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A brief introduction to entropy methods S - . . -
4 Gagliardo-Nirenberg-Sobolev inequalities and the stability issue

The carré du champ method

A brief introduction
to entropy methods

> Sobolev’s inequality and the Bianchi-Egnell stability result
> Gagliardo-Nirenberg-Sobolev inequalities
= The Bakry-Emery method: Fokker-Planck equation on RY (linear case)

> The fast diffusion equation (nonlinear case)
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The carré du champ method

Sobolev inequality and Aubin-Talenti profiles

In Sobolev’s inequality (with optimal constant Sy),

IVF122 gy =Sl 1 F 172 oy = 0

(R9)
The manifold .# of the optimal functionsis generated by the multiples,
translates, scalings of the Aubin-Talenti functions

d-2

g(x):= (1+ |X|2) ° vxeRr?

A question raised in [Brezis, Lieb (1985)]: is there a natural way to bound
the l.h.s. from below in terms of a “distance” to the set of optimal
[Aubin-Talenti] functionswhen d =3 ?

> [Bianchi, Egnell (1991)] There is a positive constant « such that

IVFIZ2 gy = Sa I (ay = @ nf, IVF =Vl

> Various improvements, e.g., [Cianchi, Fusco, Maggi, Pratelli (2009)] but
the question of constructive estimates is still widely open
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The carré du champ method

Improved inequalities and stability results

Entropy - entropy production inequality
> Improved entropy — entropy production inequality (weaker form)
I = Ay(F)
for some y such that w(0) =0, ¢'(0) =1 and v >0
I-NF=Ap(F)-F)=0

> Improved constant means stability
Under some restrictions on the functions, there is some A4 > A such that

A
FI-ANF =(A—N)F =0 or J—Agz(l—A—)JEO

*
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The carré du champ method

Gagliardo-Nirenberg-Sobolev inequalities

We consider the inequalities

IVAISIFILLS = ons(p) IFll2p (GNS)

g=—30D __  Le(1+00)ifd=10r2, pe(lp'lifd=3, p'=

(d+2-p(d-2))p i

Theorem (del Pino, JD)

Equality case in (GNS) is achieved if and only if

feM:= {g&uvy S (A y) €(0,+00) x R x Rd}
1
g0 = (1+1x?) 7
Aubin-Talenti functions: gy, (x) = ug((x—y)/A)

[del Pino, JD, 2002], [Gunson, 1987, 1991]

J. Dolbeault Self-similar solutions, relative entropy and applications



A brief introduction to entropy methods
Stability, fast diffusion equation and entropy methods
Symmetry and symmetry breaking

Gagliardo-Nirenberg-Sobolev inequalities and the stability issue
The carré du champ method

Related inequalities

IVFIS IS = Gans(p) IFll2p (GNS)
> Sobolev’s inequality: d =3, p=p*=d/(d-2),0 =1
IIVf||2 Sd ||f||2p
> Euclidean Onofri inequality: d =2, p — +00,0 =1

n 1
ehh__de  _ ords 2 Vi dx
R2 7 (1+1x1?)

. L 1 A dx
p— +oowith fo(x) 1= g(x) (1+ 2 (h(x) = 1)), h= fya h(x) 2 TRIEE
> Euclidean logarithmic Sobolev inequality in scale invariant form

d 2 2 2 2
Elog(EfRdel dx szdlfl log|f]“ dx

or foa IVF12 dx= 5 fa IF 12 '°g(u'?'u2)dx+‘z’ log (271 €2) fya If1? dx
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The carré du champ method

The Fokker-Planck equation (domain in R9)

The linear Fokker-Planck (FP) equation

ou _

3t Au+V-(uVe)

on a domain Q < RY, with no-flux boundary conditions
(Vu+uVeg)-v=0 on 0Q

is equivalent to the Ornstein-Uhlenbeck (OU) equation

O AV -Vp-Vv= 2
— =Av-— -Vv=ZLv
ot
[Bakry, Emery, 1985], [Arnold, Markowich, Toscani, Unterreiter, 2001]

With mass normalized to 1, the unique stationary solution of (FP) is
ef(P

= & v.=1
Joe P dx s

Us
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The carré du champ method

The Bakry-Emery method (domain in R?)

With dy = us dx and v such that [, vdy =1, g€ (1,2], the g-entropyis
defined by

salvli= = [ (v -1-q(v-1))dy

Under the action of (OU), with w = v9/2, ., [v] := %fg IVw|? dy,

9 oo l(t,)] = = Iu[v(t)] and %(ﬂq[v]—2/1éaq[v])50

ith A inf Jo (2‘%1 IHess w2 +Hess : VweVw ) dy
‘W1 = In
weH(Q,dy)\(0} JoVwi*dy

Proposition

[Bakry, Emery, 1984] [JD, Nazaret, Savaré, 2008] Let Q be convex.
If A>0 and v is a solution of (OU), then F4[v(t,-)] < Z4[v(0,-)] e 27t
and &q[v(t,-)] < E4[v(0,)] e 2At for any t =0 and, as a consequence,

Fo[v]=21&[v] VveH(Q,dy) (Entropy-entropy production ineq.)
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The carré du champ method

From the carré du champ method to stability results

& denotes a relative entropy or free energy
# denotes the Fisher information
Entropy - entropy production inequality

Flu]l = AF[u]

> Carré du champ method (adapted from D. Bakry and M. Emery)

au_ d?__j d’]<—AJ
ot dt .

deduce that .# — A % is monotone non-increasing with limit 0
> Using remainder terms and constraints, we look for entropy — entropy
production inequalities that are reinterpreted as stability results

u™,

Three points of view

Q@ decay rates in diffusion equations

Q@ entropy - entropy production inequalities and functional inequalities
Q@ rigidity problems in elliptic equations, bifurcation problemss
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A brief introduction to entropy methods

Gagliardo-Nirenberg-Sobolev inequalities and the stability issue
Stability, fast diffusion equation and entropy methods Y

The carré du champ method
Symmetry and symmetry breaking

Bakry-Emery
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Constructive stability results

in Gagliardo-Nirenberg-Sobolev
inequalities

Stability, a joint project with M. Bonforte, B. Nazaret and N. Simonov
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Joint work on Stability in Gagliardo-Nirenberg-Sobolev inequalities:
Flows, regularity and the entropy method arXiv:2007.03674, to appear in
Memoirs of the AMS, in collaboration with

Matteo Bonforte
> Universidad Auténoma de Madrid and ICMAT

Bruno Nazaret
> Université Paris 1 Panthéon-Sorbonne
and Mokaplan team

Nikita Simonov
> Ceremade, Université Paris-Dauphine (PSL) il
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Fast diffusion equation
and entropy methods

ou
— =Auy™ FDE
3 = A (FDE)
@ The Rényi entropy powers and the Gagliardo-Nirenberg inequalities

@ Self-similar solutions and the entropy - entropy production method

@ Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)

Q@ Initial time layer: improved entropy — entropy production estimates
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Rényi entropy powers
and

Gagliardo-Nirenberg-Sobolev
inequalities

[Toscani, Savaré, 2014]
[JD, Toscani, 2016]
[JD, Esteban, Loss, 2016]
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Mass, moment, entropy and Fisher information

(i) Mass conservation. With m = m := (d —2)/d and ug € L (R9)
d
afu@d u(t,x)dx=0

(i) Second moment. With m>d/(d +2) and ug € L (R9, (1 +|x|?) dx)

if u(t,x)dx = 2d/ (t,x)dx

dt

(ili) Entropy estimate. With m=my :=(d-1)/d, u’ € L'(R?) and
up € LY (RY, (1 +1x|2) dx)

d m m2 m-1,2
af[@du (t,x)dx-l_mfRduIVu |« dx
Entropy functional and Fisher information functional

2
(lrn—)zfd U|Vum_1|2dx
-m R
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Entropy growth rate

Gagliardo-Nirenberg-Sobolev inequalities

IVFISIFIL = ans(p) IFll2p (GNS)

1
p=sis = m=F5e[m,1)

u=f2Pgothat u™ = fP*! and u|Vu™ 12 = (p- 1)2|Vf|2

A= NF15E, B[] =1F120T, W[u]= (p+1)2 19F13

If u solves (FDE) 9% = Au™
p— 2(1-6)

1 5 2 2 - -
S, (P 1) (Gans(ey) IF13, 1F17 17 = CoE

mmc

E'=

1-m
fRdum(t,X)dxz(fRdug’dx+%t)m " vt=z0

Equality case: u(t,x) = ﬁ@(%) , B(x) = (L+x2) ™1
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Pressure variable and decay of the Fisher information

21
The t-derivative of the Rényi entropy power Ed T-m “Lis proportional to
|9 E2 Fl)%g
The nonlinear carré du champ method can be used to prove (GNS) :

> Pressure variable

> Fisher information

I[u]:f u|VP|? dx
RrRd
If u solves (FDE), then

I :fdA(um)IVPlzdx+ 2[ uVP-V((m-1)PAP+ |VPP2) dx
R

_—2f ||D2P|| - m)(AP)z)dX
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Rényi entropy powers and interpolation inequalities

o> Integrations by parts and completion of squares: with m; = %

< log (17254
T20dt og( )
1 2 I?
:/[Red u™ HD2P—3APId” dx+(m—m1)fRdum 'AP+E‘ dx
> Analysis of the asymptotic regime as t — +oo
1-60 1-60
u(t, )1’ Efu(t, )]*#7 _ 1[28)° E[8] 71 26
0 = s = (p+1)** (cns(p))

t—+oo

M P Il

We recover the (GNS) Gagliardo-Nirenberg-Sobolev inequalities

20

I[u]? E[u]2 7% = (p+1)2? (Gons(p)> 47
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The fast diffusion equation
in self-similar variables

> Rescaling and self-similar variables
> Relative entropy and the entropy — entropy production inequality

> Large time asymptotics and spectral gaps
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Entropy — entropy production inequality

With a time-dependent rescaling based on self-similar variables
1 X dR 1-
=— - = 0 _1
u(t,x)—Kde V(T’KR) where p” =R"7H, 1(t):=5 logR(t)

g—‘t’ = Au™ is changed into a Fokker-Planck type equation

Z—Z+V- V(va_l—ZX)] =0 (r FDE)

Generalized entropy (free energy) and Fisher information
— 1 m m m-1
g[v].——;fRd(v -B"-mAB (v—%))dx
m-1 2
Fv] :=[ v’Vv + 2x’ dx
RrRd

are such that .#[v] = 4 [v] by (GNS) [del Pino, JD, 2002] so that
Fv(t,)] s Fvole
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Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vazquez, 2009]
oy - oy -
(Go+IxI7) TP <vp < (Cr+IxI7) 7 (H)
Let Ag 4 > 0 be the best constant in the Hardy-Poincaré inequality

Aa'df f2d,ua_1sf VA2 due ¥ FeHY(dpa), ffdya_lzo
R R4 Rd

with dprg = (1 +|x]%)% dx, for & < 0

Under assumption (H),

Flv(t,")] = Ce 2r(mt yi>o, y(m):=(1-m)A1/(m-1),d

Moreover y(m) :=2 if% =mp<m<l

J. Dolbeault Self-similar solutions, relative entropy and applications
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Spectral gap

+(m)
4
my = %
_de
2
Case 1
Case 2
e Case 3
m, = 2 ,
m
1

[Denzler, McCann, 2005]
[BBDGYV, 2009] [BDGYV, 2010] [JD, Toscani, 2010-2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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Initial and asymptotic time layers

> Asymptotic time layer: constraint, spectral gap and improved entropy —
entropy production inequality

o> Initial time layer: the carré du champ inequality and a backward
estimate
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The asymptotic time layer improvement

Linearized free energy and linearized Fisher information
F[g]::mf g2 B> mdx and I[g]::m(l—m)f IVg|? B dx
2 Jrd Rd

Hardy-Poincaré inequality. Let d =1, me (m1,1) and g € L?(R?, 8%~™ dx)
such that Vg € L2(R?, B dx), [pd g B> M dx =0and [paxg B> Mdx =0

l[g] =4aF[g] where a=2-d(1-m)

Proposition

Let me(my,1) ifd=2, me(1/3,1) ifd=1,n=2(dm-d+1) and
x=m/(266+56m). If [pavdx =4, [paxvdx=0 and

(1-e)B=vs(l+e)RB

for some € € (0,xn), then

sz (4+7)F[V]
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The initial time layer improvement: backward estimate

Hint: for some strictly convex function y with w(0) = v’(0) = 0, we have
I-4F =4 (y(F)-F)=0

Far from the equality case (i.e., close to an initial datum away from the
Barenblatt solutions) for (FDE), we expect some improvement

[ I

Rephrasing the carré du champ method, 2|v] := F] is such that
d2
—=2(2-4
7 =2(2-4)

Assume that m> my and v is a solution to (r FDE) with nonnegative
initial datum vy. If for some >0 and t, >0, we have 2[v(t4,-)] =4+,
then

2[v(t,")] =4+ Vite[0,t]

4+m-nettx
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Stability in
Gagliardo-Nirenberg-Sobolev
inequalities
Our strategy

Choosde > 0, small enough

Get a threshold time ty (€)

0 3 til€ . t
| Backward estimate | Forward estimate
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s,

The threshold time

and the uniform convergence
in relative error

> The regularity results allow us to glue the initial time layer estimates
with the asymptotic time layer estimates

The improved entropy — entropy production inequality holds for any time
along the evolution along (r FDE)

(and in particular for the initial datum)
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If v is a solves (r FDE) for some nonnegative initial datum vg € L1 (R9)
satisfying
d(m-m¢)
supr (I-m f vodx < A<oo (Ha)
r>0 Ix|>r

then
(1-e)B<v(t,)<s(1+e)B Vit=t,

for some explicit t, depending only on € and A
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Global Harnack Principle

The Global Harnack Principle holds if for some t >0 large enough
B, (t—71,x) < u(t,x) < B, (t+712,x) (GHP)

[Vazquez, 2003], [Bonforte, Vazquez, 2006]: (GHP) holds if ug < le_ﬁ
[Vazquez, 2003], [Bonforte, Simonov, 2020]: (GHP) holds if

Alug] := supRﬁ_d[ |ug| dx < oo
R>0 Rd\BR(O)

[Bonforte, Simonov, 2020] If M + A[ug] < oo, then

ZGRLGT I

lim B()

t—oo
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Uniform convergence in relative error

Stability, fast diffusion equation and entropy methods

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that me (my,1) if d =2,
me (1/3,1) ifd=1 and let e€(0,1/2), small enough, A>0, and G >0
be given. There exists an explicit threshold time T =0 such that, if u is a
solution of .
u

U _\ym FDE

5 = A (FDE)
with nonnegative initial datum ug € LY(RY) satisfying

d(m-mc)

Alug] =supr @=m) f updx<A<oo (Ha)
[x|>r

r>0

Jrd Uo dx = [pa Bdx = 4 and F[ug) < G, then

u(t,x)
B(t,x)

sup -1

xeRd

<e¢ Vt=T

J. Dolbeault Self-similar solutions, relative entropy and applications
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Stability, fast diffusion equation and entropy methods The threshold time and the improved ent
Stability results (subcritical and critica

iardo-Nirenberg-Sobolev inequalities
y — entropy production inequality (subcr

The threshold time

Let me(my,1) ifd=2, me(1/3,1) ifd=1, e€(0,emq), A>0 and G>0

1+Al-m 4+ G3

T:C*
ga

Wherea:%%:—m, a=d(m-m¢) and 9=v/(d+v)

cx =cx(m,d)= sup max{exi(e,m), e¥x2(e, m), ex3(e, m)}
e€(0,6m.4)
x1(&, m) := max 8¢ 27"k
nem= (lte)lm-1'1-(1-¢)l-m
(4a)* 1 K3 8al
y == d , e E—
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Improved entropy — entropy
production inequality
(subcritical case)
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Theorem

Let me(my,1) ifd=2, me(1/2,1) ifd=1, A>0 and G>0. Then
there is a positive number { such that

Flv] = (4+) F|v]

for any nonnegative function v € L1(R?) such that Z[v]=G,
Jpa vdx =, [paxvdx=0 and v satisfies (Ha)

We have the asymptotic time layer estimate
1 1
€€(0,2¢&4), Exi= 5 min{emq, xn} with t,=t.(e)= 5 log R(T)

(1-e)B=<v(t,)s(1+e)B Vt=t,
and, as a consequence, the initial time layer estimate

4ne—4t*
ﬂ[V(t,.)]Z(4+()g/’~[V(f,.)] VtE[O,t*] where (Zm

J. Dolbeault Self-similar solutions, relative entropy and applications
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Two consequences

(=Z(AZlul), Z(AG):=

2
(x . 4nca( & )a
1+ A-m2 o' 7" 4+ (2ac,

> Improved decay rate for the fast diffusion equation in rescaled variables

Let me (my,1) ifd=2, me(1/2,1) ifd=1, A>0 and G>0. Ifv isa
solution of (r FDE) with nonnegative initial datum vy € L1(R?) such that
Flwl=G, fgavodx =M, [paxvodx=0 and vy satisfies (Ha), then

Flv(t,)] = Flwle Dt vi=0

> The stability in the entropy - entropy production estimate
F|v]-4F|v] = {F[v] also holds in a stronger sense

V] - 4F[v] = 4L+(f[v]

J. Dolbeault Self-similar solutions, relative entropy and applications
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Stability results
(subcritical case)

> We rephrase the results obtained by entropy methods in the language of
stability a la Bianchi-Egnell

Subcritical range

p*=+ooifd=1or2, p*=g%5ifd=3
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Stability, fast diffusion equation and entropy methods

2p

I\ G574 1
._ 2d1([f]p71 Hf\lgil d-p(d-4) __,ﬂﬁ
Alf] '—( 2T A2 o Klfl= g,
d-p(d-4)
_ M e 2
Alf]:= —alew Sup,sgf P I flxl>r|f(x+Xf)| P dx
A[f] P 1T ||f|\2f;

f1P _p [«[F1?P
E[flzsz’;fw(—;[i] frrl—gptl_ L2l ”(—’;[[fllz f2p—g2”))dx

S[f]:= 523 ey Z (AL EIF])

Letd=1, pe(1,p*)
If f e Wp(RY):= {f e L2P(RY) : VF e L2(RY), |x|FP e L2(RY)},

(1918 ||f||p+1) = (on I1f12,)°P7 = S[f] IF1557 E[f]
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With #gns = C(p, d) %égg Y = ‘122%‘5‘_1;)2), consider the deficit functional

d—p(d-2
8[f]:=(p-1)? ||Vf||§+4% IFIPY] = Hans 11557

Let d=1 and pe(1,p*). There is an explicit € = €[f] such that, for any
f e L2P(RY, (1+1x1%) dx) such that Vf e L>(RY) and A[f?P] < oo,

2
5[F] = 6[f] inff |(p-1) V7 + PV P
@eNt Jrd

= The dependence of €[f] on A[f?P] and % [£2P] is explicit and does not
degenerate if f € M

= Can we remove the condition A[f2P] < 0o ?
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Stability in Sobolev’s inequality
(critical case)

> A constructive stability result

> The main ingredient of the proof

J. Dolbeault Self-similar solutions, relative entropy and applications
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A constructive stability result

Stability, fast diffusion equation and entropy methods

Let2p*=2d/(d-2)=2%d=3and

Wor(RY) = {F e LPL(RY) : VF e L2(RY), IxI FP" e L2(RY)}

Theorem

Let d=3 and A>0. Then for any nonnegative f € W,,*(Rd) such that

f(l,x,|x|2)f2*dx=f (1,x,|x|2)gdx and suprdf 2 dx< A
Rd R4 [x|>r

r>0

we have
d 2 2
8[f]:= IVFI3-S3 ||f||§*_ fRd| REEY ﬂvg-ﬂ| e

Cx(A) =€, (1+A1/(2d))_:l and €, >0 depends only on d
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Peculiarities of the critical case

> We can remove the normalization of f, use the r.h.s. to measure the
distance to the Aubin-Talenti manifold of optimal functions (in relative
Fisher information) and obtain for

A[f];=suprdfr>0|f|2*(x+xf) and  Z[f]:= (L+u[f]¢ ALY A[F])

r>0
the Bianchi-Egnell type result

¢, Z[f]

o[f] = 2+ Z[] gienggtf[ﬂg]

with x¢, A[f] and p[f] as in the subcritical case

> Notion of time delay [JD, Toscani, 2014 & 2015]
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Extending the subcritical result in the critical case

+(m)

To improve the spectral gap
for m = m;, we need to ad-
just the Barenblatt function

By(x) =192 28 (x/\/I) in order
to match [pa Ix|2vdx where the

function v solves (rFDE) or to
further rescale v according to

v(t,x)= w W(t+‘[(t), m’(‘t)),

me =142

0 m

%(m—mc)

%:(%fwdlxlzvdx) ~1, 7(0)=0 and %R(t)=e27(t)

t— A(t) and t — 1(t) are bounded on R*
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Symmetry and symmetry breaking
in Caffarelli-Kohn-Nirenberg
inequalities
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Symmetry and symmetry breaking

Caffarelli-Kohn-Nirenberg

! $ e =
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Caffarelli-Kohn-Nirenberg inequalities

Let 2, p = { velLP ([Rd, |X|_bdX) x| |Vv] e L2 ([Rd,dx)}

vl \2/P IVv|2
(ﬁq{d—M'deX) sCa,bf” |2ad VVE@ab

hold under the conditionsthata<b<a+lifd=3,a<b<a+1lifd=2,
a+1/2<b=<a+lifd=1,anda<ac:=(d-2)/2

B 2d
P=d-2+2(b-a)
> An optimal function among radial functions:
A

__2_
ve(x) = 1+|x|(p_2)(ac_a) P2 and C*,=— TP
0= ) 2B X2 Vva |12

Question: C,p = C7 , (symmetry) or C, p > C} | (symmetry breaking) ?
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CKN: range of the parameters

Figure: d =3

vIP P V|2
(fu@d N dx) < Ca'bj;@d EE dx

— ’ “

b=a

asb=a+lifd=3
a<b=sa+lifd=2,a+1/2<b=<a+lifd=1
anda<ac:=(d-2)/2
2d [Glaser, Martin, Grosse, Thirring (1976)]
P=d-2+2(b-2) [E Catrina, Z.-Q. Wang (2001)]
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> Proving symmetry breaking
[E Catrina, Z.-Q. Wang], [V. Felli, M. Schneider (2003)]
[J.D., Esteban, Loss, Tarantello, 2009] There is a curve...

> Moving planes and symmetrization techniques

[Chou, Chu], [Horiuchi]

[Betta, Brock, Mercaldo, Posteraro]

+ Perturbation results: [CS Lin, ZQ Wang], [Smets, Willem], [JD, Esteban,
Tarantello 2007], [J.D., Esteban, Loss, Tarantello, 2009]

> Linear instability of radial minimizers: the Felli-Schneider curve
[Catrina, Wang], [Felli, Schneider]

> Direct spectral estimates
[].D., Esteban, Loss, 2011]: sharp interpolation on the sphere and a
Keller-Lieb-Thirring spectral estimate on the line
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Symmetry versus symmetry breaking:
the sharp result in the critical case

[b

[JD, Esteban, Loss, 2016]

Let d =2 and p<2*. If either a€[0,a.) and b>0, or a<0 and
b= bgs(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric
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The symmetry proof in one slide

@ A change of variables: v(IXI“’lx) =w(x), Dgv = (a %, % Vi v)
1Vli2p,d-n < Kanp IDavIy 4, IVILY 4, VveHE_ (RY)
The Felli & Schneider condition becomes @ > a g := 1/ ‘;%% and p= %
Q@ Concavity of the Rényi entropy power: with
2a:—D;Da:a (u +0=1 u/)+sl2Awuandg—‘t’:$aum
d _ 1-o0
= G Glu(t, )] (Jpo u™ Ix1" dx)
2
4 1 P’ Ay P
2+2fRd(a (l—z)’P”—?—m +

4
+2 o ((12) (a2 — 02) VWP + (i m, ) I42L) um 79 e

2a2 1 VP
s—z‘va -

2
) u™ x| dx

Q@ Elliptic regularity and the Emden-Fowler transformation: justifying the
integrations by parts

J. Dolbeault Self-similar solutions, relative entropy and applications



A brief introduction to entropy methods Caffarelli-Kohn-Nirenberg inequalities
Stability, fast diffusion equation and entropy methods Sharp symmetry versus symmetry breaking results
Symmetry and symmetry breaking Scheme of the proof

J. Dolbeault Self-similar solutions, relative entropy and applications



A brief introduction to entrop Caffarelli-Kohn-Nirenberg inequalities
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Stability, fast diffusion equation and entropy
Symmetry and symmetry b:

These slides can be found at

http://www.ceremade.dauphine.fr/ ~dolbeaul/Lectures/
> Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/ ~dolbeaul/Preprints/list/
> Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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