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A brief introduction
to some stability issues
in Sobolev and related inequalities
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The stability result of G. Bianchi and H. Egnell

In Sobolev’s inequality (with optimal constant Sy),

Ive)2 -S4 lIfI12 =0

12(Y) 12" (me) =

J

is there a natural way to bound the l.h.s. from below in terms of a “distance’
to the set of optimal [Aubin-Talenti] functionswhen d = 3?
A question raised in [Brezis, Lieb (1985)]

> [Bianchi, Egnell (1991)] There is a positive constant & such that

IVF 12ty =S 112 (gay = @ i 197 =V

> Various improvements, e.g., [Cianchi, Fusco, Maggi, Pratelli (2009)]
there are constants a and x and f — A(f) such that

IVFI? > (1+KkA(F)*)Sq 1112

12(rY) = 12" ()

However, the question of constructive estimates is still widely open
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Gagliardo-Nirenberg-Sobolev inequalities

We consider the inequalities

IVAIS IFILSS = Gans(p) I1Fll2p (GNS)

1 . %7 *
0= %, pe(l,4o0)ifd=10r2, pe(l,p*lifd=3, p =d;'_'2

Theorem (del Pino, JD)

Equality case in (GNS) is achieved if and only if

feM:= {g,l,#yy S (A y) € (0,4+00) x R x [R%d}

1

Aubin-Talenti functions: gy, (x):=pug((x—y)/A), g(x)=(1+|x|?) P!

[del Pino, JD, 2002], [Gunson, 1987, 1991]
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A variational \; oint of view on stability
Fast diffusion equation and entropy methods
Stability m( Mn\ \n rb erg-Sobolev inequalitie:

Related 1nequa11t1es

IVFIS IS = Gans(p) IFll2p (GNS)
> Sobolev’s inequality: d =3, p=p* =d/(d -2)
IVFI52Sq If15,.

> Euclidean Onofii inequality

T 1 2
e\hfh dx 5 < eTor f[Rz |Vh|* dx
R2 7 (1+1x1?)

d=2, p— +oowith f,(x) := g(x) (1+ 55 (h(x) = 1)), B = faz h(x) 71(15#2)2

> Euclidean logarithmic Sobolev inequality in scale invariant form

d 2 2 2 2
> Iog(ﬂdefRdIVfl dx)szdIfl log || dx

Iflla=1,0r fuu IVFI?dx= 3 [ |fI? |og( P2

GE dx + % log (27re2) Jrd |12 dx
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A variational point of view on stability [¢)
Fast diffusion equation and entropy methods Non-constructive stability results
Stability in Gagliardo-Nirenberg-Sobolev inequalities Towards constructive stability results

A variational point of view
on stability
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A variational point of view on stability O
Fast diffusion equation and entropy methods
Stability in Gagliardo-Nirenberg-Sobolev inequalities

Non-constructive stability results
Towards constructive stability results

Optimality by
concentration-compactness
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A variational point of view on stability Optimality by concentration-compactness
Non-constructive stability results
Towards constructive stability results

Deficit functional, scale invariance, weak stability

Deficit functional

d—p(d-2) 1 2
. 2 2
8[f]:==(p-1) ||Vf||2+4T 11571 = Hans 111507

Lemma

(GNS) is equivalent to §[f] =0 if and only if
ZGNS = C(p, d) Cgélgg

where y = di%(g‘_];)z) and C(p,d) is an explicit positive constant

Take fj(x) = A% f(Ax) and optimize on A > 0 to get (weak stability)

81f) 2 1f] - inf 5[] =: 5[] = 0

A simplification: §[f] = 8[| f]] so we shall assume that f =0 a.e.
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A variational point of view on stability Optimality by concentration-compactness
Non-constructive stability results
Towards constructive stability results

Minimization and concentration-compactness

Iy = inf{(p— 1)2 |VFI2 +4% IFIPEY < FeAt(RY), IFI3E = }

I = #gns and Iy = i MY for any M >0

Lemma

If d =1 and p is an admissible exponent with p<d/(d—2), then

Iy < Inpy + I, Y My, M >0

Lemma

| \

Let d =1 and p be an admissible exponent with p<d/(d-2) ifd=3. If

(fa)n is minimizing and if limsup sup f If,|P*Ldx =0, then
n—+00 | cpd B(y

,,l'_,”;o Ifall2p =0 .. Existence

V.
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A variational point of view on stability Optimality by concentration-compactness
Non-constructive stability results
Towards constructive stability results

Existence of a minimizer, further properties

Proposition

Assume that d =1 is an integer and let p be an admissible exponent with
p<d/(d-2) if d=3. Then there is a radial minimizer of §

Q. Pélya-Szego principle: there is a radial minimizer solving
~2(p-1)?Af+4(d-p(d-2)) P~ C2P1=0

Iff =g,then C=8p
@ Arigidity result: if f is a (smooth) minimizer and P = —Z—j f1-P, then

Jod IVFI? dx 2
(d—p(d—z))fwfp+1 AP+(p+1)2% dx
2
+2dpf 7 |p2P - L aP1d| " dx =0
rRd

_1
> g(x) = (1+1xI?)"P* is a minimizer and 6[g] = 0
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Non-constructive stability results
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A variational point of view on stability Optimality by concentration-compactness
Non-constructive stability results
Towards constructive stability results

Relative entropy and Fisher information

@_ Free energy or relative entropy functional

lfiel= 12 |

¥ (fp+1 _gp+1 _ :lzL;gl‘P (f2P _g2p)) dx=0

Lemma (Csiszar-Kullback inequality)

Let d=1 and p>1. There exists a constant C, >0 such that

2020 glflg] i IFllay=
[#2° =% | s gy = Co81FIE] iF 1Fl2p =gz,

@_ Relative Fisher information

1 2
f[ﬂg];:&f |(p-1)vF +£Pug" | dx
p—1Jgd
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A variational point of view on stability Optimality by concentration-compactness
Non-constructive stability results
Towards constructive stability results

Best matching profile

@_ Nonlinear extension of the Heisenberg uncertainty principle

2
(L fp+1dx) sf |Vf|2dxf Ix|2 £2P dx
p+1 Rd Rd Rd

> Take g = g in _#[f|g] and expand the square
Q@ Ifgs:=geMissuch that fpa F2P (1,x,|xI%) dx = foa 2P (1,,1xI%) dx

2
then g’[ﬂg] = ﬁf (fp+1 _gP+1) dx

R

o> A smaller space: #,(R9) := {f € #,(RY) 1 Ix||fIP € L2([Rd)}

For any f e W,(RY), gr € M is uniquely defined and

&[flgf] = infgeam &[f1g]
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A variational point of view on stability Optimality by concentration-compactness
Non-constructive stability results
Towards constructive stability results

A first (weak) stability result

Lemma (A weak stability result)

If gr =g, then
81f] = 84[f] = &[fIg]®

> Up to the invariances, g is the unique minimizer for f — §[f]

Lemma (Entropy - entropy production inequality)

Iflfll2p=ligly, with 6[g] =0, then

g—jé[f]:j[flg]—4£[f|g] >0

> From now on, we will assume that gr = g, i.e.
f fzp(l,X,|X|2)dX=f g2p(1,x,|x|2)dx
R4 R4
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A variational point of view on stability Optimality by concentration-compactness
Non-constructive stability results
Towards constructive stability results

Stability in (GNS)

@_ [Bianchi, Egnell (1991)] There is a positive constant a such that
2 2 : 2
Sd ”Vf"Lz(Rd) - ”f”Lz* (Rd) za (/JIQDEI ”Vf— V(p”Lz(Rd)

@_ Various extensions
> L9 norm of the gradient by [Chianchi, Fusco, Maggi, Pratelli (2009)],
[Figalli, Neumayer (2018)], [Neumayer (2020)], [Figalli, Zhang (2020)]

> (GNS) inequalities by [Carlen, Figalli (2013)], [Seuffert (2017)], [Nguyen
(2019)]

Theorem

There exists a constant C >0 such that
6[f]= C&|[flg]

for any f € W,(RY) satisfying

f f2p(1,x,|x|2)dx:f g2p(1,x,|x|2)dx
R Rd
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Towards constructive stability
results
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A variational point of view on stability Optimality by concentration-compactness
Non-constructive stability results
Towards constructive stability results

A strategy based on a spectral gap

@_ The spectral gap inequality
4
f IVul2g2P dx > —pf lu?g3P 1 dx
RrRd p—]_ RrRd

valid for any function u such that [pq ug3P~1dx =0, can be improved
with a constant A, >4p/(p—1) under the constraint that

2 3p-1 _
fRd(l,x,lx| )ug dx=0
@_ A Taylor expansion with f = g +n h gives

ol (p-1)?
n—~08&[flg] ~ p(p+1)

r>Analysis along a minimizing sequence...

*—

4p ]
p—1

How can we make this strategy constructive ?
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A variational point of view on stability Optimality by concentration-compactness
Non-constructive stability results
Towards constructive stability results

From the carré du champ method to stability results

Carré du champ method (adapted from D. Bakry and M. Emery)

u dF d.g
ou_ g Y Ag
ot dt dt =

deduce that .# — A % is monotone non-increasing with limit 0

> An improved entropy - entropy production inequality (weak form)

u™,

I = Ay(F)
for some v such that w(0) =0, ¢'(0)=1and v >0
I-ANF=zANy(F)-F)=0

> An improved constant means stability
Under some restrictions on the functions, there is some A4 = A such that

F-NF=2(A—N)F
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Rényi entropy powers and Gagliard
The fast diffusi i

Sobol

e
Initial and asymptotic time layers

variables

Fast diffusion equation

and entropy methods
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Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

Fast diffusion equation and entropy methods

ou
= Ay™ FDE
5 = A (FDE)
@ The Rényi entropy powers and the Gagliardo-Nirenberg inequalities

@ Self-similar solutions and the entropy - entropy production method

@ Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)

@ Initial time layer: improved entropy — entropy production estimates
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A variational point of view on stability Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Stability in Gagliardo-Nirenberg-Sobolev inequalities Initial and asymptotic time layers

The fast diffusion equation in original variables

Consider the fast diffusion equation in R, d > 1, me (0,1)

ou
— =Ay™
ar 1
with initial datum u(t = 0, x) = up(x) = 0 such that
f updx=.4>0 and f |x|2uodx<+oo
Rd Rd

The large time behavior is governed by the self-similar Barenblatt

solutions 1
X
B(t,x):= ,%( )
(£:) (Ktl/ﬂ)d xti/n

where p:=2+d(m—1) and 2 is the Barenblatt profile with [ps 9 dx = .4

B(x):=(1+ |x|2)7ﬁ
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A variational point of view on stability Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Stability in Gagliardo-Nirenberg-Sobolev inequalities Initial and asymptotic time layers

Rényi entropy powers
and

Gagliardo-Nirenberg-Sobolev
inequalities

[Toscani, Savaré, 2014]
[JD, Toscani, 2016]
[JD, Esteban, Loss, 2016]
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Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities

Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

Mass, moment, entropy and Fisher information

(i) Mass conservation. With m = m := (d —2)/d and ug € L (R9)

d
afu@d u(t,x)dx=0

(i) Second moment. With m>d/(d +2) and ug € L (R9, (1 +|x|?) dx)

d
afRd Ix|? u(t,x)dx=2d/Rd u™(t,x)dx

(ili) Entropy estimate. With m=my :=(d-1)/d, uj’ € L'(R?) and
up € LY (RY, (1 +1xI2) dx)

2
d f u™(t,x)dx =
RrRd

fd ulVu™ 112 dx
R

dt 1-m

Entropy functional and Fisher information functional

2
(lrn—)2fd U|Vum_1|2dx
-m R

J. Dolbeault Stability in GNS inequalities
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Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

Entropy growth rate

Gagliardo-Nirenberg-Sobolev inequalities

IVFISIFIL = ans(p) IFll2p (GNS)

1
p=sis = m=F5em,1)

u=f2Pgothat u™ = fP*! and u|Vu™ 12 = (p- 1)2|Vf|2

A= NF15E, B[] =IF12TT, W[u]= (p+1)2 19F13

If u solves (FDE) 9% = Au™
p— 2(1-0)

L ooz
W(PﬂLl) (CgGNS(P)) Iy, Ifl,,,° = GoE

m-mc

E'=>

1-m
fRdum(t,X)dxz(fRdug’dx+%t)m " vt=z0

Equality case: u(t,x) = ﬁ@(%) , B(x) = (L+Ix2) ™1

J. Dolbeault Stability in GNS inequalities



Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables

Initial and asymptotic time layers

Pressure variable and decay of the Fisher information

21
The t-derivative of the Rényi entropy power Ed T-m “Lis proportional to
|9 E2 Fl)%g
The nonlinear carré du champ method can be used to prove (GNS) :

> Pressure variable

> Fisher information
I[u] :f u|VP|? dx
RrRd
If u solves (FDE), then

I :fdA(um)IVPlzdx+ 2[ uVP-V((m=1)PAP+|VPP2) dx
R

_—2f ||D2P|| -1 —m)(AP)z)dX
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Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

Rényi entropy powers and interpolation inequalities

> Integrations by parts and completion of squares

—Lilog(IBEzfl’%)

20 dt
1 2 1°
:fRdum HD2P—3APId” dx+(m—m1)fRdum 'AP+E‘ dx
> Analysis of the asymptotic regime as t — +oo
1-60 1-0
(8, )P Elu(t, )PP 1[8)P E[) P
P ) =) i 0 =0 Yy et

t—+oo

AP 181”
We recover the (GNS) Gagliardo-Nirenberg-Sobolev inequalities

I[u]? E[u]? 7% = (p+ 1) (Gons(p)> 4 7
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A variational point of view on stability Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Stability in Gagliardo-Nirenberg-Sobolev inequalities Initial and asymptotic time layers

The fast diffusion equation
in self-similar variables

> Rescaling and self-similar variables
> Relative entropy and the entropy — entropy production inequality

> Large time asymptotics and spectral gaps
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Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

Entropy — entropy production inequality

With a time-dependent rescaling based on self-similar variables
1 X dR 1-
=— - - = 0 _1
u(t,x)—Kde V(T’KR) where 7 =R"7H, 1(t):=5 logR(t)

g—‘t’ = Au™ is changed into a Fokker-Planck type equation

Z—:+V- V(va_l—QX)] =0 (r FDE)

Generalized entropy (free energy) and Fisher information
— 1 m m m-1
g[v].——;fw(v -B"-mAB (v—%))dx
m-1 2
Fv] :=[ v’Vv + 2x’ dx
RrRd

are such that .#[v] = 4 Z[v] by (GNS) [del Pino, JD, 2002] so that
Fv(t,)] s Fvole
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Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vazquez, 2009]

1 1

(Co+Ix12) T < vg< (Cp +Ix?) T (H)
Let Ag 4 > 0 be the best constant in the Hardy-Poincaré inequality

Aa,df f2d,ua_1s/ IVF2du, ¥ FfeHY (dug), /fdua_lzo
R R4 Rd

with dptg = (1 +|x]%)% dx, for & < 0

Under assumption (H),

Flv(t,")] = Ce 2r(mt yi>o, y(m):=(1-m)A1/(m-1),d

Moreover y(m):=2 if1-1/d<m<1
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A variational point of view on stability Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Stability in Gagliardo-Nirenberg-Sobolev inequalities Initial and asymptotic time layers

Spectral gap

+(m)
4
my = %
_ e

2
Case 1
— Case 2
e Case 3

me = 422 ,

m
1

[Denzler, McCann, 2005]
[BBDGYV, 2009] [BDGV, 2010] [JD, Toscani, 2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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A variational point of view on stability Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Stability in Gagliardo-Nirenberg-Sobolev inequalities Initial and asymptotic time layers

Initial and asymptotic time layers

> Asymptotic time layer: constraint, spectral gap and improved entropy —
entropy production inequality

o> Initial time layer: the carré du champ inequality and a backward
estimate

J. Dolbeault Stability in GNS inequalities



Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

The asymptotic time layer improvement

Linearized free energy and linearized Fisher information
F[g]::mf g2 B> Mdx and I[g]::m(l—m)f IVg|? B dx
2 Jrd Rd

Hardy-Poincaré inequality. Let d =1, me (m1,1) and g € L?(R?, 8%~™ dx)
such that Vg € L2(R?, B dx), [pd g B> M dx =0and [paxg B> Mdx =0

l[g] =4aF[g] where a=2-d(1-m)

Proposition

Let me(my,1) ifd=2, me(1/3,1) ifd=1,n=2(dm-d+1) and
x=m/(266+56m). If [pavdx =4, [paxvdx=0 and

(1-e)B=vs(l+e)RB

for some € € (0,xn), then
G|z (4+n)F|v]
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Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities
Fast diffusion equation and entropy methods The fast diffusion equation in self-similar variables
Initial and asymptotic time layers

The initial time layer improvement: backward estimate

Hint: for some strictly convex function ¢ with w(0) = v’(0) = 0, we have
I-4F =4 (y(F)-F)=0

Far from the equality case (i.e., close to an initial datum away from the
Barenblatt solutions) for (FDE), we expect some improvement

[ I

Rephrasing the carré du champ method, 2|[v] := F] is such that
d2
—=2(2-4
7 =2(2-4)

Assume that m> my and v is a solution to (r FDE) with nonnegative
initial datum vy. If for some >0 and t, >0, we have 2[v(t4,")] =4+,
then

2[v(t,")] =4+ Vite[0,t]

4+n-nettx
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Stability in
Gagliardo-Nirenberg-Sobolev
inequalities
Our strategy

Choosde > 0, small enough

Get a threshold time ty (€)

0 3 txl€ . t
| Backward estimate | Forward estimate
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The threshold time

and the uniform convergence
in relative error

> The regularity results allow us to glue the initial time layer estimates
with the asymptotic time layer estimates

The improved entropy — entropy production inequality holds for any time
along the evolution along (r FDE)

(and in particular for the initial datum)
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A variational point of view on stability The threshold time and the improved entropy - entropy production inequality (subcr
Fast diffusion equation and entropy methods First stability results (subcritical case)
Stability in Gagliardo-Nirenberg-Sobolev inequalities Stability in Sobolev’s inequality (critical case)

If v is a solves (r FDE) for some nonnegative initial datum vg € L1 (R9)
satisfying
d(m-m¢)
supr (I-m f vodx < A<oo (Ha)
r>0 Ix|>r

then
(1-e)B=v(t,)<s(1+e)B Vt=t,

for some explicit t, depending only on € and A
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A variational point of view on stability The threshold time and the improved entropy - entropy production inequality (subcr
Fast diffusion equation and entropy methods First stability results (subcritical case)
Stability in Gagliardo-Nirenberg-Sobolev inequalities Stability in Sobolev’s inequality (critical case)

Large time asymptotics and Barenblatt solutions

ou 3
ot
admits the self-similar Barenblatt solution

+1/(1-m)

Au™ (FDE)

B(t,x) = o
t

1/(1-m)
[bo ~pmEm T b1 |X|2]

where p=2-d(1-m)>0, such that

Jimllu(t) = B(t)lla(gay =0 and tﬂrpootd/“ lu(t) = B(t)ll0o(ray =0
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The threshold time and the improved entropy - entropy production inequality (subcr
First stability results (subcritical case)
Stability in Gagliardo-Nirenberg-Sobolev inequalities Stability in Sobolev’s inequality (critical case)

The uniform convergence in relative error is a matter of tails

We are interested in the convergence in relative error, i.e., the

convergence of

u(t,x) - B(t,x)
B(t,x)

with J# = [pa up dx. If the initial data is up(x)=(1+ x|2)=m/(1=m) then
the solution of (FDE) satisfies

1 1+t)Tm
cu(tx) s DT

[(ct+1/m) 4 2| (1+t+1x12)Tm
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The threshold time and the improved entropy - entropy production inequality (subcr
First stability results (subcritical case)
Stability in Gagliardo-Nirenberg-Sobolev inequalities Stability in Sobolev’s inequality (critical case)

Global Harnack Principle

The Global Harnack Principle holds if for some t >0 large enough
B, (t—71,x) < u(t,x) < B, (t+712,x) (GHP)

[Vazquez, 2003], [Bonforte, Vazquez, 2006]: (GHP) holds if ug < le_ﬁ
[Vazquez, 2003], [Bonforte, Simonov, 2020]: (GHP) holds if

Alug] := supRﬁ_d[ |ug| dx < co
R>0 Rd\BR(O)

[Bonforte, Simonov, 2020] If M + A[ug] < oo, then

)-8

lim B()

t—oo
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Uniform convergence in relative error

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that me (my,1) if d =2,
me(1/3,1) ifd=1 and let e €(0,1/2), small enough, A>0, and G >0
be given. There exists an explicit threshold time T =0 such that, if u is a
solution of E
u

U _Aym FDE

3 = A (FDE)
with nonnegative initial datum ug € LX(RY) satisfying

d(m-mc)

Alug] =supr @-m f updx <A<oo (Ha)
[x|>r

r>0

Jpd Uo dx = [pa Bdx = 4 and F[ug) < G, then

u(t,x)
sup -1
xeRd B(t’X)

<e¢ Vt=T
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The threshold time

Let me (my,1) ifd=2, me(1/3,1) ifd=1, e€(0,emq), A>0and G>0

T:C*1+A1‘:’+G%
€
where a = %2:—? a=d(m-mc) and 9=v/(d+v)
cx=ci(md)= sup max{exi(e,m), e?xa(e, m), ex3(e, m)}
€€(0,6m,d)
8c 23-my
Kl(e’m)'_max{(ln)l—m-l’1—(1-g)l—m}
(4a)* 1 K? B 8al
x2(g,m):= =T and «3(e,m):= —(A—om
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Improved entropy — entropy
production inequality
(subcritical case)
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Theorem

Let me(my,1) ifd=2, me(1/2,1) ifd=1, A>0 and G>0. Then
there is a positive number { such that

Flv] = (4+) F|v]

for any nonnegative function v € L1(R?) such that Z[v]=G,
Jpa vdx =, [paxvdx=0 and v satisfies (Ha)

We have the asymptotic time layer estimate
1 1
€€(0,2¢&4), Exi= 5 min{emq, xn} with t,=t.(e)= 5 log R(T)

(1-e)B=<v(t,)=s(l+e)B Vt=t,
and, as a consequence, the initial time layer estimate

4ne—4t*
ﬂ[V(t,.)]Z(4+()g/’~[V(f,.)] VtE[O,t*] where (Zm
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Two consequences

(=Z(AZlu), Z(AG):=

2
(x _:4nca( & )a
1+ A2 o 7" 4+ (2ac,

> Improved decay rate for the fast diffusion equation in rescaled variables

Let me (my,1) ifd=2, me(1/2,1) ifd=1, A>0and G>0. Ifv is a
solution of (r FDE) with nonnegative initial datum vy € L1(R?) such that
Fw) =G, [pdvodx =4, [psxvodx =0 and vy satisfies (Ha), then

Flv(t,)] < Flwle #Dt vi=0

> The stability in the entropy - entropy production estimate
F|v]-4F|v] = Z[v] also holds in a stronger sense

V] - 4F[v] = 4L+(f[v]
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Stability results
(subcritical case)

> We rephrase the results obtained by entropy methods in the language of
stability a la Bianchi-Egnell

Subcritical range
p*=+ooifd=1or2, p*=ﬁifd23
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2p
I\ G 5(d-a) 1
._ 2d1([f]p71 Hf\lgil d-p(d-4) __,ﬂﬁ
Alf] '_( -1 |VFI3 UL 112
d-p(d-4)
Alf]:= e Sup,sgf P I flxl>r|f(x+Xf)|2pdx
A[f] P 1T ||f|\2f;

£1P _ f12P
E[f]:=ff’;fw(—;[£]lp frrl_grtl_ L2 gl P(—“A[[}]Z f2p—g2p))dx

S[f]:= 525 ey Z (AL EIF])

Letd=1, pe(1,p*)
If f e Wp(RY):={f e L2P(RY) : VF e L2(RY), |x|FP e L2(RY)},

(1918 ||f||,,+1) = (on I1f12,)°P7 = S[f] IF1557 E[f]
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With #gns = C(p, d) %égg Y = ‘122%‘5‘_1;)2), consider the deficit functional

d—p(d-2
8[f]:=(p—1)? ||w||§+4% IFIPY] = Hans 11557

Let d=1 and pe(1,p*). There is an explicit € = €[f] such that, for any
f e L2P(RY, (1+1x1%) dx) such that Vf e L>(RY) and A[f?P] < oo,

2
5[F] = 6[f] inff |(p-1) V7 + PV P dx
Qe Jrd

= The dependence of €[] on A[f?P] and % [£2P] is explicit and does not
degenerate if f € M

= Can we remove the condition A[f2P] < 0o ?
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Stability in Sobolev’s inequality
(critical case)

> A constructive stability result

> The main ingredient of the proof
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A constructive stability result

Let2p* =2d/(d-2)=2%d=3and

Wor (RY) = {F e LPL(RY) : VF e L2(RY), IxIFP" € L2(RY)}

Theorem

Let d =3 and A>0. Then for any nonnegative f € #,«(R?) such that

f(l,x,lxlz)frdx:f (1,x,|x|2)gdx and suprdf 2 dx< A
R R [x|>r

r>0

we have

dx

d 2
5[f];=||w||§—s§||f||§,,_4 o fRd| %rvg_ﬁ|
*

Ex(A)=C, (1+A1/(2d))71 and €, >0 depends only on d
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We can remove the normalization of f, use the r.h.s. to measure the
distance to the Aubin-Talenti manifold of optimal functions (in relative
Fisher information) and obtain for

A[f]::iggrdfr>0|f|2*(x+xf) and  Z[f]:= (1+ w1 ALF17 A[F])

the Bianchi-Egnell type result

¢, Z[f]

o[f] = 2+ 7] éjenggtf[flg]

with x¢, A[f] and p[f] as in the subcritical case
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Extending the subcritical result in the critical case

To improve the spectral gap
for m = m;, we need to ad-
just the Barenblatt function

B(x)= A" (x/\/I) in order
to match [ga Ix|2vdx where the

function v solves (rFDE) or to
further rescale v according to

v(t,x) = = W(t+‘[(t), x ),

m(t)d %(t) 0 m
dr _ (1 2 - (m-mc) _ _ 221(¢)
E_(T*prq vdx) ~1, 7(0)=0 and R(t)=e

t— A(t) and t — 1(t) are bounded on R*
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These slides can be found at

http://www.ceremade.dauphine.fr/ ~dolbeaul/Lectures/
> Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/ ~dolbeaul/Preprints/list/
> Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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