – entropy production inequality
Fast diffusion equation (written in self-similar variables)

∂v

∂τ
+∇ ·

(
v
(
∇vm−1 − 2 x

))
= 0 (r FDE)

Generalized entropy (free energy) and Fisher information

F [v ] := − 1

m

∫

Rd

(
vm − Bm −mBm−1 (v − B)

)
dx

I[v ] :=

∫

Rd

v
∣∣∇vm−1 + 2 x

∣∣2 dx

satisfy an entropy – entropy production inequality

I[v ] ≥ 4F [v ]

[del Pino, JD, 2002] so that

F [v(t, ·)] ≤ F [v0] e− 4 t
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The entropy – entropy production inequality

I[v ] ≥ 4F [v ]

is equivalent to the Gagliardo-Nirenberg-Sobolev inequalities

‖∇f ‖θL2(Rd ) ‖f ‖
1−θ
Lp+1(Rd ) ≥ CGNS(p) ‖f ‖L2p(Rd ) (GNS)

with equality if and only if |f |2 p is the Barenblatt profile such that

|f (x)|2p = B(x) =
(
1 + |x |2

) 1
m−1

v = f 2 p so that vm = f p+1 and v
∣∣∇vm−1

∣∣2 = (p − 1)2 |∇f |2
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Spectral gap and Taylor expansion around B

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

[Denzler, McCann, 2005]
[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]

J. Dolbeault Recent results of stability in functional inequalities



Three recent and constructive stability results
Stability for Sobolev: main steps of the proof

Dimensional dependence and stability results for the log-Sobolev inequality

Stability for Gagliardo-Nirenberg-Sobolev inequalities on Rd
Stability for subcritical Gagliardo-Nirenberg inequalities on Sd
Stability results for Sobolev and log-Sobolev inequalities on Rd

Strategy of the method

Regularity and stability

Our strategy

Choose "> 0, small enough

Get a threshold time t?(")

0 t?(") t
Backward estimate

by entropy methods

Forward estimate

based on a spectral gap

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

E
s

⇐
#↳

Initial time layer Asymptotic time layer
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A constructive stability result (subcritical case)
The stability in the entropy - entropy production estimate
I[v ]− 4F [v ] ≥ ζ F [v ] also holds in a stronger sense

I[v ]− 4F [v ] ≥ ζ

4 + ζ
I[v ]

A[ρ] = sup
r>0

r
d (m−mc )
(1−m)

∫

|x|>r

ρ dx ≤ A <∞

Theorem

Let d ≥ 1 and p ∈ (1, p∗). There is an explicit C = C[f ] > 0 such that,
for any f ∈ L2p

(
Rd , (1 + |x |2) dx

)
s.t. ∇f ∈ L2(Rd) and A

[
f 2p
]
<∞

(p − 1)2 ‖∇f ‖2L2(Rd ) + 4
d − p (d − 2)

p + 1
‖f ‖p+1

Lp+1(Rd ) −KGNS ‖f ‖2 p γL2 p(Rd )

≥ C[f ] inf
ϕ∈M

∫

Rd

∣∣(p − 1)∇f + f p∇ϕ1−p∣∣2 dx
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A constructive stability result (critical case)
Let 2 p? = 2d/(d − 2) = 2∗, d ≥ 3 and

Wp?(Rd) =
{
f ∈ Lp?+1(Rd) : ∇f ∈ L2(Rd) , |x | f p? ∈ L2(Rd)

}

Theorem

Let d ≥ 3 and A > 0. For any nonnegative f ∈ Wp?(Rd) such that

∫

Rd

(1, x , |x |2) f 2
∗
dx =

∫

Rd

(1, x , |x |2) g dx and sup
r>0

rd
∫

|x|>r

f 2
∗
dx ≤ A

we have

‖∇f ‖2L2(Rd ) − S2
d ‖f ‖2L2∗ (Rd )

≥ C?(A)

4 + C?(A)

∫

Rd

∣∣∣∇f + d−2
2 f

d
d−2 ∇g−

2
d−2

∣∣∣
2

dx

C?(A) = C?(0)
(
1+A1/(2 d)

)−1
and C?(0) > 0 depends only on d
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Logarithmic Sobolev

and Gagliardo-Nirenberg inequalities

on the sphere

A joint work with G. Brigati and N. Simonov
Logarithmic Sobolev and interpolation inequalities on the

sphere: constructive stability results
arXiv:2211.13180

J. Dolbeault Recent results of stability in functional inequalities

https://arxiv.org/abs/2211.13180.pdf


Three recent and constructive stability results
Stability for Sobolev: main steps of the proof

Dimensional dependence and stability results for the log-Sobolev inequality

Stability for Gagliardo-Nirenberg-Sobolev inequalities on Rd
Stability for subcritical Gagliardo-Nirenberg inequalities on Sd
Stability results for Sobolev and log-Sobolev inequalities on Rd

Stability for subcritical GNS inequalities on Sd

For any p ∈ [1, 2) ∪ (2, 2∗), with dµ: uniform probability measure
2∗ := 2 d/(d − 2) if d ≥ 3 and 2∗ = +∞ otherwise

∫
Sd |∇F |2 dµ ≥ d

p−2

(
‖F‖2Lp(Sd ) − ‖F‖

2
L2(Sd )

)
∀F ∈ H1(Sd , dµ)

Optimal constant: test functions Fε(x) = 1 + ε x · ν, ν ∈ Sd , ε→ 0
logarithmic Sobolev inequality: obtained by taking the limit as p → 2

Theorem

Let d ≥ 1 and p ∈ (1, 2) ∪ (2, 2∗). For any F ∈ H1(Sd , dµ), we have

∫

Sd
|∇F |2 dµ− d

p − 2

(
‖F‖2Lp(Sd ) − ‖F‖

2
L2(Sd )

)

≥ Sd,p

(
‖∇Π1F‖4L2(Sd )

‖∇F‖2L2(Sd ) + ‖F‖2L2(Sd )
+ ‖∇(Id− Π1)F‖2L2(Sd )

)

J. Dolbeault Recent results of stability in functional inequalities
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Sharp stability for Sobolev and
log-Sobolev inequalities,

with optimal dimensional
dependence

A joint work with JD, M.J. Esteban, A. Figalli, R. Frank, M. Loss
Sharp stability for Sobolev and log-Sobolev inequalities, with

optimal dimensional dependence
arXiv: 2209.08651
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Stability results for the Sobolev inequality
Sobolev inequality on Rd with d ≥ 3

‖∇f ‖2L2(Rd ) ≥ Sd ‖f ‖2L2∗ (Rd ) ∀ f ∈ Ḣ1(Rd)

with equality on the manifold M of the Aubin–Talenti functions

g(x) = c
(
a + |x − b|2

)− d−2
2 , a ∈ (0,∞) , b ∈ Rd , c ∈ R

Theorem

There is a constant β > 0 with an explicit lower estimate which does not
depend on d such that for all d ≥ 3 and all f ∈ H1(Rd) \M we have

‖∇f ‖2L2(Rd ) − Sd ‖f ‖2L2∗ (Rd ) ≥
β

d
inf

g∈M
‖∇f −∇g‖2L2(Rd )

[JD, Esteban, Figalli, Frank, Loss]
Some important features of this result:

The (estimate of the) constant β is explicit
No compactness argument is involved
The decay rate β/d is optimal as d → +∞

B The “far away” regime and the “neighborhood” of M
B Competing symmetries and a notion of a continuous flow
(based on Steiner’s symmetrization)

J. Dolbeault Recent results of stability in functional inequalities
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Some history

‖∇f ‖2L2(Rd ) ≥ Sd ‖f ‖2L2∗ (Rd ) ∀ f ∈ Ḣ1(Rd)

B 2∗ = 2 d/(d − 2) is the critical Sobolev exponent
B Sd = 1

4 d (d − 2) |Sd |2/d is the sharp Sobolev constant
[Rodemich, 1966], [Rosen, 1971], [Aubin, 1976] and [Talenti, 1976] B
Sobolev deficit

‖∇f ‖2L2(Rd ) − Sd ‖f ‖2L2∗ (Rd )

B [Brezis, Lieb, 1985]: is it possible to bound the deficit on Ḣ1(Rd)
from below by some distance to M ?
B [Lions, 1985] if the deficit is small for some function f , then f has
to be close to M
B [Bianchi, Egnell, 1991] for any d ≥ 3 there is a constant cBE > 0 s.t.

E(f ) :=
‖∇f ‖2L2(Rd ) − Sd ‖f ‖2L2∗ (Rd )

infg∈M ‖∇f −∇g‖2L2(Rd )

≥ cBE ∀ f ∈ Ḣ1(Rd) \M

B [König, 2022] cBE is achieved and cBE < 4/(d + 4)
B [Figalli, 2013] for more historical details

J. Dolbeault Recent results of stability in functional inequalities
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Comments

B The power two of the distance to M is optimal.
B The strategy of Bianchi-Egnell is based

on a local analysis in a neighborhood of M (spectral analysis)
on a reduction of the global estimate to a local estimate by the

concentration-compactness method based on Lions’s analysis
B The method is widely applicable to many problems in the Calculus
of Variations
B Because of either compactness estimates or arguments by
contradiction, no estimate of cBE was known so far

Our strategy is to make both steps of the strategy of Bianchi-Egnell
constructive and based on
B The “far away” regime and the “neighborhood” of M
B Competing symmetries and a notion of a continuous flow
(based on Steiner’s symmetrization) to reduce the global estimate to a
local estimate

J. Dolbeault Recent results of stability in functional inequalities
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Stability for Sobolev:
main steps of the proof

‖∇f ‖2L2(Rd ) − Sd ‖f ‖2L2∗ (Rd ) ≥
β

d
inf

g∈M
‖∇f −∇g‖2L2(Rd )

The proof is divided into several steps
B We prove the inequality for nonnegative functions close to M with
an explicit remainder term (without dimensional dependence)
B We prove the inequality for nonnegative functions far fromM using
the method of competing symmetries and a continuous symmetrization
B The inequality for sign changing functions is deduced from the
inequality for nonnegative functions by convexity arguments
B To get the asymptotic dependence in the dimension requires a
refined analysis of the local step: a cutting at various scales, uniform
bounds on spherical harmonics, and some concavity properties

J. Dolbeault Recent results of stability in functional inequalities
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The sphere and the stereographic projection
We denote by ω = (ω1, ω2, . . . , ωd+1) the coordinates in Rd+1

Stereographic coordinates on the unit sphere Sd ⊂ Rd+1

ωj =
2 xj

1 + |x |2 , j = 1, . . . , d , ωd+1 =
1− |x |2
1 + |x |2

To a function f on Rd we associate a function F on Sd via

F (ω) =
f (x)

g?(x)
, g?(x) :=

(
1 + |x |2

2

)− d−2
2

∀ x ∈ Rd

If dµ is the uniform probability measure on Sd , then the sharp
Sobolev inequality on Sd for any F ∈ H1(Sd , dµ) is

∫

Sd

(
|∇F |2 + A |F |2

)
dµ ≥ A

(∫

Sd
|F |2∗ dµ

)2/2∗

with A = 1
4 d (d − 2). Equality holds exactly for the functions

G (ω) = c
(
a + b · ω

)− d−2
2

and a > 0, b ∈ Rd and c ∈ R are constants
J. Dolbeault Recent results of stability in functional inequalities
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A preliminary result (without optimal dependence in d)

E [f ] :=
‖∇f ‖2L2(Rd ) − Sd ‖f ‖2L2∗ (Rd )

infg∈M ‖∇f −∇g‖2L2(Rd )

, ν(δ) :=

√
δ

1− δ

Theorem

[JD, Esteban, Figalli, Frank, Loss] Let d ≥ 3, q = 2 d/(d − 2). If
f ∈ Ḣ1(Rd) is a non-negative function, then

E [f ] ≥ sup
0<δ<1

δ µ(δ)

where µ(δ) ≥ m
(
ν(δ)

)
and

m(ν) := 4
d+4 − 2

q ν
q−2 if d ≥ 6

m(ν) := 4
d+4 − 1

3 (q − 1) (q − 2) ν − 2
q ν

q−2 if d = 4, 5

m(ν) := 4
7 − 20

3 ν − 5 ν2 − 2 ν3 − 1
3 ν

4 if d = 3

J. Dolbeault Recent results of stability in functional inequalities
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Strategy: two regions

Taylor expansion, spectral estimates: in the region
infg∈M ‖∇f −∇g‖2L2(Rd ) ≤ δ ‖∇f ‖2L2(Rd ), prove that

E [f ] ≥ µ(δ)

Continuous flow argument: [Christ, 2017] if
infg∈M ‖∇f −∇g‖2L2(Rd ) ≥ δ ‖∇f ‖2L2(Rd ), build a flow (fτ )0≤τ<∞ s.t.

f0 = f , ‖fτ‖L2∗ (Rd ) = ‖f ‖L2∗ (Rd ) , τ 7→ ‖∇fτ‖L2(Rd ) is ↘

lim
τ→∞

inf
g∈M

‖∇(fτ − g)‖2L2(Rd ) = 0

E [f ] ≥
‖∇f ‖2

L2(Rd )−Sd ‖f ‖2
L2∗ (Rd )

‖∇f ‖2
L2(Rd )

= 1−Sd
‖f ‖2

L2∗ (Rd )
‖∇f ‖2

L2(Rd )
≥
‖∇fτ0‖

2
L2(Rd )−Sd ‖fτ0‖

2

L2∗ (Rd )
‖∇fτ0‖

2
L2(Rd )

for some τ0 (it exists ?) s.t. infg∈M ‖∇(fτ0 − g)‖2L2(Rd ) = δ ‖∇fτ0‖2L2(Rd )

... then E [f ] ≥ E(fτ0) ≥ δ µ(δ)

J. Dolbeault Recent results of stability in functional inequalities
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Step 1: Taylor expansion in the neighborhood ofM
Proposition

Let ν > 0, r ∈ H1(Sd) such that 1 + r ≥ 0, ‖r‖Lq(Sd ) ≤ ν and

∫
Sd r dµ = 0 =

∫
Sd ωj r dµ , j = 1, . . . , d + 1

∫

Sd

(
|∇r |2 + A (1 + r)2

)
dµ− A

(∫

Sd
(1 + r)q dµ

)2/q

≥ m(ν)

∫

Sd

(
|∇r |2 + A r2

)
dµ

m(ν) := 4
d+4 − 2

q ν
q−2 if d ≥ 6

m(ν) := 4
d+4 − 1

3 (q − 1) (q − 2) ν − 2
q ν

q−2 if d = 4 , 5

m(ν) := 4
7 − 20

3 ν − 5 ν2 − 2 ν3 − 1
3 ν

4 if d = 3
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Analysis close to the manifold of optimizers

Proposition

Let X be a measure space and u, r ∈ Lq(X ) for some q ≥ 2 with u ≥ 0
and u + r ≥ 0. Assume also that

∫
X
uq−1 r dx = 0. If 2 ≤ q ≤ 3, then

‖u + r‖2q ≤ ‖u‖2q + ‖u‖2−qq

(
(q − 1)

∫

X

uq−2 r2 dx +
2

q

∫

X

rq+ dx

)

2 ≤ q = 2 d
d−2 ≤ 3 means d ≥ 6 and is the most difficult case for Taylor

Corollary

Let q = 2∗, 0 ≤ f ∈ Ḣ1(Rd) and u ∈M which realizes
infg∈M ‖∇f −∇g‖2

Set r := f − u and σ := ‖r‖q/‖u‖q. If d ≥ 6, we have

‖∇f ‖22−Sd ‖f ‖2q ≥
∫

Rd

(
|∇r |2−Sd (q−1) ‖u‖2−qq uq−2 r2

)
dx− 2

q ‖∇r‖22 σq−2

J. Dolbeault Recent results of stability in functional inequalities
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Spectral gap estimate

Cf. [Rey, 1990] and [Bianchi, Egnell, 1991]

Lemma

Let d ≥ 3, q = 2∗, f ∈ Ḣ1(Rd) and u ∈M be such that
‖∇f −∇u‖ = infg∈M ‖∇f −∇g‖. Then r := f − u satisfies

∫

Rd

(
|∇r |2 − Sd (q − 1) ‖u‖2−qq |u|q−2 r2

)
dx ≥ 4

d + 4

∫

Rd

|∇r |2 dx

Corollary

Let q = 2∗ and 0 ≤ f ∈ Ḣ1(Rd). Set D[f ] := infg∈M ‖∇f −∇g‖2 and
τ := D[f ]/(‖∇f ‖22 −D[f ]2)1/2. If d ≥ 6, we have

‖∇f ‖22 − Sd ‖f ‖2q ≥
(

4
d+4 − 2

q τ
q−2)D[f ]2

J. Dolbeault Recent results of stability in functional inequalities
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Step 2: The “far away” regime for nonnegative solutions

B We prove the inequality for nonnegative functions far fromM using
the method of competing symmetries and a continuous symmetrization

J. Dolbeault Recent results of stability in functional inequalities
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Competing symmetries

[Carlen, Loss, 1990]
Conformal rotation

(UF )(s) = F (s1, s2, . . . , sd+1,−sd)

On Rd , the function that corresponds to UF on Rd is given by

(Uf )(x) =
(

2
|x−ed |2

) d−2
2

f
(

x1
|x−ed |2 , . . . ,

xd−1

|x−ed |2 ,
|x|2−1
|x−ed |2

)

where ed = (0, . . . , 0, 1) ∈ Rd and E(Uf ) = E [f ]

Symmetric decreasing rearrangement: if f ≥ 0, let

Rf (x) = f ∗(x)

f and f ∗ are equimeasurable and ‖∇f ∗‖2 ≤ ‖∇f ‖2
... continuous Steiner symmetrization
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Three recent and constructive stability results
Stability for Sobolev: main steps of the proof

Dimensional dependence and stability results for the log-Sobolev inequality

Analysis close to the manifold of optimizers
“Far away”: competing symmetries, continuous symmetrization
Sign changing solutions

On Rd , let

g∗(x) := |Sd |− d−2
2 d

(
2

1 + |x |2
) d−2

2

Theorem

[Carlen, Loss] Let f ∈ L2∗(Rd) be a non-negative function. Consider
the sequence (fn)n∈N of functions

fn = (RU)nf

Then hf = ‖f ‖2∗ g∗ ∈M and

lim
n→∞

‖fn − hf ‖2∗ = 0

If f ∈ Ḣ1(Rd), then (‖∇fn‖2)n∈N is a non-increasing sequence
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Analysis close to the manifold of optimizers
“Far away”: competing symmetries, continuous symmetrization
Sign changing solutions

DefineM1 to be the set of the elements inM with 2∗-norm equal to 1

Lemma

inf
g∈M

‖∇f −∇g‖22 = ‖∇f ‖22 − Sd sup
g∈M1

(
f , g2∗−1

)2

Lemma

For the sequence (fn)n∈N of the Theorem of [Carlen, Loss] we have that

n 7→ infg∈M ‖∇fn −∇g‖22∗ is strictly decreasing

lim
n→∞

inf
g∈M

‖∇fn −∇g‖22 = lim
n→∞

‖∇fn‖22 − Sd ‖f ‖22∗
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Analysis close to the manifold of optimizers
“Far away”: competing symmetries, continuous symmetrization
Sign changing solutions

Two alternatives

Lemma

Let 0 ≤ f ∈ Ḣ1(Rd) \M s.t. infg∈M ‖∇f −∇g‖22 ≥ δ ‖∇f ‖22
One of the following alternatives holds:

(a) for all n = 0, 1, 2 . . . infg∈M ‖∇fn −∇g‖22 ≥ δ ‖∇fn‖22
(b) ∃n0 ∈ N such that

inf
g∈M

‖∇fn0−∇g‖22 ≥ δ ‖∇fn0‖22 and inf
g∈M

‖∇fn0+1−∇g‖22 < δ ‖∇fn0+1‖22

In case (a) we have

E [f ] =
‖∇f ‖22 − Sd ‖f ‖22∗

infg∈M ‖∇f −∇g‖22
≥ ‖∇f ‖

2
2 − Sd ‖f ‖22∗
‖∇f ‖22

≥ ‖∇fn‖
2
2 − Sd ‖f ‖22∗
‖∇fn‖22

≥ δ

because by the Theorem of [Carlen, Loss]

lim
n→∞

‖∇fn‖22 ≤
1

δ
lim

n→∞
inf

g∈M
‖∇fn−∇g‖22 =

1

δ

(
lim

n→∞
‖∇fn‖22 − Sd ‖f ‖22∗

)
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Analysis close to the manifold of optimizers
“Far away”: competing symmetries, continuous symmetrization
Sign changing solutions

Continuous rearrangement

Let f0 = U fn0 and denote by (fτ )0≤τ≤∞ the continuous rearrangement
starting at f0 and ending at f∞ = fn0+1

We find τ0 ∈ [0,∞) such that

inf
g∈M

‖∇fτ0 −∇g‖22 = δ ‖∇fτ0‖22

and conclude using

E(f0) ≥ 1−Sd
‖f0‖22∗
‖∇f0‖22

≥ 1−Sd
‖fτ0‖22∗
‖∇fτ0‖22

= δ
‖∇fτ0‖22 − Sd ‖fτ0‖22∗

infg∈M ‖∇fτ0 −∇g‖22
≥ δ µ(δ)

Existence of τ0 not granted: a discussion is needed !
(use a semi-continuity property)
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Analysis close to the manifold of optimizers
“Far away”: competing symmetries, continuous symmetrization
Sign changing solutions

Step 3: removing the positivity assumption
The Bianchi-Egnell stability estimate

‖∇f ‖2L2(Rd ) − Sd ‖f ‖2L2∗ (Rd ) ≥ cBE inf
g∈M

‖∇f −∇g‖2L2(Rd )

Nonnegative functions: cposBE ≥ δ µ(δ) and cBE ≤ cposBE ≤ 4
d+4

Sign-changing solutions. Take m := ‖u−‖2
∗

L2∗ (Rd ) and assume that

1−m = ‖u+‖2
∗

L2∗ (Rd ). We argue that 2 h(1/2)m ≤ h(m) if

h(m) := m1− 2
d + (1−m)1−

2
d − 1

With d(v) := ‖∇v‖2L2(Rd ) − Sd ‖v‖2L2∗ (Rd ) and (...), we obtain

d(u) ≥ cposBE ‖∇u+ −∇g+‖
2
L2(Rd ) +

2 h(1/2)

2 h(1/2) + ξd
‖∇u−‖2L2(Rd )

cBE ≥ 1
2 δ µ(δ)
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From Sobolev to log-Sobolev as d → +∞
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Optimal dimensional dependence in the stability result for the Sobolev inequality

Dimensional dependence and
stability results

for the log-Sobolev inequality
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An equivalent form of the stability inequality

Bianchi-Egnell stability estimate

‖∇f ‖2L2(Rd ) − Sd ‖f ‖2L2∗ (Rd ) ≥
β(d)

d
inf

g∈M
‖∇f −∇g‖2L2(Rd )

We know that β? = lim infd→+∞ β(d) > 0

With the Aubin-Talenti function g?(x) :=
(
1 + |x |2

)1− d
2 and u = f /g?,

∫

Rd

|∇u|2 g2
? dx + d (d − 2)

∫

Rd

|u|2 g2∗

? dx

− d (d − 2) ‖g?‖2
∗−2

L2∗ (Rd )

(∫

Rd

|u|2∗ g2∗

? dx

)2/2∗

≥ β(d)

d

(∫

Rd

|∇u|2 g2
? dx + d (d − 2)

∫

Rd

|u − 1|2 F 2∗

? dx

)
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A rescaling

u(x) = v (rd x) ∀ x ∈ Rd , rd =

√
d

2π

∫

Rd

|∇v |2
(

1 + 1
r2d
|x |2
)2

dµd

≥ π (d − 2)

[(∫

Rd

|v |2∗ dµd

)2/2∗

−
∫

Rd

|v |2 dµd

]

+
β(d)

d

(∫

Rd

|∇v |2 dµd + (d − 2)

∫

Rd

|v − 1|2 dµd

)

where dµd = Z−1d g2∗

? dx is the probability measure given by

dµd(x) := Z−1d

(
1 + 1

r2d
|x |2
)−d

dx with Zd =
21−d √π
Γ
(
d+1
2

)
(
d

2

) d
2
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The large dimensions limit in the Sobolev inequality
Let us consider a function v(x) which actually depends only on
y ∈ RN , where we write that x = (y , z) ∈ RN × Rd−N ≈ RN , for some
integer N such that 1 ≤ N < d . With |x |2 = |y |2 + |z |2 and

1 + 1
r2d
|x |2 = 1 + 1

r2d

(
|y |2 + |z |2

)
=
(

1 + 1
r2d
|y |2
)(

1 + |z|2
r2d+|y |2

)

we can integrate over the z variable and notice that

limd→+∞

(
1 + 1

r2d
|y |2
)− N+d

2

= e−π |y |
2

limd→+∞
∫
Rd |v(y)|2 dµd =

∫
RN |v |2 dγ

limd→+∞
∫
Rd |∇v |2

(
1 + 1

r2d
|x |2
)2

dµd =
∫
RN |∇v |2 dγ

where dγ(y) := e−π |y |
2

dy is a standard Gaussian probability measure
Gaussian logarithmic Sobolev inequality

∫

RN

|∇v |2 dγ ≥ 1

2

∫

RN

|v |2 log

( |v |2∫
RN |v |2 dγ

)
dγ
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Gaussian logarithmic Sobolev inequality

∫

RN

|∇v |2 dγ ≥ π
∫

RN

|v |2 ln

(
|v |2
‖v‖2L2(γ)

)
dγ

The constant π is optimal
[Carlen, 1991] equality holds if and only if

v(x) = c ea·x

for some a ∈ RN and c ∈ R

Theorem

There is an explicit constant κ > 0 such that ∀N ∈ N and ∀ v ∈ H1(γ)

∫

RN

|∇v |2 dγ−π
∫

RN

v2 ln

(
|v |2
‖v‖2L2(γ)

)
dγ ≥ κ inf

a∈RN, c∈R

∫

RN

(v−c ea·x)2 dγ
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Step 4 for Sobolev stability: optimal dependence
Refinement of Step 1: cutting r into pieces

(1 + r)q − 1− q r

for real numbers r in terms of three numbers

r1 := min{r , γ} , r2 := min{(r − γ)+,M − γ} and r3 := (r −M)+

where γ and M are parameters such that 0 < γ < M

θ := q − 2 = 2∗ − 2 = 4
d−2 → 0 as d → +∞

Lemma

Given q ∈ [2, 3], r ∈ [−1,∞) and M ∈ [
√
e,+∞), we have

(1 + r)q − 1− q r

≤ 1
2 q (q − 1) (r1 + r2)2 + 2 (r1 + r2) r3 +

(
1 + CM θM

−1
lnM

)
rq3

+
(

3
2 γ θ r

2
1 + CM,M θ r22

)
1{r≤M} + CM,M θM2

1{r>M}
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∫

Sd

(
|∇r |2 + A (1 + r)2

)
dµ− A

(∫

Sd
(1 + r)q dµ

)2/q

≥ θ ε0
∫

Sd

(
|∇r |2 + A r2

)
dµ+

3∑

k=1

Ik

I1 := (1−θ ε0)
∫
Sd
(
|∇r1|2 + A r21

)
dµ− A (q − 1 + ε1 θ)

∫
Sd r

2
1 dµ+ Aσ0 θ

∫
Sd (r22 + r23 ) dµ

I2 := (1−θ ε0)
∫
Sd
(
|∇r2|2 + A r22

)
dµ− A

(
q − 1 + (σ0 + Cε1,ε2) θ

) ∫
Sd r

2
2 dµ

I3 := (1−θ ε0)
∫
Sd
(
|∇r3|2 + A r23

)
dµ− 2

q A (1 + ε2 θ)
∫
Sd r

q
3 dµ− Aσ0 θ

∫
Sd r

2
3 dµ

for some parameter σ0 > 0
I1: spectral gap estimates
I3: use the Sobolev inequality. The extra coefficient 2

q < 1 gives us
enough room to accomodate all error terms I2: an improved spectral
gap inequality using that µ

(
{r2 > 0}

)
is small
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
B Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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