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Abstract method and motivation
The compact case

The non-compact case
Vlasov-Poisson-Fokker-Planck

An abstract hypocoercivity result
Diffusion limit
Toy model

Abstract method and motivation

> Abstract statement
> Diffusion limit
> A toy model

Collaboration with C. Mouhot and C. Schmeiser
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Abstract method and motivation A bt Typeaeerciving el

Diffusion limit
Toy model

a An abstract evolution equation

Let us consider the equation

dF
— 4+ TF =LF
dt +

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (I, (-, -))

A= (1+ (TI)*TI) ™ (TID)*
* denotes the adjoint with respect to (-, )

IT is the orthogonal projection onto the null space of L
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Abstract method and motivation A bt Typeaeerciving el

Diffusion limit
Toy model

The assumptions

Am, Au, and C)y are positive constants such that, for any F' € H
> microscopic coercivity:

—(LE,F) 2 A\ (1 - IDF| (H1)
D> macroscopic coercivity:
ITILF|? = Ap |[ILF |2 (H2)
> parabolic macroscopic dynamics:
OTIIF =0 (H3)
> bounded auziliary operators:
[AT(1 = I F[| + |ALF|| < Cp [|(1 =T F| (H4)
The estimate
1d

5 SIFI? = (LF,F) < ~ A (1~ I F?

is not enough to conclude that ||F(t,-)||?

decays exponentially
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Abstract method and motivation A bt Typeaeerciving el

Diffusion limit
Toy model

Equivalence and entropy decay

For some 6 > 0 to be determined later, the L? entropy / Lyapunov
functional is defined by

H[F] := % ||[F|* + 6 Re(AF, F)
so that (ATIIF, F) ~ ||TLF||? and

~yp = Dl

dt
= — (LF,F) + 6 (ATIIF, F)
— §Re(TAF, F) 4+ § Re(AT(1 — II)F, F) — § Re(ALF, F)

> entropy decay rate: for any ¢ > 0 small enough and A = A(9)
AH[F] < D[F]
> norm equivalence of H[F] and || F||?
2— 24

g 2 4 2
—  ||F < FI< —||F
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Abstract method and motivation A bt Typeaeerciving el

Diffusion limit
Toy model

Exponential decay of the entropy

— _AM i __AmAm S Am A
A= Y Es YR mln{l,)\m, (ES YWY }, d0=3 mm{l,)\m7 [(ESyTen

2 244 0 A 2446
= —4 — _— R —
hi(8,X) == (6 Cs) ()\m - )\> ( T )\)

Theorem

Let L and T be closed linear operators (respectively Hermitian and
anti-Hermitian) on 3. Under (H1)—(H4), for any t >0

HIF(t, )] < H[Fp] e

where § € (0,2) and A(0) is characterized by

A8) ==sup{A>0: h(6,A) =0, A\ — 6— 7 (2+ ) A >0}
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AT ““‘fh“{l ““‘d motivation An abstract hypocoercivity result

The 1 "“ mpact Diffusion limit
on-compact cas Toy model
\Y P Fokker-Planck oy meGle

Sketch of the proof

@ Since ATII = (1 + (TH)*TH)_1 (TID)*TI, from (H1) and (H2)
O A

—(LF,F) 4+ § (ATIIF, F) > A\ [|[(1 = IDF|* +
T+ Am

[TLE |2

@ By (H4), we know that
IRe(AT(1 — II)F, F) + Re(ALF, F)| < Cy |ILF||[|(1 — I F|
@ The equation G = AF is equivalent to (TII)*F = G + (TI)* TII G
(TAF,F) = (G,(TI)" F) = ||G||* + IITHGII2 IAF|? + | TAF|?

(G, (TID* F) < [TAF|[|(1 = I)F|| < ﬂ ITAFI? + 5 Ll —mF|?

1
IAF] < 5 (L =IDF], TAF] < (1= IDE[, [(TAF, F) < |1 ~I)F|?
@ With X == [|(1 - I)F| and Y := ||HF||

DIF|=AH[F] > (A= 0) X240 y2_ 500 vy 29 (x2,y2)
1 +>\M 4
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Abstract method and motivation A bt Typeaeerciving el

Diffusion limit
Toy model

Hypocoercivity

Corollary

For any § € (0,2), if A\(9) is the largest positive root of hy(5,\) =0 for
1

which A\, — 6 —

7(2+0) XA >0, then for any solution F of the
evolution equation

240 @)

IFOIP < S5

“IFOI* vE=0

From the norm equivalence of H[F] and ||F||?

2

-6 2+6
=L IFIP < HF) <

[Falls
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Abstract method and motivation

An abstract hypocoercivity result
Diffusion limit
Toy model

o Formal macroscopic (diffusion) limit

Scaled evolution equation

dF
— TF_fLF
Edt—i—

on the Hilbert space H. F. = Fy+e F1 + &2 Fa + O(e®) as e — 04
el LFy =0,
EO : TF() = LFl,
el P L TR = LE

The first equation reads as u = Fy = I1F}
The second equation is simply solved by Fy = — (TII) Fj
After projection, the third equation is
4 (IFy) — IIT (TH) Fy =TILF, =0

Opu+ (TID* (TN uw =0
is such that 4 ||ul|> = — 2 ||(TID) ul|* < —2 A [Jul|?
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Abstract method and motivation An abstract hypocoercivity result
Diffusion limit
Toy model

a A toy problem

du (0 0 (0 —k )
= = (L=T)u L<O _1>, T(k 0), B >A>0

Non-monotone decay, a well known picture:
see for instance (Filbet, Mouhot, Pareschi, 2006)

o H-theorem: 4 |u> = 4 (u? +u3) = —2u}

e macroscopic/diffusion limit: (dd% =—k?uy)

e generalized entropy: H(u) = |u|? — % ug U

dH o K\ o 0K,k
- 1+k2) 2 Tyt T ™
SA 5
< —(2-6)uj - T1A uf + 5 5 U1tz
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Abstract method and motivation
The compact case

The non-compact case
Vlasov-Poisson-Fokker-Planck

Plots for the t

ut? u12, u124u2?
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AlEsiress metihed andl metiveiien An abstract hypocoercivity result

Diffusion limit
Toy model
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Abstract method and motivation

Fokker-Planck and scattering collision operators
The compact case o
T o) GO Mode-by-mode decomposition
Vissov-Poisson T R Application to the torus and numerical improvements

The compact case

@ Fokker-Planck equation and scattering collision operators
> A mode-by-mode (Fourier) hypocoercivity result

> Enlargement of the space by factorization

> Application to the torus and numerical improvements

@ Further results: Euclidean space with strong confinement

Collaboration with E. Bouin, S. Mischler, C. Mouhot, C. Schmeiser
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Abstract method and motivation
The compact case

I'he non-compact case
Vlasov-Poisson-Fokker-Planck

Fokker-Planck and scattering collision operators
Mode-by-mode decomposition
Application to the torus and numerical improvements

o Fokker-Planck and scattering collision operators

Two basic examples:

@ Linear Fokker-Planck collision operator
Lf =Auf+Vy-(vf)
@ Linear relaxation operator (linear BGK)
Lf = p(2m) =% exp(—|v[*/2) — f

with p = [ fdv

J. Dolbeault Hypocoercivity and functional inequalities



Fokker-Planck and scattering collision operators
Mode-by-mode decomposition
Application to the torus and numerical improvements

The compact case

Fokker-Planck equation with general equilibria

We consider the Cauchy problem
atf+vv$f:|-f7 f((),l‘,?}):fo(x,’l})

for a distribution function f(¢,z,v), with position variable x € R% or
x € T? the flat d-dimensional torus

Fokker-Planck collision operator with a general equilibrium M
Lf=V,- {MVU (M—lf)}

Notation and assumptions: an admissible local equilibrium M is
positive, radially symmetric and

dv
» M@)dv=1, dy=~{)dv:= M)

v is an exponential weight if (loose definition)

m i: lim M(v)|v|* =0 VEk e (d,o0)

J. Dolbeault Hypocoercivity and functional inequalities



Abstract method and motivation
The compact case

The non-compact case
Vlasov-Poisson-Fokker-Planck

Fokker-Planck and scattering collision operators
Mode-by-mode decomposition
Application to the torus and numerical improvements

Definitions

1

o= E/Rd (o] M(v) dv = /Rd(u-e)?M(u)dv

for an arbitrary e € S1

/ v@uvM()dv=0Id
Rd

Then ) A
_ 2 o =12
6 - E HV'UMHLz(d’y) - E /]Rd |VU M| d'U < 0
—1u2
IfM(v):%,then@:land@:l

7= % \V0/©

Microscopic coercivity property (Poincaré inequality): for all
u=M"1tF e HY(M dv)

2
/ |Vu|2Mdvz)\m/ <u—/ uMdv) M dv
R4 R4 Rd

J. Dolbeault Hypocoercivity and functional inequalities



Abstract method and motivation
The compact case

The non-compact case
Vlasov-Poisson-Fokker-Planck

Fokker-Planck and scattering collision operators
Mode-by-mode decomposition
Application to the torus and numerical improvements

Scattering collision operators

Scattering collision operator
L = [ o) (F0) MO) = £ M) !
R
Main assumption on the scattering rate o: for some positive, finite &

1<o(wv)<a You,v e€R?

Example: linear BGK operator

L =Mps = £ oyt = [ f(tao)do

Local mass conservation

/ Lfdv=0
]Rd

[ sar<ac® [ g i

and we have

J. Dolbeault Hypocoercivity and functional inequalities



Abstract method and motivation

The compact case Fokker-Planck and scattering collision operators

Mode-by-mode decomposition

The non-compact c by o
I Application to the torus and numerical improvements

Vlasov-Pc on-Fokker-Planck

(Technicalities !) the symmetry condition
/ (o(v,v') —o(¥',v)) M(v))dv' =0 Vv eR
R4

implies the local mass conservation fRd Lfdv=0
Micro-reversibility, i.e., the symmetry of o, is not required

The null space of L is spanned by the local equilibrium M
L only acts on the velocity variable

Microscopic coercivity property: for some A\, > 0

1 / I(v /U/ UU—U’U/QU/U
5//}Rdxwa(v,v)]¥[( ) M ( )( (v) ( )) ' d

> Am / (w— punt)’ M dv
JRd
holds according to Proposition 2.2 of (Degond, Goudon, Poupaud,

2000) for all u = M ' F € L>(M dv). If o = 1, then \,,, = 1

J. Dolbeault Hypocoercivity and functional inequalities



Fokker-Planck and scattering collision operators

The compact case
p Mode-by-mode decomposition

Application to the torus and numerical improvements

o Euclidean space, confinement, Poincaré inequality

(H1) Regularity & Normalization: V € VVE):O RY), [paeVdz =1
(H2) Spectral gap condition (macroscopic Pomcdrc inequality): for

some A >0, Vu € H'(e”Vdz) such that [p,ue™"dr =0

JpalulP e Vde <A [oq [Voul? e Vda

(H3) Pointwise conditions:

there exists ¢g > 0, ¢; > 0 and 0 € (0,1) s.t.

AV <8IV, V(@)*+co, [VEV(2)] <1 (14]|V,V(2)]) Vo € RY

(H4) Growth condition: [,,|V,V|*e™Vdzx < oo

Theorem (D., Mouhot, Schmeiser)

Let L be either a Fokker-Planck operator or a linear relazation
operator with a local equilibrium F(v) = (2m)~%? exp(—|v|?/2). If f
solves
8tf+v'vwf_vwv'vvf: Lf
then
VE>0, |f(t)=Fl*<(@+n)lfo-F?e™

J. Dolbeault Hypocoercivity and functional inequalities



Abstract method and motivation
The compact case

T'he non-compact case
Vlasov-Poisson-Fokker-Planck

Fokker-Planck and scattering collision operators
Mode-by-mode decomposition
Application to the torus and numerical improvements

a Mode-by-mode decomposition

> Spectral decomposition (Hermite functions): linear Fokker-Planck
operator

Lf:Avf+Vv (Uf)
or the linear relaxation operator (linear BGK)
Lf = p(2m)~ Y2 exp(—|v|?/2) —

with p = [ fdv: (Arnold, Erb), (Achleitner, Arnold, Stiirzer),
(Achleitner, Arnold, Carlen), (Arnold, Einav, Wohrer)

> Decomposition in Fourier modes

J. Dolbeault Hypocoercivity and functional inequalities



Fokker-Planck and scattering collision operators
Mode-by-mode decomposition
Application to the torus and numerical improvements

The compact case

Fourier modes

In order to perform a mode-by-mode hypocoercivity analysis, we
introduce the Fourier representation with respect to x,

£(t,2,0) = /R FE 0 e du(e)

du(€) = (2m)~4d¢ and d€ is the Lesbesgue measure if x € R¢
du(€) = (2m) =% Y, 6(€ — 2) is discrete for x € T¢

Parseval’s identity if £ € Z¢ and Plancherel’s formula if 2 € R? read

1) laany = || £t 0)

L2(dp(§))

The Cauchy problem is now decoupled in the ¢-direction
0.f +Tf=LF, f(0.&0) = fo(6.v)
Tf=i(w-&f

J. Dolbeault Hypocoercivity and functional inequalities



Abstract ethod and tivatio 5 >
ractm Lo morivation Fokker-Planck and scattering collision operators
The compdct case

I'he non-c © e Mode-by-mode decomposition
Vlasov-Poisson-F ‘ ‘ " P \ ok Application to the torus and numerical improvements

For any fixed & € R?, let us apply the abstract result with

s=12d), PP = [ \PPar, =1 [ Pao =M

and Tf =i(v-&) f, TIF =i (v-&) pp M,

ITIF|? = \pFl2/d|v-§|2 M(v)dv = ©[¢]* |pr|* = © [¢]* |11IF|*
(H2) Macroscopic coercivity ||TILF||? > Ay [ITF||? : Ay = O |€)?
(H3) [gavM(v)dv =0

The operator A is given by

—i & [pa v F(v") dv'

AF =
1+ 0 [¢)?

J. Dolbeault Hypocoercivity and functional inequalities



Abstract me ”‘Thc“cljr‘r“‘;‘ct‘c‘w‘; el ek ol cemiiemng cellitem eremies
: ‘py Mode- by mode decompomtmn

T Application to the torus and numerical improvements

A mode- by—mode hypocoercwlty result

_ 1 ja-mr
AP = A0~ TP < g [ 2 o€ VAT

1 , 1/2
< e I0-FI ([ w-920ran)

_ ek
= Tropee 0 -mFI

@ Scattering operator ||[LF||? < 452 ||(1 — II)F||?
@ Fokker-Planck (FP) operator

2 [ |0-mF) Yas
IALFI < g [, o 69 HTlde < g 0 -

In both cases with x = V8 (FP) or k = 27 v/© we obtain

K¢
ALF| < 1-1I)F
IALF < g 10—~ DF

J. Dolbeault Hypocoercivity and functional inequalities



Abstract ethod and tivatior . ‘s
ractimerhiod and motivation Fokker-Planck and scattering collision operators
The compact case

50 S =TT s (er Mode-by-mode decomposition
Vissov-Poisson-Fokhor Plancl Application to the torus and numerical improvements

v-§) M / / /
TAP(v) = _1(4‘;@)@2/11@(” ) (1 MF@) dv

is estimated by

2
[Tar) < 28

IEYCIGE (1= IDF]

(H4) holds with Cp = %9‘5\@2

The two “good” terms
—(LEF) = A [|(1 — I F?
o ¢ 2
ATIIF, F) = AF = ————— ||IIF
(ATILE F) o NF
Two elementary estimates

ol _ & A O(1+0?) o

L+0[E2 ~ max{1,0} 1+[{P7 (1+\)CY,  (v+0e)? ~ #2+0

J. Dolbeault Hypocoercivity and functional inequalities



Fokker-Planck and scattering collision operators
Mode- by mode d(,(,omposlt]on
Application to the torus and numerical improvements

The compact case

Mode-by-mode hypocoercivity with exponential weights

Theorem

Let us consider an admissible M and a collision operator L satisfying
the assumptions, and take § € Re. If f is a solution such that
fo(&,-) € L2(dv), then for any t > 0, we have

2
< 3eHet £ .
Hf (58) ‘ L2 (dv) se Hfo(é’ )’ L2(dv)
where
AlgP ) . Am ©
P T ™ 3max{1,0} """ K2+ 0

with k = 25 V/© for scattering operators
and & = /0 for (FP) operators

J. Dolbeault Hypocoercivity and functional inequalities



Fokker-Planck and scattering collision operators
Mode-by-mode decomposition
Application to the torus and numerical improvements

The compact case

a Exponential convergence to equilibrium in T¢

The unique global equilibrium in the case 2 € T¢ is given by

1
foo(®,0) = poo M(v)  With  poc = 7 // fodz dv
‘T | Td xR

Theorem

Assume that ~v has an exponential growth. We consider an

admissible M, a collision operator L satisfying the assumptions. There
exists a positive constant C' such that the solution f of the Cauchy
problem on T x R? with initial datum fo € L?(dz dv) satisfies

_1
£ () = foollizqarayy < C o = foollizqarayy € *4° ¥E20

J. Dolbeault Hypocoercivity and functional inequalities



Fokker-Planck and scattering collision operators
Mode-by-mode decomposition
Application to the torus and numerical improvements

The compact case

Exponential convergence to equilibrium in T¢

The unique global equilibrium in the case 2 € T¢ is given by

1
foo(®,0) = poo M(v)  With po = v // fodx dv
‘T | Td xR

Theorem

Assume that M is admissible, k € (d,o0] and

dyi == ve(v)dv  where yp(v) = (1+ |11|2)k/2 and k>d

There exists a positive constant Cy, such that the solution f(t,-,-) on
T x RY with initial datum fo € L?(dz dyy) satisfies

_ 1
Hf(ta ) ) - f00||L2(dxd7k) S Ck ||f0 - f00||L2(dacd’7k) e ¢ A vt Z 0

Tool: Enlargement of the space by the factorization method
of (Gualdani, Mischler, Mouhot)

J. Dolbeault Hypocoercivity and functional inequalities
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The compact case 2 . o !
Ihe non-comunct case Mode-by-mode decomposition
Vil P n-Fokl Plancl Application to the torus and numerical improvements

Further references

@ Exponential rates in kinetic equations: (Talay 2001), (Wu 2001)

@ In presence of a strongly confining potential (Hérau 2006 & 2007),
(Mouhot, Neumann, 2006)

@ Hypo-elliptic methods (Hérau, Nier 2004), (Eckmann, Hairer,
2003), (Hormander, 1967), (Kolmogorov, 1934), (I'in, Has’min’ski,
1964) with applications to the Vlasov-Poisson-Fokker-Planck
equation: (Victory, O’'Dwyer, 1990), (Bouchut, 1993)

@ Related topics:

> Hl-hypocoercivity (Gallay), (Villani...)...(Monmarché), (Evans)
> Diffusion limits (Degond, Poupaud, Schmeiser, Goudon,...)

> Poincaré inequalities and Lyapunov functions

> Harris type methods, use of coupling
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Abstract method and motivation Without confinement: Nash inequality

The compact case The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

The non-compact case

The global picture:
> by what can we replace the macroscopic Poincaré inequality ?

@ Nash’s inequality and a decay rate when V' =0

@ Very weak confinement: Caffarelli-Kohn-Nirenberg inequalities
and moments

@ With sub-exponential equilibria: weighted Poincaré inequality or
Hardy-Poincaré inequality

J. Dolbeault Hypocoercivity and functional inequalities



1d moti Without confinement: Nash inequality
The compact case The global picture

¢ Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

a A result based on Nash’s inequality

Vlasov

Poisson-Fokker-Planck

Of +v-Vof =Lf, (t,z,v) € RT x R? x R?

DI/} =~ Hi) > a (1 — M1 +2(ATNY, 1)

We observe that
A*f=TN(1+(TN)*TN) "' f
=T (L+(TN)*TN) "' Nf = M Tup = v M - V,uy
if uy is the solution in H!(dz) of uy — © Ayuy = py, and

[ (&)L (amy = o5 (8 )I\Ll(dw 1 follLt (e aw)

IV attf |2 gy < 6 (ATTIf, f)
I < g lEa e + 2 (ATO, )

J. Dolbeault Hypocoercivity and functional inequalities



Abstract method and motivation Without confinement: Nash inequality
The o lnp\ 't cas The global picture
The non- compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Poi -Fokker-Planck With sub-exponential local equilibria

Nash’s inequality
2d
itz d
||u||L2 do) = CNash ||u||ﬁl+2dz ||VU||ﬁ§fdz) VueL'n HI(R )

Use ||Nf|% < <I>_1(2 (ATN, f>) with @7 1(y) ==y + (%)"’;i2 to get

11 =M £ + 2 (ATOF, £) > S(IFI1P) > @ (755 HIf])

DI} = — 2 HIJ) 2 2 @ (%5 L)

J. Dolbeault Hypocoercivity and functional inequalities



Without confinement: Nash inequality
The global picture

The non-compact case Very weak confinement: C \Hu 13- 1\ >hn-Nirenberg
i T e —— S i

Algebraic decay rates in R?

On the whole Euclidean space, we can define the entropy

HIf] == 3 1122 e a0 (AL Faz s,

Replacing the macroscopic coercivity condition by Nash’s inequality

4
iy < Coxvosn Nl FE sy V5

proves that

HIF) < © (Hifol + 1ol an) (1 +1)%

Theorem

Assume that i, has an exponential growth (k = o0) or a polynomial
growth of order k > d

There exists a constant C > 0 such that, for anyt > 0

2 2 2 _d
1 @5 L2 (do amy <€ (Hfo”p(dwd%) + ”fO”L?(d'yk;Ll(dw))) (1+¢t)72

J. Dolbeault Hypocoercivity and functional inequalities
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Abstract method and motivation Without confinement: Nash inequality
The c ompact case

The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Poisson-Fokker-Pla With sub-exponential local equilibria

The rate of decay of the heat equation

If p is a solution of the heat equation

ap

ot ~ 8

with initial datum pg, then

1ot M ey = lPolles ax)

d 244
7 et Nz gar) = = VP ) E2amy < — € ot ) o

L2(dz)
by Nash’s inequality, and so

_d
llo(t, ')H%ﬁ(dw) =C ||P0||i2(da;) (L+1t)">

J. Dolbeault Hypocoercivity and functional inequalities



Without confinement: Nash inequality
The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

a The global picture

@ Depending on the local equilibria and on the external potential
(H1) and (H2) (which are Poincaré type inequalities) can be replaced
by other functional inequalities:

> microscopic coercivity (H1)

—(LE,F) > A |1 — I F|?
— weak Poincaré inequalities or
Hardy-Poincaré inequalities
> macroscopic coercivity (H2)
ITILF | > Aar |[ILF 2
—> Nash inequality, weighted Nash or
Caffarelli- Kohn- Nirenberg inequalities

@ This can be done at the level of the diffusion equation
(homogeneous case) or at the level of the kinetic equation
(non-homogeneous case)

J. Dolbeault Hypocoercivity and functional inequalities



Without confinement: Nash inequality
The global picture

The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

Diffusion (Fokker-Planck) equations

Potential V=0 V(z) =7 logle] Viz) = o V(z) =z

v<d a€e(01) a>1
k Poincaré
. Caffarelli-Kohn | "vcak Polucard .
Inequality Nash Nirenber or Poincaré
& Weighted Poincaré
Asymptotic e (a2 thort” i M
behavior decay decay convergence convergence

Table 1: Qyu=Au+V-(nVV)

J. Dolbeault Hypocoercivity and functional inequalities



Abstract method and motivation Without confinement: Nash inequality
oG Gommph GRe The global picture
The non- (,Olnpd(,t case Very weak confinement: Caffarelli-Kohn-Nirenberg

)kker-P With sub-exponential local equilibria

V

Kinetic Fokker—Planck equations

B = Bouin, L = Lafleche, M = Mouhot, MM = Mischler, Mouhot
S = Schmeiser

V@ =pe
Potential V=0 V(‘E> =7 log|z| Vi(z) = |=| a>1,orT¢
v<d ae(0,1) Macro Poincaré
DMS,
. JUN— . -
Micro Poincaré BDE\;[%IS' BDS: ¢—(@—7)/2 Cao: e™", Mischler
Fw)=e @ ,B>1 4 deca b<1,B8=2 Mouhot
= decay Y convergence e M
convergence
BDLS: t°¢,
F(v) = e @7, =
B e (0,1) min {g %
decay
BDLS,
F(v) = (v) 47 fractional
in progress

Table 1: O f +v-V,f = FV,(F~'V,f). Notation: (v) = /1 +]v[2
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Abstract method and motivation Without confinement: Nash inequality

The compact case The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

Further references

@  Weak Poincaré inequality: (Rockner & Wang, 2001), (Kavian,
Mischler), (Cao, PhD thesis), (Hu, Wang, 2019) + (Ben-Artzi, Einav)
for recent spectral considerations

Q@  Weighted Nash inequalities: (Bakry, Bolley, Gentil, Maheux, 2012),
(Wang, 2000, 2002, 2010)

@ Related topics:
> fractional diffusion (Cattiaux, Puel, Fournier, Tardif,...) 4+ (Bouin,
D., Lafleche, Schmeiser): work in progress
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Abstract method and motivation Without confinement: Nash inequality
The compact case The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Poisson-Fokker-Planck ‘With sub-exponential local equilibria

a Very weak confinement: Caff

In collaboration with Emeric Bouin and Christian Schmeiser

[m] [ = =
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Abstract method and motivation Without confinement: Nash inequality
The compact casc The global picture
The non-c 3 Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Poisson-Fokk With sub-exponential local equilibria

The macroscopic Fokker-Planck equation

ou

ot
Here x € R%, d > 3, and V is a potential such that e~V ¢ L*(R9)
corresponding to a very weak confinement

=Au+V, (V,Vu) =V, (e_V Va (eV u))

Two examples
Vi(z) =~ loglz| and Va(xz) =~ log(x)

with v < d and (x) := /1 + |z]? for any x € R?
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Without confinement: Nash inequality
The global picture

The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

Potential V=0 V(z) =7 logla] V(r) = o] V(z) =zl

v<d a€(0,1) a>1
Jeak Poincaré
. Caffareli Kot | oK Foineare .
Inequality Nash Nirenber or Poincaré
& Weighted Poincaré
Asymptotic /2 {42 rort” i e M
behavior decay decay convergence convergence

Table 2: Oyu=Au+V-(nVV)
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Without confinement: Nash inequality
The global picture

The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

A first decay result

Theorem

Assume thatd >3, v < (d—2)/2 and V =V} or V =V,
F any solution u with initial datum ug € L} NL2(R?),

4/d
1 luolly

lluol3 : . 2
2 with c¢:= g min {1, L= ﬁ} CNash 1/d
||u0||1 )

(1+ct)?

2
lu(t, )z <

Here Cnasn denotes the optimal constant in Nash’s inequality

2+4 4
lull, ™™ < Cxasn [[ull{ [Vull; Yu € Ltn H'(RY)
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Without confinement: Nash inequality
The global picture

The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

An extended range of exponents: with moments

Theorem

Letd>1,0<v<d, V=V, or V=V, and uy GLi_ﬂLZ(eV)
with H|az|kuo||1 < oo for some k > max{2,v/2}

2 2 — =3
Vi > 0’ ||U(t, ')”Lz(evdm) < ||u0||L2(ede) (]‘ + Ct) 2

for some ¢ depending on d, v, k, |[uolli2(ev 4r) lwolly, and [l /Fuo |,

J. Dolbeault Hypocoercivity and functional inequalities



Without confinement: Nash inequality
The globz 5 picture

The non-compact case Very weak conﬁnement CaHarelh Kohn Nirenberg
With sub-exponential local equilibr

An extended range of exponents: in self-similar variables

i (t x)—ci*m—’YeX (_|x|2)
= (1+26)F" P\ 20+ 29

Here the initial data need have a sufficient decay...
¢, is chosen such that ||us]|1 = ||uoll1

Theorem
Letd > 1, v € (0,d), V =V, assume that

Ve eRY, 0 <up(x) < Kue(0,)
for some constant K > 1

(1+2t)~¢

1 3 (1-3)
)

1—1
V20, Jlult,) =t < Keluollf (ot

for any p € [1,400), where  := % (1 = —) I 5= m1n{2, = ,y}
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Without confinement: Nash inequality

The globz 5 picture
The non-compact case Very weak conﬁnement CaHarelh Kohn Nirenberg
With sub-exponential local equilibr

Proofs: basic case

d
— [ WPdr = —2/ |Vu|2dx+/ AV |u|* dx
dt R4 Rd R4

with either V=V or V = V5 and
d—2 2y

AV =

and AVi(z) =

||
For v < 0: apply Nash’s inequality

2+4/d

d 2 2 2 —4/d
S llull3 < =2Vl < — = Juolly

Nash
For 0 < v < (d — 2)/2: Hardy-Nash inequalities

Jull3

Let d >3 and 6 < (d —2)%/4

2
Il < €5 (1vul -5 [ 2ao) ulf vuern e
R4
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Abstract method and motivation Without confinement: Nash inequality
The compact case The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

Proofs: moments

Growth of the moment
My(t) := / |z|Fu da
Rd
From the equation
M, zk(d+k—2—7)/ wlz|F 2 de < k(d+k—2—fy)M0%M;7%
Rd

then use the Caffarelli-Kohn-Nirenberg inequality

a 2(1—a)
/ lz|"u? dx < € (/ 2|~ |V (|2 w))? dm) (/ |2|* Ju) dx)
R4 R4 Rd
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Without confinement: Nash inequality
The global picture

The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

Proofs: self-similar solutions

The proof relies on uniform decay estimates + Poincaré inequality in
self-similar variables

Proposition

Let v € (0,d) and assume that
2\ —7/2 |z d
0 <u(0,2) <ci (o4 |z]?) exp (-5~ VzeR

witho =014V =V, ando =1 if V="V5. Then

2
0<ult,z) < —F (o + |x|2)—w/2 exp (_L)

(142¢t)“F 2(1+2¢)

for any x € R? and t > 0
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Abstract method and motivation Without confinement: Nash inequality

The compact case The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Poisson-Fokker-Planck With sub-exponential local equilibria

The kinetic Fokker-Planck equation

Let us consider the kinetic equation
Of+v-Vof =V, V-V, f=Lf

where Lf is one of the two following collision operators

(a) a Fokker-Planck operator
Lf =V (MV, (M7 )

(b) a scattering collision operator

Lf = | () (F() M() = () M(v')) d/

Rd
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Abstract method and motivation Without confinement: Nash inequality

The compact case The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Po on-Fokker-Planck With sub-exponential local equilibria
. V@ =lepe
Potential V=0 V(z) =~ log || V(z) = || a>1,or T4
y<d a e (0,1) Macro Poincaré
DMS,
. L e—tt i -
Micro Poincaré BD}g%IS' BDS: ¢—(d—)/2 Cao: e 5 RI\T;SCI’LIQT
Fo) = e, g>1 t decay b<1,B=2 ouhot
decay convergence e
convergence
BDLS: ¢~¢,
8
F(v) =e 7] ) ¢ =
B e(0.1) min {5, 5}
decay
) BDLS,
F(v) = (v)~4 P fractional
in progress

Table 2: Oy f +v - Vof = FV,(F~'V,f). Notation: (v) = /1+ [v]?
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Without confinement: Nash inequality
The global picture

The non-compact case Very weak conﬁnement CaHarelh Kohn-Nirenberg
With sub-expc itial local equilibria

Decay rates

V(z,v) € RIxRY,  M(z,0) = M(v) e V® | M) = (2#)7% g5 ol
(H1) 1<o(v,v') <7, VYov,v R’ forsome &>1

(H2) /]Rd (o(v,0") —o(¥',v)) M(v')dv' =0 VveR?

Theorem

Letd> 1,V =V, withy € [0,d), k > max {2,7/2} and
fo € LA (M~dx dv) such that

[faxga(@)® fodzdv + [[pa, ga [V|* fodwdv < 400
If (H1)-(H2) hold, then there exists C > 0 such that

d
VE>0, (£t ) eoi-tamany < CA+ 1) 2
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Abstract method and motivation Without confinement: Nash inequality
The compact case The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Pc on-Fokker-Planck ‘With sub-exponential local equilibria

o With sub-exponential equilibria,

> The homogeneous Fokker-Planck equation with sub-exponential
equilibria F(v) = Cpe " a € (0,1)

— decay rates based on the weak Poincaré inequality (Kavian,
Mischler)

— decay rates based on a weighted Poincaré / Hardy-Poincaré
inequality

> The kinetic Fokker-Planck equation with sub-exponential local
equilibria and no confinement, the equation with linear scattering

In collaboration with Emeric Bouin, Laurent Lafleche and Christian
Schmeiser
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Abstract method and motivation Without confinement: Nash inequality
The compact case The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Pc on-Fokker-Planck ‘With sub-exponential local equilibria

Fokker-Planck with sub-exponential equilibria

We consider the homogeneous Fokker-Planck equation
04g =V, - (F VU(Fflg))
associated with sub-exponential equilibria
F(v)=Che ™", ae(0,1)
The corresponding Ornstein-Uhlenbeck equation for h = g/F is

Oih = F~1v, - (F Vvh>
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Without confinement: Nash inequality
The global picture

The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
‘With sub-exponential local equilibria

- V(z) =1 loga| V(z) = al* Viz) = of*

Potential =
olenta =0, < ac(0,1) a>1

. Caffarelli-Kohn fecls Potnens o,

Inequality Nash Nirenber or Poincaré
8 Weighted Poincaré

Asymptotic ¢4/ ¢(d=)/2 " or t‘ﬁ e M
behavior decay decay convergence convergence

Table 3: u=Au+ V- (nVV)
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Abstract method and motivation Without confinement: Nash inequality
The con 1 case The global picture
The non- Colnpd(,t case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Poisson-Fokker-Planck ‘With sub-exponential local equilibria

Weak Poincaré inequality

/Rd h —E)ng < Cor </R |Vh|2d§)

for some explicit positive constant C, , b= fRd hd¢. Using

~12
i/ h(t7~)—h‘ d§:—2/ IV, k|2 dé
dt Rd ]Rd

where h = g/F and d¢ = F dv + Hélder’s inequality

Loo (Rd)

12 ~12 T
f]Rd h_h’ de = (fRd h’_h‘ (v) Bd§> (fRd - HL‘”(Rd) <U>BTd£>
~12/T
with (7 +1)/7 = 8/n, then for with M = SUP,¢(0,1) ‘h(sa ) — HL (RY)
/ h(t )—ﬁ’2d§< / h(0 )*ﬁfdf _%+Lt _
oo 10 = (ULl e
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Abstract method and motivation Without confinement: Nash inequality
The compact case The global picture
The non-c act case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Poisson-Fokk ‘With sub-exponential local equilibria

Weighted Poincaré inequality

There exists a constant € > 0 such that

~12
/|Vh|2de2(9 h—h‘ (0)=P F du
]Rd

Rd

with 8 =2(1 — ), h:= Jga W F dv and F(v) = Co e~ ()" and
a€(0,1)

Written in terms of g = h F', the inequality becomes
_ 2 _ —o(1—
/ Vo (F~ )" F2dp > G/ lg—3l* ()20~ dp
Rd Rd

where dpu = F dv
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Without confinement: Nash inequality
The global picture

The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
‘With sub-exponential local equilibria

i/ |h(t,v)]? (v)F Fdv+ 2/ |V, h|? () Fdv
dt Rd ]Rd

=— | V,(h?) - (V,(0)*) Fdv
]Rd
With =2 —a,a € R, b€ (0,+00)

Vo (FV,(0)F) = <vk>4 (d+ (k+d—2)[v]* —a @) v*) <a—b(v)™*

Proposition (Weighted L? norm)

There exists a constant Ky, > 0 such that, if h solves the
Ornstein- Uhlenbeck equation, then

Vi>0 At )lliz(wyrag < K Hhin”Lz(mk de)
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Without confinement: Nash inequality
The global picture
Very weak confinement: Caffarelli-Kohn-Nirenberg

The non-compact case
With sub-exponential local equilibria

h— E‘Q ()P d¢

~12
h(t,-)—h’ d§:—2/ |Vvh\2d§§—2€/
R4 R4

il
dt Jga

+ Holder

Theorem

Assume that o € (0,1). Let g™ € LY (du) NL2((v)*du) for some k >0
and consider the solution g to the homogeneous Fokker-Planck
equation with initial datum ¢g™. If g = (f]Rd gdv) F, then

—B/k —k/B
=2 in _ —|2 28¢€
/Rdlg(tw)—gl duﬁ((/Rdlg .l du) +Wt>

with B =2(1 = a) and K = %2 {972 1oyr 4 + Ok (o 9 dv)”
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Abstract method and motivation Without confinement: Nash inequality
The compact case The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Poisson-Fokker-Planck ‘With sub-exponential local equilibria

The kinetic equation with sub
equilibria

@ the Fokker-Planck operator
Lif =V, (FV.(F' )

@ the scattering collision operator

Laf = [ b0) (F0) PO = £ PW))

[m] [ = =

Hypocoercivity and functional inequalities
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Abstract method and motivation Without confinement: Nash inequality

The compact case The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Poisson-Fokker-Planck ‘With sub-exponential local equilibria
. V@ =t
Potential V=0 V(z) =~ log |«| V(z) = || a>1,or T¢
v<d ae€(0,1) Macro Poincaré
DMS,
: e tt i —
Micro Poincaré BDEV‘E\;IS' BDS: ¢t (d=7)/2 Cao: e™", I\K/ESCh}}eI
Fw)=e®" g>1 t decay b<1l,B8=2 ollMot
decay convergence e
convergence
BDLS: ¢~¢,
F(v) = =", ¢=
* d k
B e (0,1) mln{i,ﬁ
decay
BDLS,
F(v) = (v) 4 F fractional
in progress

Table 3: O f +v - Vaf = FV,(F~1V,f). Notation: (v) = /1+ [v]?
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Without confinement: Nash inequality
The global picture

The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

The decay rate with sub-exponential local equilibria

Theorem

Let a € (0,1), >0, k>0 and let F(v) = Cy e~ ", Assume that
either L=_L; and 8 =2(1 —a), or L =Ly + Assumptions. There
exists a numerical constant € > 0 such that any solution f of

Of+v-Vof =Lf, £(0,--) = f™ € L*((v)*dzdu) N LY (dz dv)
satisfies

[

V>0, t,-,- 2:// tz, ) dedu <€
20, G-Il = [  [f&eo) deds<erm—in

with rate ¢ = min {d/2,k/5}, for.’ some positive £ which is an explicit
function of the two quotients, Hme / ||f‘“”k and ||meL1(dIdv) / ||f‘“H
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Without confinement: Nash inequality
The global picture

The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

Preliminaries

Df] :=— (Lf. f) + 6 (ATTf, N f)
+ 6 (AT(Id — M) £, Tf) — 6 (TA(Id — M) £, (Id — M) f)
— 5 (AL(Id — M) £, 11f)

Q@ microscopic coercivity. If L = Ly, we rely on the weighted
Poincaré inequality

(Lf,f) < —ead-1mf|,

If L = Ly, we assume that there exists a constant € > 0 such that

/ |h— | (0)? Fdo < e// b(v,o') [B = k> F F'dvd/
R R4 xR

@ Weighted L2 norms Let k > 0, f* € L2((v)* dz du) a solution.
4K > 1 such that

Vt207 ”f( ’ 7')HL2 Ve dz dp) < Kk HmeL2 Ve dz dp)

J. Dolbeault Hypocoercivity and functional inequalities



motivation Without confinement: Nash inequality

A bst thod
The compact case The global picture
The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
Vlasov-Pc on-Fokker-Planck ‘With sub-exponential local equilibria

Proof

Halr) = 3 7P + 8 (AF. ). Hsls] = —DLJ]
@ There exists & > 0 such that V f € L? ((v)~# dz dp) N L (dz dv),
DI] = (I = fIP , + (ATNSN))
@ For any f € L'(dz du) N L%(dz dv),
(ATnfNf) > @ (INf]?)
ol (y) =29+ (1) c=0end It
@ For any f € L2((v)*da du) N L (dx dv),

Jaa =), = v (lIad - f)P)

2

=

U(y) = Coy™ /%, Coi= (K (1+04) I/™]1x)
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Without confinement: Nash inequality
The global picture

The non-compact case Very weak confinement: Caffarelli-Kohn-Nirenberg
With sub-exponential local equilibria

More references

@ E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot, and C. Schmeiser.
Hypocoercivity without confinement. Preprint hal-01575501 and
arxiv: 1708.06180, Oct. 2017, to appear. Nash

@ E. Bouin, J. Dolbeault, and C. Schmeiser. Diffusion and kinetic
transport with very weak confinement. Preprint hal-01991665 and
arxiv: 1901.08323, to appear in Kinetic Rel. Models. Nash /
Caffarelli-Kohn-Nirenberg inequalities

@ M. P. Gualdani, S. Mischler, and C. Mouhot. Factorization of
non-symmetric operators and exponential H-theorem. Mém. Soc.
Math. Fr. (N.S.), (153):137, 2017.

@ E. Bouin, J. Dolbeault, and C. Schmeiser. A variational proof of
Nash’s inequality. Preprint hal-01940110 and arxiv: 1811.12770, to
appear in Atti della Accademia Nazionale dei Lincei. Rendiconti
Lincei. Matematica e Applicazioni, 2018. Nash

@ E. Bouin, J. Dolbeault, L. Lafleche, and C. Schmeiser.
Hypocoercivity and sub-exponential local equilibria, soon. Weighted
Poincaré inequalities
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Linearized system and hypocoercivity
Results in the diffusion limit / non-linear case

Vlasov-Poisson-Fo ker Planck

The Vlasov-Poisson-Fokker-Planck
system: linearization and

hypocoercivity

> Linearized Vlasov-Poisson-Fokker-Planck system
> A result in the non-linear case, d =1
In collaboration with Lanoir Addala, Xingyu Li and Lazhar M. Tayeb

@ L2-Hypocoercivity and large time asymptotics of the linearized
Vlasov-Poisson-Fokker-Planck system. Preprint hal-02299535 and
arxiv: 1909.12762

(Hérau, Thomann, 2016), (Herda, Rodrigues, 2018)
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Linearized system and hypocoercivity
Results in the diffusion limit / non-linear case
Vlasov-Poisson-Fokker-Planck

a Linearized Vlasov-Poisson-Fokker-Planck system

The Viasov-Poisson-Fokker-Planck system in presence of an external
potential V' is

Of+v-Vof =(VoV +Vad) - Vof =Af+ V- (vf)
~dao=py= [ 1o
R4
Linearized problem around f,: f = f, (1+nh), [[za, ga b fedzdo =0
Oth+v-Vih— (Vo V+Veos) Voh+v-Votby — Ayh+v-Voh =V, - Vyh
—Aﬂ%:/nhﬂdv
Rd

(VPFP)

Drop the O(n) term : linearized Vlasov-Poisson-Fokker-Planck system
Oh+v-Vih— (Vi V+Vede) Voh+v- -V, —Ayh+v-V,h =0
—Azwh:/ h fydv, // hfidrdv =20
Rd R x R4

(VPFPlin)

J. Dolbeault Hypocoercivity and functional inequalities



Linearized system and hypocoercivity
Results in the diffusion limit / non-linear case
Vlasov-Poisson-Fokker-Planck

Hypocoercivity

Let us define the norm

A = // th*d:cdv+/ |V oton|? da
R4 xR4 R4

Theorem

Let us assume that d > 1, V(x) = |z|* for some a > 1 and M > 0.
Then there exist two positive constants C and A such that any solution
h of (VPFPlin) with an initial datum hy of zero average with

lhol|® < oo is such that

(2, -, )" < € [lhol® e VE=0
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Linearized system and hypocoercivity
Results in the diffusion limit / non-linear case
Vlasov-Poisson-Fokker-Planck

Diffusion limit

Linearized problem in the parabolic scaling

1
€0th+ v Voh— (VaV 4 Vat) - Vol + v Vathy — — (Ayh —v- Vyh) =0

*Azwh:/ h/f*dv7 // hf*dl'dU:O
R4 R4 xRd

(VPFPscal)
Expand he = hg +¢ehy + €2 hy + O(e%) as ¢ — 0. With W, =V + ¢,
el Ayhg —v-Vyhog=0
ev . v-Vzho — Vo We - Vyho+v- Vb, = Ayhy —v - Vb
el Othg +v-Vihy =V, W, -Vyh1 = Ayhy —v-Vyho

With u = IThg, —AvY = u p,, w = u + 1, equations simply mean
uw=nhg, v-Viw=~Ayh1—v-Vyh
from which we deduce that hy = —v - V,w and
ou— Aw+ VW, -Vu=0
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Linearized system and hypocoercivity
Results in the diffusion limit / non-linear case
Vlasov-Poisson-Fokker-Planck

a Results in the diffusion limit / in the non-linear case

Theorem

Let us assume that d > 1, V(x) = |z|* for some a > 1 and M > 0.
For any € > 0 small enough, there exist two positive constants C and
A, which do not depend on e, such that any solution h of (VPFPscal)
with an initial datum hg of zero average and such that ||ho|* < oo
satisfies

1t ) < € lhol|* e VE>0

Corollary

| A

Assume that d =1, V(z) = |z|* for some a > 1 and M > 0. If f
solves (VPFEP) with initial datum fo = (1 + ho) fx such that ho has
zero average, ||ho||® < oo and (1 + hg) > 0, then

||h(t7'7')||2 <¢C ”hOH2 eiM Vt>0

holds with h = f/f. — 1 for some positive constants € and X
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Abstract method and motivation
The compact case Linearized system and hypocoercivity
T'he non-compact case Results in the diffusion limit / non-linear case
Vlasov-Poisson-Fokker-Planck

These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Lectures/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password
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