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Outline

@ Introduction to the notion of entropy
@ A particularly simple case: the heat equation

@ A case with homogeneity: fast diffusion (and porous media) equations

@ Sharp rates of decay of solutions to the nonlinear fast diffusion
equation via functional inequalities

@ More about homogeneity and the entropy — entropy production
approach
@ Algebraic rates vs. exponential decay
@ The Bakry-Emery method revisited
@ The gradient flow interpretation

@ From kinetic to diffusive models
@ Diffusion limit
@ Hypocoercivity

@_ Other applications, other models
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About entropy Iin physics

@ Entropy has been introduced as a state function in thermodynamics
by R. Clausius in 1865, in the framework of the second law of
thermodynamics, in order to interpret the the results of S. Carnot

@ A statistical physics approach: Boltzmann’s formula (1877) defines
the entropy of a systems in terms of a counting of the micro-states of
a physical system

@ Boltzmann’s equation: O;f +v-V.f=Q(f, f)

describes the evolution of a gas of particles having binary collisions at
the kinetic level f is a time dependent distribution function

(probability density) defined on the phase space R? x R?, thus a
function of time ¢, position z and velocity v. The entropy
H[f] == [Jgaypa [ 10g f dz dv measures the irreversibility: H-Theorem

(1872) )
N = [ QU toesdedu<o

@_ Other notions of entropy:

@ Shannon entropy in information theory, entropy in probability
theory (with reference to an arbitrary measure)

@ Other approaches: Carathéodory (1908), Lieb-Yngvason (1997)
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About entropy In partial differential equations

@_ In kinetic theory, entropy is one of the few a priori estimates
available: it has been used for producing existence results [DiPerna,
Lions], compactness results with application to hydrodynamic limits
|[Bardos, Golse, Levermore, Saint-Raymond|, convergence of
numerical schemes, etc.

@ Nash, Lax, DiPerna: regularity for parabolic equations,
hydodynamics, compensated-compactness, geometry, etc.

@ Modeling issues: entropy estimates are compatible with other
physical estimates. Exponential convergence is an issue in physics
(time-scales), for numerics, for multi-scale analysis

@ For the last 10 years, it has motivated a very large number of studies
in the area of nonlinear diffusions, systems of PDESs, in connection
with probability, gradient flow and mass transportation techniques

@_ It can be used to obtain rates of decay or intermediate aymptotics, in
connection with functional inequalities

Entropy (a loose definition): a special kind of Lyapunov functional that
combines well with other a prior: estimates and can be used to investigate
the large time behaviour
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Heat equation and entropy




Consider the heat equation on the euclidean space R

ou
— = Au, Up—g=1Uu
o1 |t=0 0
As t — 00, we know that u(t,z) ~ G(t,z) := (47 t)~4/? e~ 'Tr. This is
easy to quantify in L> or in L?. How to give (sharp) estimates in L1

Assume that ug > 0, ug (1 4 |z|?), ug log ug € L*(R?) and consider the
entropy

D

S|u] ::/ u logu dx
R4

Time-dependent rescaling and Fokker-Planck equation

Relative entropy (free energy), entropy — entropy production (relative Fisher

information) and logarithmic Sobolev inequality

Csiszar-Kullback inequality and intermediate asymptotics

ep Pp

The Bakry-Emery method for proving the logarithmic Sobolev inequality
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The entropy approach (1/2)

Time-dependent rescaling : the change of variables u(7,y) = R~%v(t,y/R)

with ¢t =log R, R = R(7) = v/1 + 27 changes the heat equation u, = Au
into the Fokker-Planck equation:

v =Av+ V.- (zv), Vp=o = uo

with stationary solutions ve () := (2) %2 M e~ lel*/2
Relative entropy  (free energy): choose M = [, uo dx and define

1
Y [v] ::/ v log (L> da::/ v logv dx + —/ 12| v dz + Const
Rd Voo Rd 2 Rd

If v is a solution of the Fokker-Planck equation, then

d
pr Yv] = —1v]

2 .. . . . :
where I[v] = [p,v|~2 4+ z|” dx is the relative Fisher information

Observe that exponential decay holds by the logarithmic Sobolev inequality
|Gross 75|

Ylv] < 5 I[v]

1
2
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The entropy approach (2/2)

Large time behaviour is controlled by

Xlo(t, )] = /Rd v log (L> dz < Ylug) e~2!

Voo

Using the Csisz ar-Kullback inequality
H/U(ty ) — Uoo“%l(Rd) < 4MZ[’U] < 4M2[’U,0] G_Qt

we get intermediate asymptotics  for the heat equation, namely

4 M Xug)]
) =t () oy < 4M Elo] < T

with teo (7,7y) := R™%v(log R, y/R), R=R(t) = V1 +27

Remark: The Bakry-Emery method gives a proof of the logarithmic Sobolev
inequality based on the heat equation:

%(nq—zzm)go
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Sharp rates of decay of

solutions to the nonlinear fast
diffusion equation




Fast diffusion equations: outline

Q_ Introduction

Q@ Fast diffusion equations: entropy methods and
Gagliardo-Nirenberg inequalities [del Pino, J.D.]

@ Fast diffusion equations: the finite mass regime
@ Fast diffusion equations: the infinite mass regime

@ Relative entropy methods and linearization
@ the linearization of the functionals approach: [Blanchet, Bonforte,
J.D., Grillo, Vazquez|
@ sharp rates: [Bonforte, J.D., Grillo,Vazquez]
@ An improvement based on the center of mass: [Bonforte, J.D.,
Grillo, Vazquez]

@ An improvement based on the variance: [J.D., Toscani]
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Some references

@  J.D. and G. Toscani, Fast diffusion equations: matching large time
asymptotics by relative entropy methods, Preprint

@ Matteo Bonforte, J.D., Gabriele Grillo, and Juan-Luis Vazquez.
Sharp rates of decay of solutions to the nonlinear fast diffusion
equation via functional inequalities, submitted to Proc. Nat. Acad.
Sciences

@ A. Blanchet, M. Bonforte, J.D., G. Grillo, and J.-L. Vézquez.
Asymptotics of the fast diffusion equation via entropy estimates.
Archive for Rational Mechanics and Analysis, 191 (2): 347-385, 02,
2009

@ A. Blanchet, M. Bonforte, J.D., G. Grillo, and J.-L. Vézquez.
Hardy-Poincaré inequalities and applications to nonlinear diffusions.
C. R. Math. Acad. Sci. Paris, 344(7): 431-436, 2007

@ M. Del Pino and J.D., Best constants for Gagliardo-Nirenberg
inequalities and applications to nonlinear diffusions. J. Math. Pures
Appl. (9), 81 (9): 847-875, 2002
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Fast diffusion equations: entropy methods

up = Au™ e R >0

Self-similar (Barenblatt) function: () = Ot~ (2=d0=m))) a5 t — +00
[Friedmann, Kamin, 1980] |lu(t, ) — U(t, )| L~ = o(t~4/ 2=d1=m)))

heat equation

tast diffusion equation : :
porous media equation

: ; » m

!
d—2 d—1
d d 1

>
—

extinction in finite time global existence in L'

Existence theory, critical values of the parameter m
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Intermediate asymptotics for fast diffusion & porous media

Some references

Generalized entropies and nonlinear diffusions (EDP, uncomplete):

Del Pino, J.D.], [Carrillo, Toscani, [Otto|, [Juengel, Markowich, Toscani|,
Carrillo, Juengel, Markowich, Toscani, Unterreiter|, [Biler, J.D., Esteban|,
Markowich, Lederman]|, [Carrillo, Vazquez], |Cordero-Erausquin, Gangbo,
Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub],...
[del Pino, Saez|, [Daskalopulos, Sesum]...

Some methods

1) [J.D., del Pino| relate entropy and Gagliardo-Nirenberg inequalities
2) entropy — entropy-production method the Bakry-Emery point of view
3) mass transport techniques

4) hypercontractivity for appropriate semi-groups

5) the approach by linearization of the entropy

... Fast diffusion equations and
Gagliardo-Nirenberg inequalities

We follow the same scheme as for the heat equation
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Time-dependent rescaling, Free energy

@ Time-dependent rescaling : Take u(7,y) = R=%(t) v (¢,y/R(7)) where

OR
quszﬂ—m%4, R(0)=1, t=logR
-
The function v solves a Fokker-Planck type equation
0
8—: = Av" + V- (zv), Vr=0 = Uo

@ [Ralston, Newman, 1984| Lyapunov functional: Generalized entropy or

Free energy
™ 1
Y] = “z|fv ) dr— X
] ,4dQn—1+2M“D o

Entropy production is measured by the Generalized Fisher information

2

Vv g

(%

d
%E[fu]:—[[v], I[U]::/Rdv +x
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Relative entropy and entropy production

@ Stationary solution:  choose C' such that ||[veo||r = ||ullpr = M >0

1 — —1/(1—m)
Voo () = <c+ - |x|2)
+

Relative entropy: Fix Y so that ¥|vs,| = 0. The entropy can be put in an
m-homogeneous form: for m # 1,

m—1

S[o] = fpat(z5) v dr with ¢(t) = S=-m =D

@ Entropy — entropy production inequality
Theorem 1. d > 3,m € [, +00), m > 2, m # 1

I[v] > 23]

Corollary 2. A solution v with initial data ug € L (R?) such that |x|? ug € L' (R?),
ul* € LY(RY) satisfies
Sv(t, )] < Blugl e 2
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An equivalent formulation: Gagliardo-Nirenberg inequali ties

m m 2
Y] = Jra (h—l—%kﬂ%) dz — Xo < 3 [pav |+ 2| do = 1 I[v]
1

Rewrite it with p = v =w?P, o™ = wPT! as
2m—1" ?

1/ 2 ? 1
— o / Vw|?de + (| —— —d / lw'TPdr + K >0
2\2m —1 Rd 1 —m Rd

l<p=5=-7=<5 _d_ 5 < Fast diffusion case: ;1§m<1;K<O

0 < p <1 <= Porous medium case: m > 1, K >0
for some v, K = Kj (fRd vdr = fRd w?P dac)7

W= Weeo = voé P is optimal

eppEpPEPE

m=mq = d%: Sobolev, m — 1: logarithmic Sobolev

Theorem 3. [Del Pino, J.D.] Assume that 1 < p < %2 (fast diffusion case) and d > 3

H’wHLQP(Rd) <A vaHLQ(Rd) HwHLp-l-l(Rd)

1

(240) (L ) o __dp-1) _ il
2y ry-29)) pld+2—(d-2p) © 4 = p-

(V][SaY

—1)2
A= (y(gﬂd) )
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Intermediate asymptotics

Y[v] < Blugl e 2"+ Csiszar-Kullback inequalities
Undo the change of variables, with

Uoo (t, ) = R™(t) Voo (z/R(1))

Theorem 4. [Del Pino, J.D.] Consider a solution of u; = Au™ with initial data
ug € Lt (R?) such that |z|? ug € L (R?), u* € L*(R?)

@_ Fast diffusion case: % <m<l1lifd> 3

1—d(1—m)
limsup t2=40=m) ||u™ —ull||p1 < 400
t——+o00

@_ Porous mediumcase: 1 < m < 2

14+d(m—1) m—1
limsup 2= || [u — Uo] Uy~ |11 < +00
t— 400
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Fast diffusion equations: the finite mass
regime

Can we consider m < mq ?

Q@  If m > 1: porous medium regime or m; := % < m < 1, the decay of
the entropy is governed by Gagliardo-Nirenberg inequalities, and to
the limiting case m = 1 corresponds the logarithmic Sobolev
inequality

Displacement convexity holds in the same range of exponents,
m € (mq, 1), as for the Gagliardo-Nirenberg inequalities

The fast diffusion equation can be seen as the gradient flow of the
generalized entropy with respect to the Wasserstein distance if

~
m>m1—d—+2

Q If m.:= d%f < m < my, solutions globally exist in L' and the
Barenblatt self-similar solution has finite mass
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...the Bakry-Emery method

We follow the same scheme as for the heat equation
Consider the generalized Fisher information

Vo™

U

I|v] ::/ v|Z| de with Z:= +
Rd

and compute

d
a[[v(t,-)]nLZI[v(t,-)]:—Q(m—l)/ (divZ)? do— 22/ m(0,29)? da

i, =1
@ the Fisher information decays exponentially: I[v(t,-)] < Ifug]e™ 2!
Q. limy o I[v(t,-)] = 0 and lim;_, o X[v(t, )] =0

Q 4 (I[v(t, )] = 23wt -)]) < 0 means I[v] > 2 %[]

|Carrillo, Toscani|, [Juengel, Markowich, Toscani|, [Carrillo, Juengel,
Markowich, Toscani, Unterreiter], [Carrillo, Vazquez]

I'lv] > 2 3[v] holds for any m > m,
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Fast diffusion: finite mass regime

Sobolev
logarithmic Sobolev
/ Gagliardo-Nirenberg

>

Inequalities...

m el xy e L

Bakry-Emery method (relative entropy)

global existence in L'

. existence of solutions of u; = Au™
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More references: Extensions and related results

@ Mass transport methods: inequalities / rates [Cordero-Erausquin,
Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh,
Ghoussoub, Kang]

@_ General nonlinearities [Biler, J.D., Esteban], [Carrillo-DiFrancesco|,

Carrillo-Juengel-Markowich-Toscani-Unterreiter| and gradient flows

Jordan-Kinderlehrer-Otto|, [Ambrosio-Savaré-Gigli],

Otto-Westdickenberg] [J.D.-Nazaret-Savaré|, etc

@_ Non-homogeneous nonlinear diffusion equations [Biler, J.D., Esteban],

Carrillo, DiFrancesco]

©

Extension to systems and connection with Lieb-Thirring inequalities
J.D.-Felmer-Loss-Paturel, 2006], [J.D.-Felmer-Mayorgal

@ Drift-diffusion problems with mean-field terms. An example: the
Keller-Segel model [J.D-Perthame, 2004, [Blanchet-J.D-Perthame,
2006, [Biler-Karch-Laurengot-Nadzieja, 2006],
[Blanchet-Carrillo-Masmoudi, 2007], etc

@ ... connection with linearized problems [Markowich-Lederman)],

|Carrillo-Vézquez|, [Denzler-McCann], [McCann, Slepcev], [Kim,
McCann], [Koch, McCann, Slepcev|
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Fast diffusion equations: the infinite mass
regime — Linearization of the entropy

Q Ifm>me:= % < m < m1, solutions globally exist in L' (R%) and the
Barenblatt self-similar solution has finite mass.

Q. Form < m., the Barenblatt self-similar solution has infinite mass

Extension to m < m, ¢ Work in relative variables !

E[VDllvDo] = X Vb, — Vp, € 1
vo — Vp, € Lt E[Vpll‘/po] < o0
VDl - VDO ¢ Ll “ Vo, VD - Ll
|; i | : ; > m
d—4 d—2 d a-1 ]
dTQ d - di2 d Gagliardo-Nirenberg
\ ‘ ' v e LY 1wty e L

Bakry-Emery method (relative entropy)

Y

global existence in L'

My me mi
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Entropy methods and linearization: intermediate asymptot IcS, vanishing

|A. Blanchet, M. Bonforte, J.D., G. Grillo, J.L. Vazquez|, [J.D., Toscani]

@ work in relative variables
@ use the properties of the flow
Q@ write everything as relative quantities (to the Barenblatt profile)

@_ compare the functionals (entropy, Fisher information) to their

linearized counterparts

— FExtend the domain of validity of the method to the price of a

restriction of the set of admaissible solutions

Two parameter ranges: m. < m < 1 and 0 < m < m., where m, := d%f

Q@ m.<m<1,T=+o0: intermediate asymptotics, 7 — +oc

Q@ 0<m<me T < 4o0: vanishing in finite time lim, ~p u(7,y) =0

Alternative approach by comparison techniques: [Daskalopoulos, Sesum]
(without rates)
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Fast diffusion equation and Barenblatt solutions
_1-m

ou
— =V -(uVu" ) = — Au™ 1
5 (uVu™7) = —— Au (1)
with m < 1. We look for positive solutions u(7,y) for 7 > 0 and y € R¢,

d > 1, corresponding to nonnegative initial-value data ug € Li _(dx)

loc
In the limit case m = 0, u"/m has to be replaced by logu
Barenblatt type solutions are given by

1
R(7)“

UD,T(Ta y) =

1
Yy }2 1—m
2d|m—mc| | R(T) I

(D 4+ 1—m
Q If m>m.:=(d—-2)/d, Upr with R(7) := (T + T)d(ml—md describes
the large time asymptotics of the solutions of equation (1) as 7 — oo
(mass is conserved)

@ If m < m. the parameter T' now denotes the extinction time and

R(1) := (T — T)_m

@ If m = m, take R(t) = e, Upr(r,y) = e %7 (D + e 27 |y|?/2) ek
Two crucial values of m: m., := % < Mg 1= dff <1
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Rescaling

A time-dependent change of variables

Lom R(t L Y
t = log (REOD and x:= \/2d|'ml—mc| R(T)

If m =m,, wetaket =7/dand z = e 7 y/v/2

The generalized Barenblatt functions Up (7, y) are transformed into

stationary generalized Barenblatt profiles Vp(x)

1

Vp(z) :== (D +|z[*)™ T x€R?

If u is a solution to (1), the function v(¢, x) := R(7)?u(7,y) solves

ov

a:_v.[vv(vm—l—vg“l)} t>0, xzeR? (2)

with initial condition v(t = 0,z) = vo(x) := R(0) =% up(y)
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Goal

We are concerned with the sharp rate of convergence of a solution v of the
rescaled equation to the generalized Barenblatt profile Vp in the whole
range m < 1. Convergence is measured in terms of the relative entropy

Elv] = ;/Rd [0 =V —m V5 (v —Vp)] da

m — 1

forallm=£0, m <1

Assumptions on the initial datum v
(H1) Vp, < vg < Vp, for some Dy > Dy >0
(H2) if d > 3 and m < m., (vo — Vp) is integrable for a suitable
D € Dy, Do)
d—4

@ The case m = m, = ) will be discussed later

@ If m > m,, we define D as the unique value in [D;, Dgy| such that
Jpa(vo —Vp)dx =0

Our goal is to find the best possible rate of decay of E[v] if v solves (2)
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Sharp rates of convergence

Theorem 5. [Bonforte, J.D., Grillo, Vazquez] Under Assumptions (H1)-(H2), if m < 1 and
m # M., the entropy decays according to

Elv(t,")] < Ce 20—mIAL 'y >

The sharp decay rate A is equal to the best constant Aa,d > () in the Hardy—Poincaré
inequality of TheoremIgwith o := 1/(m — 1) < 0
The constant C' > 0 depends only on m, d, Dy, D1, D and £vg]

@_ Notion of sharp rate has to be discussed

@_ Rates of convergence in more standard norms: L?(dz) for
g > max{1l,d(1—m)/[2(2—m)+d(1—m)]}, or C* by interpolation

@ By undoing the time-dependent change of variables, we deduce results
on the intermediate asymptotics of ({l), i.e. rates of decay of
u(t,y) —Upr(r,y) as 7 — +oo if m € [me, 1), or as 7 — T if
m € (—o0, me)
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Strategy of proof
Assume that D = 1 and consider du, := he dx, ho(z) == (1 + |2|?)%, with
a=1/(m~-1) <0, and LQd —h1_odiv[he V-] on L*(due,):
fRd a df d:ua 1 — fRd ‘vf‘Zd:uoz
A first order expansion of v(t,z) = ho(z) |1+ f(t,2) bk ™(x)] solves

of
ot

+£adf_0

Theorem 6. Letd > 3. Forany a € (—00,0) \ {a.}, there is a positive constant A, 4
such that

Mot [ 18P dams < [ VISP dua ¥ f € H' (Ao
Rd Rd

under the additional condition fRd fdua_1=0ifa < ay

( 1d—2+2a)? ifae|[—42 a,) U (ay,0)
Aag={ —4da—2d if o € [—d, —4E2)
| 2« if € (—o0, —d)

[Denzler, McCann|, [Blanchet, Bonforte, J.D., Grillo, Vazquez]
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Proof: Relative entropy and relative Fisher information an d interpolation

For m # 0, 1, the relative entropy of J. Ralston and W.I. Newmann and
the generalized relative Fisher information are given by

Flw] i= 22 [oq [w—1— = (w™—1)] V5 dx

1-m
2
Tlu) = fou |5 ¥ [0 =) V5 [ vde
where w = ‘}’—D If v is a solution of (2)), then %]—"[w(t, )] = —Zw(t,")]

@ Linearization: f := (w — 1) V5", hy(t) := infraw(t,-),
hao(t) := supgaw(t,-) and h := max{hs,1/h;}. We notice that h(t) — 1 as
t — +0o0o

2
A2 [PV " de < = Flw] <™ [ |fPVE ™ da
Rd m d
VTP Vo do < L4 X Tl + Y () [ 1P VR
Rd Rd
where X and Y are functions such that limy_,; X (h) =limy_ .1 Y (h) =0
hg(Q—m)/hl < R52m —. 1 4 X(h)

[(ho/h1)*®™™ — 1] < d (1 —m) [*E=m) —1] = Y (h)
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Proof (continued)

@ A new interpolation inequality: for A > 0 small enough

h2=™ 14 X (h)]
2 [Aa,d — mY(h)]

Flw] < m Z[w]

@ Another interpolation allows to close the system of estimates: for some C,
t large enough,

0<h-1< C]—"d+2:dni1>m

Hence we have a nonlinear differential inequality

d Aa,d — mY(h)
—Flw(t,-)] < -2 [1 n X(h)} -

Iy Flu(t, )

@ A Gronwall lemma (take h =1+ Cfd+2:d711>m) then shows that

limsup e2%ed? Flw(t, )] < 400

t— o0
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Plots (d = 5)

o1 A Spectrum of La.a A
A30 \l Aos
A 8 4(d+2) e ‘/U Spectrum of
o =—-8a—4(d
” (1—m) Ll/(m—l),d A
A11:760¢72(d+2) (d:5)
(d=5)
\ 6
X
|
AQO =4«
/\01 =—4a-—2d
4
Essential spectrum of L 4
aont = H(d+2a —2)2
a=-vEi- 4
L o
_ \
Ao = —2a N+ g a=-—va—1- dia Essential spectrum
of (1 —m) L1 /m-1),d
; LHZ»G 2
d—1
d
?: —vd—-1— %
a=—d \
— _d=2
/ a=—% .
o= Jdi2 i
2 a >
o> me = 42 1
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Remarks, improvements

@ Optimal constants in interpolation inequalities does not mean
optimal asymptotic rates

@_ The critical case (m = my, d > 3): Slow asymptotics [Bonforte, Grillo,
Vézquez] If |vg — Vp| is bounded a.e. by a radial L' (dx) function,
then there exists a positive constant C* such that E[v(t,-)] < C*t~1/2
for any ¢t > 0

@ Can we improve the rates of convergence by imposing restrictions on
the initial data 7

@ [Carrillo, Lederman, Markowich, Toscani (2002)] Poincaré
inequalities for linearizations of very fast diffusion equations
(radially symmetric solutions)

@ Formal or partial results: [Denzler, McCann (2005)], [McCann,
Slepcev (2006)], [Denzler, Koch, McCann (announcement)],

@ Faster convergence 7

@ Improved Hardy-Poincaré inequality: under the conditions
fRd J dita—1 =0 and fRd x fdpe—1 = 0 (center of mas),

Koz,d fRd ‘f‘Qd,ua—l S fRd ‘vf‘2 d:uoz

@ Next 7 Can we kill other linear modes 7
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[Bonforte, J.D., Grillo, Vazquez| Assume that m € (mq,1), d > 3. Under
Assumption (H1), if v is a solution of (2)) with initial datum vy such that

Jwa €vodz =0 and if D is chosen so that [,,(vo — Vp)dz = 0, then
Elv(t, )] < Ce Mt yvi>0

with y(m) = (1 —m) Ay /(m_1).d "

2 Relative entronv methods for nonlinear diffusion models — Fast diffusion — n. 33/72



Higher order matching asymptotics

For some m € (me, 1) with m, := (d — 2)/d, we consider on R? the fast
diffusion equation

ou —
E-I—V-(uVu 1):()

The strategy is easy to understand using a time-dependent rescaling and
the relative entropy formalism. Define the function v such that

u(ryy+ao) = R v(t,), R=R(r), t=}logR, =

Then v has to be a solution of

9
8_:+v. [v (g%<m—mc>wm—1—2xﬂ —0 t>0, xzeR

with (as long as we make no assumption on R)

20_—%(m—mc) _ Rl—d(l—m) d_R
dt
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Refined relative entropy

Consider the family of the Barenblatt profiles

1

(Cv +L|2z)?)™ Vaze R4 (3)

(V] [eH

B,(x):=0"

Note that o is a function of ¢: as long as Cfl—‘g # (0, the Barenblatt profile B,
1$ not a solution but we may still consider the relative entropy

1
Folv] = — /Rd W™ — B —m Bl (v— B,)] dx

Let us briefly sketch the strategy of our method before giving all details

The time derivative of this relative entropy is

d do ( d m ov
—F, t, N — — F, oy ( m—1 Bm—1> i d
g’ o) =" (da}— [v]>|aa(t)+m— 1 Jaa \ o ) ot
choose it =0
<

Minimize F,[v] w.rt. o < [, |2]* B, dz = [, |2z]* v dz
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Second step: the entropy / entropy production estimate

According to the definition of B,, we know that 2z = g (m—"e) vBm—1
Using the new change of variables, we know that

d t %(m—mc) 2
.Y o(t) [’U(t, )] — _mo-( ) / v |v |:vm—1 o Bm_l} | dx
dt Rd

1 —m o(t)
Let w := v/B, and observe that the relative entropy can be written as

]:'J[,U]_L [w—l—i(wm—l)} B dx

I —m Jpa m

(Repeating) define the relative Fisher information by

Iylv] := /Rd

so that % st )] =—m (1 —m)o(t) L,nlv(t, )] VE>0

When linearizing, one more mode is killed and o(t) scales out

2
ﬁ VI[(w™ "t =1)Br ‘ B, w dx
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Improved rates of convergence

Theorem 7. Letm € (my,1),d > 2,v9 € Lt (R%) such that v, |y|* vo € L' (R%)
Elu(t,)] < Ce 27Mt vi>0

( (d=2) m—(d—4))*
4(1—m)

where if m € (mq,mo]

Y(m) =19 4(d+2)m—4d itm € [y, ms]

\

4 if m € [mo, 1)

[Denzler, Koch, McCann]|, in progress
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More about homogeneity
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Algebraic rates vs. exponential decay
[J. Carrillo, J.D. , I. Gentil, A. Jiingel]

Consider the one dimensional porous medium /fast diffusion equation

0
8—? = (u")zx 336517 t>0 withu(,t=0)=wup>0
@ The method also applies to the thin film equation u; = —(u" Ugzz )

the Derrida-Lebowitz-Speer-Spohn (DLSS) equation u; = —(u (10g %) 24 ) 2
@ Some references: [Caceres, Carrillo, Toscani|, |[Gualdani, Jiingel,
Toscani|, [Jiingel, Matthes|, [Laugesen]

More entropies 2 p € (0,400), ¢ € R, v € HL(S1), pp[v] := ([o /P d:z:)p

Yp.qlv] = pq(pq 1)[f51’0 dx — (pp[v])?] ifpg#landg+#0
X1 /q.ql0] = [ 9 log(f1 qd>dx ifpg=1and g #0
> olv] = 1f51 log( ]) de ifqg=0
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Functional inequalities

uP1—1-pg(u—1)
pq(pg—1)

Proposition 8.  Global functional inequalities: For all p € (0, +00) and g € (0, 2), there
exists a positive constant <, 4 such that, for any v € Hi (Sl),

Q ¥, ,|v] is non-negative by convexity of u —

1
Zp,q[v]z/q < — |U/|2 dx

Kp,q Jst

Small entropies regime: Forany p > 0, ¢ € R and gg > 0, there exists a positive
constant C' such that, for any £ € (0, o], ifv € H1 (S*) is such that ¥, ,[v] < € and

pplv] =1

- 1+ Cy/e

ZPaQ[v] — 8]92 7_‘_2 51 |’U/|2 dx
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Application to porous media: convergence rates

%:(um)m recSh t>0
With v :=uP, p:= mTJrk,q::k% 2 kijc,let Elu] = 3, 4|v]
(i Jo (W =Y de i ke R\ {-1,0}
Elul = ¢ [o ulog (£) du if k=0
— [ log (%) da if k=-1

Proposition 9. Letm € (0,40c0), k € R\ {—-m},q=2(k+1)/(m + k),
p = (m + k)/2 and u be a smooth positive solution

i) Short-time Algebraic Decay: If m > 1 and kK > —1, then

Elu(-,t)] < [5[ o] /ey 21 ;

i) Asymptotically Exponential Decay: If m > 0 and m + k > 0, there exists C' > 0
and t;1 > O such that for t > 4,

Elu(-,t)] < Elu(-, 1)) exp <8p

22 A uP(P9) (t —t)
1+ CyEu(-t1)]
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The Bakry-Emery method revisited

[J.D., B. Nazaret, G. Savaré]

Consider a domain Q C RY, dy = gdz, g = e and a generalized
Ornstein- Uhlenbeck operator: Agv := Av — DF' - Dv

vy = Ayv reQ, teR”
Vvo-n=0 z€0Q,teR"

With s := v?/2 and a := (2 —p)/p, p € (1,2]

£(t) = ]% i w1 p 1) dy

Iy(t) := 3 Jq IDs|* dy
Kp(t) == [ |Ags|? dy + afy Ags % dry
A simple computation shows that

d d i
&) = ~Tp(t) and —T,(t) = - Kp(t)
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An extension of the criterion of Bakry-Emery

Using the commutation relation [D,A,] s = —D?F Ds, we get

d
/Q(Ags)2 dy = /Q ID?s|? al'y—|—/Q D?F Ds - Ds dy — Z /8(2 0%-8 Oisn; gdH?

i,J=1
\ . -~ J/

>0 1f () 1S convex

K, :/ A, s]? d7+4a/ Ays|Dz|? dy > (1—a)/ D252 dw/ VDs|? dvy
Q Q Q Q

with V(@) i= _inf (D*F(2)&,¢)

Theorem 10. Let ' € C%(Q), v = e~ € L}(Q), and Q2 be a convex domain in R
~1
Ja (2 5= IDwl*+V |w|2> dy

If A\1(p) := inf el 4y

IS positive, then

T,(t) < Zp(0) e 20!
gp

(&
(O) 6_2 A1(p)t
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Generalized entropies

Consider the weighted porous media equation
vy = Agv"™

d~ is a probability measure, p € (1,2)

1
Erglt) = 1]
,p() m+p—2/Q v Y
Imp(t) = C(m,p)/|D8|2 dry
Q
B(m—1) 2 B(m—1) [Ds|?
Kimp(t) = S |Ags|dy+a | s Ags dry
Q @) S
with v =: 57, 3 := L o= —2"L_ and ¢(m,p) = 4m (m+p—1)
T p/24m=1 T pt2(m—1) P (2m+p—2)?
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Adapting the Bakry-Emery method...

Written in terms of s = v!/#, the evolution is governed by

1
m

Ds|
s

A computation shows that

%&n,p (t) = —ZLmp (t)

— O () = —2e(m,p) K p(t)

Exactly as in the linear case, define for any 6 € (0, 1)

fQ ( (1—6) |Dw]? +V |w|? )
A1(m, 0) := inf
weH(Q,d)\{0} Jo lw|? dy
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The non-local condition

Assume that for some 6 € (0,1), A1(m,0) > 0. Admissible parameters m
and p correspond to (m,p) € Eg, 1 <m < p+ 1, where the set Ey is a
portion of an ellipse (grey area)

0.4 0.6 0.8 1.2 1.4 1.6
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Results for the porous media equation

Lemma 11. With the above notations, if {2 is convex and (, p) € Ey are admissible,

then
4—3q

(m+p=2)Enp+1] 7 Koy

Wl
Wl

Iv;%”b,p < % [4 C(map)} K

Theorem 12. Under the above conditions there exists a positive constant K which
depends on Em,p(O) such that any smooth solution v of the porous media equation
satisfies, for any t > 0

Zin,p(0)

Lonp(t) < 3
{1 + 5 YT (0) t}

3 [T (0)]
2k |14 53 zm,p(c))tr
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The gradient flow interpretation
[J.D., B. Nazaret, G. Savaré]

As in the Bakry-Emery approach (linear case) let p € (1, 2] and define

Eplv] == Z% y [vp— 1—p(v— 1)} dy, &ilv]:= /Rd [’U logv — (v — 1)} d~y

with Q = R? and dy(z) = (27)" 42 e~ 171°/2 4z (gaussian measure). Along
the flow associated to the Ornstein-Uhlenbeck equation

ve = Av—x-Vo

we have found that &,[v(t,)] < &,[ve] e ?*, which amounts to the
generalized Poincar € inequality |[Beckner]

2 dry — 4 )2/
Ep|v] §§/ P |Vol? dy or Jpa 1~y (f%df ) §/ IV fI? dy
R4 q— R

(take ¢ = 2/p, P = f?, ¢ € [1,2))
Why do we have such a choice in the linear case ¢
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Wasserstein distances

p > 1, uo and p; probability measures on R?

@ Transport plans between ug and py : I'(pg, p1) is the set of
probability measures on R? x R? having 1o and 11 as marginals.

@ Wasserstein distance between pg ans fu
W20, pn) =int { [ o P dS(e) 5 % € Do)
R4 x R4
@_ The Benamou-Brenier characterization (2000)

1
W2 (o, 1) = inf{/ / ve|?pe dzdt = (prs Vi)iepo) admissible}
0 JRd

where admissible paths (p¢, v¢)iejo,1) are such that

Orpe +V - (peve) =0, po=po, p1=p
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Gradient flows

@ [Jordan, Kinderlehrer, Otto 98] : Formal Riemannian structure on

P(R?): the McCann interpolant is a geodesic. For an integral
functional such as

E1lp] = / Flp(e)) da

the gradient flow of & w.r.t. W = Wj is

-V [0V ()]

@ [Ambrosio, Gigli, Savaré 05] : Rigorous framework for JKO’s calculus
in the framework of length spaces (based on the optimal
transportation)

@ [Otto, Westdickenberg 05] : Use the Brenier-Benamou formulation to
prove

W (g, 1) < W2 (o, 1)

along the heat flow on a compact Riemannian manifold
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A generalization of the Benamou-Brenier approach

Given a function A on R™, define the admissible paths by

Ope + V- (h(pe) vi) =0
PO = Mo, P1 = M1

and consider the distance

1
WPQ(,uohul) = inf {/ /d ve|? hp(pr) dzdt = (pes Vi)iepo ) admissible}
0o JR

hp(p) =p*77, 1<p<2

@ p =1 : Wasserstein case
@ p = 2 : homogeneous Sobolev distance on W12

¢l —po) ¢ €€ CLRY, [ |V€|2§1}

|1 — ol —1.2 = sup {
Rd

R4
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The heat equation as a gradient flow w.r.t. W,

Denote by .S; the semi-group associated to the heat equation. Let p < d+2

and consider the generalized entropy functional

1
E = / Plx)dx ifdu=pdx
pli] oy p— Rdﬂ() p=p

Theorem 13. If i € P(RY), E,[p] < 400, then E,[S; i1] < +oc forallt > 0 and

1 d
§%W2(St 22 U) + 5p[St M] < gp[g]

@ Beckner inequalities w.r.t. gaussian weight

@ The heat equation can be seen as the gradient flow of &, w.r.t. W,
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From kinetic to diffusive
models




We consider a distribution function f = f(¢,z,v) solving a
non-homogeneous kinetic equation

@_ Generalized entropies  i.e. Free energies / entropies / enerqgy under
Casimar constraints are useful to characterize special stationary states
und prove their nonlinear stability: [Guo|, [Rein], [Schaeffer|, etc.

@ Generalized entropies allow to prove existence, characterize large time
attractors, take singular limits or quantify the rate of convergence
towards an equilibrium

@ [J.D., Markowich, Olz, Schmeiser|: Diffusion limit of a
time-relaxation equation which has polytropic states as stationary
solutions

@ [J.D., Mouhot, Schmeiser|: a L? hypocoercivity theory

... a diffusion limit related to fast diffusion
equations
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BGK models

@ BGK model of gas dynamics

- p(:ll‘,t) "U—u(l‘,t)P
Of +v-Vif = BTy exp (— 2T (1) )—f

where p(z,t) (position density), u(x,t) (local mean velocity) and
T(x,t) (temperature) are chosen such that they equal the
corresponding quantities associated to f

[Perthame, Pulvirenti]: Weighted L°° bounds and uniqueness for the Boltzmann
BGK model, 1993

@ Linear BGK model in semiconductor physics

Of+v -V, f—V, V-V, f—((gg t/)QGXp(_l|v‘2>_f

where p(x,t) = [na f(t,2,v) dv is the position density of f

[Poupaud]: Mathematical theory of kinetic equations for transport modelling in

semiconductors, 1994

@_ For applications in astrophysics, we are interested in collision kernels
(BGK type / time-relaxation) such that stationary states are
polytropic equilibria 2

fav0) = (5 b + Vo) - u)+
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Diffusion limit for a time-relaxation model for polytropes

20 f +ev-Vufs —eVV(x) -Vofs = Gj- — f°
felx,v,t=0) = fr(z,v), =z,v R’

with Gibbs equilibrium Gy =1~ (% + Vi(x) — pp, (2, t))

The Fermi energy p,(x,t) is implicitly defined by

/R3 v (g + V() = po; (x,t)) dv= [ f(x,v,t)dv=:ps(x,t)

R3
fe(x,v,t) ... phase space particle density
V(z) ... potential
£ ... mean free path

@_ Formal expansions (generalized Smoluchowski equation): [Ben Abdallah, J.D.],

[Chavanis, Laurengot, Lemou], [Chavanis et al.], [Degond, Ringhofer|
@ Astrophysics: [Binney, Tremaine], [Guo, Rein], [Chavanis et al.]

@_ Fermi-Dirac statistics in semiconductors models: [Goudon, Poupaud|
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Fast diffusion and porous media as a diffusion limit

Theorem 14. Under assumptions on V' and the initial data f7, for any € > 0, there is a
unique weak solution ¢ € C'(0, 00; L' N LP(IR®)) for all p < oo which converges to

Pt = (51 = ot )) wan [ o (SR =) do =

as € — 0, where p is a solution of the nonlinear diffusion equation

Bup = Vo (Varlp) + pVaV(@)), v(p) = / TS (s) ds

with initial data p(x,0) = pr(x) = Jps fr(z,v) dv

k—5/
@ Fast diffusion case: v(E) := DE.", D >0and k > 5/2, v(p) = ,0’~€—§/g
@ Linear case: v(F) := D exp(—FE), D >0, v(p) =p

k+5/2

@ Porous medium case: y(E) = D (=E)%, D > 0 and k > 0, v(p) = p*+3/2

wma® 1\ N maE
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The relative entropy...

.. or free energy functional: ~ with ((s f v~1(o) do convex (v monotone

G s

decreasing), we get

1s such that

GFU = [ (Gr=r) (7@ = ) dedv <0

If f =G, is alocal Gibbs state, we can define a reduced free energy by
FIG,) =Glp] with G,(z,v) =7 (3 [v]*+ ilp)):

Glo) = / () +V el de with () = /(o)

Polytropes: h(p) = —— p™

m—1
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Hypocoercivity

@ The goal is to understand the rate of relaxation of the solutions of a
kinetic equation

8tf+v-V$f—VmV'va:|—f

towards a global equilibrium when the collision term acts only on the
velocity space. Here f = f(t,x,v) is the distribution function. It can
be seen as a probability distribution on the phase space, where x is
the position and v the velocity. However, since we are in a linear
framework, the fact that f has a constant sign plays no role.

@ A key feature of our approach [J.D., Mouhot, Schmeiser] is that it
distinguishes the mechanisms of relaxation at microscopic level
(convergence towards a local equilibrium, in velocity space) and
macroscopic level (convergence of the spatial density to a steady
state), where the rate is given by a spectral gap which has to do with
the underlying diffusion equation for the spatial density
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A very brief review of the literature

@_ Non constructive decay results: [Ukai (1974)] [Desvillettes (1990)]

@ Explicit t~°°-decay, no spectral gap: [Desvillettes, Villani (2001-05)],
[Fellner, Miljanovic, Neumann, Schmeiser (2004)], [Caceres, Carrillo,
Goudon (2003)]

Q_ hypoelliptic theory:

Hérau, Nier (2004)]: spectral analysis of the Vlasov-Fokker-Planck
equation

‘Hérau (2006)]: linear Boltzmann relaxation operator
Pravda-Starov]|, [Hérau, Pravda-Starov]

@ Hypoelliptic theory vs. hypocoercivity (Gallay) approach and
generalized entropies:

[Mouhot, Neumann (2006)], [Villani (2007, 2008)]

@_ Other related approaches: non-linear Boltzmann and Landau
equations:
micro-macro decomposition: [Guo]
hydrodynamic limits (fluid-kinetic decomposition): [Yu]
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A toy problem

Uoeme, L= ) r=( ) ), Rzaso
dt 0 -1 k0O

Nonmonotone decay, reminiscent of [Filbet, Mouhot, Pareschi (2006)]

.o d _
@ H-theorem: £|ul?* = —2u3

@ macroscopic limit: dd% = —k*u;

@ generalized entropy: H(u) = |u|? — % Up Us

(1-e)ful < H(u) < (1-¢)ul?

dH £ k? , ek* ek
@ - T\ i) et e
eA £
< —(2—5)u2—1+Au%+§u1u2
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Plots for the toy problem

12 1y22

© o o000 oOoc¢
R N W b~ 01T O
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..compared to plots for the Boltzmann equation

0.01 |
0.001
0.0001
1e-05

1e-06

1e-07

Figure 1: [Filbet, Mouhot, Pareschi (2006)]

4. Relative entronpv methods for nonlinear diffusion models — Diffusion limits. rates — p. 64/72



The Kkinetic equation

hf+Tf=Lf, f=[f(txzv), t>D0, reRY veR? (5)

@_ L is a linear collision operator
@ V is a given external potential on R, d > 1
Q T:=v-V,—V,V- -V, is a transport operator

There exists a scalar product (-,-), such that L is symmetric and T is
antisymmetric

d
—|f = F|? = =2]IL f||?
If = LS

. seems to imply that the decay stops when f € N (L)
but we expect f — F as t — oo since F generates N (L) NN (T)
Hypocoercivity: prove an H-theorem for a generalized entropy

H(f) = 5 IfI? += (AL £)
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Examples, conventions

@ L is a linear relaxation operator L

Lf=1f—f, If:="F(zv)
PF

p=pf:= [ [fdv
R4

@ Maxwellian case: F(z,v) := M(v)e~V®) with

M(v) := (2m)~ 42 e~ 1WF/2 — TIf = pp M(v)
@ Linearized fast diffusion case:  F'(z,v) :=w (3 |[v]* + V(:I:)>_(k+1)
@ L is a Fokker-Planck operator: L f = A, f+ V- (v f)

@ L is a linear scattering operator (including the case of non-elastic
collisions)

Conventions

@ F'is a positive probability distribution

@ Measure: du(z,v) = F(z,v) " drdv on R? x R? 5 (z,v)

@ Scalar product and norm (f, g) ffRded fgdu and || f]|* = {f, f)
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Maxwellian case: Assumptions

We assume that F(z,v) := M(v) eV ® with M(v) := (27)~ %2 ¢~ I0I°/2
where V satisfies the following assumptions

(H1) Regularity: V € W™°(R%)

loc

(H2) Normalization: o, eV dz =1

(H3) Spectral gap condition: there exists a positive constant A such that
Ja lul? e Vde <A [, |Voul?eVda

forany u € H'(e™"V dz) such that Ja e Vdr =0

(H4) Pointwise condition 1: there exists ¢o > 0 and 6 € (0, 1) such that
AV < g V.V (2)]? +co Vo € RY

(H5) Pointwise condition 2: there exists ¢; > 0 such that

V2V (z)| <ec1 (14 |V.V(2)]) Vo € RY
(H6) Growth condition: fRd V. V[?Pe Vdr < o0
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Maxwellian case

Theorem 15. 1f0;f + T f = L f, fore > 0, small enough, there exists an explicit,
positive constant A = A(e) such that
Ift) = Fl < X +e)lfo - Flle™" Vt>0

@ The operator L has no regularization property: hypo-coercivity
fundamentally differs from hypo-ellipticity

@ Coercivity due to L is only on velocity variables

d
GO = FIF == =1f2 == [[ 17— M) dvda

@ T and L do not commute: coercivity in v is transferred to the x
variable. In the diffusion limit, p solves a Fokker-Planck equation

Op=Ap+V-(pVV) t>0, zcR?

The goal of the hypo-coercivity theory is to quantify the interaction
of T and L and build a norm which controls || - || and decays
exponentially

@ Find a norm which is equivalent to L?(du), for which we have
coercivity, based on an operator A
@ The operator A is determined by the diffusion limit
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The linearized fast diffusion case
Consider a solution of Oy f + Tf =L f where Lf =11 f— f, Il f := pLFF

—(k+1)
F(z,v) :=w (% | + V(@) , Vi) =(1+ |x|2)ﬁ

where w is a normalization constant chosen such that [[., r.Fdrdv =1

x R4

and pr = wy Va/2=k=1 for some wy > 0

Theorem 16. Letd > 1,k > d/2 + 1. There exists a constant 3y > 1 such that, for
any € (min{l,(d —4)/(2k —d — 2)}, By), there are two positive, explicit constants
C and A for which the solution satisfies:

Vt>0, [f(t)-FIP<Clfo-F[*e™

@ The Poincaré inequality is replaced by the Hardy-Poincar é inequality
associated to the fast diffusion equation
@ The nonlinear case can be reduced to the linear case [Schmeiser, work

in progress|
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Other applications, other
models




An uncomplete list

@_ Kinetic theory !

@_ Molecular motors  or models of Stokes’ drift: existence, rate of
convergence, homogenization, large-time asymptotics: [Kinderlehrer
et al.], [J.D., Kowalczyk]|, [Blanchet, J.D., Kowalczyk]|, [Perthame,

Souganidis]

@_ Keller-Segel models and models of aggregation in chemotaxis: existence
vs. blow-up, critical mass, large time asymptotics, etc. |Blanchet,
J.D., Fernandez, Escobedo|, [Campos, work in progress]

Kinetic and thermodynamical models for gravitating systems

e P

Systems of reaction-diffusion  equations in chemistry: [Carrillo,
Desvillettes, Fellner]

@ Models for polymers, fragmentation, etc.
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The end

... Thank you for your attention !
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