Hypocoercivity and functional inequalities

Jean Dolbeault

http://www.ceremade.dauphine.fr/~dolbeaul

Ceremade, Université Paris-Dauphine

November 6, 2019

FLACAM 2019 - PDE session French Latin - American Conference on New Trends in Applied Mathematics 5 - 8 November 2019, Santiago, Chile

Outline

• Abstract method and motivation

- → Abstract statement in a Hilbert space
- ▷ Diffusion limit, toy model

• The compact case

- ▷ Strong confinement
- \triangleright Mode-by-mode decomposition
- \triangleright Application to the torus
- > Further results

• The non-compact case

- > With sub-exponential equilibria: weighted Poincaré inequality

• The Vlasov-Poisson-Fokker-Planck system

- ▷ Linearized system and hypocoercivity
- \triangleright Results in the diffusion limit and in the non-linear case

Abstract method and motivation

- Abstract statement
- ▷ Diffusion limit.
- \triangleright A toy model

Collaboration with C. Mouhot and C. Schmeiser

• An abstract evolution equation

Let us consider the equation

$$\frac{dF}{dt} + \mathsf{T}F = \mathsf{L}F$$

In the framework of kinetic equations, T and L are respectively the transport and the collision operators

We assume that T and L are respectively anti-Hermitian and Hermitian operators defined on the complex Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$

$$\mathsf{A} := \big(1 + (\mathsf{T}\Pi)^*\mathsf{T}\Pi\big)^{-1}(\mathsf{T}\Pi)^*$$

* denotes the adjoint with respect to $\langle \cdot, \cdot \rangle$

 Π is the orthogonal projection onto the null space of L

The assumptions

 λ_m , λ_M , and C_M are positive constants such that, for any $F \in \mathcal{H}$ \triangleright microscopic coercivity:

$$-\langle \mathsf{L}F, F \rangle \ge \lambda_m \, \| (1 - \Pi)F \|^2 \tag{H1}$$

ightharpoonup macroscopic coercivity:

$$\|\mathsf{T}\Pi F\|^2 \ge \lambda_M \, \|\Pi F\|^2 \tag{H2}$$

⊳ parabolic macroscopic dynamics:

$$\Pi \mathsf{T} \Pi F = 0 \tag{H3}$$

⊳ bounded auxiliary operators:

$$\|\mathsf{AT}(1-\Pi)F\| + \|\mathsf{AL}F\| \le C_M \|(1-\Pi)F\|$$
 (H4)

The estimate

$$\frac{1}{2} \frac{d}{dt} ||F||^2 = \langle \mathsf{L}F, F \rangle \le -\lambda_m \, ||(1 - \Pi)F||^2$$

is not enough to conclude that $||F(t,\cdot)||^2$ decays exponentially

Equivalence and entropy decay

For some $\delta > 0$ to be determined later, the L² entropy / Lyapunov functional is defined by

$$\mathsf{H}[F] := \frac{1}{2} \|F\|^2 + \delta \operatorname{Re} \langle \mathsf{A}F, F \rangle$$

so that $\langle \mathsf{AT\Pi} F, F \rangle \sim ||\Pi F||^2$ and

$$\begin{split} -\frac{d}{dt}\mathsf{H}[F] &= :\mathsf{D}[F] \\ &= - \left\langle \mathsf{L}F, F \right\rangle + \delta \left\langle \mathsf{A}\mathsf{T}\Pi F, F \right\rangle \\ &- \delta \operatorname{Re} \langle \mathsf{T}\mathsf{A}F, F \rangle + \delta \operatorname{Re} \langle \mathsf{A}\mathsf{T}(1-\Pi)F, F \rangle - \delta \operatorname{Re} \langle \mathsf{A}\mathsf{L}F, F \rangle \end{split}$$

 \triangleright entropy decay rate: for any $\delta > 0$ small enough and $\lambda = \lambda(\delta)$

$$\lambda H[F] \leq D[F]$$

 \triangleright norm equivalence of H[F] and $||F||^2$

$$\frac{2-\,\delta}{4}\,\|F\|^2 \le \mathsf{H}[F] \le \frac{2+\,\delta}{4}\,\|F\|^2$$

Exponential decay of the entropy

$$\lambda = \frac{\lambda_M}{3(1+\lambda_M)} \min\left\{1, \lambda_m, \frac{\lambda_m \lambda_M}{(1+\lambda_M) C_M^2}\right\}, \ \delta = \frac{1}{2} \min\left\{1, \lambda_m, \frac{\lambda_m \lambda_M}{(1+\lambda_M) C_M^2}\right\}$$

$$h_1(\delta, \lambda) := (\delta C_M)^2 - 4 \left(\lambda_m - \delta - \frac{2+\delta}{4}\lambda\right) \left(\frac{\delta \lambda_M}{1+\lambda_M} - \frac{2+\delta}{4}\lambda\right)$$

Theorem

Let L and T be closed linear operators (respectively Hermitian and anti-Hermitian) on \mathcal{H} . Under (H1)–(H4), for any $t \geq 0$

$$\mathsf{H}[F(t,\cdot)] \le \mathsf{H}[F_0] e^{-\lambda(\delta)t}$$

where $\delta \in (0,2)$ and $\lambda(\delta)$ is characterized by

$$\lambda(\delta) := \sup \left\{ \lambda > 0 : h_1(\delta, \lambda) = 0, \lambda_m - \delta - \frac{1}{4} (2 + \delta) \lambda > 0 \right\}$$

Sketch of the proof

Since $AT\Pi = (1 + (T\Pi)^*T\Pi)^{-1} (T\Pi)^*T\Pi$, from (H1) and (H2)

$$-\left\langle \mathsf{L}F,F\right\rangle +\delta\left\langle \mathsf{AT}\Pi F,F\right\rangle \geq\lambda_{m}\left\Vert (1-\Pi)F\right\Vert ^{2}+\frac{\delta\,\lambda_{M}}{1+\lambda_{M}}\left\Vert \Pi F\right\Vert ^{2}$$

• By (H4), we know that

$$|\operatorname{Re}\langle\operatorname{AT}(1-\Pi)F,F\rangle+\operatorname{Re}\langle\operatorname{AL}F,F\rangle|\leq C_M\|\Pi F\|\|(1-\Pi)F\|$$

• The equation $G = \mathsf{A}F$ is equivalent to $(\mathsf{T}\Pi)^*F = G + (\mathsf{T}\Pi)^*\mathsf{T}\Pi\,G$ $\langle \mathsf{T}\mathsf{A}F, F \rangle = \langle G, (\mathsf{T}\Pi)^*F \rangle = \|G\|^2 + \|\mathsf{T}\Pi G\|^2 = \|\mathsf{A}F\|^2 + \|\mathsf{T}\mathsf{A}F\|^2$

$$\langle G, (\mathsf{T}\Pi)^* \, F \rangle \leq \|\mathsf{T}\mathsf{A}F\| \, \|(1-\Pi)F\| \leq \frac{1}{2\,\mu} \, \|\mathsf{T}\mathsf{A}F\|^2 + \frac{\mu}{2} \, \|(1-\Pi)F\|^2$$

$$\|\mathsf{A}F\| \leq \frac{1}{2} \left\| (1 - \Pi)F \right\|, \ \|\mathsf{T}\mathsf{A}F\| \leq \left\| (1 - \Pi)F \right\|, \ \left| \langle \mathsf{T}\mathsf{A}F, F \rangle \right| \leq \left\| (1 - \Pi)F \right\|^2$$

• With $X := \|(1 - \Pi)F\|$ and $Y := \|\Pi F\|$

$$\mathsf{D}[F] - \lambda \, \mathsf{H}[F] \geq \left(\lambda_m - \delta\right) X^2 + \frac{\delta \, \lambda_M}{1 + \lambda_M} \, Y^2 - \delta \, C_M \, X \, Y - \frac{2 + \delta}{4} \, \lambda \left(X^2 + Y^2\right)$$

Hypocoercivity

Corollary

For any $\delta \in (0,2)$, if $\lambda(\delta)$ is the largest positive root of $h_1(\delta,\lambda) = 0$ for which $\lambda_m - \delta - \frac{1}{4}(2+\delta)\lambda > 0$, then for any solution F of the evolution equation

$$||F(t)||^2 \le \frac{2+\delta}{2-\delta} e^{-\lambda(\delta)t} ||F(0)||^2 \quad \forall t \ge 0$$

From the norm equivalence of H[F] and $||F||^2$

$$\frac{2-\,\delta}{4}\,\|F\|^2 \le \mathsf{H}[F] \le \frac{2+\,\delta}{4}\,\|F\|^2$$

• Formal macroscopic (diffusion) limit

Scaled evolution equation

$$\varepsilon \, \frac{dF}{dt} + \mathsf{T}F = \frac{1}{\varepsilon} \, \mathsf{L}F$$

on the Hilbert space \mathcal{H} . $F_{\varepsilon} = F_0 + \varepsilon F_1 + \varepsilon^2 F_2 + \mathcal{O}(\varepsilon^3)$ as $\varepsilon \to 0_+$

$$\varepsilon^{-1}$$
: $\mathsf{L}F_0 = 0$,

$$\varepsilon^0$$
: $\mathsf{T}F_0 = \mathsf{L}F_1$,

$$\varepsilon^1$$
: $\frac{dF_0}{dt} + \mathsf{T}F_1 = \mathsf{L}F_2$

The first equation reads as $u = F_0 = \Pi F_0$

The second equation is simply solved by $F_1 = -(T\Pi) F_0$

After projection, the third equation is

$$\frac{d}{dt}\left(\Pi F_0\right) - \Pi \mathsf{T}\left(\mathsf{T}\Pi\right) F_0 = \Pi \mathsf{L} F_2 = 0$$

$$\partial_t u + (\mathsf{T}\Pi)^* (\mathsf{T}\Pi) u = 0$$

is such that
$$\frac{d}{dt} ||u||^2 = -2 ||(\mathsf{T}\Pi) u||^2 \le -2 \lambda_M ||u||^2$$

• A toy problem

$$\frac{du}{dt} = \left(\mathsf{L} - \mathsf{T}\right)u\,, \quad \mathsf{L} = \left(\begin{array}{cc} 0 & 0 \\ 0 & -1 \end{array}\right)\,, \quad \mathsf{T} = \left(\begin{array}{cc} 0 & -k \\ k & 0 \end{array}\right)\,, \quad k^2 \geq \Lambda > 0$$

Non-monotone decay, a well known picture: see for instance (Filbet, Mouhot, Pareschi, 2006)

- H-theorem: $\frac{d}{dt}|u|^2 = \frac{d}{dt}(u_1^2 + u_2^2) = -2u_2^2$
- macroscopic/diffusion limit: $\left(\frac{du_1}{dt} = -k^2 u_1\right)$
- generalized entropy: $H(u) = |u|^2 \frac{\delta k}{1+k^2} u_1 u_2$

$$\frac{dH}{dt} = -\left(2 - \frac{\delta k^2}{1 + k^2}\right) u_2^2 - \frac{\delta k^2}{1 + k^2} u_1^2 + \frac{\delta k}{1 + k^2} u_1 u_2
\leq -(2 - \delta) u_2^2 - \frac{\delta \Lambda}{1 + \Lambda} u_1^2 + \frac{\delta}{2} u_1 u_2$$

Plots for the toy problem

Some references

- C. Mouhot and L. Neumann. Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity, 19(4):969-998, 2006
- \bullet F. Hérau. Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation. Asymptot. Anal., 46(3-4):349-359, 2006
- Q. J. Dolbeault, P. Markowich, D. Oelz, and C. Schmeiser. Non linear diffusions as limit of kinetic equations with relaxation collision kernels. Arch. Ration. Mech. Anal., 186(1):133-158, 2007.
- J. Dolbeault, C. Mouhot, and C. Schmeiser. Hypocoercivity for kinetic equations with linear relaxation terms. Comptes Rendus Mathématique, 347(9-10):511 516, 2009
- J. Dolbeault, C. Mouhot, and C. Schmeiser. Hypocoercivity for linear kinetic equations conserving mass. Transactions of the American Mathematical Society, 367(6):3807-3828, 2015

The compact case

- Fokker-Planck equation and scattering collision operators
- ▷ A mode-by-mode (Fourier) hypocoercivity result
- ▷ Enlargement of the space by factorization
- > Application to the torus and numerical improvements
- Further results: Euclidean space with strong confinement
 Collaboration with E. Bouin, S. Mischler, C. Mouhot, C. Schmeiser

• Fokker-Planck and scattering collision operators

Two basic examples:

• Linear Fokker-Planck collision operator

$$\mathsf{L}f = \Delta_v f + \nabla_v \cdot (v \, f)$$

• Linear relaxation operator (linear BGK)

$$\mathsf{L}f = \rho \, (2\pi)^{-d/2} \, \exp(-|v|^2/2) - f$$

with
$$\rho = \int f dv$$

Fokker-Planck equation with general equilibria

We consider the Cauchy problem

$$\partial_t f + v \cdot \nabla_x f = \mathsf{L} f$$
, $f(0, x, v) = f_0(x, v)$

for a distribution function f(t, x, v), with position variable $x \in \mathbb{R}^d$ or $x \in \mathbb{T}^d$ the flat d-dimensional torus

Fokker-Planck collision operator with a general equilibrium M

$$\mathsf{L}f = \nabla_v \cdot \left[M \, \nabla_v \left(M^{-1} \, f \right) \, \right]$$

Notation and assumptions: an admissible local equilibrium M is positive, radially symmetric and

$$\int_{\mathbb{R}^d} M(v) \, dv = 1 \,, \quad d\gamma = \gamma(v) \, dv := \frac{dv}{M(v)}$$

 γ is an exponential weight if (loose definition)

$$\lim_{|v| \to \infty} \frac{|v|^k}{\gamma(v)} = \lim_{|v| \to \infty} M(v) |v|^k = 0 \quad \forall k \in (d, \infty)$$

Definitions

$$\Theta = \frac{1}{d} \int_{\mathbb{R}^d} |v|^2 \, M(v) \, dv = \int_{\mathbb{R}^d} (v \cdot \mathsf{e})^2 \, M(v) \, dv$$

for an arbitrary $\mathbf{e} \in \mathbb{S}^{d-1}$

$$\int_{\mathbb{R}^d} v \otimes v \, M(v) \, dv = \Theta \operatorname{Id}$$

Then

$$\theta = \frac{1}{d} \left\| \nabla_v M \right\|_{\mathrm{L}^2(d\gamma)}^2 = \frac{4}{d} \int_{\mathbb{R}^d} \left| \nabla_v \sqrt{M} \right|^2 dv < \infty$$

If
$$M(v) = \frac{e^{-\frac{1}{2}|v|^2}}{(2\pi)^{d/2}}$$
, then $\Theta = 1$ and $\theta = 1$

$$\overline{\sigma} := \frac{1}{2} \sqrt{\theta/\Theta}$$

Microscopic coercivity property (Poincaré inequality): for all $u = M^{-1} F \in H^1(M dv)$

$$\int_{\mathbb{R}^d} |\nabla u|^2 M \, dv \ge \lambda_m \int_{\mathbb{R}^d} \left(u - \int_{\mathbb{R}^d} u \, M \, dv \right)^2 M \, dv$$

Scattering collision operators

Scattering collision operator

$$\mathsf{L}f = \int_{\mathbb{R}^d} \sigma(\cdot, v') \left(f(v') \, M(\cdot) - f(\cdot) \, M(v') \right) dv'$$

Main assumption on the scattering rate σ : for some positive, finite $\overline{\sigma}$

$$1 \le \sigma(v, v') \le \overline{\sigma} \quad \forall v, v' \in \mathbb{R}^d$$

Example: linear BGK operator

$$\mathsf{L}f = M\rho_f - f$$
, $\rho_f(t, x) = \int_{\mathbb{R}^d} f(t, x, v) \, dv$

Local mass conservation

$$\int_{\mathbb{R}^d} \mathsf{L} f \, dv = 0$$

and we have

$$\int_{\mathbb{R}^d} |\mathsf{L} f|^2 \, d\gamma \le 4 \, \overline{\sigma}^2 \int_{\mathbb{R}^d} |M \rho_f - f|^2 \, d\gamma$$

(Technicalities!) the symmetry condition

$$\int_{\mathbb{R}^d} \left(\sigma(v, v') - \sigma(v', v) \right) M(v') \, dv' = 0 \quad \forall \, v \in \mathbb{R}^d$$

implies the local mass conservation $\int_{\mathbb{R}^d} \mathsf{L} f \, dv = 0$

Micro-reversibility, i.e., the symmetry of σ , is not required

The null space of L is spanned by the local equilibrium M L only acts on the velocity variable

Microscopic coercivity property: for some $\lambda_m > 0$

$$\frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \sigma(v, v') M(v) M(v') (u(v) - u(v'))^2 dv' dv$$

$$\geq \lambda_m \int_{\mathbb{R}^d} (u - \rho_{u M})^2 M dv$$

holds according to Proposition 2.2 of (Degond, Goudon, Poupaud, 2000) for all $u = M^{-1} F \in L^2(M dv)$. If $\sigma \equiv 1$, then $\lambda_m = 1$

Euclidean space, confinement, Poincaré inequality

- (H1) Regularity & Normalization: $V \in W^{2,\infty}_{loc}(\mathbb{R}^d)$, $\int_{\mathbb{R}^d} e^{-V} dx = 1$
- (H2) Spectral gap condition (macroscopic Poincaré inequality): for some $\Lambda > 0$, $\forall u \in H^1(e^{-V}dx)$ such that $\int_{\mathbb{R}^d} u \, e^{-V} dx = 0$ $\int_{\mathbb{R}^d} |u|^2 \, e^{-V} dx \leq \Lambda \int_{\mathbb{R}^d} |\nabla_x u|^2 \, e^{-V} dx$
- (H3) Pointwise conditions: there exists $c_0 > 0$, $c_1 > 0$ and $\theta \in (0,1)$ s.t. $\Delta V \leq \frac{\theta}{2} |\nabla_x V(x)|^2 + c_0, \quad |\nabla_x^2 V(x)| \leq c_1 (1 + |\nabla_x V(x)|) \ \forall x \in \mathbb{R}^d$ (H4) C
- (H4) Growth condition: $\int_{\mathbb{R}^d} |\nabla_x V|^2 e^{-V} dx < \infty$

Theorem (D., Mouhot, Schmeiser)

Let $\ \$ be either a Fokker-Planck operator or a linear relaxation operator with a local equilibrium $F(v) = (2\pi)^{-d/2} \exp(-|v|^2/2)$. If f solves

$$\partial_t f + v \cdot \nabla_x f - \nabla_x V \cdot \nabla_v f = \mathsf{L} f$$

then

$$\forall t \ge 0, \quad \|f(t) - F\|^2 \le (1 + \eta) \|f_0 - F\|^2 e^{-\lambda t}$$

Mode-by-mode decomposition

▷ Spectral decomposition (Hermite functions): linear Fokker-Planck operator

$$\mathsf{L}f = \Delta_v f + \nabla_v \cdot (v \, f)$$

or the linear relaxation operator (linear BGK)

$$\mathsf{L}f = \rho (2\pi)^{-d/2} \, \exp(-|v|^2/2) - f \,,$$

with $\rho = \int f \, dv$: (Arnold, Erb), (Achleitner, Arnold, Stürzer), (Achleitner, Arnold, Carlen), (Arnold, Einav, Wöhrer)

▷ Decomposition in Fourier modes

Fourier modes

In order to perform a $mode-by-mode\ hypocoercivity$ analysis, we introduce the Fourier representation with respect to x,

$$f(t, x, v) = \int_{\mathbb{R}^d} \hat{f}(t, \xi, v) e^{-i x \cdot \xi} d\mu(\xi)$$

$$d\mu(\xi) = (2\pi)^{-d} d\xi$$
 and $d\xi$ is the Lesbesgue measure if $x \in \mathbb{R}^d$ $d\mu(\xi) = (2\pi)^{-d} \sum_{z \in \mathbb{Z}^d} \delta(\xi - z)$ is discrete for $x \in \mathbb{T}^d$

Parseval's identity if $\xi \in \mathbb{Z}^d$ and Plancherel's formula if $x \in \mathbb{R}^d$ read

$$||f(t,\cdot,v)||_{L^2(dx)} = ||\hat{f}(t,\cdot,v)||_{L^2(du(\xi))}$$

The Cauchy problem is now decoupled in the ξ -direction

$$\begin{split} \partial_t \hat{f} + \mathsf{T} \hat{f} &= \mathsf{L} \hat{f} \,, \quad \hat{f}(0,\xi,v) = \hat{f}_0(\xi,v) \end{split}$$

$$\mathsf{T} \hat{f} &= i \, (v \cdot \xi) \, \hat{f}$$

For any fixed $\xi \in \mathbb{R}^d$, let us apply the abstract result with

$$\mathcal{H} = L^2(d\gamma)$$
, $||F||^2 = \int_{\mathbb{R}^d} |F|^2 d\gamma$, $\Pi F = M \int_{\mathbb{R}^d} F dv = M \rho_F$

and
$$\mathsf{T}\hat{f} = i\left(v \cdot \xi\right)\hat{f}$$
, $\mathsf{T}\Pi F = i\left(v \cdot \xi\right)\rho_F M$,

$$\|\mathsf{T}\Pi F\|^2 = |\rho_F|^2 \int_{\mathbb{R}^d} |v \cdot \xi|^2 M(v) \, dv = \Theta \, |\xi|^2 \, |\rho_F|^2 = \Theta \, |\xi|^2 \, \|\Pi F\|^2$$

(H2) Macroscopic coercivity
$$\|\mathsf{T}\Pi F\|^2 \ge \lambda_M \|\Pi F\|^2 : \lambda_M = \Theta |\xi|^2$$

$$(H3) \int_{\mathbb{R}^d} v M(v) dv = 0$$

The operator A is given by

$$\mathsf{A}F = \frac{-\operatorname{i} \xi \cdot \int_{\mathbb{R}^d} v' \, F(v') \, dv'}{1 + \Theta \, |\xi|^2} \, M$$

A mode-by-mode hypocoercivity result

$$\begin{split} \|\mathsf{A}F\| &= \|\mathsf{A}(1-\Pi)F\| \leq \frac{1}{1+\Theta\,|\xi|^2} \int_{\mathbb{R}^d} \frac{|(1-\Pi)F|}{\sqrt{M}} \,|v \cdot \xi| \,\sqrt{M} \,dv \\ &\leq \frac{1}{1+\Theta\,|\xi|^2} \,\|(1-\Pi)F\| \left(\int_{\mathbb{R}^d} (v \cdot \xi)^2 \,M \,dv \right)^{1/2} \\ &= \frac{\sqrt{\Theta}\,|\xi|}{1+\Theta\,|\xi|^2} \,\|(1-\Pi)F\| \end{split}$$

- \square Scattering operator $\|\mathsf{L}F\|^2 \leq 4\,\overline{\sigma}^2\,\|(1-\Pi)F\|^2$
- Fokker-Planck (FP) operator

$$\|\mathsf{AL}F\| \leq \frac{2}{1+\Theta\,|\xi|^2} \int_{\mathbb{R}^d} \frac{|(1-\Pi)F|}{\sqrt{M}} \, |\xi \cdot \nabla_v \sqrt{M}| \, dv \leq \frac{\sqrt{\theta}\,|\xi|}{1+\Theta\,|\xi|^2} \, \|(1-\Pi)F\|$$

In both cases with $\kappa = \sqrt{\theta}$ (FP) or $\kappa = 2\overline{\sigma}\sqrt{\Theta}$ we obtain

$$\|\mathsf{AL}F\| \le \frac{\kappa \, |\xi|}{1 + \Theta \, |\xi|^2} \, \|(1 - \Pi)F\|$$

$$\mathsf{TA}F(v) = -\frac{(v \cdot \xi) M}{1 + \Theta |\xi|^2} \int_{\mathbb{R}^d} (v' \cdot \xi) (1 - \Pi) F(v') dv'$$

is estimated by

$$\|\mathsf{TA}F\| \le \frac{\Theta |\xi|^2}{1 + \Theta |\xi|^2} \|(1 - \Pi)F\|$$

(H4) holds with
$$C_M = \frac{\kappa |\xi| + \Theta |\xi|^2}{1 + \Theta |\xi|^2}$$

The two "good" terms

$$-\langle \mathsf{L}F, F \rangle \ge \lambda_m \, \| (1 - \Pi) F \|^2$$

$$\langle \mathsf{A}\mathsf{T}\Pi F, F \rangle = \mathsf{A}F = \frac{\Theta \, |\xi|^2}{1 + \Theta \, |\xi|^2} \, \| \Pi F \|^2$$

Two elementary estimates

$$\frac{\Theta\left|\xi\right|^{2}}{1+\Theta\left|\xi\right|^{2}} \geq \frac{\Theta}{\max\{1,\Theta\}} \frac{\left|\xi\right|^{2}}{1+\left|\xi\right|^{2}} \,, \quad \frac{\lambda_{M}}{\left(1+\lambda_{M}\right)C_{M}^{2}} = \frac{\Theta\left(1+\Theta\left|\xi\right|^{2}\right)}{\left(\kappa+\Theta\left|\xi\right|\right)^{2}} \geq \frac{\Theta}{\kappa^{2}+\Theta} \,.$$

Mode-by-mode hypocoercivity with exponential weights

Theorem

Let us consider an admissible M and a collision operator L satisfying the assumptions, and take $\xi \in \mathbb{R}^d$. If \hat{f} is a solution such that $\hat{f}_0(\xi,\cdot) \in L^2(d\gamma)$, then for any $t \geq 0$, we have

$$\|\hat{f}(t,\xi,\cdot)\|_{L^2(d\gamma)}^2 \le 3 e^{-\mu_{\xi} t} \|\hat{f}_0(\xi,\cdot)\|_{L^2(d\gamma)}^2$$

where

$$\mu_{\xi} := \frac{\Lambda |\xi|^2}{1 + |\xi|^2} \quad and \quad \Lambda = \frac{\Theta}{3 \max\{1, \Theta\}} \min\left\{1, \frac{\lambda_m \Theta}{\kappa^2 + \Theta}\right\}$$

with $\kappa = 2 \overline{\sigma} \sqrt{\Theta}$ for scattering operators and $\kappa = \sqrt{\theta}$ for (FP) operators

\bullet Exponential convergence to equilibrium in \mathbb{T}^d

The unique global equilibrium in the case $x \in \mathbb{T}^d$ is given by

$$f_{\infty}(x, v) = \rho_{\infty} M(v)$$
 with $\rho_{\infty} = \frac{1}{|\mathbb{T}^d|} \iint_{\mathbb{T}^d \times \mathbb{R}^d} f_0 dx dv$

Theorem

Assume that γ has an exponential growth. We consider an admissible M, a collision operator L satisfying the assumptions. There exists a positive constant C such that the solution f of the Cauchy problem on $\mathbb{T}^d \times \mathbb{R}^d$ with initial datum $f_0 \in L^2(dx \, d\gamma)$ satisfies

$$||f(t,\cdot,\cdot) - f_{\infty}||_{L^{2}(dx\,d\gamma)} \le C ||f_{0} - f_{\infty}||_{L^{2}(dx\,d\gamma)} e^{-\frac{1}{4}\Lambda t} \quad \forall t \ge 0$$

Exponential convergence to equilibrium in \mathbb{T}^d

The unique global equilibrium in the case $x \in \mathbb{T}^d$ is given by

$$f_{\infty}(x,v) = \rho_{\infty} M(v)$$
 with $\rho_{\infty} = \frac{1}{|\mathbb{T}^d|} \iint_{\mathbb{T}^d \times \mathbb{R}^d} f_0 dx dv$

Theorem

Assume that M is admissible, $k \in (d, \infty]$ and

$$d\gamma_k := \gamma_k(v) dv$$
 where $\gamma_k(v) = (1 + |v|^2)^{k/2}$ and $k > d$

There exists a positive constant C_k such that the solution $f(t,\cdot,\cdot)$ on $\mathbb{T}^d \times \mathbb{R}^d$ with initial datum $f_0 \in L^2(dx \, d\gamma_k)$ satisfies

$$||f(t,\cdot,\cdot) - f_{\infty}||_{L^{2}(dx \, d\gamma_{k})} \le C_{k} ||f_{0} - f_{\infty}||_{L^{2}(dx \, d\gamma_{k})} e^{-\frac{1}{4} \Lambda t} \quad \forall t \ge 0$$

Tool: Enlargement of the space by the factorization method of (Gualdani, Mischler, Mouhot)

Further references

- Exponential rates in kinetic equations: (Talay 2001), (Wu 2001)
- In presence of a strongly confining potential (Hérau 2006 & 2007), (Mouhot, Neumann, 2006)
- Hypo-elliptic methods (Hérau, Nier 2004), (Eckmann, Hairer, 2003), (Hörmander, 1967), (Kolmogorov, 1934), (Il'in, Has'min'ski, 1964) with applications to the Vlasov-Poisson-Fokker-Planck equation: (Victory, O'Dwyer, 1990), (Bouchut, 1993)
- Related topics:
- $\triangleright H^1$ -hypocoercivity (Gallay), (Villani...)...(Monmarché), (Evans)
- ▷ Diffusion limits (Degond, Poupaud, Schmeiser, Goudon,...)
- > Poincaré inequalities and Lyapunov functions

Vithout confinement: Nash inequality
The global picture
Very weak confinement: Caffarelli-Kohn-Nirenberg
Vith sub-exponential local equilibria

The non-compact case

The global picture:

- \triangleright by what can we replace the *macroscopic* Poincaré inequality ?
- \bigcirc Nash's inequality and a decay rate when V=0
- Very weak confinement: Caffarelli-Kohn-Nirenberg inequalities and moments
- With sub-exponential equilibria: weighted Poincaré inequality or Hardy-Poincaré inequality

• A result based on Nash's inequality

$$\partial_t f + v \cdot \nabla_x f = \mathsf{L} f \,, \quad (t, x, v) \in \mathbb{R}^+ \times \mathbb{R}^d \times \mathbb{R}^d$$

$$\mathsf{D}[f] = -\frac{d}{dt}\mathsf{H}[f] \geq \mathsf{a}\left(\|(1-\Pi)f\|^2 + 2\left\langle\mathsf{AT\Pi}f,f\right\rangle\right)$$

We observe that

$$\begin{split} \mathsf{A}^*f &= \mathsf{T}\Pi \left(1 + (\mathsf{T}\Pi)^*\mathsf{T}\Pi\right)^{-1}f \\ &= \mathsf{T} \left(1 + (\mathsf{T}\Pi)^*\mathsf{T}\Pi\right)^{-1}\Pi f = M\,\mathsf{T}u_f = v\,M\cdot\nabla_x u_f \\ \text{if } u_f \text{ is the solution in } \mathsf{H}^1(dx) \text{ of } \frac{u_f}{u_f} - \Theta\,\Delta_x u_f = \rho_f, \text{ and} \\ \|u_f(t,\cdot)\|_{\mathsf{L}^1(dx)} &= \|\rho_f(t,\cdot)\|_{\mathsf{L}^1(dx)} = \|f_0\|_{\mathsf{L}^1(dx\,dv)} \\ \|\nabla_x u_f\|_{\mathsf{L}^2(dx)}^2 &\leq \frac{1}{\Theta}\,\langle\mathsf{A}\mathsf{T}\Pi f, f\rangle \\ \|\Pi f\|^2 &\leq \|u_f\|_{\mathsf{L}^2(dx)}^2 + 2\,\langle\mathsf{A}\mathsf{T}\Pi f, f\rangle \end{split}$$

Nash's inequality

$$\begin{aligned} \|u\|_{\mathrm{L}^{2}(dx)}^{2} &\leq \mathfrak{C}_{Nash} \|u\|_{\mathrm{L}^{1}(dx)}^{\frac{d}{d+2}} \|\nabla u\|_{\mathrm{L}^{2}(dx)}^{\frac{2d}{d+2}} \quad \forall \, u \in \mathrm{L}^{1} \cap \mathrm{H}^{1}(\mathbb{R}^{d}) \\ \mathrm{Use} \ \|\Pi f\|^{2} &\leq \Phi^{-1} \big(2 \, \langle \mathsf{A}\mathsf{T}\Pi f, f \rangle \big) \text{ with } \Phi^{-1}(y) := y + \big(\frac{y}{\mathsf{c}} \big)^{\frac{d}{d+2}} \text{ to get} \\ \|(1 - \Pi) f\|^{2} + 2 \, \langle \mathsf{A}\mathsf{T}\Pi f, f \rangle &\geq \Phi(\|f\|^{2}) \geq \Phi \big(\frac{2}{1+\delta} \, \mathsf{H}[f] \big) \\ \mathsf{D}[f] &= -\frac{d}{dt} \mathsf{H}[f] \geq \mathsf{a} \, \Phi \big(\frac{2}{1+\delta} \, \mathsf{H}[f] \big) \end{aligned}$$

Algebraic decay rates in \mathbb{R}^d

On the whole Euclidean space, we can define the entropy

$$\mathsf{H}[f] := \frac{1}{2} \|f\|_{\mathsf{L}^2(dx \, d\gamma_k)}^2 + \delta \, \langle \mathsf{A}f, f \rangle_{dx \, d\gamma_k}$$

Replacing the macroscopic coercivity condition by Nash's inequality

$$||u||_{\mathrm{L}^{2}(dx)}^{2} \le \mathcal{C}_{\mathrm{Nash}} ||u||_{\mathrm{L}^{1}(dx)}^{\frac{4}{d+2}} ||\nabla u||_{\mathrm{L}^{2}(dx)}^{\frac{2d}{d+2}}$$

proves that

$$\mathsf{H}[f] \le C \left(\mathsf{H}[f_0] + ||f_0||_{\mathsf{L}^1(dx\,dv)}^2 \right) (1+t)^{-\frac{d}{2}}$$

Theorem

Assume that γ_k has an exponential growth $(k = \infty)$ or a polynomial growth of order k > d

There exists a constant C > 0 such that, for any $t \ge 0$

$$||f(t,\cdot,\cdot)||_{\mathrm{L}^{2}(dx\,d\gamma_{k})}^{2} \leq C\left(||f_{0}||_{\mathrm{L}^{2}(dx\,d\gamma_{k})}^{2} + ||f_{0}||_{\mathrm{L}^{2}(d\gamma_{k};\,\mathrm{L}^{1}(dx))}^{2}\right)(1+t)^{-\frac{d}{2}}$$

The rate of decay of the heat equation

If ρ is a solution of the heat equation

$$\frac{\partial \rho}{\partial t} = \Delta \rho$$

with initial datum ρ_0 , then

$$\|\rho(t,\cdot)\|_{\mathrm{L}^{1}(dx)} = \|\rho_{0}\|_{\mathrm{L}^{1}(dx)}$$

$$\frac{d}{dt} \left\| \rho(t,\cdot) \right\|_{\mathrm{L}^2(dx)}^2 = - \left\| \nabla \rho(t,\cdot) \right\|_{\mathrm{L}^2(dx)}^2 \leq - \mathfrak{C} \left\| \rho(t,\cdot) \right\|_{\mathrm{L}^2(dx)}^{2+\frac{4}{d}}$$

by Nash's inequality, and so

$$\|\rho(t,\cdot)\|_{\mathrm{L}^{2}(dx)}^{2} = C \|\rho_{0}\|_{\mathrm{L}^{2}(dx)}^{2} (1+t)^{-\frac{d}{2}}$$

• The global picture

• Depending on the local equilibria and on the external potential (H1) and (H2) (which are Poincaré type inequalities) can be replaced by other functional inequalities:

▷ microscopic coercivity (H1)

$$-\langle \mathsf{L}F, F \rangle \ge \lambda_m \, \| (1 - \Pi)F \|^2$$

⇒ weak Poincaré inequalities or Hardy-Poincaré inequalities

→ macroscopic coercivity (H2)

$$\|\mathsf{T}\Pi F\|^2 \ge \lambda_M \, \|\Pi F\|^2$$

⇒ Nash inequality, weighted Nash or Caffarelli-Kohn-Nirenberg inequalities

• This can be done at the level of the diffusion equation (homogeneous case) or at the level of the kinetic equation (non-homogeneous case)

Diffusion (Fokker-Planck) equations

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0,1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$
Inequality	Nash	Caffarelli-Kohn -Nirenberg	Weak Poincaré or Weighted Poincaré	Poincaré
Asymptotic behavior	$t^{-d/2}$ decay	$t^{-(d-\gamma)/2}$ decay	$t^{-\mu}$ or $t^{-\frac{k}{2(1-\alpha)}}$ convergence	$e^{-\lambda t}$ convergence

Table 1: $\partial_t u = \Delta u + \nabla \cdot (n \nabla V)$

The global picture
Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

Kinetic Fokker-Planck equations

 $\mathbf{B}=\mathbf{Bouin},\,\mathbf{L}=\mathbf{Lafleche},\,\mathbf{M}=\mathbf{Mouhot},\,\mathbf{MM}=\mathbf{Mischler},\,\mathbf{Mouhot}$ $\mathbf{S}=\mathbf{Schmeiser}$

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0,1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$, or \mathbb{T}^d Macro Poincaré
Micro Poincaré $F(v) = e^{-\langle v \rangle^\beta}, \beta \geq 1$	BDMMS: $t^{-d/2}$ decay	BDS: $t^{-(d-\gamma)/2}$ decay	Cao: e^{-t^b} , $b < 1$, $\beta = 2$ convergence	DMS, Mischler- Mouhot $e^{-\lambda t}$ convergence
$F(v) = e^{-\langle v \rangle^{\beta}},$ $\beta \in (0,1)$	BDLS: $t^{-\zeta}$, $\zeta = \min \left\{ \frac{d}{2}, \frac{k}{\beta} \right\}$ decay			
$F(v) = \langle v \rangle^{-d-\beta}$	BDLS, fractional in progress			

Table 1: $\partial_t f + v \cdot \nabla_x f = F \nabla_v (F^{-1} \nabla_v f)$. Notation: $\langle v \rangle = \sqrt{1 + |v|^2} \langle \mathcal{O} \rangle = \sqrt{2} \langle \mathcal{O} \rangle$

Further references

- Weak Poincaré inequality: (Röckner & Wang, 2001), (Kavian, Mischler), (Cao, PhD thesis), (Hu, Wang, 2019) + (Ben-Artzi, Einav) for recent spectral considerations
- Weighted Nash inequalities: (Bakry, Bolley, Gentil, Maheux, 2012), (Wang, 2000, 2002, 2010)
- Related topics:
- ⊳ fractional diffusion (Cattiaux, Puel, Fournier, Tardif,...) + (Bouin, D., Lafleche, Schmeiser): work in progress

The global picture

Very weak confinement: Caffarelli-Kohn-Nirenberg

With sub-exponential local equilibria

• Very weak confinement: Caffarelli-Kohn-Nirenberg

In collaboration with Emeric Bouin and Christian Schmeiser

The macroscopic Fokker-Planck equation

$$\frac{\partial u}{\partial t} = \Delta_x u + \nabla_x \cdot (\nabla_x V u) = \nabla_x \left(e^{-V} \nabla_x \left(e^{V} u \right) \right)$$

Here $x \in \mathbb{R}^d$, $d \geq 3$, and V is a potential such that $e^{-V} \notin L^1(\mathbb{R}^d)$ corresponding to a very weak confinement

Two examples

$$V_1(x) = \gamma \log |x|$$
 and $V_2(x) = \gamma \log \langle x \rangle$

with $\gamma < d$ and $\langle x \rangle := \sqrt{1 + |x|^2}$ for any $x \in \mathbb{R}^d$

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0,1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$
Inequality	Nash	Caffarelli-Kohn -Nirenberg	Weak Poincaré or Weighted Poincaré	Poincaré
Asymptotic behavior	$t^{-d/2}$ decay	$t^{-(d-\gamma)/2}$ decay	$t^{-\mu}$ or $t^{-\frac{k}{2(1-\alpha)}}$ convergence	$e^{-\lambda t}$ convergence

Table 2: $\partial_t u = \Delta u + \nabla \cdot (n \nabla V)$

A first decay result

Theorem

Assume that $d \geq 3$, $\gamma < (d-2)/2$ and $V = V_1$ or $V = V_2$ F any solution u with initial datum $u_0 \in L^1_+ \cap L^2(\mathbb{R}^d)$,

$$\left\|u(t,\cdot)\right\|_{2}^{2} \leq \frac{\left\|u_{0}\right\|_{2}^{2}}{(1+c\,t)^{\frac{d}{2}}} \quad \textit{with} \quad c := \frac{4}{d}\,\min\left\{1,1-\frac{2\,\gamma}{d-2}\right\}\,\mathfrak{C}_{\mathrm{Nash}}^{-1}\,\frac{\left\|u_{0}\right\|_{2}^{4/d}}{\left\|u_{0}\right\|_{1}^{4/d}}$$

Here \mathcal{C}_{Nash} denotes the optimal constant in Nash's inequality

$$\|u\|_{2}^{2+\frac{4}{d}} \le \mathcal{C}_{\text{Nash}} \|u\|_{1}^{\frac{4}{d}} \|\nabla u\|_{2}^{2} \quad \forall u \in L^{1} \cap H^{1}(\mathbb{R}^{d})$$

An extended range of exponents: with moments

Theorem

Let
$$d \ge 1$$
, $0 < \gamma < d$, $V = V_1$ or $V = V_2$, and $u_0 \in L^1_+ \cap L^2(e^V)$ with $||x|^k u_0||_1 < \infty$ for some $k \ge \max\{2, \gamma/2\}$

$$\forall t \ge 0, \quad \|u(t, \cdot)\|_{L^2(e^V dx)}^2 \le \|u_0\|_{L^2(e^V dx)}^2 (1 + ct)^{-\frac{d-\gamma}{2}}$$

 $for \ some \ c \ depending \ on \ d, \ \gamma, \ k, \ \|u_0\|_{L^2(e^Vdx)}, \ \|u_0\|_1, \ and \ \left\||x|^ku_0\right\|_1$

An extended range of exponents: in self-similar variables

$$u_{\star}(t,x) = \frac{c_{\star}}{(1+2t)^{\frac{d-\gamma}{2}}} |x|^{-\gamma} \exp\left(-\frac{|x|^2}{2(1+2t)}\right)$$

Here the initial data need have a sufficient decay...

 c_{\star} is chosen such that $||u_{\star}||_1 = ||u_0||_1$

Theorem

Let $d \ge 1$, $\gamma \in (0, d)$, $V = V_1$ assume that

$$\forall x \in \mathbb{R}^d$$
, $0 \le u_0(x) \le K u_{\star}(0, x)$

for some constant K > 1

$$\forall t \ge 0, \quad \|u(t,\cdot) - u_{\star}(t,\cdot)\|_{p} \le K c_{\star}^{1-\frac{1}{p}} \|u_{0}\|_{1}^{\frac{1}{p}} \left(\frac{e}{2|\gamma|}\right)^{\frac{\gamma}{2}\left(1-\frac{1}{p}\right)} (1+2t)^{-\zeta_{p}}$$

for any
$$p \in [1, +\infty)$$
, where $\zeta_p := \frac{d}{2} \left(1 - \frac{1}{p}\right) + \frac{1}{2p} \min\left\{2, \frac{d}{d-\gamma}\right\}$

Proofs: basic case

$$\frac{d}{dt} \int_{\mathbb{R}^d} u^2 \, dx = - \, 2 \int_{\mathbb{R}^d} |\nabla u|^2 \, dx + \int_{\mathbb{R}^d} \Delta V \, |u|^2 \, dx$$

with either $V = V_1$ or $V = V_2$ and

$$\Delta V_1(x) = \gamma \frac{d-2}{|x|^2}$$
 and $\Delta V_2(x) = \gamma \frac{d-2}{1+|x|^2} + \frac{2\gamma}{(1+|x|^2)^2}$

For $\gamma \leq 0$: apply Nash's inequality

$$\frac{d}{dt} \|u\|_{2}^{2} \le -2 \|\nabla u\|_{2}^{2} \le -\frac{2}{\mathcal{C}_{\text{Nach}}} \|u_{0}\|_{1}^{-4/d} \|u\|_{2}^{2+4/d}$$

For $0 < \gamma < (d-2)/2$: Hardy-Nash inequalities

Lemma

Let
$$d \geq 3$$
 and $\delta < (d-2)^2/4$

$$\|u\|_{2}^{2+\frac{4}{d}} \le \mathcal{C}_{\delta} \left(\|\nabla u\|_{2}^{2} - \delta \int_{\mathbb{R}^{d}} \frac{u^{2}}{|x|^{2}} dx \right) \|u\|_{1}^{\frac{4}{d}} \quad \forall u \in L^{1} \cap H^{1}(\mathbb{R}^{d})$$

Proofs: moments

Growth of the moment

$$M_k(t) := \int_{\mathbb{R}^d} |x|^k u \, dx$$

From the equation

$$M'_{k} = k \left(d + k - 2 - \gamma \right) \int_{\mathbb{R}^{d}} u |x|^{k-2} dx \le k \left(d + k - 2 - \gamma \right) M_{0}^{\frac{2}{k}} M_{k}^{1 - \frac{2}{k}}$$

then use the Caffarelli-Kohn-Nirenberg inequality

$$\int_{\mathbb{R}^d} |x|^{\gamma} \, u^2 \, dx \leq \mathfrak{C} \left(\int_{\mathbb{R}^d} |x|^{-\gamma} \, \left| \nabla \left(|x|^{\gamma} u \right) \right|^2 dx \right)^a \left(\int_{\mathbb{R}^d} |x|^k \, |u| \, dx \right)^{2(1-a)}$$

Proofs: self-similar solutions

The proof relies on $uniform\ decay\ estimates +$ Poincaré inequality in self-similar variables

Proposition

Let $\gamma \in (0,d)$ and assume that

$$0 \le u(0, x) \le c_{\star} \left(\sigma + |x|^2\right)^{-\gamma/2} \exp\left(-\frac{|x|^2}{2}\right) \quad \forall x \in \mathbb{R}^d$$

with $\sigma = 0$ if $V = V_1$ and $\sigma = 1$ if $V = V_2$. Then

$$0 \le u(t,x) \le \frac{c_{\star}}{(1+2t)^{\frac{d-\gamma}{2}}} \left(\sigma + |x|^2\right)^{-\gamma/2} \exp\left(-\frac{|x|^2}{2(1+2t)}\right)$$

for any $x \in \mathbb{R}^d$ and $t \ge 0$

The kinetic Fokker-Planck equation

Let us consider the kinetic equation

$$\partial_t f + v \cdot \nabla_x f - \nabla_x V \cdot \nabla_v f = \mathsf{L} f$$

where Lf is one of the two following collision operators

(a) a Fokker-Planck operator

$$\mathsf{L}f = \nabla_v \cdot \left(M \, \nabla_v \left(M^{-1} \, f \right) \right)$$

(b) a scattering collision operator

$$\mathsf{L} f = \int_{\mathbb{R}^d} \sigma(\cdot, v') \left(f(v') \, M(\cdot) - f(\cdot) \, M(v') \right) dv'$$

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0, 1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$, or \mathbb{T}^d Macro Poincaré
Micro Poincaré $F(v) = e^{-\langle v \rangle^\beta}, \beta \geq 1$	BDMMS: $t^{-d/2}$ decay	BDS: $t^{-(d-\gamma)/2}$ decay	Cao: e^{-t^b} , $b < 1, \beta = 2$ convergence	DMS, Mischler- Mouhot $e^{-\lambda t}$ convergence
$F(v) = e^{-\langle v \rangle^{\beta}},$ $\beta \in (0,1)$	BDLS: $t^{-\zeta}$, $\zeta = \min\left\{\frac{d}{2}, \frac{k}{\beta}\right\}$ decay			
$F(v) = \langle v \rangle^{-d-\beta}$	BDLS, fractional in progress			

Table 2: $\partial_t f + v \cdot \nabla_x f = F \nabla_v (F^{-1} \nabla_v f)$. Notation: $\langle v \rangle = \sqrt{1 + |v|^2}$

Decay rates

$$\forall (x,v) \in \mathbb{R}^d \times \mathbb{R}^d , \quad \mathcal{M}(x,v) = M(v) e^{-V(x)} , \quad M(v) = (2\pi)^{-\frac{d}{2}} e^{-\frac{1}{2}|v|^2}$$

$$(\mathbf{H1}) \quad 1 \leq \sigma(v,v') \leq \overline{\sigma} , \quad \forall v , v' \in \mathbb{R}^d , \quad \text{for some} \quad \overline{\sigma} \geq 1$$

$$(\mathbf{H2}) \quad \int_{\mathbb{R}^d} \left(\sigma(v,v') - \sigma(v',v) \right) M(v') \, dv' = 0 \quad \forall v \in \mathbb{R}^d$$

Theorem

Let $d \ge 1$, $V = V_2$ with $\gamma \in [0, d)$, $k > \max\{2, \gamma/2\}$ and $f_0 \in L^2(\mathcal{M}^{-1}dx dv)$ such that

$$\iint_{\mathbb{R}^d \times \mathbb{R}^d} \langle x \rangle^k f_0 dx dv + \iint_{\mathbb{R}^d \times \mathbb{R}^d} |v|^k f_0 dx dv < +\infty$$

If (H1)-(H2) hold, then there exists C > 0 such that

$$\forall t \ge 0, \quad \|f(t, \cdot, \cdot)\|_{L^{2}(\mathcal{M}^{-1}dx \, dv)}^{2} \le C (1+t)^{-\frac{d-\gamma}{2}}$$

• With sub-exponential equilibria

- \triangleright The homogeneous Fokker-Planck equation with sub-exponential equilibria $F(v) = C_{\alpha} e^{-\langle v \rangle^{\alpha}}$, $\alpha \in (0,1)$
- decay rates based on the weak Poincaré inequality (Kavian, Mischler)
- decay rates based on a weighted Poincaré / Hardy-Poincaré inequality
- ▷ The kinetic Fokker-Planck equation with sub-exponential local equilibria and *no confinement*, the equation with linear scattering

In collaboration with Emeric Bouin, Laurent Lafleche and Christian Schmeiser

Fokker-Planck with sub-exponential equilibria

We consider the homogeneous Fokker-Planck equation

$$\partial_t g = \nabla_v \cdot \left(F \nabla_v \left(F^{-1} g \right) \right)$$

associated with sub-exponential equilibria

$$F(v) = C_{\alpha} e^{-\langle v \rangle^{\alpha}}, \quad \alpha \in (0, 1)$$

The corresponding Ornstein-Uhlenbeck equation for h = g/F is

$$\partial_t h = F^{-1} \, \nabla_v \cdot \left(F \, \nabla_v h \right)$$

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0,1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$
Inequality	Nash	Caffarelli-Kohn -Nirenberg	Weak Poincaré or Weighted Poincaré	Poincaré
Asymptotic behavior	$t^{-d/2}$ decay	$t^{-(d-\gamma)/2}$ decay	$t^{-\mu}$ or $t^{-\frac{k}{2(1-\alpha)}}$ convergence	$e^{-\lambda t}$ convergence

Table 3: $\partial_t u = \Delta u + \nabla \cdot (n \nabla V)$

Weak Poincaré inequality

$$\int_{\mathbb{R}^d} \left| h - \widetilde{h} \right|^2 \mathrm{d} \xi \leq \mathfrak{C}_{\alpha,\tau} \left(\int_{\mathbb{R}^d} |\nabla h|^2 \, \mathrm{d} \xi \right)^{\frac{\tau}{1+\tau}} \, \left\| h - \widetilde{h} \right\|_{\mathrm{L}^\infty(\mathbb{R}^d)}^{\frac{2}{1+\tau}}$$

for some explicit positive constant $\mathcal{C}_{\alpha,\tau}$, $\widetilde{h}:=\int_{\mathbb{R}^d}h\,\mathrm{d}\xi$. Using

$$\frac{d}{dt} \int_{\mathbb{R}^d} \left| h(t, \cdot) - \widetilde{h} \right|^2 d\xi = -2 \int_{\mathbb{R}^d} |\nabla_v h|^2 d\xi$$

where h = g/F and $d\xi = F dv + H\"{o}lder's$ inequality

$$\int_{\mathbb{R}^d} \left| h - \widetilde{h} \right|^2 d\xi \le \left(\int_{\mathbb{R}^d} \left| h - \widetilde{h} \right|^2 \langle v \rangle^{-\beta} d\xi \right)^{\frac{\tau}{\tau + 1}} \left(\int_{\mathbb{R}^d} \left\| h - \widetilde{h} \right\|_{L^{\infty}(\mathbb{R}^d)}^2 \langle v \rangle^{\beta \tau} d\xi \right)^{\frac{1}{1 + \tau}}$$

with $(\tau+1)/\tau=\beta/\eta$, then for with $\mathfrak{M}=\sup_{s\in(0,t)}\left\|h(s,\cdot)-\widetilde{h}\right\|_{\mathrm{L}^\infty(\mathbb{R}^d)}^{2/\tau}$

$$\int_{\mathbb{R}^d} \left| h(t,\cdot) - \widetilde{h} \right|^2 \mathrm{d}\xi \le \left(\left(\int_{\mathbb{R}^d} \left| h(0,\cdot) - \widetilde{h} \right|^2 \mathrm{d}\xi \right)^{-\frac{1}{\tau}} + \frac{2\,\tau^{-1}}{\mathfrak{C}_{\alpha,\tau}^{1+1/\tau}\,\mathfrak{M}}\,t \right)^{-\tau}$$

Weighted Poincaré inequality

There exists a constant $\mathcal{C} > 0$ such that

$$\int_{\mathbb{R}^d} |\nabla h|^2 F \, \mathrm{d} v \ge \mathfrak{C} \int_{\mathbb{R}^d} \left| h - \widetilde{h} \right|^2 \langle v \rangle^{-\beta} F \, \mathrm{d} v$$

with
$$\beta = 2(1 - \alpha)$$
, $\widetilde{h} := \int_{\mathbb{R}^d} h F \, dv$ and $F(v) = C_\alpha e^{-\langle v \rangle^\alpha}$ and $\alpha \in (0, 1)$

Written in terms of g = h F, the inequality becomes

$$\int_{\mathbb{R}^d} \left| \nabla_v \left(F^{-1} g \right) \right|^2 F^2 d\mu \ge \mathfrak{C} \int_{\mathbb{R}^d} \left| g - \overline{g} \right|^2 \langle v \rangle^{-2(1-\alpha)} d\mu$$

where $d\mu = F dv$

$$\frac{d}{dt} \int_{\mathbb{R}^d} |h(t,v)|^2 \langle v \rangle^k F \, dv + 2 \int_{\mathbb{R}^d} |\nabla_v h|^2 \langle v \rangle^k F \, dv$$

$$= -\int_{\mathbb{R}^d} \nabla_v (h^2) \cdot (\nabla_v \langle v \rangle^k) F \, dv$$

With $\ell = 2 - \alpha$, $a \in \mathbb{R}$, $b \in (0, +\infty)$

$$\nabla_v \cdot \left(F \, \nabla_v \langle v \rangle^k \right) = \frac{k}{\langle v \rangle^4} \left(d + (k + d - 2) \, |v|^2 - \alpha \, \langle v \rangle^\alpha \, |v|^2 \right) \le a - b \, \langle v \rangle^{-\ell}$$

Proposition (Weighted L^2 norm)

There exists a constant $\mathfrak{K}_k > 0$ such that, if h solves the Ornstein-Uhlenbeck equation, then

$$\forall t \ge 0 \quad \|h(t, \cdot)\|_{L^2(\langle v \rangle^k \, \mathrm{d}\xi)} \le \mathcal{K}_k \, \|h^{\mathrm{in}}\|_{L^2(\langle v \rangle^k \, \mathrm{d}\xi)}$$

$$\frac{d}{dt} \int_{\mathbb{R}^d} \left| h(t, \cdot) - \widetilde{h} \right|^2 d\xi = -2 \int_{\mathbb{R}^d} |\nabla_v h|^2 d\xi \le -2 \, \mathcal{C} \int_{\mathbb{R}^d} \left| h - \widetilde{h} \right|^2 \, \langle v \rangle^{-\beta} \, d\xi$$

+ Hölder Theorem

Assume that $\alpha \in (0,1)$. Let $g^{\mathrm{in}} \in L^1_+(\mathrm{d}\mu) \cap L^2(\langle v \rangle^k \mathrm{d}\mu)$ for some k > 0 and consider the solution g to the homogeneous Fokker-Planck equation with initial datum g^{in} . If $\overline{g} = (\int_{\mathbb{R}^d} g \, \mathrm{d}v) F$, then

$$\int_{\mathbb{R}^d} |g(t,\cdot) - \overline{g}|^2 d\mu \le \left(\left(\int_{\mathbb{R}^d} |g^{\mathrm{in}} - \overline{g}|^2 d\mu \right)^{-\beta/k} + \frac{2\beta \mathfrak{C}}{k \mathcal{K}^{\beta/k}} t \right)^{-k/\beta}$$

with
$$\beta = 2 (1 - \alpha)$$
 and $\mathcal{K} := \mathcal{K}_k^2 \left\| g^{\text{in}} \right\|_{L^2(\langle v \rangle^k \, \mathrm{d}\mu)}^2 + \Theta_k \left(\int_{\mathbb{R}^d} g^{\text{in}} \, \mathrm{d}v \right)^2$

The kinetic equation with sub-exponential local equilibria

 \bigcirc the Fokker-Planck operator

$$\mathsf{L}_1 f = \nabla_v \cdot \left(F \, \nabla_v \big(F^{-1} \, f \big) \right)$$

 \bigcirc the *scattering* collision operator

$$\mathsf{L}_2 f = \int_{\mathbb{R}^d} \mathsf{b}(\cdot, v') \left(f(v') F(\cdot) - f(\cdot) F(v') \right) \mathrm{d}v'$$

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0, 1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$, or \mathbb{T}^d Macro Poincaré
Micro Poincaré $F(v) = e^{-\langle v \rangle^\beta}, \beta \geq 1$	BDMMS: $t^{-d/2}$ decay	BDS: $t^{-(d-\gamma)/2}$ decay	Cao: e^{-t^b} , $b < 1$, $\beta = 2$ convergence	DMS, Mischler- Mouhot $e^{-\lambda t}$ convergence
$F(v) = e^{-\langle v \rangle^{\beta}},$ $\beta \in (0, 1)$	BDLS: $t^{-\zeta}$, $\zeta = \min\left\{\frac{d}{2}, \frac{k}{\beta}\right\}$ decay			
$F(v) = \langle v \rangle^{-d-\beta}$	BDLS, fractional in progress			

Table 3: $\partial_t f + v \cdot \nabla_x f = F \nabla_v (F^{-1} \nabla_v f)$. Notation: $\langle v \rangle = \sqrt{1 + |v|^2}$

The decay rate with sub-exponential local equilibria

Theorem

Let $\alpha \in (0,1)$, $\beta > 0$, k > 0 and let $F(v) = C_{\alpha} e^{-\langle v \rangle^{\alpha}}$. Assume that either $L = L_1$ and $\beta = 2(1-\alpha)$, or $L = L_2$ + Assumptions. There exists a numerical constant $\mathfrak{C} > 0$ such that any solution f of

$$\partial_t f + v \cdot \nabla_x f = \mathsf{L} f \,, \quad f(0,\cdot,\cdot) = f^{\mathrm{in}} \in \mathrm{L}^2(\langle v \rangle^k \mathrm{d} x \, \mathrm{d} \mu) \cap \mathrm{L}^1_+(\mathrm{d} x \, \mathrm{d} v)$$

satisfies

$$\forall t \ge 0, \quad \|f(t,\cdot,\cdot)\|^2 = \iint_{\mathbb{R}^d \times \mathbb{R}^d} \left| f(t,x,v) \right|^2 dx d\mu \le \mathcal{C} \frac{\left\| f^{\text{in}} \right\|^2}{(1+\kappa t)^{\zeta}}$$

with rate $\zeta = \min\{d/2, k/\beta\}$, for some positive κ which is an explicit function of the two quotients, $\|f^{\rm in}\| / \|f^{\rm in}\|_k$ and $\|f^{\rm in}\|_{L^1(dxdy)} / \|f^{\rm in}\|$

Preliminaries

$$\begin{split} \mathsf{D}[f] := & - \langle \mathsf{L}f, f \rangle + \delta \, \langle \mathsf{A}\mathsf{T}\mathsf{\Pi}f, \mathsf{\Pi}f \rangle \\ & + \delta \, \langle \mathsf{A}\mathsf{T}(\mathrm{Id} - \mathsf{\Pi})f, \mathsf{\Pi}f \rangle - \delta \, \, \langle \mathsf{T}\mathsf{A}(\mathrm{Id} - \mathsf{\Pi})f, (\mathrm{Id} - \mathsf{\Pi})f \rangle \\ & - \delta \, \langle \mathsf{A}\mathsf{L}(\mathrm{Id} - \mathsf{\Pi})f, \mathsf{\Pi}f \rangle \end{split}$$

 \bigcirc microscopic coercivity. If $L = L_1$, we rely on the weighted Poincaré inequality

$$\langle \mathsf{L}f, f \rangle \le - \mathfrak{C} \| (\mathrm{Id} - \Pi) f \|_{-\beta}^2$$

If $L = L_2$, we assume that there exists a constant $\mathcal{C} > 0$ such that

$$\int_{\mathbb{R}^d} \left| h - \widetilde{h} \right|^2 \langle v \rangle^{-\beta} F \, \mathrm{d}v \le \mathfrak{C} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \mathrm{b}(v, v') \left| h' - h \right|^2 F F' \, \mathrm{d}v \, \mathrm{d}v'$$

• Weighted L² norms Let k > 0, $f^{\text{in}} \in L^2(\langle v \rangle^k \, dx \, d\mu)$ a solution. $\exists \mathcal{K}_k > 1 \text{ such that }$

$$\forall t \ge 0, \quad \|f(t,\cdot,\cdot)\|_{\mathrm{L}^2(\langle v\rangle^k \,\mathrm{d}x \,\mathrm{d}\mu)} \le \mathcal{K}_k \, \left\|f^{\mathrm{in}}\right\|_{\mathrm{L}^2(\langle v\rangle^k \,\mathrm{d}x \,\mathrm{d}\mu)}$$

Proof

$$\mathsf{H}_{\delta}[f] := rac{1}{2} \, \|f\|^2 + \delta \, \langle \mathsf{A}f, f \rangle \,, \quad rac{d}{dt} \mathsf{H}_{\delta}[f] = - \, \mathsf{D}[f]$$

• There exists $\kappa > 0$ such that $\forall f \in L^2(\langle v \rangle^{-\beta} dx d\mu) \cap L^1(dx dv)$,

$$\mathsf{D}[f] \geq \kappa \left(\left\| (\mathrm{Id} - \Pi) f \right\|_{-\beta}^2 + \left\langle \mathsf{AT\Pi} f, \mathsf{\Pi} f \right\rangle \right)$$

$$\langle \mathsf{AT\Pi} f, \mathsf{\Pi} f \rangle \ge \Phi \left(\|\mathsf{\Pi} f\|^2 \right)$$

$$\Phi^{-1}(y) := 2\,y + \left(\frac{y}{\mathsf{c}}\right)^{\frac{d}{d+2}}\;,\quad \mathsf{c} = \Theta\, \mathbb{C}_{\mathrm{Nash}}^{-\frac{d+2}{d}}\,\|f\|_{\mathrm{L}^1(\mathrm{d}x\,\mathrm{d}v)}^{-\frac{4}{d}}$$

$$\|(\operatorname{Id} - \Pi)f\|_{-\beta}^2 \ge \Psi\left(\|(\operatorname{Id} - \Pi)f\|^2\right)$$

$$\Psi(y) := C_0 y^{1+\beta/k}, \quad C_0 := \left(\mathcal{K}_k \left(1 + \Theta_k \right) \| f^{\text{in}} \|_k \right)^{-\frac{2\beta}{k}}$$

Without confinement: Nash inequality
The global picture
Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

More references

- E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot, and C. Schmeiser. Hypocoercivity without confinement. Preprint hal-01575501 and arxiv: 1708.06180, Oct. 2017, to appear. Nash
- E. Bouin, J. Dolbeault, and C. Schmeiser. Diffusion and kinetic transport with very weak confinement. Preprint hal-01991665 and arxiv: 1901.08323, to appear in Kinetic Rel. Models. Nash / Caffarelli-Kohn-Nirenberg inequalities
- M. P. Gualdani, S. Mischler, and C. Mouhot. Factorization of non-symmetric operators and exponential H-theorem. Mém. Soc. Math. Fr. (N.S.), (153):137, 2017.
- E. Bouin, J. Dolbeault, and C. Schmeiser. A variational proof of Nash's inequality. Preprint hal-01940110 and arxiv: 1811.12770, to appear in Atti della Accademia Nazionale dei Lincei. Rendiconti Lincei. Matematica e Applicazioni, 2018. Nash
- E. Bouin, J. Dolbeault, L. Lafleche, and C. Schmeiser. Hypocoercivity and sub-exponential local equilibria, soon. Weighted Poincaré inequalities

The Vlasov-Poisson-Fokker-Planck system: linearization and hypocoercivity

- \triangleright Linearized Vlasov-Poisson-Fokker-Planck system
- \triangleright A result in the non-linear case, d=1

In collaboration with Lanoir Addala, Xingyu Li and Lazhar M. Tayeb

 $\,$ $\,$ L²-Hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system. Preprint hal-02299535 and arxiv: 1909.12762

(Hérau, Thomann, 2016), (Herda, Rodrigues, 2018)

• Linearized Vlasov-Poisson-Fokker-Planck system

The $\mathit{Vlasov-Poisson-Fokker-Planck}$ system in presence of an external potential V is

$$\partial_t f + v \cdot \nabla_x f - (\nabla_x V + \nabla_x \phi) \cdot \nabla_v f = \Delta_v f + \nabla_v \cdot (v f)$$
$$-\Delta_x \phi = \rho_f = \int_{\mathbb{R}^d} f \, dv$$
(VPFP)

Linearized problem around f_{\star} : $f = f_{\star} (1 + \eta h)$, $\iint_{\mathbb{R}^d \times \mathbb{R}^d} h f_{\star} dx dv = 0$

$$\partial_t h + v \cdot \nabla_x h - (\nabla_x V + \nabla_x \phi_\star) \cdot \nabla_v h + v \cdot \nabla_x \psi_h - \Delta_v h + v \cdot \nabla_v h = \eta \nabla_x \psi_h \cdot \nabla_v h$$
$$-\Delta_x \psi_h = \int_{\mathbb{R}^d} h f_\star dv$$

Drop the $\mathbb{O}(\eta)$ term : $\mathit{linearized\ Vlasov-Poisson-Fokker-Planck}$ system

$$\partial_t h + v \cdot \nabla_x h - (\nabla_x V + \nabla_x \phi_\star) \cdot \nabla_v h + v \cdot \nabla_x \psi_h - \Delta_v h + v \cdot \nabla_v h = 0$$
$$-\Delta_x \psi_h = \int_{\mathbb{R}^d} h \, f_\star \, dv \,, \qquad \int_{\mathbb{R}^d} h \, f_\star \, dx \, dv = 0$$

Hypocoercivity

Let us define the norm

$$||h||^2 := \iint_{\mathbb{R}^d \times \mathbb{R}^d} h^2 f_{\star} dx dv + \int_{\mathbb{R}^d} |\nabla_x \psi_h|^2 dx$$

Theorem

Let us assume that $d \ge 1$, $V(x) = |x|^{\alpha}$ for some $\alpha > 1$ and M > 0. Then there exist two positive constants $\mathfrak C$ and λ such that any solution h of (VPFPlin) with an initial datum h_0 of zero average with $\|h_0\|^2 < \infty$ is such that

$$||h(t,\cdot,\cdot)||^2 \le \mathcal{C} ||h_0||^2 e^{-\lambda t} \quad \forall t \ge 0$$

Diffusion limit

Linearized problem in the parabolic scaling

$$\varepsilon \,\partial_t h + v \cdot \nabla_x h - (\nabla_x V + \nabla_x \phi_\star) \cdot \nabla_v h + v \cdot \nabla_x \psi_h - \frac{1}{\varepsilon} \left(\Delta_v h - v \cdot \nabla_v h \right) = 0$$
$$-\Delta_x \psi_h = \int_{\mathbb{R}^d} h \, f_\star \, dv \,, \quad \iint_{\mathbb{R}^d \times \mathbb{R}^d} h \, f_\star \, dx \, dv = 0$$
(VPFPscal)

Expand $h_{\varepsilon} = h_0 + \varepsilon h_1 + \varepsilon^2 h_2 + \mathcal{O}(\varepsilon^3)$ as $\varepsilon \to 0_+$. With $W_{\star} = V + \phi_{\star}$

$$\varepsilon^{-1}: \qquad \Delta_v h_0 - v \cdot \nabla_v h_0 = 0$$

$$\varepsilon^0$$
: $v \cdot \nabla_x h_0 - \nabla_x W_\star \cdot \nabla_v h_0 + v \cdot \nabla_x \psi_{h_0} = \Delta_v h_1 - v \cdot \nabla_v h_1$

$$\varepsilon^1$$
: $\partial_t h_0 + v \cdot \nabla_x h_1 - \nabla_x W_\star \cdot \nabla_v h_1 = \Delta_v h_2 - v \cdot \nabla_v h_2$

With $u = \Pi h_0$, $-\Delta \psi = u \rho_{\star}$, $w = u + \psi$, equations simply mean

$$u = h_0, \quad v \cdot \nabla_x w = \Delta_v h_1 - v \cdot \nabla_v h_1$$

from which we deduce that $h_1 = -v \cdot \nabla_x w$ and

$$\partial_t u - \Delta w + \nabla_x W_\star \cdot \nabla u = 0$$

• Results in the diffusion limit / in the non-linear case

Theorem

Let us assume that $d \ge 1$, $V(x) = |x|^{\alpha}$ for some $\alpha > 1$ and M > 0. For any $\varepsilon > 0$ small enough, there exist two positive constants $\mathfrak C$ and λ , which do not depend on ε , such that any solution h of (VPFPscal) with an initial datum h_0 of zero average and such that $\|h_0\|^2 < \infty$ satisfies

$$\|h(t,\cdot,\cdot)\|^2 \le \mathfrak{C} \|h_0\|^2 e^{-\lambda t} \quad \forall t \ge 0$$

Corollary

Assume that d=1, $V(x)=|x|^{\alpha}$ for some $\alpha>1$ and M>0. If f solves (VPFP) with initial datum $f_0=(1+h_0)\,f_{\star}$ such that h_0 has zero average, $\|h_0\|^2<\infty$ and $(1+h_0)\geq 0$, then

$$\|h(t,\cdot,\cdot)\|^2 \le \mathfrak{C} \|h_0\|^2 e^{-\lambda t} \quad \forall t \ge 0$$

holds with $h = f/f_{\star} - 1$ for some positive constants \mathcal{C} and λ

These slides can be found at

The papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Preprints/
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention!

J. Dolbeault

Hypocoercivity and functional inequalities