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A first statement

Gravitational (non-relativistic) Vlasov-Poisson system in R3

OF +w-V,F—V,b-V,F=0
Acb:/ F dw (1)
R:i

Theorem

For any N > 2, any p € (1,5), any positive numbers A1, X2, ... Ay and
any w > 0 small enough, there is a solution F* of (1) which is a relative
equilibrium with angular velocity w whose support has N disjoint
connected components, each of them with mass m? such that

(3-p)/2

i

lim m? =\
w—04

« —. Mj

for some positive constant m,. The center of mass z{(t) of each
component is such that lim,_o, w?3z#(t) =: z(t) is a relative

equilibrium of the N-body Newton's equations with gravitational
interaction






Systems of discrete particles:
the N-body problem in
gravitation



Solutions of the N-body problem in gravitation

many solutions are known

» No stationary (time independent) solutions

» Periodic solutions in Hamiltonian dynamics: [Ekeland et al.]
» Choregraphies: [Chenciner et al.], [Terracini et al.]

Figure: Choregraphies, pictures taken from S. Terracini's web page

http://www.matapp.unimib.it/~suster/files/index.html
[m] = =

DA


http://www.matapp.unimib.it/~suster/files/index.html

Newton's equations: basics

Consider N point particles with masses m; located at z(t) € R3 subject
to Newton's equations

d?z; N mim; z—2z

i i Ty i i

i 2 Z . .13 (2)
dt ot} 47 |ZJ |

Ansatz: the system is stationary in a reference frame rotating at constant
angular velocity Q = wes
Notation: x” = (x,x2,0) = x — (x - e3) e3, a change of coordinates

X3:Z3, X1+ix2:elwt(zl_|_i22)

provides Newton's equations in a rotating frame

d?x; N mj Xj— X dx;

= —_— 1 w X +2QN —

dt? Z A |xj — X3 dt

i#j=1

We look for stationary solutions in the rotating frame: relative equilibria
The configuration is central and planar: critical points of the function

N
1 m; m;
Vo (X1, X5y« .. Xy) i= T - T '_)J( - —Z’”: X



Relative equilibria: example 1

> All masses mj are equal to some m > 0 and x; are located at the
summits of a regular polygon, where r = |x/| is adjusted so that

d an m 1 N
—+=w?r? =0 with ay:=
dr [471' ro2 N Z:: /1 —cos( 27Tj/N)

)1/3

gives a Lagrange solution with r = r(N,w) := (LI
[Perko-Walter]: all masses have to be equal if N >4

Scale invariance:
1
r(N,e3/2w) = - r(N,w) Ye>0

If VV,(x{,x3,... xy) =0, w
then VV.s2 (e 1 x{, e x5, ...

the study of the critical points

of V,, can be

reduced to the case w =1



Relative equilibria: other examples

» N — 1 points particles of same mass are located at the summits of a
regular centered polygon and one more point particle stands at the
center (with not necessarily the same mass as the other ones). A
solution is then found again by adjusting the size of the polygon

» The Euler—Moulton solutions are made of aligned points




Relative equilibria: classification (1/3)

Relative equilibria are critical points of the function V, : (Rz)N —-R

N
1 m; m;
Vw(XLXQ/a"'XI/V) = _8_71' E /I J{ w2 E mj |X |2

i#j=1 |X'

Generic case: all masses are different

> N =2:

Mo\ L3
Ix1—xo| = (4ﬂ'w2> and mix3+myx, =0, with M =mi+m;

> N =3:
- Lagrange solutions: masses are located at the vertices of an
equilateral triangle, and the distance between each point is
(M/ (47 w?))Y/3 with M = my + my + m3: two classes of solutions
corresponding to the two orientations of the triangle when labeled
by the masses
- Euler solutions are made of aligned points and provide three classes
of critical points, one for each ordering of the masses on the line



Relative equilibria: classification (2/3)

@ N > 4: solutions made of aligned points are Moulton’s solutions
@ N > 4: Lagrange solutions (all particles are located at the vertices of
a regular N-polygon) exists if and only if all masses are equal

@_ Standard variational setting [Smale]: for m = (my,... my) € RY,
consider the manifold (qi, ... gn) € R?" such that

Z,N:lm,-q,-:o, %Z;V:lm,-|q,-|2 =1,q #qifi#j
quotiented by the equivalence classes associated to the invariances:
rotations and scalings
dim(S,)= 2N — 3, relative equilibria are critical points on S, of the
potential

Unlan )=~ 30

,7&1 1|qJ_ql|



Relative equilibria: classification (3/3)

For N > 4, various classification results have been achieved by [Palmore]

>

For N > 3, the index of a relative equilibrium is always greater or
equal than N — 2. This bound is achieved by Moulton's solutions

For N > 3, there are at least ui(N) := (T)(N —1—i)(N—2)!
distinct relative equilibria in S, of index 2N — 4 — i if U,, is a Morse

function. As a consequence, there are at least

N—-2
S (M) = YN - 2) + 1 (N - 2)!
i=0

distinct relative equilibria in S, if Uy, is a Morse function

For every N > 3 and for almost all masses m € RQ’, U, is a Morse
function

There are only finitely many classes of relative equilibria for every
N > 3 and for almost all masses m € RY

If N > 4, the set of masses for which there exist degenerate classes
of relative equilibria has positive k-dimensional Hausdorff measure if
0<k<N-1



The kinetic problem



Vlasov-Poisson system in the rotating frame

Gravitational Vlasov-Poisson system (with centrifugal and Coriolis forces):

%—f—V-fo—quS-va—wzx'-va—|—2Q/\V-va:O
Ap=p = f dv
R3
Boundary conditions: ¢ = _#H *p

Change of coordinates: f(t,x,v) = F(t,z,w), ¢(t,x) = ®(t, z)

0 -1 0
x=exp(wtA)z, v=QAx+exp(wtA)w with A:=|1 0 0
0 0 O

For some arbitrary convex function 3, critical points of the free energy

Flf] —/ f) dxdv+= // (Jv]* = w? X2 )fdxdv——/|V¢|2 dx
R3><R3 R3 xR3

give stationary solutions under the constraint [[p;, oo f dxdv =M
For w # 0: no minimizers



Polytropic gases

[Binney-Tremaine] A typical example of such a function is
B(f) =k 9
A critical point of F such that [ [, ps f dxdv = M is given by
1 1
flv) = (A 3 IvF o) = 32 P

where 7(s) = (1) (=s): 7(s) = (=5)}/ "
The problem is reduced to solve a non-linear Poisson equation

1
A = g(A+(x) = 5% X') xsupp(o)

1
gl) = [ vl 5 ) dv
R3
Variational approach:

1 1
Tl ::E/RJW:F dx+/R3G<)\+¢(x)—§w2|x’|2> dx—/Rg)\pdx

where A = \[x, ¢] is now a functional which is constant on each
connected component K; of the support of p(x)



Polytropic gases

The total mass is M = Z,/V:l mj

/ g (/\; + o(x) — 1w2 |x’|2) dx = mj
K 2

1 N 1,
7= [ 90R der ) [ 6 (3ot = 522 ) o min]

Heuristics. The various components K; are far away from each other so
that the dynamics of their center of mass is described by the N-body
point particles system, at first order. On each component Kj, the
solution is a perturbation of an isolated minimizer of F (without angular
rotation) under the constraint that the mass is equal to m;. Alternatively,
we consider a critical point of [ obtained as the perturbation of a
superposition of single components critical points of J of mass m;, which
are supported in a neighborhood of K;, for all i =1, 2, ... N, provided
the centers of mass x; of each of the components are close enough of a
critical point of V,,, with w > 0, small

w = 0: [Guo et al.], [Lemou-Méhats-Raphaél], [Rein et al.], [Sdnchez et
al. |, [Soler et al. ], [Schaeffer], [Wolansky], [JD-Fernandez]



The first result

The spatial density p* := fR3 f¥ dv has exactly N disjoint connected
components K and

1
my = / p¥dx, z‘(t)=exp(—wtA) x* where x{:= — x p¥ dx
w i JKy
1 _
pi(x) == )\p ()\(1 i /2(x+x,-“’)) XK (/\El p)/z(x—kxf))
converges to a density function p. = (w — 1)F given by
~Aw=(w—-1)7 inR?, | I‘lm w(x) =0
Theorem

For any N > 2, any p € (1,5), any positive numbers A1, X2, ... Ay and
any w > 0 small enough, there is a relative equilibrium solution F¥ s.t.

lim m?

w—04

/\(.3*P)/2

my =: m;

for m, = [L; p« dx. The center of mass z{’(t) of each component is such
that lim,,_o, w?/3 z¥(t) =: z(t) is a relative equilibrium of the N-body
problem (Newton's equations)



Some notations

Let x = (x',x3) € R?2 x R, fix A1,... Ay and w > 0, small: the problem is

N
_Auzzp,. inR3, pji= (u—)\;+%w2 |X/|2)i Xi (3)
i=1

where y; denotes the characteristic function of K;
Boundary condition limj, . u(x) =0
Mass and center of mass associated to each component by

1
m; = / pidx and x;j:=— x p; dx
R3 mi; Jr3

We shall say that two solutions u; and wu, are equivalent if there is a
rotation R € SO(2) x {Id}, i.e. a rotation in the plane orthogonal to the
direction of rotation, such that ux(x) = u1(R x) for any x € R3. We shall
say that u; and w, are distinct if they are not equivalent



A second result: Multiplicity of polytropic relative equilibria

Theorem

Q_ For w small enough, and for almost every positive

(M,--- An) € (0,00)N, (3) has at least [2N=Y(N —2) + 1] (N — 2)!
distinct solutions which continuoulsy depend on w

Q_I/f u” is such a solution, there are points £, ... &% € R3 such that as
w—0,|§ — | — oo forany j # i and u“(- + &) locally converges to
the unique radial nonnegative solution of

—Aw = (w—\). inR3

@ Forw > 0 small enough, the support of p* has N connected

components
. 3-p)/2 .
lim my = )\E PI2m, = m and lim w?/3 & =¢
w—0 w—0
and (&1, ... €n) is a relative equilibrium with masses (m;)1<i<n

The scaling invariance is recovered only in the limit w — 0



The basic cell problem and the ansatz

- Aw=(w-1)" inR? (4)

Lemma
Under the condition lim, .o w(x) = 0, Equation (4) has a unique
solution, up to translations, which is positive and radially symmetric. It is

a non-degenerate critical point of 3 [0 |[Vw|? dx + ﬁ Jrs(w — 1)7 ! dx

N
wi(x) = wh(x — &), W= Z w;
i=1

Compatibility condition: for a large, fixed x> 0, and all small w > 0,

Gl <pw™, e -gl>uTtwE (5)
Ansatz: we look for a solution of (3) of the form
u=W:+¢
with supp (w™ — \;)y € B(0,R) foralli=1,... N for R > 0 large

N
-1
Ao+ p(We =N+ 3 IXP)T xid=—E—N[g]
i=1



The nonlinear perturbation problem

We want to solve
N -1
Ap+Y p(We—XNi+30?X[)5 xi¢ = —E—Nig]
i=1
where

N
Ei= AW+ ) (We— A+ 37 IX[)" xi
i=1
N
N[g] == > [(W5 “ X+ 3P X P+ 0) - (We — N+ 3P IXP)Y

i=1

-1
—p (We — N+ 32 X P) T 6]



The variational scheme

> A linear theory
» The projected nonlinear problem (Lagrange multipliers)
» The variational reduction

» A variational approach in finite dimension

[Floer-Weinstein 1986] + many others...



A linear theory

N N
[¢ll« = sup (Z Ix =&l + 1) [6() 5 Al = sup <Z x = &l* + 1) |h(x)]
x€R3 i—1 x€R3 i—1
Consider the projected problem
N 3
Lgl =h+> > cjZjxi
i=1 j=1

where Zj; := O, w;, subject to orthogonality conditions
/ oZjxidx=0 Vi, j=1,2...N
R3

Lemma

Assume that (5) holds. Given h with || h||.. < +o00, there is a unique
solution ¢ =: T[h] and there exists a positive constant C, which is
independent of £ such that, for w > 0 small enough,

[@ll« < CI[hll«x



The projected nonlinear problem

Find ¢ with ||@||. < 400, solution of

N 3
L[] = —E—N[&] + > > cj Zyxi

i=1 j=1

such that ¢(x) — 0 as |x| — +o0 and

/]Rs¢ZUXi dx=0 foralli,j

To do this analysis we have to measure the size of the error E. We recall
that

N
E=) {(Wﬁzwj—/\ﬁ%ﬁ |X'|2)i—(Wi—/\i)i}X

i=1 J#i

=
N
=5 pwi = A+t wi+ 32 X PR+ L X )

i= J#i J#i

=

for some t € (0,1)



N

N
|E|§CZ [ZK’ §| |£r|}Xi SCW%ZX,-
J#

i=1 i=1

Thus ||E|s. < Cw3. Moreover, for [|¢]. < 1,
N
IN[¢]| < CZ |¢” xi, = min{p,2}

i=1

N[l < Cllo[IX and [N(¢1) — N(d2)|sx < o(1)]¢1 — b2]|1
We look for a fixed point ¢ = A[¢] := —T[E + N[¢]] on the region

B={0: |4l <K'}

Lemma
Ilge = ¢(&1, ... &) which depends continuously on its parameters for
the || ||.-norm and ||¢¢||. < Cw3,

beone = de(e ) and c;.(e74¢) = e ;.



The variational reduction

Lemma
We have that cj = 0 for all i, j if and only if the k-tuple (&1, ... én) is a
critical point of the functional

(fl, N EN) (g /\(fl, N EN) = J(Wg +¢§)

A Taylor expansion
1 /1
J(We) = J(Ws+¢5)—DJ(W5+¢5)[¢5]+§/0 D?J(We+(1—t)e)[¢¢]* dt
D> J(We + (1 — t)e) 0] = O(w?)

N N
= N - [ T o mil] + ot
i=1 ' i=1

i#

[IEN

)




In the region

B={(, ) 16— gl >pw Gl <p e forall i, j}
where p > 0 is chosen small enough and fixed, we have that

sup/A > supA
B o%B

so that this functional has a local maximum somewhere in B. Hence a
critical point of this functional does exist in 8B O

Lemma
For any \; > 0, &;, we have found a critical point of A\, i.e. a solution of

L[g] = —E — N[g]



A variational approach in finite dimension

mj mj

lg; — ail

;N
Un(qu - ) = =5~ Z
i#j=1

is a Morse function on S,,,. Take a local system of coordinates
(m, ..., m2n—4) on a neighborhood of a critical point § and for « > 0, let

E(a, p,m) = (a(qi(n) + p), - - alan(n) + p))

®(a, p,n) = w IANEW S a, p, q(n)))

N

Voo pn) = V(2 >

i#j=1

mj mj

1 2 N 2
T a2 2 i)

N
[P 2
+50%p| 2;—1:mi)+0(w3)

(5\%,0, 7j) is nondegenerate, so the local degree deg(V®,,0) is well
defined and nonzero: there exists a critical point (o*, p*,n*) asw — 0



A flat model: theory and
numerical results



Setting a two-dimensional flat model

[JD-Fernandez] Written in cartesian coordinates, the equation is

Oef + v -Vef + W’ x-Vof +2wv AV, f =V -V, f=0
1
=— f
0= T */R dv

where aA b:=at-b=a; by —ay by and x, v € R?

Definition

A localized minimizer is a critical point p of G,, which is compactly
supported in a ball B(0,R — ¢) for some R >0 and ¢ € (0, R), and
which is a minimizer of G,, restricted to the set

{p € LL(R?) : supp(p) C B(0,R) and p dx = M}
R2



Results

Theorem
For any M > 0, there exists w.(M) = w, > 0 and w*(M) = w* > 0 with
wyx < w* such that

(i) If w € [~ws,wy], the reduced free energy functional

) 1
Golp] = L/ P dx_%/ |X|z,,dx__// PP gy
m—1 Jpe R2 87 J Jrexgrz |X — Y]

admits a localized minimizer

(i) If |w| > w*, Gu,[p] admits no localized minimizer

More detailed results in the radial case. How does symmetry breaking
occur ?



Numerical schemes

Goal: investigate the energy landscape [JD-Fernandez-Salomon]
» Local minimizers (under appropriate constraints) have a very small
basin of attraction
» Compact support has to be enforced at each step

> [teration method inspired by mean-field models in quantum
mechanics work, with similar difficulties: the Cances-LeBris method
of relaxation has to be introduced to achieve convergence




Conclusion: symmetry breaking and stability

» In nonlinear PDEs, symmetry breaking usually occurs because of a
competition between the nonlinearity and an external potential

> A classical example is the (PDE) Hénon problem

> The case covered by the theorem of [Gidas-Ni-Nirenberg] is the
trivial one: the nonlinearity and an external potential cooperate

» Symmetry breaking is usually achieved by eigenvalue considerations
» Here we have an example based on multiscale analysis: this is new !

» Main issue (especially in gravitation) is dynamical / orbital stability
Constrained (localized) minimization and mass transport methods
[McCann] but new ideas are required

» Building examples of periodic solutions (choregraphies ?) would be
an intermediate step



