Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities

Jean Dolbeault

dolbeaul@ceremade.dauphine.fr

CEREMADE

CNRS & Université Paris-Dauphine

http://www.ceremade.dauphine.fr/~dolbeaul

(IN COLLABORATION WITH A. BLANCHET, M. BONFORTE, G. GRILLO AND J.-L. VÁZQUEZ, G. TOSCANI)

EVOLUTION EQUATIONS AND FUNCTIONAL INEQUALITIES

HAMMAMET, MAY 3-7, 2010

http://www.ceremade.dauphine.fr/~dolbeaul/Preprints/

Outline

- Introduction
 - Fast diffusion equations: entropy methods and Gagliardo-Nirenberg inequalities
 - Fast diffusion equations: the finite mass regime
 - Fast diffusion equations: the infinite mass regime
- Relative entropy methods and linearization
 - the linearization of the functionals approach: [Blanchet, Bonforte, J.D., Grillo, Vázquez]
 - sharp rates: [Bonforte, J.D., Grillo, Vázquez]
 - An improvement based on the center of mass: [Bonforte, J.D., Grillo, Vázquez]
- An improvement based on the variance: [J.D., Toscani]

Some references

- Jean Dolbeault and G. Toscani, Fast diffusion equations: matching large time asymptotics by relative entropy methods, in preparation
- Matteo Bonforte, Jean Dolbeault, Gabriele Grillo, and Juan-Luis Vázquez. Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, submitted to Proc. Nat. Acad. Sciences
- A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, and J.-L. Vázquez. Asymptotics of the fast diffusion equation via entropy estimates. Archive for Rational Mechanics and Analysis, 191 (2): 347-385, 02, 2009
- A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, and J.-L. Vázquez. Hardy-Poincaré inequalities and applications to nonlinear diffusions.
 C. R. Math. Acad. Sci. Paris, 344(7): 431-436, 2007

Introduction

Fast diffusion equations: entropy methods and Gagliardo-Nirenberg inequalities

 $u_t = \Delta u^m \quad x \in \mathbb{R}^d, \ t > 0$

Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities - p. 5/58

Porous media / fast diffusion equations

Generalized entropies and nonlinear diffusions (EDP, uncomplete): [Del Pino, J.D.], [Carrillo, Toscani], [Otto], [Juengel, Markowich, Toscani], [Carrillo, Juengel, Markowich, Toscani, Unterreiter], [Biler, J.D., Esteban], [Markowich, Lederman], [Carrillo, Vázquez], [Cordero-Erausquin, Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub],... [del Pino, Sáez], [Daskalopulos, Sesum]...

1) [J.D., del Pino] relate entropy and Gagliardo-Nirenberg inequalities

- 2) "entropy entropy-production method"
- 3) mass transport techniques
- 4) hypercontractivity for appropriate semi-groups

Heat equation, porous media & fast diffusion equation

Existence theory, critical values of the parameter m

Intermediate asymptotics for fast diffusion & porous media

$$\frac{\partial u}{\partial \tau} = \Delta u^m \quad \text{in } \mathbb{R}^d$$
$$u_{|\tau=0} = u_0 \ge 0$$
$$u_0(1+|x|^2) \in L^1 , \quad u_0^m \in L^1$$

Intermediate asymptotics: $u_0 \in L^{\infty}$, $\int u_0 dx = M > 0$

Self-similar (Barenblatt) function: $U(\tau) = O(\tau^{-d/(2-d(1-m))})$ [Friedmann, Kamin, 1980] As $\tau \to +\infty$

$$||u(\tau, \cdot) - \mathcal{U}(\tau, \cdot)||_{L^{\infty}} = o(\tau^{-d/(2-d(1-m))})$$

 \implies What about $||u(\tau, \cdot) - \mathcal{U}(\tau, \cdot)||_{L^1}$?

Time-dependent rescaling

Take $u(\tau, y) = R^{-d}(t) v(t, y/R(\tau))$ where

$$\frac{\partial R}{\partial \tau} = R^{d(1-m)-1}, \quad R(0) = 1, \quad t = \log R$$
$$\frac{\partial v}{\partial t} = \Delta v^m + \nabla \cdot (x v), \quad v_{|\tau=0} = u_0$$

[Ralston, Newman, 1984] Lyapunov functional: Entropy or Free energy

$$\Sigma[v] = \int \left(\frac{v^m}{m-1} + \frac{1}{2}|x|^2v\right) dx - \Sigma_0$$

$$\frac{d}{d\tau}\Sigma[v] = -I[v] , \quad I[v] = \int v \left| \frac{\nabla v^m}{v} + x \right|^2 dx$$

Entropy and entropy production

Stationary solution: choose C such that $||v_{\infty}||_{L^1} = ||u||_{L^1} = M > 0$

$$v_{\infty}(x) = \left(C + \frac{1-m}{2m} |x|^2\right)_{+}^{-1/(1-m)}$$

Fix Σ_0 so that $\Sigma[v_\infty] = 0$. The entropy can be put in an *m*-homogeneous form

$$\Sigma[v] = \int \psi\left(\frac{v}{v_{\infty}}\right) v_{\infty}^{m} dx \quad with \ \psi(t) = \frac{t^{m} - 1 - m(t-1)}{m-1}$$

Theorem 1. $d \geq 3$, $m \in [\frac{d-1}{d}, +\infty)$, $m > \frac{1}{2}$, $m \neq 1$

 $I[v] \ge 2\,\Sigma[v]$

An equivalent formulation

$$\Sigma[v] = \int \left(\frac{v^m}{m-1} + \frac{1}{2}|x|^2v\right) dx - \Sigma_0 \le \frac{1}{2} \int v \left|\frac{\nabla v^m}{v} + x\right|^2 dx = \frac{1}{2}I[v]$$

$$p = \frac{1}{2m-1}, v = w^{2p}, v^m = w^{p+1}$$

$$1 \left(-2m-1\right)^2 \left(-1-1\right) = 0$$

$$\frac{1}{2} \left(\frac{2m}{2m-1} \right) \int |\nabla w|^2 dx + \left(\frac{1}{1-m} - d \right) \int |w|^{1+p} dx + K$$

K < 0 if m < 1, K > 0 if m > 1 and, for some γ , K can be written as

$$K = K_0 \left(\int v \, dx = \int w^{2p} \, dx \right)^{\gamma}$$

 $w = w_{\infty} = v_{\infty}^{1/2p}$ is optimal

 $m = m_1 := \frac{d-1}{d}$: Sobolev, $m \to 1$: logarithmic Sobolev

Gagliardo-Nirenberg inequalities

Theorem 2. [Del Pino, J.D.] Assume that $1 and <math>d \geq 3$

 $||w||_{2p} \le A ||\nabla w||_2^{\theta} ||w||_{p+1}^{1-\theta}$

$$A = \left(\frac{y(p-1)^2}{2\pi d}\right)^{\frac{\theta}{2}} \left(\frac{2y-d}{2y}\right)^{\frac{1}{2p}} \left(\frac{\Gamma(y)}{\Gamma(y-\frac{d}{2})}\right)^{\frac{\theta}{d}}$$
$$\theta = \frac{d(p-1)}{p(d+2-(d-2)p)}, \quad y = \frac{p+1}{p-1}$$

Similar results for 0

Uses [Serrin-Pucci], [Serrin-Tang] $1 Fast diffusion case: <math>\frac{d-1}{d} \leq m < 1$ 0 Porous medium case: <math>m > 1

Intermediate asymptotics

 $\Sigma[v] \leq \Sigma[u_0] e^{-2\tau}$ + Csiszár-Kullback inequalities

Theorem 3. [Del Pino, J.D.]
(i)
$$\frac{d-1}{d} < m < 1$$
 if $d \ge 3$

$$\lim_{t \to +\infty} \sup t^{\frac{1-d(1-m)}{2-d(1-m)}} \|u^m - u_{\infty}^m\|_{L^1} < +\infty$$
(ii) $1 < m < 2$

$$\lim_{t \to +\infty} \sup t^{\frac{1+d(m-1)}{2+d(m-1)}} \|[u - u_{\infty}]] u_{\infty}^{m-1}\|_{L^1} < +\infty$$
 $u_{\infty}(t, x) = R^{-d}(t) v_{\infty} (x/R(t))$

Fast diffusion equations: the finite mass regime

- If $m \ge 1$: porous medium regime or $m_1 := \frac{d-1}{d} \le m < 1$, the decay of the entropy is governed by Gagliardo-Nirenberg inequalities, and to the limiting case m = 1 corresponds the logarithmic Sobolev inequality
- If $m_c := \frac{d-2}{d} \le m < m_1$, solutions globally exist in L^1 and the Barenblatt self-similar solution has finite mass
- The fast diffusion equation can be seen as the gradient flow of the generalized entropy with respect to the Wasserstein distance
- Displacement convexity holds in the same range of exponents, $m \in ((d-1)/d, 1)$, as for the Gagliardo-Nirenberg inequalities

Fast diffusion: finite mass regime

Inequalities...

... existence of solutions of $u_t = \Delta u^m$

Extensions and related results

- Mass transport methods: inequalities / rates [Cordero-Erausquin, Gangbo, Houdré], [Cordero-Erausquin, Nazaret, Villani], [Agueh, Ghoussoub, Kang]
- General nonlinearities [Biler, J.D., Esteban], [Carrillo-DiFrancesco], [Carrillo-Juengel-Markowich-Toscani-Unterreiter] and gradient flows [Jordan-Kinderlehrer-Otto], [Ambrosio-Savaré-Gigli], [Otto-Westdickenberg] [J.D.-Nazaret-Savaré], etc
- Non-homogeneous nonlinear diffusion equations [Biler, J.D., Esteban], [Carrillo, DiFrancesco]
- Extension to systems and connection with Lieb-Thirring inequalities [J.D.-Felmer-Loss-Paturel, 2006], [J.D.-Felmer-Mayorga]
- Drift-diffusion problems with mean-field terms. An example: the Keller-Segel model [J.D-Perthame, 2004], [Blanchet-J.D-Perthame, 2006], [Biler-Karch-Laurençot-Nadzieja, 2006], [Blanchet-Carrillo-Masmoudi, 2007], etc
- … connection with linearized problems [Markowich-Lederman], [Carrillo-Vázquez], [Denzler-McCann], [McCann, Slepčev], [Kim, McCann]

Fast diffusion equations: the infinite mass regime

• If $m > m_c := \frac{d-2}{d} \le m < m_1$, solutions globally exist in L^1 and the Barenblatt self-similar solution has finite mass.

 \bigcirc For $m \leq m_c$, the Barenblatt self-similar solution has infinite mass

 \Rightarrow How to extend to $m \leq m_c$ what has been done for $m > m_c$? Work in relative variables !

Fast diffusion: infinite mass regime

... intermediate asymptotics, vanishing

A. Blanchet, M. Bonforte, J.D., G. Grillo, J.L. Vázquez

- Let use the properties of the flow
- write everything as relative quantities (to the Barenblatt profile)
- compare the functionals (entropy, Fisher information) to their linearized counterparts

 \implies Extend the domain of validity of the method to the price of a restriction of the set of admissible solutions

Setting of the problem

We consider the solutions $\boldsymbol{u}(\tau,\boldsymbol{y})$ of

$$\begin{cases} \partial_{\tau} u = \Delta u^m \\ u(0, \cdot) = u_0 \end{cases}$$

where $m \in (0,1)$ (fast diffusion) and $(\tau, y) \in Q_T = (0,T) \times \mathbb{R}^d$ Two parameter ranges: $m_c < m < 1$ and $0 < m < m_c$, where

$$m_c := \frac{d-2}{d}$$

• $m_c < m < 1$, $T = +\infty$: intermediate asymptotics, $\tau \to +\infty$

• $0 < m < m_c$, $T < +\infty$: vanishing in finite time

$$\lim_{\tau \nearrow T} u(\tau, y) = 0$$

Relative entropy methods and linearization

Fast diffusion equation and Barenblatt solutions

Consider the fast diffusion equation

$$\frac{\partial u}{\partial \tau} = -\nabla \cdot \left(u \,\nabla u^{m-1} \right) = \frac{1-m}{m} \,\Delta u^m \tag{1}$$

with m < 1. We look for positive solutions $u(\tau, y)$ for $\tau \ge 0$ and $y \in \mathbb{R}^d$, $d \ge 1$, corresponding to nonnegative initial-value data

$$u(\tau = 0, \cdot) = u_0 \in L^1_{\text{loc}}(dx)$$

In the limit case m = 0, u^m/m has to be replaced by $\log u$ Barenblatt solutions play for m < 1 a role similar to Gaussian kernel for m = 1

$$U_{D,T}(\tau, y) := \frac{1}{R(\tau)^d} \left(D + \frac{1-m}{2 d |m-m_c|} \left| \frac{y}{R(\tau)} \right|^2 \right)_+^{-\frac{1}{1-m}}$$

whenever $m > m_c := \frac{d-2}{d}$ and $m \neq 1$, with $R(\tau) := (T+\tau)^{\frac{1}{d(m-m_c)}}$

Extension of the family of the Barenblatt solutions

• If $m > m_c := (d-2)/d$, the Barenblatt solution describes the large time asymptotics of the solutions of equation (1) as $\tau \to \infty$ provided $M = \int_{\mathbb{R}^d} u_0 \, dy$ is finite, a condition that uniquely determines D = D(M). Notice that in the range $m \ge m_c$, solutions of (1) with $u_0 \in L^1_+(dx)$ exist globally in time and mass is conserved: $\int_{\mathbb{R}^d} u(\tau, y) \, dy = M$ for any $\tau \ge 0$. If $m < m_c$ the family of Barenblatt functions can be extended by considering

$$R(\tau) := (T - \tau)^{-\frac{1}{d(m_c - m)}}$$

The parameter T now denotes the *extinction time*

• If $m = m_c$ take $R(\tau) = e^{\tau}$, $U_{D,T}(\tau, y) = e^{-d\tau} \left(D + e^{-2\tau} |y|^2 / 2 \right)^{-d/2}$

Two crucial values of m:

$$m_* := rac{d-4}{d-2}$$
 and $m_c := rac{d-2}{d}$

Rescaling

A time-dependent change of variables

$$t := \frac{1-m}{2} \log\left(\frac{R(\tau)}{R(0)}\right) \quad \text{and} \quad x := \sqrt{\frac{1}{2d \left|m-m_{c}\right|}} \frac{y}{R(\tau)}$$

If $m=m_c$, we take $t=\tau/d$ and $x=e^{-\tau}\,y/\sqrt{2}$

The generalized Barenblatt functions $U_{D,T}(\tau, y)$ are transformed into stationary generalized Barenblatt profiles $V_D(x)$

$$V_D(x) := (D + |x|^2)^{\frac{1}{m-1}} \quad x \in \mathbb{R}^d$$

If u is a solution to (1), the function $v(t,x):=R(\tau)^d\,u(\tau,y)$ solves

$$\frac{\partial v}{\partial t} = -\nabla \cdot \left[v \,\nabla \left(v^{m-1} - V_D^{m-1} \right) \right] \quad t > 0 \,, \quad x \in \mathbb{R}^d \tag{2}$$

with initial condition $v(t = 0, x) = v_0(x) := R(0)^{-d} u_0(y)$

Goal

We are concerned with the *sharp rate* of convergence of a solution v of the rescaled equation to the *generalized Barenblatt profile* V_D in the whole range m < 1. Convergence is measured in terms of the relative entropy

$$\mathcal{E}[v] := \frac{1}{m-1} \int_{\mathbb{R}^d} \left[v^m - V_D^m - m \, V_D^{m-1}(v - V_D) \right] \, dx$$

for all $m \neq 0$, m < 1

Assumptions on the initial datum v_0

(H1) $V_{D_0} \leq v_0 \leq V_{D_1}$ for some $D_0 > D_1 > 0$ (H2) if $d \geq 3$ and $m \leq m_*$, $(v_0 - V_D)$ is integrable for a suitable $D \in [D_1, D_0]$ The case $m = m_* = \frac{d-4}{d-2}$ will be discussed later If $m > m_*$, we define D as the unique value in $[D_1, D_0]$ such that $\int_{\mathbb{R}^d} (v_0 - V_D) dx = 0$

Our goal is to find the best possible rate of decay of $\mathcal{E}[v]$ if v solves (2)

Sharp rates of convergence

Theorem 4. [Bonforte, J.D., Grillo, Vázquez] Under Assumptions (H1)-(H2), if m < 1 and $m \neq m_*$, the entropy decays according to

$$\mathcal{E}[v(t,\cdot)] \le C e^{-2(1-m)\Lambda t} \quad \forall t \ge 0$$

The sharp decay rate Λ is equal to the best constant $\Lambda_{\alpha,d} > 0$ in the Hardy–Poincaré inequality of Theorem 17 with $\alpha := 1/(m-1) < 0$ The constant C > 0 depends only on m, d, D_0, D_1, D and $\mathcal{E}[v_0]$

- Notion of sharp rate has to be discussed
- Rates of convergence in more standard norms: $L^{q}(dx)$ for $q \ge \max\{1, d(1-m)/[2(2-m)+d(1-m)]\}$, or C^{k} by interpolation
- Solution By undoing the time-dependent change of variables, we deduce results on the *intermediate asymptotics* of (1), i.e. rates of decay of $u(\tau, y) U_{D,T}(\tau, y)$ as $\tau \to +\infty$ if $m \in [m_c, 1)$, or as $\tau \to T$ if $m \in (-\infty, m_c)$

Basin of attraction of the Barenblatt solutions

Barenblatt solutions $U_{D,T}$ have two parameters:

D corresponds to the mass

T has the meaning of the *extinction time* of the solution for $m < m_c$ and of a time-delay parameter otherwise

The basin of attraction of $U_{D,T}$ contains all solutions corresponding to data which are trapped between two Barenblatt profiles $U_{D_0,T}(0,\cdot), U_{D_1,T}(0,\cdot)$ for the same value of T and satisfy a relative mass condition

• if $m > m_c$, $U_{D,T}$ attracts all solutions with corresponding mass

- if $m_* < m \le m_c$, $U_{D,T}$ attracts all solutions such that $\int_{\mathbb{R}^d} [u_0 U_{D,T}(0, \cdot)] dy = 0$ for some $D \in [D_1, D_0]$
- If $m < m_*$, $U_{D,T}$ attracts all solutions corresponding to data which are integrable perturbations of $U_{D,T}(0, \cdot)$

Strategy of proof

Assume that D = 1 and consider $d\mu_{\alpha} := h_{\alpha} dx$, $h_{\alpha}(x) := (1 + |x|^2)^{\alpha}$, with $\alpha = 1/(m-1) < 0$, and

$$\mathcal{L}_{\alpha,d} := -h_{1-\alpha} \operatorname{div} \left[h_{\alpha} \nabla \cdot \right]$$

on the weighted space $L^2(d\mu_{\alpha})$: $\int_{\mathbb{R}^d} f(\mathcal{L}_{\alpha,d} f) d\mu_{\alpha-1} = \int_{\mathbb{R}^d} |\nabla f|^2 d\mu_{\alpha}$ A first order expansion of $v(t, x) = h_{\alpha}(x) \left[1 + \varepsilon f(t, x) h_{\alpha}^{1-m}(x)\right]$ solves

$$\frac{\partial f}{\partial t} + \mathcal{L}_{\alpha,d} f = 0$$

Theorem 4 follows from a spectral gap for $\mathcal{L}_{\alpha,d}$ • For $d \geq 3$, let $\alpha_* := -(d-2)/2$ corresponding to $m = m_*$, $m_1 := (d-1)/d$ with corresponding $\alpha_1 = -d$, and $m_2 := d/(d+2)$ with corresponding $\alpha_2 = -(d+2)/2$. We have $m_* < m_c < m_2 < m_1 < 1$ • d = 2 gives $m_* = -\infty$ so that $\alpha_* = 0$, as well as $m_c = 0$, and $m_1 = m_2 = 1/2$

A table of correspondence

$$\alpha = 1/(m-1) \quad \Longleftrightarrow m = 1 + \frac{1}{\alpha}$$

$$m\in(-\infty,1)$$
 means $lpha\in(-\infty,0)$

m =	$-\infty$	m_*	m_c	m_2	m_1	1
m =	$-\infty$	$\frac{d-4}{d-2}$	$\frac{d-2}{d}$	$\frac{d}{d+2}$	$\frac{d-1}{d}$	1
$\alpha =$	0	$-\frac{d-2}{2}$	$-\frac{d}{2}$	$-\frac{d+2}{2}$	-d	$-\infty$

Sharp Hardy-Poincaré inequalities

Theorem 5. Let $d \ge 3$. For any $\alpha \in (-\infty, 0) \setminus \{\alpha_*\}$, there is a positive constant $\Lambda_{\alpha, d}$ such that

$$\Lambda_{\alpha,d} \int_{\mathbb{R}^d} |f|^2 \, d\mu_{\alpha-1} \le \int_{\mathbb{R}^d} |\nabla f|^2 \, d\mu_\alpha \quad \forall \ f \in H^1(d\mu_\alpha) \tag{3}$$

under the additional condition $\int_{\mathbb{R}^d} f\,d\mu_{\alpha-1} = 0$ if $\alpha < \alpha_*$

$$\Lambda_{\alpha,d} = \begin{cases} \frac{1}{4} (d-2+2\alpha)^2 & \text{if } \alpha \in \left[-\frac{d+2}{2}, \alpha_*\right) \cup (\alpha_*, 0) \\ -4\alpha - 2d & \text{if } \alpha \in \left[-d, -\frac{d+2}{2}\right) \\ -2\alpha & \text{if } \alpha \in (-\infty, -d) \end{cases}$$

For d = 2, inequality (3) holds for all $\alpha < 0$, with $\Lambda_{\alpha,2} = \alpha^2$ for $\alpha \in [-2,0)$ and $\Lambda_{\alpha,2} = -2\alpha$ for $\alpha \in (-\infty, -2)$ For d = 1, (3) holds, with $\Lambda_{\alpha,1} = -2\alpha$ if $\alpha < -1/2$ and $\Lambda_{\alpha,1} = (\alpha - 1/2)^2$ if $\alpha \in [-1/2, 0)$

Comments

The Hardy-Poincaré inequalities (3) share many properties with Hardy's inequalities, because of homogeneity reasons.By scaling

$$\Lambda_{\alpha,d} \int_{\mathbb{R}^d} |f|^2 \, (D+|x|^2)^{\alpha-1} \, dx \le \int_{\mathbb{R}^d} |\nabla f|^2 \, (D+|x|^2)^{\alpha} \, dx$$

holds for any $f \in H^1((D + |x|^2)^{\alpha} dx)$ and any $D \ge 0$, under the additional conditions $\int_{\mathbb{R}^d} f(D + |x|^2)^{\alpha - 1} dx = 0$ and D > 0 if $\alpha < \alpha_*$

- $\Lambda_{\alpha,d}$ is independent of *D*
- **●** $D \rightarrow 0$: [Hardy, Caffarelli-Kohn-Nirenberg] (standard Hardy ineq.: $\alpha = 0$)
- $m \to 1$: Poincaré inequality (gaussian measure): rescale first to get $(1 + (1 m) |x|^2)^{-1/(1-m)}$

Relative entropy and relative Fisher information

The relative entropy of J. Ralston and W.I. Newmann is

$$\mathcal{F}[w] := \frac{m}{1-m} \int_{\mathbb{R}^d} \left[w - 1 - \frac{1}{m} \left(w^m - 1 \right) \right] \, V_D^m \, dx$$

for any m < 1, $m \neq 0$. In the limit case m = 1, we recover $\mathcal{F}[w] := \int_{\mathbb{R}^d} [w \log w - (w - 1)] d\mu$

The generalized relative Fisher information is

$$\mathcal{I}[w] := \int_{\mathbb{R}^d} \left| \frac{1}{m-1} \nabla \left[(w^{m-1} - 1) V_D^{m-1} \right] \right|^2 v \, dx$$

where $w = \frac{v}{V_D}$. If v is a solution of (2), then

$$\frac{d}{dt}\mathcal{F}[w(t,\cdot)] = -\mathcal{I}[w(t,\cdot)] \quad \forall t > 0$$

Linearization and interpolation

Method of [Blanchet, Bonforte, J.D., Grillo, Vázquez]: let $f := (w - 1) V_D^{m-1}$, $h_1(t) := \inf_{\mathbb{R}^d} w(t, \cdot)$, $h_2(t) := \sup_{\mathbb{R}^d} w(t, \cdot)$ and $h := \max\{h_2, 1/h_1\}$. We notice that $h(t) \to 1$ as $t \to +\infty$

$$h^{m-2} \int_{\mathbb{R}^d} |f|^2 V_D^{2-m} \, dx \le \frac{2}{m} \,\mathcal{F}[w] \le h^{2-m} \int_{\mathbb{R}^d} |f|^2 V_D^{2-m} \, dx$$
$$\int_{\mathbb{R}^d} |\nabla f|^2 V_D \, dx \le [1+X(h)] \,\mathcal{I}[w] + Y(h) \int_{\mathbb{R}^d} |f|^2 V_D^{2-m} \, dx$$

where X and Y are functions such that $\lim_{h\to 1} X(h) = \lim_{h\to 1} Y(h) = 0$ $h_2^{2(2-m)}/h_1 \le h^{5-2m} =: 1 + X(h)$ $\left[(h_2/h_1)^{2(2-m)} - 1 \right] \le d(1-m) \left[h^{4(2-m)} - 1 \right] =: Y(h)$

A new interpolation inequality: for h > 0 small enough

$$\mathcal{F}[w] \le \frac{h^{2-m} \left[1 + X(h)\right]}{2 \left[\Lambda_{\alpha,d} - m Y(h)\right]} \, m \, \mathcal{I}[w]$$

Gronwall estimates

(...) one more interpolation allows to close the system of estimates: for some $C = C(d, m, D, D_0, D_1)$,

$$0 \le h - 1 \le \mathsf{C}\,\mathcal{F}^{\frac{1-m}{d+2-(d+1)m}}$$

Hence we have a nonlinear differential inequality

$$\frac{d}{dt}\mathcal{F}[w(t,\cdot)] \le -2 \frac{\Lambda_{\alpha,d} - m Y(h)}{\left[1 + X(h)\right] h^{2-m}} \mathcal{F}[w(t,\cdot)]$$

A Gronwall lemma (take $h = 1 + C \mathcal{F}^{\frac{1-m}{d+2-(d+1)m}}$) then shows that

$$\limsup_{t \to \infty} e^{2\Lambda_{\alpha,d} t} \mathcal{F}[w(t,\cdot)] < +\infty$$

Explicit dependence on the initial data

Corollary 6. [Bonforte, J.D., Grillo, Vázquez] Let $h(0) < h_*$, h_* small enough. Under the assumptions of Theorem 4

$$\mathcal{F}[w(t,\cdot)] \le G(t,h(0),\mathcal{F}[w(0,\cdot)]) \quad \forall t \ge 0$$

where G is the unique solution of the nonlinear ODE

$$\frac{dG}{dt} = -2 \frac{\Lambda_{\alpha,d} - m \, Y(h)}{[1 + X(h)] \, h^{2-m}} \, G \quad \text{with} \quad h = 1 + \mathsf{C} \, G^{\frac{1-m}{d+2-(d+1)m}}$$

and initial condition $G(0) = \mathcal{F}[w(0,\cdot)]$

■ [Bonforte, J.D., Grillo, Vázquez - CRAS]: The operator

$$\mathcal{L}_{\alpha,d} = -h_{1-\alpha} \operatorname{div} \left[h_{\alpha} \nabla \cdot \right]$$

defined on $L^2(d\mu_{\alpha-1})$ has a spectral gap for any $\alpha \neq \alpha_* = (2-d)/2$ \blacksquare J. Denzler and R.J. McCann formally linearized the fast diffusion flow in the framework of mass transportation and gave for all $m \in (m_c, 1)$ the spectrum of the operator closure of $\mathcal{L}_{\alpha,d}$, initially defined on $\mathcal{D}(\mathbb{R}^d)$, in the Hilbert space $H^{1,*}(d\mu_{\alpha}) := \{f \in L^2(d\mu_{\alpha-1}) : \int_{\mathbb{R}^d} |\nabla f|^2 d\mu_{\alpha} < \infty$ and $\int_{\mathbb{R}^d} f d\mu_{\alpha-1} = 0$ if $\alpha < \alpha_*\}$, so that

$$\mathcal{H}_{\alpha,d} f := h_{1-\alpha} \nabla \cdot \left[h_{\alpha} \nabla \left(h_{1-\alpha} \nabla \cdot \left(h_{\alpha} \nabla f \right) \right) \right]$$

Proposition 7. $\mathcal{L}_{\alpha,d}$ on $L^2(d\mu_{\alpha-1})$ is unitarily equivalent to $\mathcal{H}_{\alpha,d}$ on $H^{1,*}(d\mu_{\alpha})$. As a consequence, they have the same spectrum

The unitary operator $U = \sqrt{\mathcal{L}_{\alpha,d}} : H^{1,*}(d\mu_{\alpha}) \to L^2(d\mu_{\alpha-1})$ is such that $U \mathcal{H}_{\alpha,d} U^{-1} = \mathcal{L}_{\alpha,d}$

How to compute the spectrum of $\mathcal{L}_{\alpha,d}$?

The spectrum of the Laplace-Beltrami operator on S^{d-1} is described by

$$-\Delta_{S^{d-1}}Y_{\ell\mu} = \ell\left(\ell + d - 2\right)Y_{\ell\mu}$$

with $\ell = 0, 1, 2, \dots$ and $\mu = 1, 2, \dots M_{\ell} := \frac{(d+\ell-3)! (d+2\ell-2)}{\ell! (d-2)!}$ with $M_0 = 1$, and $M_1 = 1$ if d = 1. Using spherical coordinates and separation of variables, the discrete spectrum of $\mathcal{L}_{\alpha,d}$ is given by λ such that

$$v'' + \left(\frac{d-1}{r} + \frac{2\alpha r}{1+r^2}\right) v' + \left(\frac{\lambda}{1+r^2} - \frac{\ell\left(\ell+d-2\right)}{r^2}\right) v = 0$$

has a solution on $\mathbb{R}^+ \ni r$, in the domain of $\mathcal{L}_{\alpha,d}$. The change of variables $v(r) = r^{\ell} w(-r^2)$ allows to express w in terms of the hypergeometric function $_2F_1(a, b, c; z)$ with $c = \ell + d/2$, $a + b + 1 = \ell + \alpha + d/2$ and $a b = (2 \ell \alpha + \lambda)/4$, as the solution for $s = -r^2$ of

$$s(1-s)y'' + [c - (a+b+1)s]y' - aby = 0$$

The spectrum of $\mathcal{L}_{\alpha,d}$

Proposition 8. The bottom of the continuous spectrum of the operator $\mathcal{L}_{\alpha,d}$ on $L^2(d\mu_{\alpha-1})$ is

$$\lambda_{\alpha,d}^{\text{cont}} := \frac{1}{4} (d+2\alpha-2)^2$$

 $\mathcal{L}_{\alpha,d}$ has some discrete spectrum only for $m > m_2 = d/(d+2)$ \bigcirc For $d \ge 2$, the discrete spectrum is made of the eigenvalues

$$\lambda_{\ell k} = -2\,\alpha\,\,(\ell + 2\,k) - 4\,k\,\left(k + \ell + \frac{d}{2} - 1\right) \tag{4}$$

with ℓ , $k = 0, 1, \dots$ provided $(\ell, k) \neq (0, 0)$ and $\ell + 2k - 1 < -(d + 2\alpha)/2$ If d = 1, the discrete spectrum is made of the eigenvalues $\lambda_k = k (1 - 2\alpha - k)$ with $k \in \mathbb{N} \cap [1, 1/2 - \alpha]$ Plots (d = 5)

Continuous spectrum: Persson's characterization

$$\lambda_{\alpha,d}^{\text{cont}} \int_{\mathbb{R}^d} |f|^2 |x|^{2(\alpha-1)} dx \le \int_{\mathbb{R}^d} |\nabla f|^2 |x|^{2\alpha} dx$$

for any $f \in \mathcal{D}(\mathbb{R}^d \setminus \{0\})$

• The condition that the solution of the eigenvalue equation is in the domain of $\mathcal{L}_{\alpha,d}$ determines the eigenvalues

•
$$\alpha = 1/(m-1)$$

• For $d \ge 2$

 $\alpha = -d \iff m = m_1 = (d-1)/d$

(corresponds to $-2\alpha = \lambda_{10} = \lambda_{01} = -4\alpha - 2d$)

$$\alpha = -(d+2)/2 \quad \Longleftrightarrow \quad m = m_2 = d/(d+2)$$

(corresponds to $\lambda_{01} = \lambda_0^{\text{cont}} := \frac{1}{4} (d + 2\alpha - 2)^2$) $\blacksquare d = 2$ and d = 1 are slightly different **Theorem 9.** [Bonforte, Grillo, Vázquez] Assume that $d \ge 3$, $m = m_*$, and suppose that (H1)-(H2) hold. If $|v_0 - V_D|$ is bounded a.e. by a radial $L^1(dx)$ function, then there exists a positive constant C^* such that

$$\mathcal{E}[v(t,\cdot)] \le C^* t^{-1/2} \quad \forall t \ge 0 \tag{5}$$

where C^* depends only on m, d, D_0, D_1, D and $\mathcal{E}[v_0]$

There exists a positive continuous and monotone function \mathcal{N} on \mathbb{R}^+ such that for any nonnegative smooth function f with $M = \int_{\mathbb{R}^d} f \, d\mu_{-d/2}$

$$\frac{1}{M^2} \int_{\mathbb{R}^d} |f|^2 \, d\mu_{-d/2} \le \mathcal{N}\left(\frac{1}{M^2} \int_{\mathbb{R}^d} |\nabla f|^2 \, d\mu_{(2-d)/2}\right)$$

 $\lim_{s\to 0^+} s^{-1/3} \mathcal{N}(s) = c_1 > 0$ and $\lim_{s\to\infty} s^{-d/(d+2)} \mathcal{N}(s) = c_2 > 0$ Up to technicalities, for some K > 0, $t \ge t_0$ large enough

$$(\mathcal{F}[w(t,\cdot)])^3 \le K\mathcal{I}[w(t,\cdot)]$$

Can we improve the rates of convergence by imposing restrictions on the initial data ?

Carrillo, Lederman, Markowich, Toscani (2002)] Poincaré inequalities for linearizations of very fast diffusion equations (radially symmetric solutions)

Formal or partial results: [Denzler, McCann (2005)], [McCann, Slepčev (2006)]

Lemma 10. Let $\widetilde{\Lambda}_{\alpha,d} := -4 \alpha - 2 d$ if $\alpha < -d$ and $\widetilde{\Lambda}_{\alpha,d} := \lambda_{\alpha,d}^{\text{cont}}$ if $\alpha \in [-d, -d/2)$. If $d \ge 2$, for any $\alpha \in (-\infty, -d)$, we have

$$\widetilde{\Lambda}_{\alpha,d} \int_{\mathbb{R}^d} |f|^2 \, d\mu_{\alpha-1} \le \int_{\mathbb{R}^d} |\nabla f|^2 \, d\mu_\alpha \quad \forall \ f \in H^1(d\mu_\alpha)$$

under the conditions $\int_{\mathbb{R}^d} f \, d\mu_{\alpha-1} = 0$ and $\int_{\mathbb{R}^d} x \, f \, d\mu_{\alpha-1} = 0$. The constant $\widetilde{\Lambda}_{\alpha,d}$ is sharp

This covers the range $m \in (m_1, 1)$ with $m_1 = (d-1)/d$

Faster convergence 1

Theorem 11. [Bonforte, J.D., Grillo, Vázquez] Assume that $m \in (m_1, 1)$, $d \ge 3$. Under Assumption (H1), if v is a solution of (2) with initial datum v_0 such that $\int_{\mathbb{R}^d} x v_0 dx = 0$ and if D is chosen so that $\int_{\mathbb{R}^d} (v_0 - V_D) dx = 0$, then there exists a positive constant \widetilde{C} depending only on m, d, D_0, D_1, D and $\mathcal{E}[v_0]$ such that, with $\gamma(m) = (1-m) \widetilde{\Lambda}_{1/(m-1),d}$, the relative entropy decays like

A variational approach of sharpness

• Recall that $(d-2)/d = m_c < m_1 = (d-1)/d$. The entropy / entropy production inequality

$$\mathcal{F} \leq \frac{1}{2} \mathcal{I}$$

is equivalent to optimal Gagliardo-Nirenberg inequalities [delPino, J.D. (2002)] in the range $m \in [m_1, 1)$. It is sharp: equality is achieved if and only if $v = V_D$

• The inequality has been extended in [Carrillo, Vázquez (2003)] to the range $m \in (m_c, 1)$ using the Bakry-Emery method, with the same constant 1/2, and again equality is achieved if and only if $v = V_D$

The optimality of the constant can be reformulated as a variational problem

$$\mathcal{C} = \inf \frac{\mathcal{I}[v]}{\mathcal{E}[v]}$$

where the infimum is taken over the set of all functions such that $v \in \mathcal{D}(\mathbb{R}^d)$ and $\int_{\mathbb{R}^d} v \, dx = M$

A variational approach of sharpness

• Rephrasing the sharpness results, we know that C = 2 if $m \in (m_1, 1)$ and $C \ge 2$ if $m \in (m_c, m_1)$. By taking $v_n = V_D \left(1 + \frac{1}{n} f V_D^{1-m}\right)$ and letting $n \to \infty$, we get

$$\lim_{n \to \infty} \frac{\mathcal{I}[v_n]}{\mathcal{E}[v_n]} = \frac{\int_{\mathbb{R}^d} |\nabla f|^2 V_D \, dx}{\int_{\mathbb{R}^d} |f|^2 V_D^{2-m} \, dx}$$

With the optimal choice for f, the above limit is less or equal than 2. Since we already know that $C \ge 2$, this shows that C = 2 for any $m > m_c$. It is quite enlightening to observe that optimality in the quotient gives rise to indetermination since both numerator and denominator are equal to zero when $v = V_D$

• This explains why the optimal constant, C = 2, is determined by the linearized problem

• When $m \le m_c$, the variational approach is less clear since the problem has to be constrained by a uniform estimate

Sharp rates of convergence and conjectures

The precise meaning of Theorem 4 is that

$$\Lambda_{\alpha,d} = \liminf_{h \to 0_+} \inf_{w \in \mathcal{S}_h} \frac{\mathcal{I}[w]}{\mathcal{F}[w]}$$

where the infimum is taken on the set S_h of smooth, nonnegative bounded functions w such that $||w - 1||_{L^{\infty}(dx)} \leq h$ and such that $\int_{\mathbb{R}^d} (w - 1) V_D dx$ is zero if d = 1, 2 and m < 1, or if $d \geq 3$ and $m_* < m < 1$, and it is finite if $d \geq 3$ and $m < m_*$

• Sharp rate means the best possible rate, which is uniform in $t \ge 0$ In other words, for any $\gamma > \gamma(m)$, one can find some initial datum in S_h such that the estimate $\mathcal{F}[w(t, \cdot)] \le \mathcal{F}[w(0, \cdot)] \exp(-\gamma t)$ is wrong for some t > 0

• We did not prove that the rate $\exp(-\gamma(m) t)$ is globally sharp in the sense that for some special initial data, $\mathcal{F}[w(t, \cdot)]$ decays exactly at this rate, nor that $\liminf_{t\to\infty} \exp(\gamma(m) t) \mathcal{F}[w(t, \cdot)] > 0$, which is possibly less restrictive

• If $m \in (m_1, 1)$, $m_1 = (d - 1)/d$, then $\exp(-\gamma(m) t)$ is also a globally sharp rate: $u_0(x) = V_D(x + x_0)$, $x_0 \neq 0$

An improvement based on the variance

Heuristics

For some $m \in (m_c, 1)$ with $m_c := (d-2)/d$, we consider on \mathbb{R}^d the fast diffusion equation

$$\frac{\partial u}{\partial \tau} + \nabla \cdot \left(u \,\nabla u^{m-1} \right) = 0$$

The strategy is easy to understand using a time-dependent rescaling and the relative entropy formalism. Define the function v such that

$$u(\tau, y + x_0) = R^{-d} v(t, x) , \quad R = R(\tau) , \quad t = \frac{1}{2} \log R , \quad x = \frac{y}{R}$$
 (6)

Then v has to be a solution of

$$\frac{\partial v}{\partial t} + \nabla \cdot \left[v \left(\sigma^{\frac{d}{2}(m-m_c)} \nabla v^{m-1} - 2x \right) \right] = 0 \quad t > 0 , \quad x \in \mathbb{R}^d$$
(7)

with (as long as we make no assumption on R)

$$2\,\sigma^{-\frac{d}{2}(m-m_c)} = R^{1-d\,(1-m)}\,\frac{dR}{d\tau}$$

<u>.</u>

Consider the family of the Barenblatt profiles

$$B_{\sigma}(x) := \sigma^{-\frac{d}{2}} \left(C_M + \frac{1}{\sigma} |x|^2 \right)^{\frac{1}{m-1}} \quad \forall x \in \mathbb{R}^d$$
(8)

Note that σ is a function of t: as long as $\frac{d\sigma}{dt} \neq 0$, the Barenblatt profile B_{σ} is not a solution but we may still consider the relative entropy

$$\mathcal{F}_{\sigma}[v] := \frac{1}{m-1} \int_{\mathbb{R}^d} \left[v^m - B_{\sigma}^m - m B_{\sigma}^{m-1} \left(v - B_{\sigma} \right) \right] dx$$

Let us briefly sketch the strategy of our method before giving all details The time derivative of this relative entropy is

$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = \underbrace{\frac{d\sigma}{dt}\left(\frac{d}{d\sigma}\mathcal{F}_{\sigma}[v]\right)_{|\sigma=\sigma(t)}}_{\text{choose it}} + \frac{m}{m-1}\int_{\mathbb{R}^d}\left(v^{m-1} - B^{m-1}_{\sigma(t)}\right)\frac{\partial v}{\partial t}\,dx$$

$$\underbrace{\text{choose it}=0}$$
(9)

First step: choice of the scaling parameter

Lemma 12. For any given $v \in L^1_+(\mathbb{R}^d)$ such that v^m and $|x|^2 v$ are both integrable, if $m \in (\widetilde{m}_1, 1)$, there is a unique $\sigma = \sigma^* > 0$ which minimizes $\sigma \mapsto \mathcal{F}_{\sigma}[v]$, and it is explicitly given by

$$\sigma^* = \frac{1}{K_M} \int_{\mathbb{R}^d} |x|^2 v \, dx$$

For $\sigma = \sigma^*$, the Barenblatt profile B_{σ^*} satisfies

$$\int_{\mathbb{R}^d} |x|^2 B_\sigma \ dx = \int_{\mathbb{R}^d} |x|^2 v \ dx$$

The condition $m > \tilde{m}_1$ guarantees that B_{σ}^m is integrable and $K_M = \int_{\mathbb{R}^d} |x|^2 B_1 dx$ is finite

Proof: we have to minimize

$$h(\sigma) := (1-m) \int_{\mathbb{R}^d} B^m_\sigma \ dx + m \int_{\mathbb{R}^d} B^{m-1}_\sigma v \ dx$$

Second step: the entropy / entropy production estimate

According to the definition of B_{σ} , we know that $2x = \sigma^{\frac{d}{2}(m-m_c)} \nabla B_{\sigma}^{m-1}$ Using (7), we know that

$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = -\frac{m\,\sigma(t)^{\frac{d}{2}(m-m_c)}}{1-m} \int_{\mathbb{R}^d} v \left|\nabla\left[v^{m-1} - B^{m-1}_{\sigma(t)}\right]\right|^2 \, dx$$

Let $w := v/B_{\sigma}$ and observe that the relative entropy can be written as

$$\mathcal{F}_{\sigma}[v] = \frac{m}{1-m} \int_{\mathbb{R}^d} \left[w - 1 - \frac{1}{m} \left(w^m - 1 \right) \right] B_{\sigma}^m dx$$

Define the *relative Fisher information* by

$$\mathcal{I}_{\sigma}[v] := \int_{\mathbb{R}^d} \left| \frac{1}{m-1} \nabla \left[\left(w^{m-1} - 1 \right) B_{\sigma}^{m-1} \right] \right|^2 B_{\sigma} w \, dx$$

so that $\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] = -m(1-m)\sigma(t)\mathcal{I}_{\sigma(t)}[v(t,\cdot)] \quad \forall t > 0$

Third step: orthogonality conditions

Lemma 13. Let u be a solution of (7) and $f = B_{\sigma}^{m-1} (u/B_{\sigma} - 1)$ where $\sigma = \sigma(t)$ is optimizes $\mathcal{F}_{\sigma}[v]$. With these notations, the function f has the following properties, for any t > 0:

- (i) Mass conservation: $\int_{\mathbb{R}^d} f(t,x) B^{2-m}_{\sigma} dx = 0$ if $m > m_c$
- (ii) Position of the center of mass: $\int_{\mathbb{R}^d} x\,f(t,x)\,B^{2-m}_\sigma\,dx=0$ if m>(d-1)/(d+1)
- (iii) Conservation of the second moment: $\int_{\mathbb{R}^d} |x|^2 f(t,x) B_{\sigma}^{2-m} dx = 0$ if $m > \widetilde{m}_1$

Improved Hardy-Poincaré inequalities (2)

Corollary 14 (Sharp Hardy-Poincaré inequalities). Let $d \ge 2$, $\alpha < -(d+2)/2$. For any $\alpha \in (-\infty, 0) \setminus \{\alpha_*\}$, there is a positive constant $\Lambda_{\alpha, d}$ such that

$$\Lambda_{\alpha,d} \int_{\mathbb{R}^d} |f|^2 \, d\mu_{\alpha-1} \le \int_{\mathbb{R}^d} |\nabla f|^2 \, d\mu_{\alpha} \quad \forall \ f \in L^2 \left(d\mu_{\alpha-1} \right)$$

if $f\in L^{2}\left(d\mu _{lpha -1}
ight)$ is such that

$$\int_{\mathbb{R}^d} f \, d\mu_{\alpha-1} = 0 \,, \quad \int_{\mathbb{R}^d} x \, f \, d\mu_{\alpha-1} = 0 \quad \text{and} \quad \int_{\mathbb{R}^d} |x|^2 \, f \, d\mu_{\alpha-1} = 0$$

with $d\mu_{\alpha} := h_{\alpha} \, dx$, $h_{\alpha}(x) := (1 + |x|^2)^{\alpha}$. Moreover

$$\Lambda_{\alpha,d} = \begin{cases} \frac{1}{4} (d-2+2\alpha)^2 & \text{if } \alpha \in \left[-\frac{d+6}{2}, -\frac{d+2}{2}\right) \\ -8\alpha - 4 (d+2) & \text{if } \alpha \in \left[-(d+2), -\frac{d+6}{2}\right] \\ -4\alpha & \text{if } \alpha \in (-\infty, -(d+2)] \end{cases}$$

Corollary 15. Let M > 0 and f be a function in $L^2(B^{2-m}_{\sigma} dx)$ such that

$$\int_{\mathbb{R}^d} (1, x, |x|^2) f B_{\sigma}^{2-m} dx = (0, 0, 0) \text{ and } \nabla f \in L^2(B_{\sigma} dx)$$

Then

$$\Lambda_{\alpha,d} \int_{\mathbb{R}^d} |f|^2 B_{\sigma}^{2-m} dx \le \sigma^{\frac{d}{2}(m-m_c)} \int_{\mathbb{R}^d} |\nabla f|^2 B_{\sigma} dx$$

The proof relies on a simple change of variables

Estimates on the second moment

Up to now, we have not determined the behaviour of $R(\tau)$ as $\tau \to \infty$, nor the fact that σ has a finite, positive limit as $t \to \infty$

Using the results of [Bonforte, J.D., Grillo,Vázquez] we find that **Lemma 16.** *With the above notations,*

$$R(au) \sim au^{rac{1}{d \ (m-m_c)}}$$
 as $au
ightarrow \infty$

and, as a function of $t, t \mapsto \sigma(t)$ is positive, decreasing, with

$$\lim_{t \to \infty} \sigma(t) =: \sigma_{\infty} > 0$$

Notice that the value of σ_{∞} is not known.

Rates of convergence

Known estimates

$$\mathcal{F}_{\sigma}[v] \leq \frac{h^{2-m} \left[1 + X(h)\right]}{2 \left[\Lambda_{\alpha,d} - \sigma Y(h)\right]} m \sigma^{\frac{d}{2}(m-m_c)} \mathcal{I}_{\sigma}[v]$$

as soon as $0 < h < h_* := \min\{h > 0 : \Lambda_{\alpha,d} - \sup_{t \in \mathbb{R}^+} \sigma(t) Y(h) \ge 0\}$, and

$$0 \le h(t) - 1 \le \mathsf{C} \,\mathcal{F}_{\sigma(t)}[v(t,\cdot)]^{\frac{1-m}{d+2-(d+1)m}}$$

Summarizing $\limsup_{t\to\infty} e^{2\gamma(m)t} \mathcal{F}_{\sigma(t)}[v(t,\cdot)] < \infty$ because

$$\frac{d}{dt}\mathcal{F}_{\sigma(t)}[v(t,\cdot)] \leq -\underbrace{2\frac{\Lambda_{\alpha,d} - \sigma(t)Y(h)}{\left[1 + X(h)\right]h^{2-m}}(1-m)}_{\sim 2\gamma(m):=2(1-m)\Lambda_{1/(m-1),d}}\mathcal{F}_{\sigma(t)}[v(t,\cdot)]$$

Notice that for some constant c > 0, $\lim_{t\to\infty} e^{ct}(h(t) - 1) = 0$, so that the rate is exactly $\gamma(m)$

Improved rates of convergence

Theorem 17. Assume that $m \in (\widetilde{m}_1, 1)$, $d \ge 2$. Let $v_0 \in L^1_+(\mathbb{R}^d)$ be such that v_0^m and $|y|^2 v_0$ are integrable

$$\mathcal{E}[v(t,\cdot)] \le C e^{-2\gamma(m)t} \quad \forall t \ge 0$$

where

$$\gamma(m) = \begin{cases} \frac{((d-2)m - (d-4))^2}{4(1-m)} & \text{if } m \in (\widetilde{m}_1, \widetilde{m}_2] \\ 4(d+2)m - 4d & \text{if } m \in [\widetilde{m}_2, m_2] \\ 4 & \text{if } m \in [m_2, 1) \end{cases}$$

Once a relative entropy estimate is known, it is possible to control the rate of decay of $u - B_{\sigma(t)}$ in various norms, for instance in C^k or in $L^q(\mathbb{R}^d, dx)$ for

$$q \ge \max\left\{1, \frac{d(1-m)}{2(2-m)+d(1-m)}\right\}$$

A graphical summary (d = 5)

