Stability in Gagliardo-Nirenberg inequalities

Jean Dolbeault

http://www.ceremade.dauphine.fr/~dolbeaul

Ceremade, Université Paris-Dauphine

October 28, 2020

Online analysis and PDE seminar (Spain)
Two examples of entropy methods applied to stability
The fast diffusion equation
Regularity and stability

J. Dolbeault
Stability in Gagliardo-Nirenberg inequalities
The stability result of G. Bianchi and H. Egnell

A question: [Brezis, Lieb (1985)] *Is there a natural way to bound*

$$S_d \| \nabla u \|^2_{L^2(\mathbb{R}^d)} - \| u \|^2_{L^2^* (\mathbb{R}^d)}$$

from below in terms of a “distance” to the set of optimal [Aubin-Talenti] functions when $d \geq 3$?

▷ [Bianchi, Egnell (1991)] There is a positive constant α such that

$$S_d \| \nabla u \|^2_{L^2(\mathbb{R}^d)} - \| u \|^2_{L^2^* (\mathbb{R}^d)} \geq \alpha \inf_{\varphi \in \mathcal{M}} \| \nabla u - \nabla \varphi \|^2_{L^2(\mathbb{R}^d)}$$

▷ Various improvements, e.g., [Cianchi, Fusco, Maggi, Pratelli (2009)] there are constants α and κ and $u \mapsto \lambda(u)$ such that

$$S_d \| \nabla u \|^2_{L^2(\mathbb{R}^d)} \geq (1 + \kappa \lambda(u)^\alpha) \| u \|^2_{L^2^* (\mathbb{R}^d)}$$

The question of constructive estimates is still widely open
From the carré du champ method to stability results

\[\mathcal{I}[u] \geq \Lambda F[u] \]

Carré du champ method (D. Bakry and M. Emery) From

\[\frac{\partial u}{\partial t} = \mathcal{L} u^m \text{ (typically),} \quad \frac{d \mathcal{I}}{dt} \leq -\Lambda \mathcal{I} \]

deduce that \(\mathcal{I} - \Lambda F \) is monotone non-increasing with limit 0

▷ **Improved constant** means **stability**

Under some restrictions on the functions, there is some \(\Lambda^* \geq \Lambda \) such that

\[\mathcal{I} - \Lambda F \geq (\Lambda^* - \Lambda) F \]

▷ **Improved entropy – entropy production inequality**

\[\mathcal{I} \geq \Lambda \psi(F) \]

for some \(\psi \) such that \(\psi(0) = 0, \psi'(0) = 1 \) and \(\psi'' > 0 \)

\[\mathcal{I} - \Lambda F \geq \Lambda \left(\psi(F) - F \right) \geq 0 \]
Part I: *Two examples of stability results by entropy methods*

- Sobolev and Hardy-Littlewood-Sobolev inequalities
 joint work with G. Jankowiak
- Subcritical interpolation inequalities on the sphere
 joint work with M.J. Esteban and M. Loss

Part II: *A constructive result based on entropy and parabolic regularity*

 joint work with M. Bonforte, B. Nazaret and N. Simonov

- The *fast diffusion flow* and *entropy methods*
 - Rényi entropy powers: a word on the *carré du champ* method
 - the *entropy-entropy production inequality*
 - spectral gap: the *asymptotic time layer*
 - the *initial time layer*, a backward nonlinear estimate

- The *uniform convergence in relative error*
 - the *threshold time*
 - a quantitative global Harnack principle and Hölder regularity
 - the stability result in the entropy framework
Part I

Two examples of stability results by entropy methods
Example 1
Sobolev and Hardy-Littlewood-Sobolev inequalities

- Stability in a weaker norm but with explicit constants
- From duality to improved estimates based on Yamabe’s flow
As it has been noticed by E. Lieb (1983) Sobolev’s inequality in \mathbb{R}^d, $d \geq 3$,

$$\| u \|_{L^{2^*}(\mathbb{R}^d)}^2 \leq S_d \| \nabla u \|_{L^2(\mathbb{R}^d)}^2 \quad \forall \ u \in \mathcal{D}^{1,2}(\mathbb{R}^d)$$

and the Hardy-Littlewood-Sobolev inequality

$$S_d \| v \|_{L^{\frac{2d}{d+2}}(\mathbb{R}^d)}^{\frac{2d}{d+2}} \geq \int_{\mathbb{R}^d} v (-\Delta)^{-1} v \, dx \quad \forall \ v \in L^{\frac{2d}{d+2}}(\mathbb{R}^d)$$

are dual of each other. Here S_d is the Aubin-Talenti constant and $2^* = \frac{2d}{d-2}$
Two examples of entropy methods applied to stability
The fast diffusion equation
Regularity and stability
Critical Sobolev and HLS inequalities
Improved interpolation inequalities on the sphere

The first step in the entropy method

Proposition

Assume that $d \geq 3$ and $m = \frac{d-2}{d+2}$. If v is a solution the Yamabe flow

$$\frac{\partial v}{\partial t} = \Delta v^m \quad t > 0, \quad x \in \mathbb{R}^d, \quad m = \frac{d-2}{d+2}$$

with nonnegative initial datum in $L^{2d/(d+2)}(\mathbb{R}^d)$, then

$$\frac{1}{2} \frac{d}{dt} \left[\int_{\mathbb{R}^d} v (-\Delta)^{-1} v \, dx - S_d \| v \|^2_{L^{2d/(d+2)}(\mathbb{R}^d)} \right]$$

$$= \left(\int_{\mathbb{R}^d} v^{m+1} \, dx \right)^{\frac{2}{d}} \left[S_d \| \nabla u \|^2_{L^2(\mathbb{R}^d)} - \| u \|^2_{L^{2^*}(\mathbb{R}^d)} \right] \geq 0$$
An improvement

\[J_d[v] := \int_{\mathbb{R}^d} v^{\frac{2d}{d+2}} \, dx \quad \text{and} \quad H_d[v] := \int_{\mathbb{R}^d} v (-\Delta)^{-1} v \, dx - S_d \| v \|_{L^{d+2}(\mathbb{R}^d)}^{2d} \]

Theorem (J.D., G. Jankowiak)

Assume that \(d \geq 3 \). Then we have

\[
0 \leq H_d[v] + S_d J_d[v]^{1 + \frac{2}{d}} \psi \left(J_d[v]^{\frac{2}{d}} - 1 \right) \left[S_d \| \nabla u \|_{L^{2}(\mathbb{R}^d)}^2 - \| u \|_{L^{2^*}(\mathbb{R}^d)}^2 \right]
\]

\[
\forall u \in \mathcal{D}, \ v = u^{\frac{d+2}{d-2}}
\]

where \(\psi(x) := \sqrt{\mathcal{C}^2 + 2\mathcal{C}x - \mathcal{C}} \) for any \(x \geq 0 \), with \(\mathcal{C} = 1 \)
... and a consequence: $C = 1$ is not optimal

Theorem

[JD, G. Jankowiak] In the inequality

$$S_d \|w^q\|_{L^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 - \int_{\mathbb{R}^d} w^q (-\Delta)^{-1} w^q \, dx$$

$$\leq C_d S_d \|w\|_{L^{\frac{8}{d-2}}(\mathbb{R}^d)}^{\frac{8}{d-2}} \left[\|\nabla w\|_{L^2(\mathbb{R}^d)}^2 - S_d \|w\|_{L^{2*}(\mathbb{R}^d)}^2 \right]$$

we have

$$\frac{d}{d+4} \leq C_d < 1$$
Example 2
Improved interpolation inequalities on the sphere
The interpolation inequalities on \mathbb{S}^d

On the d-dimensional sphere, let us consider the interpolation inequality

$$\| \nabla u \|_{L^2(\mathbb{S}^d)}^2 + \frac{d}{p-2} \| u \|_{L^2(\mathbb{S}^d)}^2 \geq \frac{d}{p-2} \| u \|_{L^p(\mathbb{S}^d)}^2 \quad \forall \, u \in H^1(\mathbb{S}^d, d\mu)$$

where the measure $d\mu$ is the uniform probability measure on $\mathbb{S}^d \subset \mathbb{R}^{d+1}$ corresponding to the measure induced by the Lebesgue measure on \mathbb{R}^{d+1}, and the exposant $p \geq 1$, $p \neq 2$, is such that

$$p \leq 2^* := \frac{2d}{d-2}$$

if $d \geq 3$. We adopt the convention that $2^* = \infty$ if $d = 1$ or $d = 2$. The case $p = 2$ corresponds to the logarithmic Sobolev inequality

$$\| \nabla u \|_{L^2(\mathbb{S}^d)}^2 \geq \frac{d}{2} \int_{\mathbb{S}^d} |u|^2 \log \left(\frac{|u|^2}{\| u \|_{L^2(\mathbb{S}^d)}^2} \right) \, d\mu \quad \forall \, u \in H^1(\mathbb{S}^d, d\mu) \setminus \{0\}$$
Two examples of entropy methods applied to stability
The fast diffusion equation
Regularity and stability

Critical Sobolev and HLS inequalities
Improved interpolation inequalities on the sphere

\[\|\nabla u\|_{L^2(\mathbb{R}^d)} + \frac{d}{p-2} \|u\|_{L^2(\mathbb{R}^d)}^2 \geq \frac{d}{p-2} \|u\|^2_{L^p(\mathbb{R}^d)} \quad \forall u \in H^1(\mathbb{R}^d, \mu) \]
The Bakry-Emery method

Entropy functional

\[\mathcal{F}_p[\rho] := \frac{1}{p-2} \left[\int_{\mathbb{S}^d} \rho^{\frac{2}{p}} \, d\mu - \left(\int_{\mathbb{S}^d} \rho \, d\mu \right)^{\frac{2}{p}} \right] \quad \text{if} \quad p \neq 2 \]

\[\mathcal{F}_2[\rho] := \int_{\mathbb{S}^d} \rho \log \left(\frac{\rho}{\|\rho\|_{L^1(\mathbb{S}^d)}} \right) \, d\mu \]

Fisher information functional

\[\mathcal{I}_p[\rho] := \int_{\mathbb{S}^d} |\nabla \rho^{\frac{1}{p}}|^2 \, d\mu \]

Bakry-Emery (carré du champ) method: use the heat flow

\[\frac{\partial \rho}{\partial t} = \Delta \rho \]

and compute \(\frac{d}{dt} \mathcal{F}_p[\rho] = -\mathcal{I}_p[\rho] \) and \(\frac{d}{dt} \mathcal{I}_p[\rho] \leq -d \mathcal{I}_p[\rho] \) to get

\[\frac{d}{dt} \left(\mathcal{I}_p[\rho] - d \mathcal{F}_p[\rho] \right) \leq 0 \quad \Rightarrow \quad \mathcal{I}_p[\rho] \geq d \mathcal{F}_p[\rho] \]

with \(\rho = |u|^p \), if \(p \leq 2^\# := \frac{2d^2+1}{(d-1)^2} \).
Theorem

Assume that

\[p \neq 2, \quad \text{and} \quad 1 \leq p \leq 2^# \quad \text{if} \quad d \geq 2, \quad p \geq 1 \quad \text{if} \quad d = 1 \]

\[\gamma = \left(\frac{d-1}{d+2} \right)^2 (p-1)(2^# - p) \quad \text{if} \quad d \geq 2, \quad \gamma = \frac{p-1}{3} \quad \text{if} \quad d = 1 \]

Then for any \(u \in H^1(\mathbb{S}^d) \),

\[
\| \nabla u \|_{L^2(\mathbb{S}^d)}^2 \geq \frac{d}{2 - p - \gamma} \left(\| u \|_{L^2(\mathbb{S}^d)}^2 - \| u \|_{L^p(\mathbb{S}^d)}^{2 - \frac{2\gamma}{2-p}} \| u \|_{L^2(\mathbb{S}^d)}^{\frac{2\gamma}{2-p}} \right) \quad \text{if} \quad \gamma \neq 2 - p
\]

\[
\| \nabla u \|_{L^2(\mathbb{S}^d)}^2 \geq \frac{2d}{p-2} \| u \|_{L^2(\mathbb{S}^d)}^2 \log \left(\frac{\| u \|_{L^2(\mathbb{S}^d)}^2}{\| u \|_{L^p(\mathbb{S}^d)}^2} \right) \quad \forall \ u \in H^1(\mathbb{S}^d)
\]
Improved interpolation inequalities on the sphere

\[\lambda^* := \inf_{\nu \in H^1_+(S^d, d\mu)} \frac{\int_{S^d} (\Delta \nu)^2 \, d\mu}{\int_{S^d} |\nabla \nu|^2 \nu \, d\mu} > \frac{d}{d^2} \int_{S^d} |\nabla \nu|^2 \nu \, d\mu = 1 \]
\[\int_{S^d} \nu \, d\mu = 1 \]
\[\int_{S^d} |\nabla \nu|^2 \nu \, d\mu = 0 \]

For any \(f \in H^1(S^d, d\mu) \) s.t. \(\int_{S^d} |f|^p \, d\mu = 0 \), consider the inequality

\[\int_{S^d} |\nabla f|^2 \nu \, d\mu + \frac{\lambda}{p-2} \| f \|_2^2 \geq \frac{\lambda}{p-2} \| f \|_p^2 \]

Proposition

If \(p \in (2, 2\#) \), the inequality holds with

\[\lambda \geq d + \frac{(d-1)^2}{d(d+2)} (2\# - p)(\lambda^* - d) \]
\(p = 2: \) the logarithmic Sobolev case

\[\lambda^* = d + \frac{2(d + 2)}{2(d + 3) + \sqrt{2(d + 3)(2d + 3)}} \]

Proposition

Let \(d \geq 2 \). For any \(u \in H^1(\mathbb{S}^d, d\mu) \setminus \{0\} \) such that \(\int_{\mathbb{S}^d} |u|^2 \, d\mu = 0 \), we have

\[\int_{\mathbb{S}^d} |\nabla u|^2 \, d\mu \geq \frac{\delta}{2} \int_{\mathbb{S}^d} |u|^2 \log \left(\frac{|u|^2}{\|u\|_2^2} \right) \, d\mu \]

with \(\delta := d + \frac{2}{d} \frac{4d - 1}{2(d + 3) + \sqrt{2(d + 3)(2d + 3)}} \).
The evolution under the fast diffusion flow

To overcome the limitation $p \leq 2^*$, one can consider a nonlinear diffusion of fast diffusion / porous medium type

$$\frac{\partial \rho}{\partial t} = \Delta \rho^m. \tag{1}$$

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any $p \in [1, 2^*]$

$$\mathcal{H}_p[\rho] := \frac{d}{dt} \left(\mathcal{I}_p[\rho] - d \mathcal{F}_p[\rho] \right) \leq 0$$

(p, m) admissible region, $d = 5$
Stability under antipodal symmetry

With the additional restriction of antipodal symmetry, that is

\[u(-x) = u(x) \quad \forall x \in \mathbb{S}^d \]

Theorem

If \(p \in (1, 2) \cup (2, 2^*) \), we have

\[
\int_{\mathbb{S}^d} |\nabla u|^2 \, d\mu \geq \frac{d}{p-2} \left[1 + \frac{(d^2 - 4)(2^* - p)}{d(d + 2) + p - 1} \right] \left(\|u\|_{L^p(\mathbb{S}^d)}^2 - \|u\|_{L^2(\mathbb{S}^d)}^2 \right)
\]

for any \(u \in H^1(\mathbb{S}^d, d\mu) \) with antipodal symmetry. The limit case \(p = 2 \) corresponds to the improved logarithmic Sobolev inequality

\[
\int_{\mathbb{S}^d} |\nabla u|^2 \, d\mu \geq \frac{d}{2} \frac{(d + 3)^2}{(d + 1)^2} \int_{\mathbb{S}^d} |u|^2 \log \left(\frac{|u|^2}{\|u\|_{L^2(\mathbb{S}^d)}^2} \right) \, d\mu
\]
Numerical computation of the optimal constant when $d = 5$ and $1 \leq p \leq 10/3 \approx 3.33$. The limiting value of the constant is numerically found to be equal to $\lambda_* = 2^{1-2/p} d \approx 6.59754$ with $d = 5$ and $p = 10/3$.
Part II

A constructive result of stability based on entropy and parabolic regularity

▷ An introduction

▷ The fast diffusion equation

▷ Regularity and stability
Main results (part II) have been obtained in collaboration with

Matteo Bonforte
▶ Universidad Autónoma de Madrid and ICMAT

Bruno Nazaret
▶ Université Paris 1 Panthéon-Sorbonne and Mokaplan team

Nikita Simonov
▶ Ceremade, Université Paris-Dauphine (PSL)
Introduction

- A special family of Gagliardo-Nirenberg inequalities
- Optimal functions
- A stability result
Gagliardo-Nirenberg inequalities

For any smooth f on \mathbb{R}^d with compact support

$$\|\nabla f\|_2^\theta \|f\|_{p+1}^{1-\theta} \geq C_{GN} \|f\|_{2p}$$

(2)

[Gagliardo, 1958] [Nirenberg, 1959] \quad \theta = \frac{d(p-1)}{p(d+2-p(d-2))}

if $d \geq 3$, the exponent p is in the range $1 < p \leq \frac{d}{d-2}$ and

$2p = \frac{2d}{d-2} = 2^* =: 2p^*$ is the critical Sobolev exponent, corresponding to Sobolev's inequality with $(\theta = 1)$ [Rodemich, 1968] [Aubin & Talenti, 1976]

$$\|\nabla f\|_2^2 \geq S_d \|f\|_{2^*}^2$$

if $d = 1$ or 2, the exponent p is in the range $1 < p < +\infty =: p^*$

the limit case as $p \to 1^+$ is Euclidean logarithmic Sobolev inequality in scale invariant form [Blachman, 1965] [Stam, 1959] [Weissler, 1978]

$$\frac{d}{2} \log \left(\frac{2}{\pi d e} \int_{\mathbb{R}^d} |\nabla f|^2 \, dx \right) \geq \int_{\mathbb{R}^d} |f|^2 \log |f|^2 \, dx$$

for any function $f \in H^1(\mathbb{R}^d, \, dx)$ such that $\|f\|_2 = 1$
Optimal functions and scalings

\[\| \nabla f \|_2^\theta \| f \|_p^{1-\theta} \geq C_{GN} \| f \|_{2p} \]

(1)

[del Pino, JD, 2002] Equality is achieved by the Aubin-Talenti type function

\[g(x) = \left(1 + |x|^2 \right)^{-\frac{1}{p-1}} \quad \forall \ x \in \mathbb{R}^d \]

By homogeneity, translation, scalings, equality is also achieved by

\[g_{\lambda, \mu, y}(x) := \mu \lambda^{-\frac{d}{2p}} g \left(\frac{x-y}{\lambda} \right) \quad (\lambda, \mu, y) \in (0, +\infty) \times \mathbb{R} \times \mathbb{R}^d \]

▷ A non-scale invariant form of the inequality

\[a \| \nabla f \|_2^2 + b \| f \|_{p+1}^{p+1} \geq \mathcal{K}_{GN} \| f \|_{2p}^{2p \gamma} \]

\[a = \frac{1}{2} (p - 1)^2, \quad b = 2 \frac{d-p(d-2)}{p+1} \]

\[\mathcal{K}_{GN} = \| g \|_{2p}^{2p(1-\gamma)} \quad \text{and} \quad \gamma = \frac{d+2-p(d-2)}{d-p(d-4)} \]

If \(p = 1 \): standard Euclidean logarithmic Sobolev inequality [Gross, 1975]

\[\int_{\mathbb{R}^d} |\nabla f|^2 \, dx \geq \frac{1}{2} \int_{\mathbb{R}^d} |v|^2 \log \left(\frac{|f|^2}{\| f \|_2^2} \right) \, dx + \frac{d}{4} \log(2 \pi e^2) \| f \|_2^2 \]
The stability issue

What kind of distance to the manifold \mathcal{M} of the Aubin-Talenti type functions is measured by the \textit{deficit functional} δ?

$$\delta[f] := a \| \nabla f \|_2^2 + b \| f \|_{p+1}^{p+1} - \mathcal{H}_{\text{GN}} \| f \|_{2p}^{2p}$$

Some (not completely satisfactory) answers:

\[\uparrow\] In the critical case $p = d/(d-2)$, $d \geq 3$, [Bianchi, Egnell, 1991]: there is a positive constant C such that

$$\| \nabla f \|_2^2 - S_d \| f \|_{2^*}^{2^*} \geq C \inf_{\mathcal{M}} \| \nabla f - \nabla g \|_2^2$$

\[\uparrow\] [JD, Jankowiak] Assume that $d \geq 3$ and let $q = \frac{d+2}{d-2}$. There exists a constant C with $1 < C \leq 1 + \frac{4}{d}$ such that

$$\| \nabla f \|_2^2 - S_d \| f \|_{2^*}^{2^*} \geq \frac{C}{S_d \| f \|_{2^*}^{2(2^*-2)}} \left(S_d \| f_q \|_{2^*}^{2d} - \int_{\mathbb{R}^d} |f|^q \left((-\Delta)^{-1} |f|^q \right) dx \right)$$

\[\uparrow\] [Blanchet, Bonforte, JD, Grillo, Vázquez] [JD, Toscani] ... various improvements based on entropy methods and fast diffusion flows
A stability result

The relative entropy
\[\mathcal{F}[f] := \frac{2p}{1-p} \int_{\mathbb{R}^d} \left(|f|^{p+1} - g^{p+1} - \frac{1+p}{2p} g^{1-p} (|f|^{2p} - g^{2p}) \right) dx \]

The deficit functional
\[\delta[f] := a \| \nabla f \|^2_2 + b \| f \|^{p+1}_{p+1} - \mathcal{H}_{GN} \| f \|^{2p\gamma}_{2p} \geq 0 \]

Theorem

Let \(d \geq 1, \ p \in (1, p^*) \), \(A > 0 \) and \(G > 0 \). There is a \(C > 0 \) such that
\[\delta[f] \geq C \mathcal{F}[f] \]

for any \(f \in \mathcal{W} := \{ f \in L^1(\mathbb{R}^d, (1+|x|)^2 \, dx) : \nabla f \in L^2(\mathbb{R}^d, dx) \} \) such that
\[\int_{\mathbb{R}^d} |f|^{2p} \, dx = \int_{\mathbb{R}^d} |g|^{2p} \, dx, \quad \int_{\mathbb{R}^d} x |f|^{2p} \, dx = 0 \]
\[\sup_{r>0} r \frac{d-p(d-4)}{p-1} \int_{|x|>r} |f|^{2p} \, dx \leq A \quad \text{and} \quad \mathcal{F}[f] \leq G \]
Some comments

▷ **The constant C is explicit**

▷ **A Csiszár-Kullback inequality.** There exists a constant $C_p > 0$ such that

$$
\left\| |f|^{2p} - g^{2p} \right\|_{L^1(\mathbb{R}^d)} \leq C_p \sqrt{\mathcal{F}[f]} \quad \text{if} \quad \|f\|_{L^2_p(\mathbb{R}^d)} = \|g\|_{L^2_p(\mathbb{R}^d)}
$$

▷ Literature on stability of Sobolev type inequalities is huge:
 – Weak $L^{2^*/2}$-remainder term in bounded domains [Brezis, Lieb, 1985]
 – Fractional versions and $(-\Delta)^s$ [Lu, Wei, 2000] [Gazzola, Grunau, 2001]
 [Bartsch, Weth, Willem, 2003] [Chen, Frank, Weth, 2013]
 – Inverse stereographic projection (eigenvalues): [Ding, 1986] [Beckner, 1993] [Morpurgo, 2002] [Bartsch, Schneider, Weth, 2004]
 – Symmetrization [Cianchi, Fusco, Maggi, Pratelli, 2009] and [Figalli, Maggi, Pratelli, 2010]

... to be continued
On stability and flows (continued)
- Many other papers by Figalli and his collaborators, among which (most recent ones): [Figalli, Neumayer, 2018] [Neumayer, 2020] [Figalli, Zhang, 2020] [Figalli, Glaudo, 2020]
- Stability for Gagliardo-Nirenberg inequalities [Carlen, Figalli, 2013] [Seuffert, 2017] [Nguyen, 2019]
- Gradient flow issues [Otto, 2001] and many subsequent papers
- Carré du champ applied to the fast diffusion equation [Carrillo, Toscani, 2000] [Carrillo and Vázquez, 2003] [CJMTU, 2001] [Jüngel, 2016]
- Spectral gap properties [Scheffer, 2001] [Denzler, McCann, 2003 & 2005]

On entropy methods
- Carré du champ: the semi-group and Markov precesses point of view [Bakry, Gentil, Ledoux, 2014]
- The PDE point of view (+ some applications to numerical analysis) [Jüngel, 2016]

Global Harnack principle: [Vázquez, 2003] [Bonforte, Vázquez, 2006] [Vázquez, 2006] [Bonforte, Simonov, 2020]

⇒ Our tool: the fast diffusion equation
The fast diffusion equation

\[\frac{\partial u}{\partial t} = \Delta u^m \quad (3) \]

- The Rényi entropy powers and the Gagliardo-Nirenberg inequalities
- Self-similar solutions and the entropy-entropy production method
- Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)
Consider the *fast diffusion* equation in \mathbb{R}^d, $d \geq 1$, $m \in (0, 1)$

$$\frac{\partial u}{\partial t} = \Delta u^m$$

(2)

with initial datum $u(t = 0, x) = u_0(x) \geq 0$ such that

$$\int_{\mathbb{R}^d} u_0 \, dx = \mathcal{M} > 0 \quad \text{and} \quad \int_{\mathbb{R}^d} |x|^2 u_0 \, dx < +\infty$$

The large time behavior is governed by the self-similar Barenblatt solutions

$$\mathcal{U}(t, x) := \frac{1}{(\kappa t^{1/\mu})^d} \mathcal{B}\left(\frac{x}{\kappa t^{1/\mu}}\right)$$

where $\mu := 2 + d(m - 1)$, $\kappa := \left|\frac{2\mu m}{m-1}\right|^{1/\mu}$ and \mathcal{B} is the Barenblatt profile

$$\mathcal{B}(x) := (C + |x|^2)^{-\frac{1}{1-m}}$$
The Rényi entropy power F

The entropy is defined by

$$ E := \int_{\mathbb{R}^d} u^m \, dx $$

and the Fisher information by

$$ I := \int_{\mathbb{R}^d} u |\nabla P|^2 \, dx \quad \text{with} \quad P = \frac{m}{m-1} u^{m-1} \text{is the pressure variable} $$

If u solves the fast diffusion equation, then

$$ E' = (1 - m) I $$

The Rényi entropy power

$$ F := E^\sigma = \left(\int_{\mathbb{R}^d} u^m \, dx \right)^\sigma \quad \text{with} \quad \sigma = \frac{2}{d} \frac{1}{1-m} - 1 $$

applied to self-similar Barenblatt solutions has a linear growth in t
The concavity property

Theorem

[Toscani, Savaré, 2014] Assume that $m_1 \leq m < 1$ if $d > 1$ and $m > 1/2$ if $d = 1$. Then $F(t)$ is concave, increasing, and

$$
\lim_{t \to +\infty} F'(t) = (1 - m) \sigma \lim_{t \to +\infty} E^{\sigma - 1} I
$$

[Dolbeault, Toscani, 2016] The inequality

$$
E^{\sigma - 1} I \geq E[B]^{\sigma - 1} I[B]
$$

is equivalent to the Gagliardo-Nirenberg inequality

$$
\| \nabla f \|_2^\theta \| f \|^ {1-\theta} \|_{p+1} \geq C_{GN} \| f \|_2^p
$$

(1)

$$
u^{m-1/2} = \frac{f}{\| f \|_2^p} \quad \text{and} \quad p = \frac{1}{2m-1} \in (1, p^*) \iff \max \{ \frac{1}{2}, m_1 \} < m < 1
$$
Self-similar variables: entropy-entropy production method

The fast diffusion equation

\[\frac{\partial u}{\partial t} = \Delta u^m \]

has a self-similar solution

\[\mathcal{U}(t,x) := \frac{1}{\kappa^d (\mu t)^{d/\mu}} \mathcal{B} \left(\frac{x}{\kappa (\mu t)^{1/\mu}} \right) \quad \text{where} \quad \mathcal{B}(x) := (1 + |x|^2)^{-\frac{1}{1-m}} \]

A time-dependent rescaling based on self-similar variables

\[u(t,x) = \frac{1}{\kappa^d R^d} v(\tau, \frac{x}{\kappa R}) \quad \text{where} \quad \frac{dR}{dt} = R^{1-\mu}, \quad \tau(t) := \frac{1}{2} \log \left(\frac{R(t)}{R_0} \right) \]

Then the function \(v \) solves a Fokker-Planck type equation

\[\frac{\partial v}{\partial \tau} + \nabla \cdot \left[v \left(\nabla u^{m-1} - 2x \right) \right] = 0 \]

with same initial datum \(v_0 = u_0 \) if \(R_0 = R(0) = 1 \)
Free energy and Fisher information

The function \(v \) and \(\mathcal{B} \) (same mass) solve the Fokker-Planck type equation

\[
\frac{\partial v}{\partial t} + \nabla \cdot \left[v \left(\nabla v^{m-1} - 2x \right) \right] = 0 \tag{4}
\]

A Lyapunov functional [Ralston, Newman, 1984]

Generalized entropy or **Free energy**

\[
\mathcal{F}[v] := -\frac{1}{m} \int_{\mathbb{R}^d} \left(v^m - \mathcal{B}^m - m \mathcal{B}^{m-1} (v - \mathcal{B}) \right) dx
\]

Entropy production is measured by the **Generalized Fisher information**

\[
\frac{d}{dt} \mathcal{F}[v] = -\mathcal{J}[v], \quad \mathcal{J}[v] := \int_{\mathbb{R}^d} v \left| \nabla v^{m-1} + 2x \right|^2 dx
\]
The entropy - entropy production inequality

\[\mathcal{B}(x) := (1 + |x|^2)^{-\frac{1}{1-m}} \]

Theorem

[del Pino, JD, 2002] \(d \geq 3, \ m \in [m_1, 1), \ m > \frac{1}{2}, \ \int_{\mathbb{R}^d} v_0 \, dx = \int_{\mathbb{R}^d} \mathcal{B} \, dx \)

\[
\int_{\mathbb{R}^d} v \left| \nabla v^{m-1} + 2x \right|^2 \, dx = \mathcal{I}[v] \geq 4 \mathcal{F}[v] = 4 \int_{\mathbb{R}^d} \left(\frac{\mathcal{B}^m}{m} - \frac{v^m}{m} + |x|^2 (v - \mathcal{B}) \right) \, dx
\]

\(p = \frac{1}{2m-1}, \ v = f^{2p} \)

\[
\| \nabla f \|_2^\theta \| f \|_{p+1}^{1-\theta} \geq C_{GN} \| f \|_{2p} \iff \delta[f] = \mathcal{I}[v] - 4 \mathcal{F}[v] \geq 0
\]

Corollary

[del Pino, JD, 2002] A solution \(v \) of (4) with initial data \(v_0 \in L^1_+(\mathbb{R}^d) \) such that \(|x|^2 v_0 \in L^1(\mathbb{R}^d), \ v_0^m \in L^1(\mathbb{R}^d) \) satisfies

\[\mathcal{F}[v(t, \cdot)] \leq \mathcal{F}[v_0] e^{-4t} \]
A computation on a large ball, with boundary terms

Carré du champ method [Carrillo, Toscani] [Carrillo, Vázquez] [Carrillo, Jüngel, Toscani, Markowich, Unterreiter]

\[
\begin{align*}
\frac{\partial u}{\partial t} + \nabla \cdot \left[v \left(\nabla v^{m-1} - 2x \right) \right] &= 0 \quad t > 0, \quad x \in B_R \\
\left(\nabla v^{m-1} - 2x \right) \cdot \frac{x}{|x|} &= 0 \quad t > 0, \quad x \in \partial B_R
\end{align*}
\]

\[
\frac{d}{dt} \int_{B_R} v |\nabla v^{m-1} - 2x|^2 \, dx + 4 \int_{B_R} v |\nabla v^{m-1} - 2x|^2 \, dx
\]

\[+ 2 \frac{1-m}{m} \int_{B_R} v^m \left(\|D^2(v^{m-1} - B^{m-1})\|^2 - (1-m) \left| \Delta(v^{m-1} - B^{m-1}) \right|^2 \right) \, dx = \int_{\partial B_R} v^m (\omega \cdot \nabla |(v^{m-1} - B^{m-1})|^2) \, d\sigma \leq 0 \text{ (by Grisvard’s lemma)}
\]

Improvement: \(\exists \phi \) such that \(\phi'' > 0, \phi(0) = 0 \) and \(\phi'(0) = 4 \) [Toscani, JD]

\[
\mathcal{I}[v|\mathcal{B}_\sigma] \geq \phi(\mathcal{F}[v|\mathcal{B}_\sigma]) \quad \iff \quad \text{idea:} \quad \frac{d\mathcal{I}}{dt} + 4 \mathcal{I} \lesssim -\frac{\mathcal{I}}{\mathcal{I}^2}
\]
Spectral gap: sharp asymptotic rates of convergence

Assumptions on the initial datum v_0

$$(H_1) \ (C_0 + |x|^2)^{-\frac{1}{1-m}} \leq v_0 \leq (C_1 + |x|^2)^{-\frac{1}{1-m}}$$

$$(H_2) \text{ if } d \geq 3 \text{ and } m \leq m_* := \frac{d-4}{d-2}, \text{ then } (v_0 - B) \text{ is integrable}$$

Theorem

Blanchet, Bonforte, JD, Grillo, Vázquez, 2009
If $m < 1$ and $m \neq m_*$, then

$$ \mathcal{F} [v(t, \cdot)] \leq C e^{-2\gamma(m) t} \quad \forall \ t \geq 0, \quad \gamma(m) := (1 - m) \Lambda_{\alpha,d} $$

where $\Lambda_{\alpha,d} > 0$ is the best constant in the Hardy–Poincaré inequality

$$ \Lambda_{\alpha,d} \int_{\mathbb{R}^d} |f|^2 \ d\mu_{\alpha-1} \leq \int_{\mathbb{R}^d} |\nabla f|^2 \ d\mu_{\alpha} \quad \forall \ f \in H^1(d\mu_{\alpha}), \ \int_{\mathbb{R}^d} f \ d\mu_{\alpha-1} = 0 $$

with $\alpha := \frac{1}{m-1} < 0$, $d\mu_{\alpha} := h_{\alpha} \, dx$, $h_{\alpha}(x) := (1 + |x|^2)^{\alpha}$
Spectral gap and the asymptotic time layer

Two examples of entropy methods applied to stability
The fast diffusion equation
Regularity and stability
Gagliardo-Nirenberg inequalities
The fast diffusion equation
Spectral gap and asymptotics

\[F[v(t, \cdot)] \leq C e^{-2\gamma(m)t} \quad \forall \ t \geq 0 \]

[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2015]
Spectral gap and improvements... the details

Asymptotic time layer [BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2015]

Corollary

Assume that \(v \) solves (4): \(\partial_t v + \nabla \cdot \left[v (\nabla v^{m-1} - 2x) \right] = 0 \) with initial datum \(v_0 \geq 0 \) such that \(\int_{\mathbb{R}^d} v_0 \, dx = \int_{\mathbb{R}^d} B \, dx \)

(i) there is a constant \(C_1 > 0 \) such that \(\mathcal{F}[v(t, \cdot)] \leq C_1 e^{-2\gamma(m)t} \) with \(\gamma(m) = 2 \) if \(m_1 \leq m < 1 \)

(ii) if \(m_1 \leq m < 1 \) and \(\int_{\mathbb{R}^d} x \cdot v_0 \, dx = 0 \), there is a constant \(C_2 > 0 \) such that \(\mathcal{F}[v(t, \cdot)] \leq C_2 e^{-2\gamma(m)t} \) with \(\gamma(m) = 4 - 2d(1 - m) \)

(iii) Assume that \(\frac{d+1}{d+2} \leq m < 1 \) and \(\int_{\mathbb{R}^d} x \cdot v_0 \, dx = 0 \) and let

\[
B_\sigma := \sigma^{-\frac{d}{2}} B(x/\sqrt{\sigma})
\]

be such that \(\int_{\mathbb{R}^d} |x|^2 u(t, x) \, dx = \int_{\mathbb{R}^d} |x|^2 B_\sigma(x) \, dx \). Then there is a constant \(C_3 > 0 \) such that \(\mathcal{F}[v(t, \cdot)|B_\sigma] \leq C_3 e^{-4t} \)

Initial time layer \(\mathcal{I}[v|B_\sigma] \geq \phi(\mathcal{F}[v|B_\sigma]) \) ⇒ faster decay for \(t \sim 0 \)
The asymptotic time layer improvement

Linearized free energy and linearized Fisher information

\[
F[g] := \frac{m}{2} \int_{\mathbb{R}^d} |g|^2 B^{2-m} \, dx \quad \text{and} \quad I[g] := m(1-m) \int_{\mathbb{R}^d} |\nabla g|^2 B \, dx
\]

Hardy-Poincaré inequality. Let \(d \geq 1, m \in (m_1, 1) \) and \(g \in L^2(\mathbb{R}^d, B^{2-m} \, dx) \) such that \(\nabla g \in L^2(\mathbb{R}^d, B \, dx), \int_{\mathbb{R}^d} g \, B^{2-m} \, dx = 0 \) and \(\int_{\mathbb{R}^d} \nabla g \cdot B^{2-m} \, dx = 0 \)

\[
I[g] \geq 4 \alpha F[g] \quad \text{where} \quad \alpha = 2 - d(1-m)
\]

Proposition

Let \(m \in (m_1, 1) \) if \(d \geq 2, \ m \in (1/3, 1) \) if \(d = 1, \ \eta = 2d(m - m_1) \) and \(\chi = m/(266 + 56m) \). If \(\int_{\mathbb{R}^d} \nu \, dx = M, \ \int_{\mathbb{R}^d} \nabla \nu \, dx = 0 \) and

\[
(1 - \varepsilon) B \leq \nu \leq (1 + \varepsilon) B
\]

for some \(\varepsilon \in (0, \chi \eta) \), then

\[
\mathcal{D}[\nu] := \frac{\mathcal{I}[\nu]}{\mathcal{F}[\nu]} \geq 4 + \eta
\]
The initial time layer improvement: backward estimate

Rephrasing the carré du champ method, \(\mathcal{Q}[v] := \frac{\mathcal{I}[v]}{\mathcal{F}[v]} \) is such that

\[
\frac{d \mathcal{Q}}{dt} \leq \mathcal{Q}(\mathcal{Q} - 4)
\]

Lemma

Assume that \(m > m_1 \) and \(v \) is a solution to (4) with nonnegative initial datum \(v_0 \). If for some \(\eta > 0 \) and \(T > 0 \), we have \(\mathcal{Q}[v(T, \cdot)] \geq 4 + \eta \), then

\[
\mathcal{Q}[v(t, \cdot)] \geq 4 + \frac{4\eta e^{-4T}}{4 + \eta - \eta e^{-4T}} \quad \forall \ t \in [0, T]
\]
Regularity and stability

Our strategy

Choose $\varepsilon > 0$, small enough

Get a threshold time $t_*(\varepsilon)$

Initial time layer

Backward estimate by entropy methods

Forward estimate based on a spectral gap

Asymptotic time layer
Uniform convergence in relative error: statement

Theorem

Assume that $m \in (m_1, 1)$ if $d \geq 2$, $m \in (1/3, 1)$ if $d = 1$ and let $\epsilon \in (0, 1/2)$, small enough, $A > 0$, and $G > 0$ be given. There exists an explicit time $t_\star \geq 0$ such that, if u is a solution of

$$\frac{\partial u}{\partial t} = \Delta u^m \quad (2)$$

with nonnegative initial datum $u_0 \in L^1(\mathbb{R}^d)$ satisfying

$$\sup_{r>0} \frac{d(m-mc)}{(1-m)} \int_{|x|>r} u \ dx \leq A < \infty \quad (H_A)$$

$$\int_{\mathbb{R}^d} u_0 \ dx = \int_{\mathbb{R}^d} B \ dx = M \text{ and } \mathcal{F}[u_0] \leq G, \text{ then}$$

$$\sup_{x \in \mathbb{R}^d} \left| \frac{u(t,x)}{B(t,x)} - 1 \right| \leq \epsilon \quad \forall \ t \geq t_\star$$
The threshold time

Proposition

Let $m \in (m_1, 1)$ if $d \geq 2$, $m \in (1/3, 1)$ if $d = 1$, $\varepsilon \in (0, \varepsilon_{m,d})$, $A > 0$ and $G > 0$

$$t_\star = c_\star \frac{1 + A^{1-m} + G^{\frac{a}{2}}}{\varepsilon^a}$$

where $a = \frac{\alpha}{\vartheta} \frac{2-m}{1-m}$ and $\vartheta = \nu / (d + \nu)$

$$c_\star = c_\star(m, d) = \sup_{\varepsilon \in (0, \varepsilon_{m,d})} \max \{ \varepsilon \kappa_1(\varepsilon, m), \varepsilon^a \kappa_2(\varepsilon, m), \varepsilon \kappa_3(\varepsilon, m) \}$$

$$\kappa_1(\varepsilon, m) := \max \left\{ \frac{8c}{(1+\varepsilon)^{1-m} - 1}, \frac{2^{3-m} \kappa_\star}{1 - (1-\varepsilon)^{1-m}} \right\}$$

$$\kappa_2(\varepsilon, m) := \frac{(4 \alpha)^{\alpha-1}}{\varepsilon^{2-m} \frac{\alpha}{\vartheta}} \kappa_\frac{a}{\vartheta}$$

and

$$\kappa_3(\varepsilon, m) := \frac{8 \alpha^{-1}}{1 - (1-\varepsilon)^{1-m}}$$
Two examples of entropy methods applied to stability
The fast diffusion equation
Regularity and stability

Improved entropy-entropy production inequality

Theorem

Let \(m \in (m_1, 1) \) if \(d \geq 2 \), \(m \in (1/2, 1) \) if \(d = 1 \), \(A > 0 \) and \(G > 0 \). Then there is a positive number \(\zeta \) such that

\[
\mathcal{I}[v] \geq (4 + \zeta) \mathcal{F}[v]
\]

for any nonnegative function \(v \in L^1(\mathbb{R}^d) \) such that \(\mathcal{F}[v] = G \),
\[
\int_{\mathbb{R}^d} v \, dx = M, \quad \int_{\mathbb{R}^d} x \, v \, dx = 0
\]
and \(v \) satisfies \((H_A)\).

We have the *asymptotic time layer estimate*

\[
\varepsilon \in (0, 2 \varepsilon_\star), \quad \varepsilon_\star := \frac{1}{2} \min\{\varepsilon_{m,d}, \chi \eta\} \quad \text{with} \quad T = \frac{1}{2} \log R(t_\star)
\]

\[
(1 - \varepsilon) \mathcal{B} \leq v(t, \cdot) \leq (1 + \varepsilon) \mathcal{B} \quad \forall \ t \geq T
\]

and, as a consequence, the *initial time layer estimate*

\[
\mathcal{I}[v(t, \cdot)] \geq (4 + \zeta) \mathcal{F}[v(t, \cdot)] \quad \forall \ t \in [0, T], \quad \text{where} \quad \zeta = \frac{4 \eta e^{-4 T}}{4 + \eta - \eta e^{-4 T}}
\]
Two consequences

\[\zeta = Z(A, \mathcal{F}(u_0)), \quad Z(A, G) := \frac{\zeta_\star}{1 + A(1-m)^{\frac{2}{\alpha}} + G}, \quad \zeta_\star := \frac{4\eta}{4 + \eta} \left(\frac{\varepsilon_{\star}^a}{2\alpha c_{\star}} \right)^{\frac{2}{\alpha}} c_{\alpha} \]

- Improved decay rate for the fast diffusion equation in rescaled variables

Corollary

Let \(m \in (m_1, 1) \) if \(d \geq 2 \), \(m \in (1/2, 1) \) if \(d = 1 \), \(A > 0 \) and \(G > 0 \). If \(v \) is a solution of (4) with nonnegative initial datum \(v_0 \in L^1(\mathbb{R}^d) \) such that \(\mathcal{F}(v_0) = G \), \(\int_{\mathbb{R}^d} v_0 \, dx = \mathcal{M} \), \(\int_{\mathbb{R}^d} \nabla v_0 \, dx = 0 \) and \(v_0 \) satisfies (\(H_A \)), then

\[\mathcal{F}(v(t,.)) \leq \mathcal{F}(v_0) e^{-(4+\zeta)t} \quad \forall \ t \geq 0 \]

- The stability in the entropy - entropy production estimate \(\mathcal{I}[v] - 4\mathcal{F}[v] \geq \zeta \mathcal{F}[v] \) also holds in a stronger sense

\[\mathcal{I}[v] - 4\mathcal{F}[v] \geq \frac{\zeta}{4+\zeta} \mathcal{I}[v] \]
A general stability result

\[\lambda[f] := \left(\frac{2d \kappa[f]^{p-1}}{p^2 - 1} \frac{\|f\|_p^{p+1}}{\|\nabla f\|_2^2} \right) \frac{2p}{d-p(d-4)} \]

\[A[f] := \frac{M}{\lambda[f]^{\frac{p-1}{p-1}}} \sup_{r>0} r^{\frac{d-p(d-4)}{p-1}} \int_{|x|>r} |f(x + x_f)|^{2p} \, dx \]

\[E[f] := \frac{2p}{1-p} \int_{\mathbb{R}^d} \left(\frac{\kappa[f]^{p+1}}{\lambda[f]^d} \frac{p-1}{2p} \right) |f|^{p+1} - g^{p+1} - \frac{1+p}{2p} g^{1-p} \left(\frac{\kappa[f]^{2p}}{\lambda[f]^2} |f|^{2p} - g^{2p} \right) \, dx \]

\[\mathcal{S}[f] := \frac{M}{\lambda^{2p}} \frac{1}{C(p,d)} Z(A[f], E[f]) \]

Theorem

Let \(d \geq 1 \) and \(p \in (1, p^*) \). For any \(f \in \mathcal{W} \), we have

\[\left(\|\nabla f\|_2^{\theta} \|f\|_p^{1-\theta} \right)^{2p\gamma} - \left(\mathcal{C}_{GN} \|f\|_2^{p} \right)^{2p\gamma} \geq \mathcal{S}[f] \|f\|_2^{2p\gamma} E[f] \]
M. Bonforte, J. Dolbeault, B. Nazaret, and N. Simonov. *Stability in Gagliardo-Nirenberg inequalities.* Preprint https://hal.archives-ouvertes.fr/hal-02887010

M. Bonforte, J. Dolbeault, B. Nazaret, and N. Simonov. *Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation* (supplementary material). Preprint https://hal.archives-ouvertes.fr/hal-02887013

http://www.ceremade.dauphine.fr/~dolbeaul
These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/
▷ Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/
▷ Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention!