Interpolation inequalities and spectral estimates
for magnetic operators

Jean Dolbeault

http://www.ceremade.dauphine.fr/~dolbeaul
Ceremade, Université Paris-Dauphine
May 14, 2018
IML workshop on FEigenviaues and inequalities (14-18/5/2018)

Joint work with M.J. Esteban, A. Laptev & M. Loss


http://www.ceremade.dauphine.fr/~dolbeaul

Outline
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Preliminaries: a simple interpolation on the circle

On (—m, 7] ~ S! 3 s, let us consider the uniform probability measure
do = ds/(2m) and denote by [|9||rr(s1) the corresponding L? norm
The inequality

191122 g1y + e 8121y > pop(a) 191 En s (1)

holds for some concave function o — g () on (0, 4+00)

Q@ Ifp>2and0<a<1/(p—2), then pop(a) =
Q Ifp=—-2anda=1/(p—2)=—1/4, then o p(—-1/4) = -1/4
In both cases, equality achieved only by constant functions

Case p = — 2 (Exner, Harrell, Loss, 1998)):

19/ 12y + WIILP s1) IIUJIILz (s1)

Case p > 2: Bakry-Emery method applies to Kolmogorov’s inequality
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Carré du champ method

Let Flu] := ||u’||izfl) + ﬁ (”“H%ﬁ(sl) - ||u||ip(sl)) and consider a
positive solution of the parabolic equation

ou _ /|2

°r 1

T ) R

If p = —2 (new application of the carré du champ method)

_ﬁff[u(t )} :/Tr (|u”‘2 _ |u/|2) d0+/w |Ul|4 do
dt ’ u?

-7 -7

>0 (Poincaré)

If p > 1, p # 2, the method is well known (Bakry, Emery, 85)
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Magnetic rings Magnetic interpolation on the circle
Magnetic interpolation in the Euclidean space Consequences

Magnetic rings

> A magnetic interpolation inequality on S': with p > 2

1% +iava @ + o ¢lFa@) = tap(@) [9]I7s s

> Consequences
o A Keller-Lieb-Thirring inequality

o A new Hardy inequality for Bohm-Aharonov magnetic fields in R?
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Magnetic rings Magnetic interpolation on the circle
Consequences

Magnetic flux, a reduction

Assume that a : R — R is a 27-periodic function such that its
restriction to (—m, ] ~ S! is in L'(S') and define the space

Xo = { € Cpur(R) : ¥/ +iay € LX(S")}

@ A standard change of gauge (see e.g. (Ilyin, Laptev, Loss, Zelik,
2016))

i [° (a(s)—a)do
wgeefﬁ()) w(s)
where a := ffﬁ a(s) do is the magnetic fluz, reduces the problem to
a is a constant function
@ For any k € Z, ¢ by s+ e 1)(s) shows that g (@) = pgtap(a)
a € [0,1]
@ 1ap(@) = pi1apla) because
W' a2 =[x +i(1-a)x]? = [§ —iad|® if x(s) = e B(5)
€10,1/2]

J. Dolbeault Magnetic interpolation inequalities
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Optimal interpolation

We want to characterize the optimal constant in the inequality
le +iaw||i2(§1) +a ||"/J||12}’(Sl) 2 :ua,p(a) lelil’(Sl)
written for any p > 2, a € (—az, +00), Y € X,

(@) S (9 +iayl® +alyl®) do
o) = 1mn
flaw beXa\{0} 1112, )

p=—2=2d/(d—2) with d =1 (Exner, Harrell, Loss, 1998)
p = +oo (Galunov, Olienik, 1995) (Ilyin, Laptev, Loss, Zelik, 2016)
limg_y— g2 fta,p(e) =0 (JD, Esteban, Laptev, Loss, 2016)

Using a Fourier series ¢(s) = Y,z ¥r €%, we obtain that
[0 +ialfa@y =Y (a+ k) [Yil> > a® 1[I
keZ
P || +iaw||i2(gl) +a ||w||iQ(Sl) is coercive for any a > — a?
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Magnetic rings Magnetic interpolation on the circle
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An interpolation result for the magnetic ring

Theorem

For anyp >2,a €R, and a > —a?, pa () is achieved and
(i) ifa €[0,1/2] and a® (p+2) +a(p—2) <1, then pap(a) = a® +«
and equality in (1) is achieved only by the constant functions
(ii) ifa €[0,1/2] and a® (p+2) +a(p—2) > 1, then pqp(a) < a®+a
and equality in (1) is not achieved by the constant functions

If a > —a?, avs pg p(a) is monotone increasing on (0,1/2)

Figure: oo — pg.p(a) with p = 4 and (left) a = 0.45 or‘(right) a =0.2
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Magnetic rings Magnetic interpolation on the circle
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Reformulations of the interpolation problem (1/3)

Any minimizer ¢ € X, of p14 () satisfies the Euler-Lagrange
equation

2
(Hy + 0o = o0, o=~ (5 +ia) ¥

up to a multiplication by a constant and v(s) = 1(s) €!®* satisfies the

condition A
v(s+27) = 2™ u(s) VseR (2)
Hence
Nmp(a) = ver}%i\n{o} Qp’a[v}

where Y, := {v € C(R) : v' € L3(S'), (2) holds} and

gy + 0 [0 l2aeny

Qpalv] =

||U||I2Jp(§1)
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Magnetic rings Magnetic interpolation on the circle
Magnetic interpolation in the Euclidean space Consequences

Reformulations of the interpolation problem (2/3)

With v = u e’ the boundary condition becomes
u(m) =u(-m), o) =2m(a+k)+ od(—m)

for some k € Z, and HU/H%Z(SI) = ||u,||iz(gl) + ||U¢/||%2(§1)
Hence
/(|72 g1y + 1w @172 g1y + o flullfz g

(w,$)€Za\{0} Il sy

Ha,p(c¥)

where Z, := {(u,¢) € C(R)? : v/, u¢’ € L2(S'), (3) holds}
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Magnetic rings Magnetic interpolation on the circle
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Reformulations of the interpolation problem (3/3)

We use the Euler-Lagrange equations
—u" + ¢ Putau=|uf?u and (¢'u®) =0

Integrating the second equation, and assuming that u never vanishes,
we find a constant L such that ¢’ = L/u?. Taking (3) into account,

we deduce from
s d ™
L/ S:/ ¢'ds =2m(a+k)

that 4 (a1 h)?
T do a+
lud oo =22 [ S5 =

T ||U71||%2(§1)

o5~ o00) = At — [ S ds

B ||u_1||i2(sl) g u?

Hence
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Let us define

12 @) + 0l s + @ llullfa e
Qup o] = €] (s €

Hu”ip(sl)

For any a € (0,1/2), p> 2, a > —a?,

Hap(a) = ueHln(lSilr;\{O} Qa,p,a[u]

is achieved by a function u > 0
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Magnetic rings Magnetic interpolation on the circle
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Proofs

@ The existence proof is done on the original formulation of the
problem using the diamagnetic inequality
Q P(s)e"™ =wi(s) +iva(s), solves

—vj +av; = (W2 +0v2)E y, j=1,2
and the Wronskian w = (v; v} — v} vg) is constant so that ¥ (s) =0 is

incompatible with the twisted boundary condition
@ ifa®(p+2)+a(p—2) <1, then u,,(a) = a® + a because

[/ [[F2 1) +a? ||U_1||£22(§1)+0l ullf2sr) = (1=4a?) [[u'l[F2 )+ lullfa g
+4a? (I [Baeny + 3l e )
if a®(p+2) +a(p—2) > 1, the test function u. := 1+ cw;
Qupalue] = a®+a+ (1 —a? p+2)— alp-— 2)) e + 0(52)

proves the linear instability of the constants and p, () < a® + «
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0y fu] = /117 2 1y 0 1™ 1103 0 e lullf 2 g
a,p,a|U] ‘= Hu”ip(gl) )
= 1 Q
Hap(@) = min  Qapalul
u] = Qu— U V() = inf v
Qp,a[ ] a 0,p,a[ }» p( ) veHI(S1)\ {0} Qp,a[ }

Vp>2, a>—a?, we have Hap(a) < 172 p(a) < vp(a) = ,ul/lp(oz)

06

05

04

o1l

05 10 15 20 25 30

Figure: p=4, a =0, a = 0.40, 0.41,...0.49;u” +uP~1=0
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A Keller-Lieb-Thirring inequality

Magnetic Schrdinger operator H, — ¢ = — (4 + i a)2 T —

@ The function « — pg ,(e) is monotone increasing, concave, and
therefore has an inverse, denoted by o, , : RT — (—a?, +00), which is
monotone increasing, and convex

Corollary

Letp>2,a€0,1/2], ¢ =p/(p —2) and assume that ¢ is a
non-negative function in L4(S*). Then

M(Hy — 9) > — gy ([l¢llLesy)

and o p(p) = p—a? iff 4a® 4+ p(p — 2) < 1 (optimal ¢ is constant)

Equality is achieved
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Bohm-Aharonov magnetic fields

On the two-dimensional Euclidean space R2, let us introduce the polar
coordinates (r,79) € [0, +00) x St of x € R? and consider a magnetic
potential a in a transversal (Poincaré) gauge, or Poincaré gauge

(a,e,.) =0 and (a,ey) = ay(r,9)

Magnetic Schrodinger energy

+oo T 1
/ |(iV+a)\I/|2dx:/ / (|8T\I/|2+T2|819\I/+ira19 \I/|2)Td19dr
R2 0 -

Bohm-Aharonov magnetic fields: ag(r,¥) = a/r for some constant
a € R (a is the magnetic flux), with magnetic field b = curla

/|(iV+a)\Il|2dx27/ Mmfﬁdx Vo e LYSY), qe€(1,+o0)
R2 R2

|x/?
=7 =7(a,||¢llLasy)) ?

J. Dolbeault Magnetic interpolation inequalities



Magnetic rings Magnetic interpolation on the circle
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Hardy inequalities

(Hoffmann-Ostenhof, Laptev, 2015) proved Hardy’s inequality

/ V|2 dx > T/ P(x/Ix]) 0|2 dx
Rd Rd

[x|?

where the constant 7 depends on the value of |¢||yq(ge-1) and d > 3

Bohm-Aharonov vector potential in dimension d = 2

a(x):a<x2 —x1>7 x = (z1,22) €ER*, a€R

[3[2" Jx]?

and recall the inequality (Laptev, Weidl, 1999)

/ |(iV+a)\IJ|2dx2min(a—k)2/ ki dx
R2 kEZ

we 2
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A new Hardy inequality

/|(iV+a)\I/|2dx27-/ ‘P(|’;/||2X|)|\1/|2dx Voelish), qe(1,+00)
R2 R2

Corollary

Letp>2,a€l0,1/2], g =p/(p— 2) and assume that ¢ is a
non-negative function in LY(SY). Then the inequality holds with T > 0
given by

aap (T lollLa) =0

Moreover, T = a®/||¢llLa(sty if 40 + [|@llLesy (p—2) < 1

v

For any a € (0,1/2), by taking ¢ constant, small enough in order that
4a? + ||¢lLast) (p — 2) < 1, we recover the inequality

\112
/|(iV+a)\Il|2dx2a2/ Ll
R2 R2 |X]
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Proofs (Keller-Lieb-Thirring inequality)

Holder’s inequality
r 2 " 240 > Il + i 2 _ 2
K% +la¢||L2(SI) @ Y)*do > ||y +la1/)||L2(sl) /1'H¢||LP(81)
where ;1 = [|¢||pe(s1) and % + % = 1: choose pq,p() = p

19" +ialfzery = w1YlEoey > —all$liz s
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Consequences

Proofs (Hardy inequality)

Let 7 > 0, x = (r,9) € R? be polar coordinates in R?

/ (|(iV+a)\I/|2 —TW |\112>

// |ax1:|2 |aﬁq:+zaqf|2 §|qf|2)dz9dr
Sl

>\ (H, —T<p/ / | U |2 dy dr
> —auy(rlighaen) [ [ 1o

@ If 7 =0, then (7 [|¢llLi(st)) = @ap(0) = —a?
Q@ aap(T ||80||Lq s1y) > 0 for 7 large
= Jl7>0 such that o p (7 [||Le(s)) =0
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Comments

> The region a? (p +2) + a (p — 2) < 1 is exactly the set where the
constant functions are linearly stable critical points

> The proof of the rigidity result is based

- neither on the carré du champ method, at least directly

- nor on a Fourier representation of the operator as it was the case in
earlier proofs (p = +oo, or p > 2 and o = 0)

> Magnetic rings: see (Bonnaillie-Noél, Hérau, Raymond, 2017)

> Deducing Hardy’s inequality applied with Bohm-Aharonov magnetic
fields from a Keller-Lieb-Thirring inequality is an extension of
(Hoffmann-Ostenhof, Laptev, 2015) to the magnetic case

> Our results are not limited to the semi-classical regime
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Magnetic rings Three interpolation inequalities and their dual forms
Magnetic interpolation in the Euclidean space Estimates in dimension d = 2 for constant magnetic fields

Magnetic interpolation inequalities
in the Euclidean space

> Three interpolation inequalities and their dual forms

> Estimates in dimension d = 2 for constant magnetic fields
o Lower estimates
o Upper estimates and numerical results

o A linear stability result (numerical) and an open question

@ Warning: assumptions are not repeated
@ Estimates are given only in the case p > 2 but similar estimates
hold in the other cases
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Three interpolation inequalities and their dual forms
Magnetic interpolation in the Euclidean space Estimates in dimension d = 2 for constant magnetic fields

Magnetic Laplacian and spectral gap

In dimensions d = 2 and d = 3: the magnetic Laplacian is
—Aptp =AY — 2iA -V + A% — i(divA)y
where the magnetic potential (resp. field) is A (resp. B = curl A) and
Hx (RY) := {¢p € L2(RY) : Vay € L2 (RY)}, Va:=V+iA

Spectral gap inequality

IVa®I2 > A[B] 9] Ve € Hi(RY) (4)
@ A depends only on B = curl A
@ Assumption: equality in (4) holds for some 1 € Hx (R9)
@ If B is a constant magnetic field, A[B] = |B|

Q@ If d =2, spec(—Aa) ={(2j + 1) |B]| : j € N} is generated by the
Landau levels. The Lowest Landau Level corresponds to j =0
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Magnetic interpolation inequalities

IVAW[I3 + e |[0]I3 > pB (@) 0]} ¥ € HA(RT) (5)
for any o € (—A[B], +00) and any p € (2,2%),
VAW + B 1115 > ve(8) 03 Vv € HA(R?) (6)

for any 8 € (0,+00) and any p € (1,2)

Kl
113

(limit case corresponding to p = 2) for any v € (0, +00)

Va2 > / 2 log( )dx—&-fB(V)WH% vy € HARY) (7)

[ Vull3+]ul3

c minu€H1(Rd)\{0} HZT if pe (2, 2*)
P min [Vull+lull; if 1.9
weH! (RO\(0} —Jlul2 if pe(1,2)

uo(1) =C,if p e (2,2%), v9(1) =C, if p € (1,2)
€o(7) =7 log (me?/v) if p =2
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Technical assumptions

AcLy (RY), a>2ifd=2o0ra=3ifd=3and

loc

li d—2 A 2 —U|w\d — if 9. 9%
Jim o [ A@Re dr =0 it pe (2:2)
U%_l
lim
o—+oo logo

lim od_2/| L A@P i pe,2)
r|<l/o

/ |A(m)|26_”|x‘2da¢:0 it p=2
Rd
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A statement

Theorem

p € (2,2%): up is monotone increasing on (—A[B],4+00), concave and

. . a—-2
H({IRI}BMMB(OO—O and  lim pp(a)a=

Tl

p € (1,2): vg is monotone increasing on (0,+00), concave and

lim vg(8) = A[B|] and lim vg(p) 5—#&_@ =G,

B—04 B—+oo

& is continuous on (0,+00), concave, £ég(0) = A[B] and

éa(7) = $7log (Z£) (1 +0(1) as v +oo

Constant magnetic fields: equality is achieved
Nonconstant magnetic fields: only partial answers are known
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Magnetic rings
Magnetic interpolation in the Euclidean space

Three interpolation inequalities and their dual forms
Estimates in dimension d = 2 for constant magnetic fields

Figure: Cased=2,p =3, B=1: plot of a — (27)
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Magnetic interpolation in the Euclidean space Estimates in dimension d = 2 for constant magnetic fields

Figure: Cased =2, p= 1.4, B =1: plot of 8 — vg(8). The horizontal axis

2
is measured in units of (27)' "% 38
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Magnetic interpolation in the Euclidean space Estimates in dimension d = 2 for constant magnetic fields

Magnetic Keller-Lieb-Thirring inequalities

Aa,v is the principal eigenvalue of —Aa +V
B : (0,400) = (—=A, +00) is the inverse function of o — up(«)

(i) For any q =p/(p—2) € (d/2,4+00) and any potential
0>V € LI(RY)
Aayv = —as(|[V]e)
EIPENN 241
lim,, 0, as(p) = A and lim, o ap(p) pa=2-2¢ = —C5~*
(ii) For any ¢ = p/(2 —p) € (1,+00) and any 0 < W1 € LY(R?)

Aaw = VB (||W_1||q_1)

(iii) For any v >0 and any W >0 s.t. e="/7 € L}(R?)

Aaw > € () — 7 log ([ e/ da)
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A more general duality result

Proposition

Let d =2 or 3. Let ¢ € LL _(RY) be an arbitrary potential

loc

. 2
(i) Ifg>d/2, p= qqu, we have

Ao 2 = (B ([[(A = 9)llg+) =)

(ii) If g € (1,40), p = %, we have

Aag > A+ (6N

These estimates hold for any A € R such that all above norms are well
defined, with the additional condition that ¢ > X a.e. in Case (ii)
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Preliminaries: interpolation without magnetic field

Assume that p > 2 and let C,, denote the best constant in
IVull3 + llullf > Cpllull; Vu e HY(RY)
By scaling, if we test the inequality by u( -/ )\), we find that
IVull3 + A2 [ull3 > C, A2~ 40D ||u)? Yue HY(RY) YA>0

An optimization on A > 0 shows that the best constant in the
scale-invariant inequality

d(1-2) 2-d(1-2)
IVully [l >Sp Jul;  Vue H'(RY)

is given by

d(p—2)

S,= & (2p-d(p-2)""5 ([@d(p-2) % C,
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. and with magnetic field

Let d =2 or 3. For any p € (2,+0), any a > —A = —A[B] <0

d(p—2)
—dqr=2 . A(2p—d(p—2
G a' "l ifa > ( 5(17—(5) =

=9
S, (e + A) A5 jfa e |—A, ARp—d(p=2))
:U'B(a) > ,Ufinterp(a) = ? [ ]

Let ¢ € [0,1]. From the diamagnetic inequality [|V]¢]||2 < ||[Vav]2

and from the inequality with A = %22 we deduce that

19012 +a [0IE = ¢ (IVavlE — A J]2)
- (nvwz L atAt ||w||2)

>C,(1—t) % (a+tA>1 e

and optimize on ¢ € [max{0, —a/A}, 1]
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Lower estimates: d = 2, constant magnetic field

Assume that B = (0, B) is constant, d = 2 and choose

A=

NYfvy]

xg, Azz—gl’l V.’,E:(.Tl,.ZEQ)ERQ

Proposition

(Loss, Thaller, 1997) Consider a constant magnetic field with field
strength B in two dimensions. For every c € [0, 1], we have

/ |VA1/1|2d$Z(1—02)/ |w|2dx+cB/ V2 dx
R2 R2 R2

and equality holds with ¥ = we™ and u > 0 if and only if

2
(—0yu?, Dyu?) = 27“ (A +VS)
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. a computation (d = 2, constant magnetic field)

/ \VA¢I2dar:/ IVu|2d:c+/ |A 4+ VS|>u? do
R2 R2 R2

=(1 —02)/ |Vul? dw+/ (¢ |Vul* + |A + VS|*u?) dx
R2 R2

ZIR220|VUHA+VS|udz
with equality only if ¢|Vu| = |A + VS|u
2|Vu||A + VS|u = [Vu?||A + VS| > (Vu?)" - (A +V5)

where (VuQ)J' = (732u2, 81u2)
Equality case: (—0xu?, d1u?) =~ (A + V5S) for v =2u?/c
Integration by parts yields

/(C2|Vu|2—|—|A—|—VS|2u2)deBc/ u? dx
R?

R2
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Lower estimate (d = 2, constant magnetic field):
a result

Proposition

Consider a constant magnetic field with field strength B in two
dimensions. Given any p € (2,+00), and any o > —B, we have

3

uB(@) > G, (1= )77 (a+cB)? = pur(a)

with

Vn©P+p—1-n 1

¢ = clp,n) = - € (0,1)

p—1 n+vn*+p-1

andn=a(p—2)/(2B)
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Upper estimate (1): d = 2, constant magnetic field

For every integer k € N we introduce the special symmetry class

V() = (%)k v(z) Vo= (z1,22) € R? (Cx)

(Esteban, Lions, 1989): if 1) € Ck, then

1 2 e Tk B2 2
77 Jo |Vay|®dx = ; [v'|*rdr + ; (E—E5) [v]*rdr

and optimality is achieved in Cj

Test function v, (r) = e~ /(29): an optimization on o > 0 provides
an explicit expression of pgauss(@) such that

Proposition

If p > 2, then
MB(Q) < MGauss(a) Va > _A[B]

This estimate is not optimal because v, does not solve the
Euler-Lagrange equations
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Upper estimate (2): d = 2, constant magnetic field

A more numerical point of view. The Euler-Lagrange equation in Cy is

/ “+oo %*1
- = — + ( r +a) v = pgL(a) (/ |v|prdr> lv|P~2v
0

We can restrict the problem to positive solutions such that

ponte) = ([ loprrar)

and then we have to solve the reduced problem

2
-3

—U'—*-i-( r —|—a>v—\v|p 2
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Magnetic interpolation in the Euclidean space

Three interpolation inequalities and their dual forms
Estimates in dimension d = 2 for constant magnetic fields

D m—

. mlim—
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-0.02
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-0.06
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o
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0001 F
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Figure: Case d =2, p =3, B = 1: comparison of the upper estimates
a > fGauss(@) and a — pgerL (o) with the lower estimates o — pinterp ()

and o — prr(a)

Plots represent the curves log;,(ftcauss/pEL); 10g1o (1T /pEL) and
log o (finterp/pEL) SO that a — prr(«) corresponds to a straight line at
level 0. The exact value associated with ug lies in the grey area

J. Dolbeault
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Asymptotics (1): Lowest Landau Level

Proposition

Let d = 2 and consider a constant magnetic field with field strength B.
If 1o is a minimizer for ug(a) such that ||Yal|l, = 1, then there exists
a non trivial p, € LLL such that

li a — Pa =0
L N Y )

Let 1, € Hi (R?) be an optimal function for (5) such that ||t ||, = 1
and let us decompose it as ¥, = o + Xa, Where ¢, € LLL and x,, is
in the orthogonal of LLL

pB(@) 2 (a+B) [lpall3+(a+3B) [xall3 = (a+3B) [xall3 ~ 2B |[xall3

as a — (—B)4 because |[Vxal|l3 > 3B || xall?
Since limy(—p), pB(a) =0, limy(—p), [[xall2 =0 and

(@) = (a+ B)llgall + [IVa xall3 + @ lIxall3 = 5 IVa xall3

concludes the proof
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Asymptotics (2): semi-classical regime

Let us consider the small magnetic field regime. We assume that the
magnetic potential is given by

A1:§$2, Azz—gfﬂl Vx:(xl,xg) €R2

if d = 2. In dimension d = 3, we choose A = %(—xg,th) and
observe that the constant magnetic field is B = (0,0, B), while the
spectral gap in (4) is A[B] = B.

Proposition

Let d =2 or 3 and consider a constant magnetic field B of
intensity B with magnetic potential A
For any p € (2,2*) and any fized o and p > 0, we have

d d—2
lim p.g(a)=C,ar™ 2
6_)0+/$€ ( ) P

Consider any function ¢ € Hj (R?) and let ¥ (z) = x(y/z ),
Ve A(z/\/€) = A(z) with our conventions on A
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Numerical stability of radial optimal functions

Let us denote by 1y an optimal function in (Cp) such that

— g — %4—(4 r +Oz>¢o 10?2 9o

and consider the test function
Ye = o +eelv

where v = v(r) and €'? = (z1 +ixzy)/r
As ¢ — 04, the leading order term is

+oo
2 / |v’|2dx+/ ((l—%)2+a> |v|2d:c7172’/ [P~ 2 02 rdr| &
R? R2 N\ 0

and we have to solve the eigenvalue problem

[ 2 —
= S (- B a) v Bl =
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Figure: Case p =3 and B = 1: plot of the eigenvalue u as a function of «
A careful investigation shows that p is always positive, including in the
limiting case as a — (—B)+, thus proving the numerical stability of the
optimal function in Gy with respect to perturbations in C;
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An open question of symmetry

@ (Bonheure, Nys, Van Schaftingen, 2016) for a fixed a > 0 and

for B small enough, the optimal functions are radially symmetric
functions, i.e., belong to Cqy

This regime is equivalent to the regime as o — 400 for a given B, at
least if the magnetic field is constant

@ Numerically our upper and lower bounds are (in dimension d = 2,
for a constant magnetic field) numerically extremely close

@ The optimal function in €y with respect to perturbations in C;

Prove that the optimality case is achieved among radial function if
d =2 and B is a constant magnetic field
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These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Lectures/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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