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About entropy in physics

Entropy has been introduced as a state function in thermodynamics
by R. Clausius in 1865, in the framework of the second law of
thermodynamics, in order to interpret the the results of S. Carnot

A statistical physics approach: Boltzmann’s formula (1877) defines
the entropy of a systems in terms of a counting of the micro-states of
a physical system

Boltzmann’s equation: ∂tf + v · ∇xf = Q(f, f)

describes the evolution of a gas of particles having binary collisions at
the kinetic level f is a time dependent distribution function

(probability density) defined on the phase space R
d × R

d, thus a
function of time t, position x and velocity v. The entropy
H[f ] :=

∫∫
Rd×Rd f log f dx dv measures the irreversibility: H-Theorem

(1872)
d

dt
H[f ] =

∫∫

Rd×Rd

Q(f, f) log f dx dv ≤ 0

Other notions of entropy:

Shannon entropy in information theory, entropy in probability
theory (with reference to an arbitrary measure)

Other approaches: Carathéodory (1908), Lieb-Yngvason (1997)
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About entropy in partial differential equations

In kinetic theory, entropy is one of the few a priori estimates
available: it has been used for producing existence results [DiPerna,
Lions], compactness results with application to hydrodynamic limits
[Bardos, Golse, Levermore, Saint-Raymond], convergence of
numerical schemes, etc.

Nash, Lax, DiPerna: regularity for parabolic equations,
hydodynamics, compensated-compactness, geometry, etc.

Modeling issues: entropy estimates are compatible with other
physical estimates. Exponential convergence is an issue in physics
(time-scales), for numerics, for multi-scale analysis

For the last 10 years, it has motivated a very large number of studies
in the area of nonlinear diffusions, systems of PDEs, in connection
with probability, gradient flow and mass transportation techniques

It can be used to obtain rates of decay or intermediate aymptotics, in
connection with functional inequalities

Entropy (a loose definition): a special kind of Lyapunov functional that
combines well with other a priori estimates and can be used to investigate
the large time behaviour
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Heat equation and entropy
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Consider the heat equation on the euclidean space R
d

∂u

∂t
= ∆u , u|t=0 = u0

As t→ ∞, we know that u(t, x) ∼ G(t, x) := (4π t)−d/2 e−
|x|2

4 t . This is

easy to quantify in L∞ or in L2. How to give (sharp) estimates in L1 ?

Assume that u0 ≥ 0, u0 (1 + |x|2), u0 log u0 ∈ L1(Rd) and consider the
entropy

S[u] :=

∫

Rd

u log u dx

Time-dependent rescaling and Fokker-Planck equation

Relative entropy (free energy), entropy – entropy production (relative Fisher

information) and logarithmic Sobolev inequality

Csiszár-Kullback inequality and intermediate asymptotics

The Bakry-Emery method for proving the logarithmic Sobolev inequality
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The entropy approach (1/2)

Time-dependent rescaling : the change of variables u(τ, y) = R−d v(t, y/R)

with t = logR, R = R(τ) =
√

1 + 2 τ changes the heat equation uτ = ∆u
into the Fokker-Planck equation:

vt = ∆v + ∇ · (x v) , v|t=0 = u0

with stationary solutions v∞(x) := (2π)−d/2M e−|x|2/2

Relative entropy (free energy): choose M =
∫

Rd u0 dx and define

Σ[v] :=

∫

Rd

v log

(
v

v∞

)
dx =

∫

Rd

v log v dx+
1

2

∫

Rd

|x|2 v dx+ Const

If v is a solution of the Fokker-Planck equation, then

d

dt
Σ[v] = −I[v]

where I[v] =
∫

Rd v
∣∣∇v

v + x
∣∣2 dx is the relative Fisher information

Observe that exponential decay holds by the logarithmic Sobolev inequality
[Gross 75]

Σ[v] ≤ 1

2
I[v]
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The entropy approach (2/2)

Large time behaviour is controlled by

Σ[v(t, ·)] =

∫

Rd

v log

(
v

v∞

)
dx ≤ Σ[u0] e

−2 t

Using the Csisz ár-Kullback inequality

‖v(t, ·) − v∞‖2
L1(Rd) ≤ 4M Σ[v] ≤ 4M Σ[u0] e

−2 t

we get intermediate asymptotics for the heat equation, namely

‖u(τ, ·) − u∞(τ, ·)‖2
L1(Rd) ≤ 4M Σ[v] ≤ 4M Σ[u0]

1 + 2 τ

with u∞(τ, y) := R−d v∞(logR, y/R), R = R(τ) =
√

1 + 2 τ

Remark: The Bakry-Emery method gives a proof of the logarithmic Sobolev
inequality based on the heat equation:

d

dt

(
I[v] − 2 Σ[v]

)
≤ 0
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Sharp rates of decay of
solutions to the nonlinear fast

diffusion equation
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Fast diffusion equations: outline

Introduction

Fast diffusion equations: entropy methods and
Gagliardo-Nirenberg inequalities [del Pino, J.D.]

Fast diffusion equations: the finite mass regime

Fast diffusion equations: the infinite mass regime

Relative entropy methods and linearization

the linearization of the functionals approach: [Blanchet, Bonforte,
J.D., Grillo, Vázquez]

sharp rates: [Bonforte, J.D., Grillo,Vázquez]

An improvement based on the center of mass: [Bonforte, J.D.,
Grillo, Vázquez]

An improvement based on the variance: [J.D., Toscani]
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Some references

J.D. and G. Toscani, Fast diffusion equations: matching large time
asymptotics by relative entropy methods, Preprint

Matteo Bonforte, J.D., Gabriele Grillo, and Juan-Luis Vázquez.
Sharp rates of decay of solutions to the nonlinear fast diffusion
equation via functional inequalities, submitted to Proc. Nat. Acad.
Sciences

A. Blanchet, M. Bonforte, J.D., G. Grillo, and J.-L. Vázquez.
Asymptotics of the fast diffusion equation via entropy estimates.
Archive for Rational Mechanics and Analysis, 191 (2): 347-385, 02,
2009

A. Blanchet, M. Bonforte, J.D., G. Grillo, and J.-L. Vázquez.
Hardy-Poincaré inequalities and applications to nonlinear diffusions.
C. R. Math. Acad. Sci. Paris, 344(7): 431-436, 2007

M. Del Pino and J.D., Best constants for Gagliardo-Nirenberg
inequalities and applications to nonlinear diffusions. J. Math. Pures
Appl. (9), 81 (9): 847-875, 2002
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Fast diffusion equations: entropy methods

ut = ∆um x ∈ R
d , t > 0

Self-similar (Barenblatt) function: U(t) = O(t−d/(2−d(1−m))) as t→ +∞
[Friedmann, Kamin, 1980] ‖u(t, ·) − U(t, ·)‖L∞ = o(t−d/(2−d(1−m)))

d−1

d

m

fast diffusion equation
porous media equation

heat equation

1d−2

d

global existence in L1extinction in finite time

Existence theory, critical values of the parameter m
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Intermediate asymptotics for fast diffusion & porous media

Some references
Generalized entropies and nonlinear diffusions (EDP, uncomplete):
[Del Pino, J.D.], [Carrillo, Toscani], [Otto], [Juengel, Markowich, Toscani],
[Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler, J.D., Esteban],
[Markowich, Lederman], [Carrillo, Vázquez], [Cordero-Erausquin, Gangbo,
Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub],...
[del Pino, Sáez], [Daskalopulos, Sesum]...

Some methods
1) [J.D., del Pino] relate entropy and Gagliardo-Nirenberg inequalities
2) entropy – entropy-production method the Bakry-Emery point of view
3) mass transport techniques
4) hypercontractivity for appropriate semi-groups
5) the approach by linearization of the entropy

... Fast diffusion equations and
Gagliardo-Nirenberg inequalities

We follow the same scheme as for the heat equation
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Time-dependent rescaling, Free energy

Time-dependent rescaling : Take u(τ, y) = R−d(t) v (t, y/R(τ)) where

∂R

∂τ
= Rd(1−m)−1 , R(0) = 1 , t = logR

The function v solves a Fokker-Planck type equation

∂v

∂t
= ∆vm + ∇ · (x v) , v|τ=0 = u0

[Ralston, Newman, 1984] Lyapunov functional: Generalized entropy or
Free energy

Σ[v] :=

∫

Rd

(
vm

m− 1
+

1

2
|x|2v

)
dx− Σ0

Entropy production is measured by the Generalized Fisher information

d

dt
Σ[v] = −I[v] , I[v] :=

∫

Rd

v

∣∣∣∣
∇vm

v
+ x

∣∣∣∣
2

dx
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Relative entropy and entropy production

Stationary solution: choose C such that ‖v∞‖L1 = ‖u‖L1 = M > 0

v∞(x) :=

(
C +

1 −m

2m
|x|2
)−1/(1−m)

+

Relative entropy : Fix Σ0 so that Σ[v∞] = 0. The entropy can be put in an
m-homogeneous form: for m 6= 1,

Σ[v] =
∫

Rd ψ
(

v
v∞

)
vm
∞ dx with ψ(t) = tm−1−m (t−1)

m−1

Entropy – entropy production inequality

Theorem 1. d ≥ 3, m ∈ [d−1
d ,+∞), m > 1

2 , m 6= 1

I[v] ≥ 2 Σ[v]

Corollary 2. A solution v with initial data u0 ∈ L1
+(Rd) such that |x|2 u0 ∈ L1(Rd),

um
0 ∈ L1(Rd) satisfies

Σ[v(t, ·)] ≤ Σ[u0] e
− 2 t
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An equivalent formulation: Gagliardo-Nirenberg inequali ties

Σ[v] =
∫

Rd

(
vm

m−1 + 1
2 |x|2v

)
dx− Σ0 ≤ 1

2

∫
Rd v

∣∣∇vm

v + x
∣∣2 dx = 1

2 I[v]

Rewrite it with p = 1
2m−1 , v = w2p, vm = wp+1 as

1

2

(
2m

2m− 1

)2 ∫

Rd

|∇w|2dx+

(
1

1 −m
− d

)∫

Rd

|w|1+pdx+K ≥ 0

1 < p = 1
2m−1 ≤ d

d−2 ⇐⇒ Fast diffusion case: d−1
d ≤ m < 1 ; K < 0

0 < p < 1 ⇐⇒ Porous medium case: m > 1, K > 0

for some γ, K = K0

(∫
Rd v dx =

∫
Rd w

2p dx
)γ

w = w∞ = v
1/2p
∞ is optimal

m = m1 := d−1
d : Sobolev, m→ 1: logarithmic Sobolev

Theorem 3. [Del Pino, J.D.] Assume that 1 < p ≤ d
d−2 (fast diffusion case) and d ≥ 3

‖w‖L2p(Rd) ≤ A ‖∇w‖θ
L2(Rd) ‖w‖1−θ

Lp+1(Rd)

A =
(

y(p−1)2

2πd

) θ
2
(

2y−d
2y

) 1
2p
(

Γ(y)

Γ(y− d
2 )

) θ
d

, θ = d(p−1)
p(d+2−(d−2)p) , y = p+1

p−1
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Intermediate asymptotics

Σ[v] ≤ Σ[u0] e
−2τ+ Csiszár-Kullback inequalities

Undo the change of variables, with

u∞(t, x) = R−d(t) v∞ (x/R(t))

Theorem 4. [Del Pino, J.D.] Consider a solution of ut = ∆um with initial data

u0 ∈ L1
+(Rd) such that |x|2 u0 ∈ L1(Rd), um

0 ∈ L1(Rd)

Fast diffusion case: d−1
d < m < 1 if d ≥ 3

lim sup
t→+∞

t
1−d(1−m)
2−d(1−m) ‖um − um

∞‖L1 < +∞

Porous medium case: 1 < m < 2

lim sup
t→+∞

t
1+d(m−1)
2+d(m−1) ‖ [u− u∞]um−1

∞ ‖L1 < +∞
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Fast diffusion equations: the finite mass
regime

Can we consider m < m1 ?

If m ≥ 1: porous medium regime or m1 := d−1
d ≤ m < 1, the decay of

the entropy is governed by Gagliardo-Nirenberg inequalities, and to
the limiting case m = 1 corresponds the logarithmic Sobolev
inequality

Displacement convexity holds in the same range of exponents,
m ∈ (m1, 1), as for the Gagliardo-Nirenberg inequalities

The fast diffusion equation can be seen as the gradient flow of the
generalized entropy with respect to the Wasserstein distance if

m > m̃1 := d
d+2

If mc := d−2
d ≤ m < m1, solutions globally exist in L1 and the

Barenblatt self-similar solution has finite mass
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...the Bakry-Emery method
We follow the same scheme as for the heat equation

Consider the generalized Fisher information

I[v] :=

∫

Rd

v |Z|2 dx with Z :=
∇vm

v
+ x

and compute

d

dt
I[v(t, ·)]+2 I[v(t, ·)] = −2 (m−1)

∫

Rd

um (divZ)2 dx−2
d∑

i, j=1

∫

Rd

um (∂iZ
j)2 dx

the Fisher information decays exponentially: I[v(t, ·)] ≤ I[u0] e
− 2 t

limt→∞ I[v(t, ·)] = 0 and limt→∞ Σ[v(t, ·)] = 0

d
dt

(
I[v(t, ·)] − 2 Σ[v(t, ·)]

)
≤ 0 means I[v] ≥ 2 Σ[v]

[Carrillo, Toscani], [Juengel, Markowich, Toscani], [Carrillo, Juengel,
Markowich, Toscani, Unterreiter], [Carrillo, Vázquez]

I[v] ≥ 2 Σ[v] holds for any m > mc
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Fast diffusion: finite mass regime

Inequalities...

d−1

d

m

1d−2

d

global existence in L1

Bakry-Emery method (relative entropy)

vm ∈ L1, x 2
∈ L1

Sobolev

Gagliardo-Nirenberg

logarithmic Sobolev

d

d+2

v

... existence of solutions of ut = ∆um
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More references: Extensions and related results

Mass transport methods: inequalities / rates [Cordero-Erausquin,
Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh,
Ghoussoub, Kang]

General nonlinearities [Biler, J.D., Esteban], [Carrillo-DiFrancesco],
[Carrillo-Juengel-Markowich-Toscani-Unterreiter] and gradient flows
[Jordan-Kinderlehrer-Otto], [Ambrosio-Savaré-Gigli],
[Otto-Westdickenberg] [J.D.-Nazaret-Savaré], etc

Non-homogeneous nonlinear diffusion equations [Biler, J.D., Esteban],
[Carrillo, DiFrancesco]

Extension to systems and connection with Lieb-Thirring inequalities
[J.D.-Felmer-Loss-Paturel, 2006], [J.D.-Felmer-Mayorga]

Drift-diffusion problems with mean-field terms. An example: the
Keller-Segel model [J.D-Perthame, 2004], [Blanchet-J.D-Perthame,
2006], [Biler-Karch-Laurençot-Nadzieja, 2006],
[Blanchet-Carrillo-Masmoudi, 2007], etc

... connection with linearized problems [Markowich-Lederman],
[Carrillo-Vázquez], [Denzler-McCann], [McCann, Slepčev], [Kim,
McCann], [Koch, McCann, Slepčev]
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Fast diffusion equations: the infinite mass
regime – Linearization of the entropy

If m > mc := d−2

d
≤ m < m1, solutions globally exist in L1(Rd) and the

Barenblatt self-similar solution has finite mass.

For m ≤ mc, the Barenblatt self-similar solution has infinite mass

Extension to m ≤ mc ? Work in relative variables !

d−1

d

m

1d−2

d

global existence in L1

Bakry-Emery method (relative entropy)

vm ∈ L1, x 2
∈ L1

d

d+2

v

v0, VD ∈ L1

v0 − VD∗
∈ L1

VD1
− VD0

∈ L1

Σ[VD1
VD0

] < ∞

Σ[VD1
VD0

] = ∞

m1

d−4

d−2

VD1
− VD0

6∈ L1

mcm∗

Gagliardo-Nirenberg
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Entropy methods and linearization: intermediate asymptot ics, vanishing

[A. Blanchet, M. Bonforte, J.D., G. Grillo, J.L. Vázquez], [J.D., Toscani]

work in relative variables

use the properties of the flow

write everything as relative quantities (to the Barenblatt profile)

compare the functionals (entropy, Fisher information) to their
linearized counterparts

=⇒ Extend the domain of validity of the method to the price of a
restriction of the set of admissible solutions

Two parameter ranges: mc < m < 1 and 0 < m < mc, where mc := d−2
d

mc < m < 1, T = +∞: intermediate asymptotics, τ → +∞
0 < m < mc, T < +∞: vanishing in finite time limτրT u(τ, y) = 0

Alternative approach by comparison techniques: [Daskalopoulos, Sesum]
(without rates)
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Fast diffusion equation and Barenblatt solutions

∂u

∂τ
= −∇ · (u∇um−1) =

1 −m

m
∆um (1)

with m < 1. We look for positive solutions u(τ, y) for τ ≥ 0 and y ∈ R
d,

d ≥ 1, corresponding to nonnegative initial-value data u0 ∈ L1
loc(dx)

In the limit case m = 0, um/m has to be replaced by log u
Barenblatt type solutions are given by

UD,T (τ, y) :=
1

R(τ)d

(
D + 1−m

2 d |m−mc|

∣∣ y
R(τ)

∣∣2
)− 1

1−m

+

If m > mc := (d− 2)/d, UD,T with R(τ) := (T + τ)
1

d (m−mc) describes

the large time asymptotics of the solutions of equation (1) as τ → ∞
(mass is conserved)

If m < mc the parameter T now denotes the extinction time and

R(τ) := (T − τ)−
1

d (mc−m)

If m = mc take R(τ) = eτ , UD,T (τ, y) = e−d τ
(
D + e−2τ |y|2/2

)−d/2

Two crucial values of m: m∗ := d−4
d−2 < mc := d−2

d < 1
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Rescaling

A time-dependent change of variables

t := 1−m
2 log

(
R(τ)
R(0)

)
and x :=

√
1

2 d |m−mc|

y

R(τ)

If m = mc, we take t = τ/d and x = e−τ y/
√

2

The generalized Barenblatt functions UD,T (τ, y) are transformed into

stationary generalized Barenblatt profiles VD(x)

VD(x) :=
(
D + |x|2

) 1
m−1 x ∈ R

d

If u is a solution to (1), the function v(t, x) := R(τ)d u(τ, y) solves

∂v

∂t
= −∇ ·

[
v∇

(
vm−1 − V m−1

D

)]
t > 0 , x ∈ R

d (2)

with initial condition v(t = 0, x) = v0(x) := R(0)−d u0(y)
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Goal
We are concerned with the sharp rate of convergence of a solution v of the
rescaled equation to the generalized Barenblatt profile VD in the whole
range m < 1. Convergence is measured in terms of the relative entropy

E [v] :=
1

m− 1

∫

Rd

[
vm − V m

D −mV m−1
D (v − VD)

]
dx

for all m 6= 0, m < 1

Assumptions on the initial datum v0

(H1) VD0 ≤ v0 ≤ VD1 for some D0 > D1 > 0

(H2) if d ≥ 3 and m ≤ m∗, (v0 − VD) is integrable for a suitable
D ∈ [D1, D0]

The case m = m∗ = d−4
d−2 will be discussed later

If m > m∗, we define D as the unique value in [D1, D0] such that∫
Rd(v0 − VD) dx = 0

Our goal is to find the best possible rate of decay of E [v] if v solves (2)
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Sharp rates of convergence

Theorem 5. [Bonforte, J.D., Grillo, Vázquez] Under Assumptions (H1)-(H2), if m < 1 and
m 6= m∗, the entropy decays according to

E [v(t, ·)] ≤ C e−2 (1−m) Λ t ∀ t ≥ 0

The sharp decay rate Λ is equal to the best constant Λα,d > 0 in the Hardy–Poincaré

inequality of Theorem 16 with α := 1/(m− 1) < 0
The constantC > 0 depends only on m, d,D0, D1, D and E [v0]

Notion of sharp rate has to be discussed

Rates of convergence in more standard norms: Lq(dx) for

q ≥ max{1, d (1 −m)/ [2 (2−m) + d (1 −m)]}, or Ck by interpolation

By undoing the time-dependent change of variables, we deduce results
on the intermediate asymptotics of (1), i.e. rates of decay of
u(τ, y) − UD,T (τ, y) as τ → +∞ if m ∈ [mc, 1), or as τ → T if

m ∈ (−∞,mc)
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Strategy of proof

Assume that D = 1 and consider dµα := hα dx, hα(x) := (1 + |x|2)α, with

α = 1/(m− 1) < 0, and Lα,d := −h1−α div [hα ∇· ] on L2(dµα):∫
Rd f (Lα,d f) dµα−1 =

∫
Rd |∇f |2 dµα

A first order expansion of v(t, x) = hα(x)
[
1 + ε f(t, x)h1−m

α (x)
]

solves

∂f

∂t
+ Lα,d f = 0

Theorem 6. Let d ≥ 3. For any α ∈ (−∞, 0) \ {α∗}, there is a positive constant Λα,d

such that

Λα,d

∫

Rd

|f |2 dµα−1 ≤
∫

Rd

|∇f |2 dµα ∀ f ∈ H1(dµα)

under the additional condition
∫

Rd f dµα−1 = 0 if α < α∗

Λα,d =





1
4 (d− 2 + 2α)2 if α ∈

[
−d+2

2 , α∗

)
∪ (α∗, 0)

− 4α− 2 d if α ∈
[
−d,−d+2

2

)

− 2α if α ∈ (−∞,−d)
[Denzler, McCann], [Blanchet, Bonforte, J.D., Grillo, Vázquez]
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Proof: Relative entropy and relative Fisher information an d interpolation

For m 6= 0, 1, the relative entropy of J. Ralston and W.I. Newmann and
the generalized relative Fisher information are given by

F [w] := m
1−m

∫
Rd

[
w − 1 − 1

m

(
wm − 1

)]
V m

D dx

I[w] :=
∫

Rd

∣∣∣ 1
m−1 ∇

[
(wm−1 − 1)V m−1

D

] ∣∣∣
2

v dx

where w = v
VD

. If v is a solution of (2), then d
dtF [w(t, ·)] = −I[w(t, ·)]

Linearization: f := (w − 1)V m−1
D , h1(t) := infRdw(t, ·),

h2(t) := sup
Rdw(t, ·) and h := max{h2, 1/h1}. We notice that h(t) → 1 as

t→ +∞

hm−2

∫

Rd

|f |2 V 2−m
D dx ≤ 2

m
F [w] ≤ h2−m

∫

Rd

|f |2 V 2−m
D dx∫

Rd

|∇f |2 VD dx ≤ [1 +X(h)] I[w] + Y (h)

∫

Rd

|f |2 V 2−m
D dx

where X and Y are functions such that limh→1X(h) = limh→1 Y (h) = 0
h

2(2−m)
2 /h1 ≤ h5−2m =: 1 +X(h)[
(h2/h1)

2(2−m) − 1
]
≤ d (1 −m)

[
h4(2−m) − 1

]
=: Y (h)
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Proof (continued)

A new interpolation inequality: for h > 0 small enough

F [w] ≤ h2−m [1 +X(h)]

2
[
Λα,d −mY (h)

] m I[w]

Another interpolation allows to close the system of estimates: for some C,
t large enough,

0 ≤ h− 1 ≤ CF
1−m

d+2−(d+1)m

Hence we have a nonlinear differential inequality

d

dt
F [w(t, ·)] ≤ −2

Λα,d −mY (h)[
1 +X(h)

]
h2−m

F [w(t, ·)]

A Gronwall lemma (take h = 1 + CF
1−m

d+2−(d+1)m ) then shows that

lim sup
t→∞

e 2Λα,d tF [w(t, ·)] < +∞
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Plots (d = 5)

λ01 = −4α− 2 d

λ10 = −2α

λ11 = −6α− 2 (d + 2)

λ02 = −8α− 4 (d + 2)

λ20 = −4α

λ30

λ21 λ12

λ03

λcont
α,d

:= 1
4(d + 2α− 2)2

α = −d

α = −(d + 2)

α = −d+2
2

α = −d−2
2

α = −d+6
2

α

0

Essential spectrum of Lα,d

α = −
√
d− 1 − d

2

α = −
√
d− 1 − d+4

2

α = − − d+2
2

√
2 d

(d = 5)

Spectrum of Lα,d

mc = d−2
d

m1 = d−1
d

m2 = d+1
d+2

m̃1 = d

d+2

m̃2 = d+4
d+6

m

Spectrum of 
(1 −m)L1/(m−1),d

(d = 5)

Essential spectrum

of (1

1

−m)L1/(m−1),d

2

4

6
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Remarks, improvements

Optimal constants in interpolation inequalities does not mean
optimal asymptotic rates

The critical case (m = m∗, d ≥ 3): Slow asymptotics [Bonforte, Grillo,

Vázquez] If |v0 − VD| is bounded a.e. by a radial L1(dx) function,

then there exists a positive constant C∗ such that E [v(t, ·)] ≤ C∗ t−1/2

for any t ≥ 0

Can we improve the rates of convergence by imposing restrictions on
the initial data ?

[Carrillo, Lederman, Markowich, Toscani (2002)] Poincaré
inequalities for linearizations of very fast diffusion equations
(radially symmetric solutions)

Formal or partial results: [Denzler, McCann (2005)], [McCann,
Slepčev (2006)], [Denzler, Koch, McCann (announcement)],

Faster convergence ?

Improved Hardy-Poincaré inequality: under the conditions∫
Rd f dµα−1 = 0 and

∫
Rd x f dµα−1 = 0 (center of mas),

Λ̃α,d

∫
Rd |f |2 dµα−1 ≤

∫
Rd |∇f |2 dµα

Next ? Can we kill other linear modes ?
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[Bonforte, J.D., Grillo, Vázquez] Assume that m ∈ (m1, 1), d ≥ 3. Under
Assumption (H1), if v is a solution of (2) with initial datum v0 such that∫

Rd x v0 dx = 0 and if D is chosen so that
∫

Rd(v0 − VD) dx = 0, then

E [v(t, ·)] ≤ C̃ e−γ(m) t ∀ t ≥ 0

with γ(m) = (1 −m) Λ̃1/(m−1),d

�m1 =
d

d+2

m1 =
d− 1

d

�m2 =
d+4

d+6

m2 =
d+1

d+2

4

2

m

1

mc =
d− 2

d

(d = 5)

γ (m)

0
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Higher order matching asymptotics
For some m ∈ (mc, 1) with mc := (d− 2)/d, we consider on R

d the fast
diffusion equation

∂u

∂τ
+ ∇ ·

(
u∇um−1

)
= 0

The strategy is easy to understand using a time-dependent rescaling and
the relative entropy formalism. Define the function v such that

u(τ, y + x0) = R−d v(t, x) , R = R(τ) , t = 1
2 logR , x =

y

R

Then v has to be a solution of

∂v

∂t
+ ∇ ·

[
v
(
σ

d
2 (m−mc) ∇vm−1 − 2x

)]
= 0 t > 0 , x ∈ R

d

with (as long as we make no assumption on R)

2σ− d
2 (m−mc) = R 1−d (1−m) dR

dτ

2. Relative entropy methods for nonlinear diffusion models – Fast diffusion – p. 34/72



Refined relative entropy

Consider the family of the Barenblatt profiles

Bσ(x) := σ− d
2

(
CM + 1

σ |x|2
) 1

m−1 ∀ x ∈ R
d (3)

Note that σ is a function of t: as long as dσ
dt 6= 0, the Barenblatt profile Bσ

is not a solution but we may still consider the relative entropy

Fσ[v] :=
1

m− 1

∫

Rd

[
vm −Bm

σ −mBm−1
σ (v −Bσ)

]
dx

Let us briefly sketch the strategy of our method before giving all details

The time derivative of this relative entropy is

d

dt
Fσ(t)[v(t, ·)] =

dσ

dt

(
d

dσ
Fσ[v]

)

|σ=σ(t)︸ ︷︷ ︸
choose it = 0

⇐⇒
Minimize Fσ[v] w.r.t. σ ⇐⇒

∫
Rd |x|2Bσ dx =

∫
Rd |x|2 v dx

+
m

m− 1

∫

Rd

(
vm−1 −Bm−1

σ(t)

) ∂v
∂t

dx

(4)
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Second step: the entropy / entropy production estimate

According to the definition of Bσ, we know that 2x = σ
d
2 (m−mc) ∇Bm−1

σ

Using the new change of variables, we know that

d

dt
Fσ(t)[v(t, ·)] = −mσ(t)

d
2 (m−mc)

1 −m

∫

Rd

v
∣∣∣∇
[
vm−1 −Bm−1

σ(t)

]∣∣∣
2

dx

Let w := v/Bσ and observe that the relative entropy can be written as

Fσ[v] =
m

1 −m

∫

Rd

[
w − 1 − 1

m

(
wm − 1

)]
Bm

σ dx

(Repeating) define the relative Fisher information by

Iσ[v] :=

∫

Rd

∣∣∣
1

m− 1
∇
[
(wm−1 − 1)Bm−1

σ

] ∣∣∣
2

Bσ w dx

so that
d

dt
Fσ(t)[v(t, ·)] = −m (1 −m)σ(t) Iσ(t)[v(t, ·)] ∀ t > 0

When linearizing, one more mode is killed and σ(t) scales out
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Improved rates of convergence

Theorem 7. Letm ∈ (m̃1, 1), d ≥ 2, v0 ∈ L1
+(Rd) such that vm

0 , |y|2 v0 ∈ L1(Rd)

E [v(t, ·)] ≤ C e−2 γ(m) t ∀ t ≥ 0

where

γ(m) =





((d−2) m−(d−4))2

4 (1−m) if m ∈ (m̃1, m̃2]

4 (d+ 2)m− 4 d if m ∈ [m̃2,m2]

4 if m ∈ [m2, 1)

m̃1 = d

d+2

m1 = d−1
d

m̃2 = d+4
d+6

m2 = d+1
d+2

4

2

m

1

mc = d−2
d

(d = 5)

γ(m)

0

Case 1

Case 2

Case 3

[Denzler, Koch, McCann], in progress
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More about homogeneity
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Algebraic rates vs. exponential decay
[J. Carrillo, J.D. , I. Gentil, A. Jüngel]

Consider the one dimensional porous medium/fast diffusion equation

∂u

∂t
= (um)xx , x ∈ S1 , t > 0 with u(·, t = 0) = u0 ≥ 0

The method also applies to the thin film equation ut = −(um uxxx)x

the Derrida-Lebowitz-Speer-Spohn (DLSS) equation ut = −(u (log u)xx)xx

Some references: [Cáceres, Carrillo, Toscani], [Gualdani, Jüngel,
Toscani], [Jüngel, Matthes], [Laugesen]

More entropies ? p ∈ (0,+∞), q ∈ R, v ∈ H1
+(S1), µp[v] :=

(∫
S1 v

1/p dx
)p

Σp,q[v] := 1
p q (p q−1)

[ ∫
S1 v

q dx− (µp[v])
q
]

if p q 6= 1 and q 6= 0

Σ1/q,q[v] :=
∫

S1 v
q log

(
vq

R

S1 vq dx

)
dx if p q = 1 and q 6= 0

Σp,0[v] := − 1
p

∫
S1 log

(
v

µp[v]

)
dx if q = 0
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Functional inequalities

Σp,q[v] is non-negative by convexity of u 7→ up q−1−p q (u−1)
p q (p q−1)

Proposition 8. Global functional inequalities: For all p ∈ (0,+∞) and q ∈ (0, 2), there

exists a positive constant κp,q such that, for any v ∈ H1
+(S1),

Σp,q[v]
2/q ≤ 1

κp,q

∫

S1

|v′|2 dx

Small entropies regime: For any p > 0, q ∈ R and ε0 > 0, there exists a positive

constantC such that, for any ε ∈ (0, ε0], if v ∈ H1
+(S1) is such that Σp,q[v] ≤ ε and

µp[v] = 1

Σp,q[v] ≤
1 + C

√
ε

8 p2 π2

∫

S1

|v′|2 dx
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Application to porous media: convergence rates

∂u

∂t
= (um)xx x ∈ S1, t > 0

With v := up, p := m+k
2 , q := k+1

p = 2 k+1
m+k , let E [u] := Σp,q[v]

E [u] =





1
k (k+1)

∫
S1

(
uk+1 − ūk+1

)
dx if k ∈ R \ {−1, 0}∫

S1 u log
(

u
ū

)
dx if k = 0

−
∫

S1 log
(

u
ū

)
dx if k = −1

Proposition 9. Let m ∈ (0,+∞), k ∈ R \ {−m}, q = 2 (k + 1)/(m+ k),

p = (m+ k)/2 and u be a smooth positive solution

i) Short-time Algebraic Decay: If m > 1 and k > −1, then

E [u(·, t)] ≤
[
E [u0]

−(2−q)/q +
2 − q

q
λ κp,q t

]−q/(2−q)

ii) Asymptotically Exponential Decay: If m > 0 and m+ k > 0, there exists C > 0
and t1 > 0 such that for t ≥ t1,

E [u(·, t)] ≤ E [u(·, t1)] exp

(
−8 p2 π2 λ ūp(2−q) (t− t1)

1 + C
√
E [u(·, t1)]

)
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The Bakry-Emery method revisited
[J.D., B. Nazaret, G. Savaré]

Consider a domain Ω ⊂ R
d, dγ = g dx, g = e−F and a generalized

Ornstein-Uhlenbeck operator: ∆gv := ∆v − DF · Dv

vt = ∆gv x ∈ Ω , t ∈ R
+

∇v · n = 0 x ∈ ∂Ω , t ∈ R
+

With s := vp/2 and α := (2 − p)/p, p ∈ (1, 2]

Ep(t) :=
1

p− 1

∫

Ω

[
vp − 1 − p (v − 1)

]
dγ

Ip(t) := 4
p

∫
Ω
|Ds|2 dγ

Kp(t) :=
∫
Ω
|∆gs|2 dγ + α

∫
Ω

∆gs
|Ds|2

s dγ

A simple computation shows that

d

dt
Ep(t) = −Ip(t) and

d

dt
Ip(t) = −8

p
Kp(t)
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An extension of the criterion of Bakry-Emery

Using the commutation relation [D,∆g] s = −D2F Ds, we get

∫

Ω

(∆gs)
2 dγ =

∫

Ω

|D2s|2 dγ+
∫

Ω

D2F Ds · Ds dγ−
d∑

i,j=1

∫

∂Ω

∂2
ijs ∂is nj g dHd−1

︸ ︷︷ ︸
≥0 if Ω is convex

Kp =

∫

Ω

|∆gs|2 dγ+4α

∫

Ω

∆gs |Dz|2 dγ ≥ (1−α)

∫

Ω

|D2s|2 dγ+

∫

Ω

V |Ds|2 dγ

with V (x) := inf
ξ∈Sd−1

(
D2F (x) ξ, ξ

)

Theorem 10. Let F ∈ C2(Ω), γ = e−F ∈ L1(Ω), and Ω be a convex domain in R
d.

If λ1(p) := inf

R

Ω

„

2
p−1

p |Dw|2+V |w|2
«

dγ
R

Ω
|w|2 dγ

is positive, then

Ip(t) ≤ Ip(0) e
−2 λ1(p) t

Ep(t) ≤ Ep(0) e
−2 λ1(p) t
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Generalized entropies

Consider the weighted porous media equation

vt = ∆gv
m

dγ is a probability measure, p ∈ (1, 2)

Em,p(t) :=
1

m+ p− 2

∫

Ω

[
vm+p−1 − 1

]
dγ

Im,p(t) := c(m, p)

∫

Ω

|Ds|2 dγ

Km,p(t) :=

∫

Ω

sβ(m−1) |∆gs|2 dγ + α

∫

Ω

sβ(m−1) ∆gs
|Ds|2
s

dγ

with v =: sβ, β := 1
p/2+m−1 , α := 2−p

p+2(m−1) and c(m, p) = 4 m (m+p−1)
(2m+p−2)2
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Adapting the Bakry-Emery method...

Written in terms of s = v1/β, the evolution is governed by

1

m
st = sβ(m−1)

[
∆gs+ α

|Ds|2
s

]

A computation shows that

d

dt
Em,p(t) := −Im,p(t)

1

m

d

dt
Im,p(t) := −2 c(m, p)Km,p(t)

Exactly as in the linear case, define for any θ ∈ (0, 1)

λ1(m, θ) := inf
w∈H1(Ω,dγ)\{0}

∫
Ω

(
(1 − θ) |Dw|2 + V |w|2

)
dγ

∫
Ω
|w|2 dγ
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The non-local condition

Assume that for some θ ∈ (0, 1), λ1(m, θ) > 0. Admissible parameters m
and p correspond to (m, p) ∈ Eθ, 1 < m < p+ 1, where the set Eθ is a
portion of an ellipse (grey area)

0.4 0.6 0.8 1.2 1.4 1.6

0.5

1

2

2.5

3

m

p

p=m−1

Eθ

E1
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Results for the porous media equation

Lemma 11. With the above notations, if Ω is convex and (m, p) ∈ Eθ are admissible,
then

I
4
3
m,p ≤ 1

3

[
4 c(m, p)

] 4
3 K

1
3

[
(m+ p− 2) Em,p + 1

] 4−3q
3(2−q)Km,p

Theorem 12. Under the above conditions there exists a positive constant κ which
depends on Em,p(0) such that any smooth solution u of the porous media equation
satisfies, for any t > 0

Im,p(t) ≤
Im,p(0)[

1 + κ
3

3
√

Im,p(0) t
]3

Em,p(t) ≤
3
[
Im,p(0)

] 8
3

2κ
[
1 + κ

3
3
√
Im,p(0) t

]2
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The gradient flow interpretation
[J.D., B. Nazaret, G. Savaré]

As in the Bakry-Emery approach (linear case) let p ∈ (1, 2] and define

Ep[v] :=
1

p− 1

∫

Rd

[
vp − 1 − p (v − 1)

]
dγ , E1[v] :=

∫

Rd

[
v log v − (v − 1)

]
dγ

with Ω = R
d and dγ(x) = (2π)−d/2 e−|x|2/2 dx (gaussian measure). Along

the flow associated to the Ornstein-Uhlenbeck equation

vt = ∆v − x · ∇v
we have found that Ep[v(t, ·)] ≤ Ep[v0] e

−2 t, which amounts to the

generalized Poincar é inequality [Beckner]

Ep[v] ≤
p

2

∫

Rd

vp−2 |∇v|2 dγ or

∫
Rd f

2 dγ −
(∫

Rd f
q dγ

)2/q

q − 2
≤
∫

Rd

|∇f |2 dγ

(take q = 2/p, vp = f2, q ∈ [1, 2))

Why do we have such a choice in the linear case ?
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Wasserstein distances

p > 1, µ0 and µ1 probability measures on R
d

Transport plans between µ0 and µ1 : Γ(µ0, µ1) is the set of

probability measures on R
d × R

d having µ0 and µ1 as marginals.

Wasserstein distance between µ0 ans µ1

W 2(µ0, µ1) = inf

{∫

Rd×Rd

|x− y|2 dΣ(x, y) : Σ ∈ Γ(µ0, µ1)

}

The Benamou-Brenier characterization (2000)

W 2(µ0, µ1) = inf

{∫ 1

0

∫

Rd

|vt|2ρt dx dt : (ρt,vt)t∈[0,1] admissible

}

where admissible paths (ρt,vt)t∈[0,1] are such that

∂tρt + ∇ · (ρtvt) = 0 , ρ0 = µ0 , ρ1 = µ1
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Gradient flows

[Jordan, Kinderlehrer, Otto 98] : Formal Riemannian structure on

P(Rd): the McCann interpolant is a geodesic. For an integral
functional such as

E1[ρ] :=

∫

Rd

F (ρ(x)) dx

the gradient flow of E1 w.r.t. W = W1 is

∂ρ

∂t
= ∇ ·

[
ρ∇ (F ′(ρ))

]

[Ambrosio, Gigli, Savaré 05] : Rigorous framework for JKO’s calculus
in the framework of length spaces (based on the optimal
transportation)

[Otto, Westdickenberg 05] : Use the Brenier-Benamou formulation to
prove

W 2(µt
0, µ

t
1) ≤W 2(µ0, µ1)

along the heat flow on a compact Riemannian manifold
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A generalization of the Benamou-Brenier approach

Given a function h on R
+, define the admissible paths by

{
∂tρt + ∇ · (h(ρt)vt) = 0

ρ0 = µ0 , ρ1 = µ1

and consider the distance

W 2
p (µ0, µ1) = inf

{∫ 1

0

∫

Rd

|vt|2 hp(ρt) dx dt : (ρt,vt)t∈[0,1] admissible

}

hp(ρ) = ρ2−p , 1 ≤ p ≤ 2

p = 1 : Wasserstein case

p = 2 : homogeneous Sobolev distance on Ẇ−1,2

‖µ1 − µ0‖Ẇ−1,2 = sup

{∫

Rd

ξ d(µ1 − µ0) : ξ ∈ C1
c (Rd) ,

∫

Rd

|∇ξ|2 ≤ 1

}
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The heat equation as a gradient flow w.r.t. Wp

Denote by St the semi-group associated to the heat equation. Let p < d+2
d

and consider the generalized entropy functional

Ep[µ] =
1

p (p− 1)

∫

Rd

ρp(x) dx if dµ = ρ dx

Theorem 13. If µ ∈ P(Rd), Ep[µ] < +∞, then Ep[St µ] < +∞ for all t > 0 and

1

2

d

dt
W 2

p (St µ, σ) + Ep[St µ] ≤ Ep[σ]

Beckner inequalities w.r.t. gaussian weight

The heat equation can be seen as the gradient flow of Ep w.r.t. Wp
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From kinetic to diffusive
models
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We consider a distribution function f = f(t, x, v) solving a
non-homogeneous kinetic equation

∂tf + v · ∇xf −∇xV · ∇vf = Q(f)

Generalized entropies i.e. Free energies / entropies / energy under
Casimir constraints are useful to characterize special stationary states
und prove their nonlinear stability: [Guo], [Rein], [Schaeffer], etc.

Generalized entropies allow to prove existence, characterize large time
attractors, take singular limits or quantify the rate of convergence
towards an equilibrium

[J.D., Markowich, Ölz, Schmeiser]: Diffusion limit of a
time-relaxation equation which has polytropic states as stationary
solutions

[J.D., Mouhot, Schmeiser]: a L2 hypocoercivity theory

... a diffusion limit related to fast diffusion
equations
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BGK models

BGK model of gas dynamics

∂tf + v · ∇xf =
ρ(x, t)

(2π T )n/2
exp

(
−|v − u(x, t)|2

2T (x, t)

)
− f

where ρ(x, t) (position density), u(x, t) (local mean velocity) and
T (x, t) (temperature) are chosen such that they equal the
corresponding quantities associated to f
[Perthame, Pulvirenti]: Weighted L∞ bounds and uniqueness for the Boltzmann

BGK model, 1993

Linear BGK model in semiconductor physics

∂tf + v · ∇xf −∇xV · ∇vf =
ρ(x, t)

(2π)n/2
exp

(
−1

2
|v|2
)
− f

where ρ(x, t) =
∫

Rd f(t, x, v) dv is the position density of f
[Poupaud]: Mathematical theory of kinetic equations for transport modelling in

semiconductors, 1994

For applications in astrophysics, we are interested in collision kernels
(BGK type / time-relaxation) such that stationary states are
polytropic equilibria

f(x, v) =

(
1

2
|v|2 + V (x) − µ

)k

+
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Diffusion limit for a time-relaxation model for polytropes

ε2 ∂tf
ε + ε v · ∇xf

ε − ε∇xV (x) · ∇vf
ε = Gfε − fε

fε(x, v, t = 0) = fI(x, v) , x, v ∈ R
3

with Gibbs equilibrium Gf := γ
(

|v|2

2 + V (x) − µρf
(x, t)

)

The Fermi energy µρf
(x, t) is implicitly defined by

∫

R3

γ

( |v|2
2

+ V (x) − µρf
(x, t)

)
dv =

∫

R3

f(x, v, t) dv =: ρf (x, t)

fε(x, v, t) . . . phase space particle density

V (x) . . . potential

ε . . . mean free path

Formal expansions (generalized Smoluchowski equation): [Ben Abdallah, J.D.],

[Chavanis, Laurençot, Lemou], [Chavanis et al.], [Degond, Ringhofer]

Astrophysics: [Binney, Tremaine], [Guo, Rein], [Chavanis et al.]

Fermi-Dirac statistics in semiconductors models: [Goudon, Poupaud]
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Fast diffusion and porous media as a diffusion limit

Theorem 14. Under assumptions on V and the initial data fI , for any ε > 0, there is a

unique weak solution fε ∈ C(0,∞;L1 ∩ Lp(R6)) for all p <∞ which converges to

f0(x, v, t) = γ

(
1

2
|v|2 − µ̄(ρ(x, t))

)
with

∫

Rd

γ

(
1

2
|v|2 − µ̄(ρ)

)
dv = ρ

as ε→ 0, where ρ is a solution of the nonlinear diffusion equation

∂tρ = ∇x · (∇x ν(ρ) + ρ∇xV (x)) , ν(ρ) =

∫ ρ

0

s µ̄′(s) ds

with initial data ρ(x, 0) = ρI(x) :=
∫

R3 fI(x, v) dv

Fast diffusion case: γ(E) := DE−k
+ , D > 0 and k > 5/2, ν(ρ) = ρ

k−5/2
k−3/2

Linear case: γ(E) := D exp(−E), D > 0, ν(ρ) = ρ

Porous medium case: γ(E) = D (−E)k
+, D > 0 and k > 0, ν(ρ) = ρ

k+5/2
k+3/2

gamma(E)

10

8

6

4

2

E

0
3210-1

1,5

1

0,5

0

E
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1

2
0

10-1
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E
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4

4
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The relative entropy...

... or free energy functional: with β(s) =
∫ 0

s
γ−1(σ) dσ convex (γ monotone

decreasing), we get

F [f ] :=

∫∫

R2×R2

[
f

(
1

2
|v|2 + V

)
+ β(f)

]
dx dv

is such that

d

dt
F [f(t, ·, ·)] :=

∫∫

R2×R2

(
Gf − f

)(
γ−1(Gf ) − γ−1(f)

)
dx dv ≤ 0

If f = Gρ is a local Gibbs state, we can define a reduced free energy by

F [Gρ] = G[ρ] with Gρ(x, v) := γ
(

1
2 |v|2 + µ̄(ρ)

)
:

G[ρ] =

∫

R2

[h(ρ) + V ρ] dx with ρ h′′(ρ) = ν′(ρ)

Polytropes: h(ρ) = 1
m−1 ρ

m
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Hypocoercivity

The goal is to understand the rate of relaxation of the solutions of a
kinetic equation

∂tf + v · ∇xf −∇xV · ∇vf = Lf

towards a global equilibrium when the collision term acts only on the
velocity space. Here f = f(t, x, v) is the distribution function. It can
be seen as a probability distribution on the phase space, where x is
the position and v the velocity. However, since we are in a linear
framework, the fact that f has a constant sign plays no role.

A key feature of our approach [J.D., Mouhot, Schmeiser] is that it
distinguishes the mechanisms of relaxation at microscopic level
(convergence towards a local equilibrium, in velocity space) and
macroscopic level (convergence of the spatial density to a steady
state), where the rate is given by a spectral gap which has to do with
the underlying diffusion equation for the spatial density
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A very brief review of the literature

Non constructive decay results: [Ukai (1974)] [Desvillettes (1990)]

Explicit t−∞-decay, no spectral gap: [Desvillettes, Villani (2001-05)],
[Fellner, Miljanovic, Neumann, Schmeiser (2004)], [Cáceres, Carrillo,
Goudon (2003)]

hypoelliptic theory :
[Hérau, Nier (2004)]: spectral analysis of the Vlasov-Fokker-Planck
equation
[Hérau (2006)]: linear Boltzmann relaxation operator
[Pravda-Starov], [Hérau, Pravda-Starov]

Hypoelliptic theory vs. hypocoercivity (Gallay) approach and
generalized entropies:
[Mouhot, Neumann (2006)], [Villani (2007, 2008)]

Other related approaches: non-linear Boltzmann and Landau
equations:
micro-macro decomposition: [Guo]
hydrodynamic limits (fluid-kinetic decomposition): [Yu]
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A toy problem

du

dt
= (L− T )u , L =

(
0 0

0 −1

)
, T =

(
0 −k
k 0

)
, k2 ≥ Λ > 0

Nonmonotone decay, reminiscent of [Filbet, Mouhot, Pareschi (2006)]

H-theorem: d
dt |u|2 = −2u2

2

macroscopic limit: du1

dt = −k2 u1

generalized entropy: H(u) = |u|2 − ε k
1+k2 u1 u2

(1 − ε) |u|2 ≤ H(u) ≤ (1 − ε) |u|2

dH

dt
= −

(
2 − ε k2

1 + k2

)
u2

2 −
ε k2

1 + k2
u2

1 +
ε k

1 + k2
u1 u2

≤ −(2 − ε)u2
2 −

εΛ

1 + Λ
u2

1 +
ε

2
u1u2
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Plots for the toy problem
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. . . compared to plots for the Boltzmann equation

Figure 1: [Filbet, Mouhot, Pareschi (2006)]
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The kinetic equation

∂tf + T f = L f , f = f(t, x, v) , t > 0, x ∈ R
d, v ∈ R

d (5)

L is a linear collision operator

V is a given external potential on R
d, d ≥ 1

T := v · ∇x −∇xV · ∇v is a transport operator

There exists a scalar product 〈·, ·〉, such that L is symmetric and T is
antisymmetric

d

dt
‖f − F‖2 = −2 ‖L f‖2

... seems to imply that the decay stops when f ∈ N (L)
but we expect f → F as t→ ∞ since F generates N (L) ∩N (T )
Hypocoercivity: prove an H-theorem for a generalized entropy

H(f) :=
1

2
‖f‖2 + ε 〈A f, f〉
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Examples, conventions

L is a linear relaxation operator L

L f = Π f − f , Π f :=
ρ

ρF
F (x, v)

ρ = ρf :=

∫

Rd

f dv

Maxwellian case: F (x, v) := M(v) e−V (x) with

M(v) := (2π)−d/2 e−|v|2/2 =⇒ Πf = ρf M(v)

Linearized fast diffusion case: F (x, v) := ω
(

1
2 |v|2 + V (x)

)−(k+1)

L is a Fokker-Planck operator: L f = ∆vf + ∇ · (v f)

L is a linear scattering operator (including the case of non-elastic
collisions)

Conventions

F is a positive probability distribution

Measure: dµ(x, v) = F (x, v)−1 dx dv on R
d × R

d ∋ (x, v)

Scalar product and norm 〈f, g〉 =
∫∫

Rd×Rd f g dµ and ‖f‖2 = 〈f, f〉
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Maxwellian case: Assumptions

We assume that F (x, v) := M(v) e−V (x) with M(v) := (2π)−d/2 e−|v|2/2

where V satisfies the following assumptions

(H1) Regularity: V ∈W 2,∞
loc (Rd)

(H2) Normalization:
∫

Rd e
−V dx = 1

(H3) Spectral gap condition: there exists a positive constant Λ such that

∫
Rd |u|2 e−V dx ≤ Λ

∫
Rd |∇xu|2 e−V dx

for any u ∈ H1(e−V dx) such that
∫

Rd u e
−V dx = 0

(H4) Pointwise condition 1: there exists c0 > 0 and θ ∈ (0, 1) such that

∆V ≤ θ
2 |∇xV (x)|2 + c0 ∀x ∈ R

d

(H5) Pointwise condition 2: there exists c1 > 0 such that

|∇2
xV (x)| ≤ c1 (1 + |∇xV (x)|) ∀x ∈ R

d

(H6) Growth condition:
∫

Rd |∇xV |2 e−V dx <∞
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Maxwellian case

Theorem 15. If ∂tf + T f = L f , for ε > 0, small enough, there exists an explicit,
positive constant λ = λ(ε) such that

‖f(t) − F‖ ≤ (1 + ε) ‖f0 − F‖ e−λ t ∀ t ≥ 0

The operator L has no regularization property: hypo-coercivity
fundamentally differs from hypo-ellipticity

Coercivity due to L is only on velocity variables

d

dt
‖f(t) − F‖2 = −‖(1 − Π)f‖2 = −

∫∫

Rd×Rd

|f − ρf M(v)|2 dv dx

T and L do not commute: coercivity in v is transferred to the x
variable. In the diffusion limit, ρ solves a Fokker-Planck equation

∂tρ = ∆ρ+ ∇ · (ρ∇V ) t > 0 , x ∈ R
d

The goal of the hypo-coercivity theory is to quantify the interaction
of T and L and build a norm which controls ‖ · ‖ and decays
exponentially

Find a norm which is equivalent to L2(dµ), for which we have
coercivity, based on an operator A

The operator A is determined by the diffusion limit
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The linearized fast diffusion case

Consider a solution of ∂tf + T f = L f where L f = Π f − f , Π f := ρ
ρF
F

F (x, v) := ω

(
1

2
|v|2 + V (x)

)−(k+1)

, V (x) =
(
1 + |x|2

)β

where ω is a normalization constant chosen such that
∫∫

Rd×Rd F dx dv = 1

and ρF = ω0 V
d/2−k−1 for some ω0 > 0

Theorem 16. Let d ≥ 1, k > d/2 + 1. There exists a constant β0 > 1 such that, for

any β ∈ (min{1, (d− 4)/(2k− d− 2)}, β0), there are two positive, explicit constants
C and λ for which the solution satisfies:

∀ t ≥ 0 , ‖f(t) − F‖2 ≤ C ‖f0 − F‖2 e−λt

The Poincaré inequality is replaced by the Hardy-Poincar é inequality
associated to the fast diffusion equation

The nonlinear case can be reduced to the linear case [Schmeiser, work
in progress]
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Other applications, other
models
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An uncomplete list

Kinetic theory !

Molecular motors or models of Stokes’ drift: existence, rate of
convergence, homogenization, large-time asymptotics: [Kinderlehrer
et al.], [J.D., Kowalczyk], [Blanchet, J.D., Kowalczyk], [Perthame,
Souganidis]

Keller-Segel models and models of aggregation in chemotaxis: existence
vs. blow-up, critical mass, large time asymptotics, etc. [Blanchet,
J.D., Fernández, Escobedo], [Campos, work in progress]

Kinetic and thermodynamical models for gravitating systems

Systems of reaction-diffusion equations in chemistry: [Carrillo,
Desvillettes, Fellner]

Models for polymers, fragmentation, etc.

5. Relative entropy methods for nonlinear diffusion models – Other applications – p. 71/72



The end

... Thank you for your attention !
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