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Preliminaries: a simple interpolation on the circle
On (−π, π] ≈ S1 3 s, let us consider the uniform probability measure
dσ = ds/(2π) and denote by ‖ψ‖Lp(S1) the corresponding Lp norm
The inequality

‖ψ′‖2L2(S1) + α ‖ψ‖2L2(S1) ≥ µ0,p(α) ‖ψ‖2Lp(S1) (1)

holds for some concave function α 7→ µ0,p(α) on (0,+∞)

Lemma

If p > 2 and 0 < α ≤ 1/(p− 2), then µ0,p(α) = α
If p = − 2 and α = 1/(p− 2) = −1/4, then µ0,p(−1/4) = −1/4

In both cases, equality achieved only by constant functions

Case p = − 2 (Exner, Harrell, Loss, 1998)):

‖ψ′‖2L2(S1) + 1
4 ‖ψ‖

2
Lp(S1) ≥

1
4 ‖ψ‖

2
L2(S1)

Case p > 2: Bakry-Emery method applies to Kolmogorov’s inequality
J. Dolbeault Magnetic interpolation inequalities
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Carré du champ method

Let F[u] := ‖u′‖2L2(S1) + 1
p−2

(
‖u‖2L2(S1) − ‖u‖

2
Lp(S1)

)
and consider a

positive solution of the parabolic equation

∂u

∂t
= u′′ + (p− 1) |u

′|2

u

If p = −2 (new application of the carré du champ method)

− d

dt
F[u(t, ·)] =

∫ π

−π

(
|u′′|2 − |u′|2

)
dσ︸ ︷︷ ︸

≥0 (Poincaré)

+
∫ π

−π

|u′|4

u2 dσ

If p > 1, p 6= 2, the method is well known (Bakry, Emery, 85)

J. Dolbeault Magnetic interpolation inequalities
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Magnetic interpolation on the circle
Consequences

Magnetic rings
B A magnetic interpolation inequality on S1: with p > 2

‖ψ′ + i a ψ‖2L2(S1) + α ‖ψ‖2L2(S1) ≥ µa,p(α) ‖ψ‖2Lp(S1)

B Consequences
A Keller-Lieb-Thirring inequality
A new Hardy inequality for Bohm-Aharonov magnetic fields in R2
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Magnetic flux, a reduction
Assume that a : R→ R is a 2π-periodic function such that its
restriction to (−π, π] ≈ S1 is in L1(S1) and define the space

Xa :=
{
ψ ∈ Cper(R) : ψ′ + i a ψ ∈ L2(S1)

}
A standard change of gauge (see e.g. (Ilyin, Laptev, Loss, Zelik,

2016))
ψ(s) 7→ e

i
∫ s
−π

(a(s)−ā) dσ
ψ(s)

where ā :=
∫ π
−π a(s) dσ is the magnetic flux, reduces the problem to

a is a constant function

For any k ∈ Z, ψ by s 7→ eiks ψ(s) shows that µa,p(α) = µk+a,p(α)

a ∈ [0, 1]

µa,p(α) = µ1−a,p(α) because
|ψ′ + i a ψ|2 = |χ′ + i (1− a)χ|2 =

∣∣ψ′ − i a ψ∣∣2 if χ(s) = e−is ψ(s)

a ∈ [0, 1/2]

J. Dolbeault Magnetic interpolation inequalities
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Optimal interpolation
We want to characterize the optimal constant in the inequality

‖ψ′ + i a ψ‖2L2(S1) + α ‖ψ‖2L2(S1) ≥ µa,p(α) ‖ψ‖2Lp(S1)

written for any p > 2, α ∈ (−a2,+∞), ψ ∈ Xa

µa,p(α) := inf
ψ∈Xa\{0}

∫ π
−π
(
|ψ′ + i a ψ|2 + α |ψ|2

)
dσ

‖ψ‖2Lp(S1)

p = − 2 = 2 d/(d− 2) with d = 1 (Exner, Harrell, Loss, 1998)
p = +∞ (Galunov, Olienik, 1995) (Ilyin, Laptev, Loss, Zelik, 2016)
limα→− a2 µa,p(α) = 0 (JD, Esteban, Laptev, Loss, 2016)

Using a Fourier series ψ(s) =
∑
k∈Z ψk e

iks, we obtain that

‖ψ′ + i a ψ‖2L2(S1) =
∑
k∈Z

(a+ k)2 |ψk|2 ≥ a2 ‖ψ‖2L2(S1)

ψ 7→ ‖ψ′ + i a ψ‖2L2(S1) + α ‖ψ‖2L2(S1) is coercive for any α > − a2

J. Dolbeault Magnetic interpolation inequalities
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An interpolation result for the magnetic ring

Theorem

For any p > 2, a ∈ R, and α > − a2, µa,p(α) is achieved and
(i) if a ∈ [0, 1/2] and a2 (p+ 2) +α (p− 2) ≤ 1, then µa,p(α) = a2 +α

and equality in (1) is achieved only by the constant functions
(ii) if a ∈ [0, 1/2] and a2 (p+ 2) +α (p− 2) > 1, then µa,p(α) < a2 +α

and equality in (1) is not achieved by the constant functions
If α > − a2, a 7→ µa,p(α) is monotone increasing on (0, 1/2)
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Figure: α 7→ µa,p(α) with p = 4 and (left) a = 0.45 or (right) a = 0.2
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Reformulations of the interpolation problem (1/3)
Any minimizer ψ ∈ Xa of µa,p(α) satisfies the Euler-Lagrange
equation

(Ha + α)ψ = |ψ|p−2 ψ , Haψ = −
(
d

ds
+ i a

)2
ψ

up to a multiplication by a constant and v(s) = ψ(s) eias satisfies the
condition

v(s+ 2π) = e2iπa v(s) ∀ s ∈ R (2)

Hence
µa,p(α) = min

v∈Ya\{0}
Qp,α[v]

where Ya :=
{
v ∈ C(R) : v′ ∈ L2(S1) , (2) holds

}
and

Qp,α[v] :=
‖v′‖2L2(S1) + α ‖v‖2L2(S1)

‖v‖2Lp(S1)

J. Dolbeault Magnetic interpolation inequalities
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Reformulations of the interpolation problem (2/3)

With v = u eiφ the boundary condition becomes

u(π) = u(−π) , φ(π) = 2π (a+ k) + φ(−π) (3)

for some k ∈ Z, and ‖v′‖2L2(S1) = ‖u′‖2L2(S1) + ‖uφ′‖2L2(S1)
Hence

µa,p(α) = min
(u,φ)∈Za\{0}

‖u′‖2L2(S1) + ‖uφ′‖2L2(S1) + α ‖u‖2L2(S1)

‖u‖2Lp(S1)

where Za :=
{

(u, φ) ∈ C(R)2 : u′, u φ′ ∈ L2(S1) , (3) holds
}

J. Dolbeault Magnetic interpolation inequalities
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Reformulations of the interpolation problem (3/3)

We use the Euler-Lagrange equations

−u′′ + |φ′|2 u+ αu = |u|p−2 u and (φ′ u2)′ = 0

Integrating the second equation, and assuming that u never vanishes,
we find a constant L such that φ′ = L/u2. Taking (3) into account,
we deduce from

L

∫ π

−π

ds
u2 =

∫ π

−π
φ′ ds = 2π (a+ k)

that
‖uφ′‖2L2(S1) = L2

∫ π

−π

dσ
u2 = (a+ k)2

‖u−1‖2L2(S1)

Hence
φ(s)− φ(0) = a+ k

‖u−1‖2L2(S1)

∫ s

−π

ds
u2

J. Dolbeault Magnetic interpolation inequalities
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Let us define

Qa,p,α[u] :=
‖u′‖2L2(S1) + a2 ‖u−1‖−2

L2(S1) + α ‖u‖2L2(S1)

‖u‖2Lp(S1)

Lemma
For any a ∈ (0, 1/2), p > 2, α > − a2,

µa,p(α) = min
u∈H1(S1)\{0}

Qa,p,α[u]

is achieved by a function u > 0

J. Dolbeault Magnetic interpolation inequalities
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Proofs
The existence proof is done on the original formulation of the

problem using the diamagnetic inequality
ψ(s) eias = v1(s) + i v2(s), solves

− v′′j + α vj = (v2
1 + v2

2)
p
2−1 vj , j = 1 , 2

and the Wronskian w = (v1 v
′
2 − v′1 v2) is constant so that ψ(s) = 0 is

incompatible with the twisted boundary condition
if a2 (p+ 2) + α (p− 2) ≤ 1, then µa,p(α) = a2 + α because

‖u′‖2L2(S1)+a2 ‖u−1‖−2
L2(S1)+α ‖u‖

2
L2(S1) = (1−4 a2) ‖u′‖2L2(S1)+α ‖u‖2L2(S1)

+ 4 a2
(
‖u′‖2L2(S1) + 1

4 ‖u
−1‖2L2(S1)

)
if a2 (p+ 2) + α (p− 2) > 1, the test function uε := 1 + εw1

Qa,p,α[uε] = a2 + α+
(
1− a2 (p+ 2)− α (p− 2)

)
ε2 + o(ε2)

proves the linear instability of the constants and µa,p(α) < a2 + α
J. Dolbeault Magnetic interpolation inequalities
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Qa,p,α[u] :=
‖u′‖2

L2(S1)+a2 ‖u−1‖−2
L2(S1)

+α ‖u‖2
L2(S1)

‖u‖2
Lp(S1)

,

µa,p(α) = min
u∈H1(S1)\{0}

Qa,p,α[u]

Qp,α[u] = Qa=0,p,α[u] , νp(α) := inf
v∈H1

0(S1)\{0}
Qp,α[v]

Proposition

∀ p > 2, α > − a2, we have µa,p(α) < µ1/2,p(α) ≤ νp(α) = µ1/2,p(α)
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Figure: p = 4, α = 0, a = 0.40, 0.41,. . . 0.49; u′′ + up−1 = 0
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A Keller-Lieb-Thirring inequality

Magnetic Schrödinger operator Ha − ϕ = −
(
d
ds + i a

)2
ψ − ϕ

The function α 7→ µa,p(α) is monotone increasing, concave, and
therefore has an inverse, denoted by αa,p : R+ → (−a2,+∞), which is
monotone increasing, and convex

Corollary

Let p > 2, a ∈ [0, 1/2], q = p/(p− 2) and assume that ϕ is a
non-negative function in Lq(S1). Then

λ1(Ha − ϕ) ≥ −αa,p
(
‖ϕ‖Lq(S1)

)
and αa,p(µ) = µ− a2 iff 4 a2 + µ (p− 2) ≤ 1 (optimal ϕ is constant)
Equality is achieved

J. Dolbeault Magnetic interpolation inequalities
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Bohm-Aharonov magnetic fields
On the two-dimensional Euclidean space R2, let us introduce the polar
coordinates (r, ϑ) ∈ [0,+∞)× S1 of x ∈ R2 and consider a magnetic
potential a in a transversal (Poincaré) gauge, or Poincaré gauge

(a, er) = 0 and (a, eϑ) = aϑ(r, ϑ)

Magnetic Schrödinger energy∫
R2
|(i∇+a) Ψ|2 dx =

∫ +∞

0

∫ π

−π

(
|∂rΨ|2 + 1

r2 | ∂ϑΨ + i r aϑ Ψ|2
)
r dϑ dr

Bohm-Aharonov magnetic fields: aϑ(r, ϑ) = a/r for some constant
a ∈ R (a is the magnetic flux), with magnetic field b = curl a∫
R2
|(i∇+a) Ψ|2 dx ≥ τ

∫
R2

ϕ(x/|x|)
|x|2 |Ψ|2 dx ∀ϕ ∈ Lq(S1) , q ∈ (1,+∞)

=⇒ τ = τ
(
a, ‖ϕ‖Lq(S1)

)
?

J. Dolbeault Magnetic interpolation inequalities
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Hardy inequalities

(Hoffmann-Ostenhof, Laptev, 2015) proved Hardy’s inequality∫
Rd
|∇Ψ|2 dx ≥ τ

∫
Rd

ϕ(x/|x|)
|x|2 |Ψ|2 dx

where the constant τ depends on the value of ‖ϕ‖Lq(Sd−1) and d ≥ 3
Bohm-Aharonov vector potential in dimension d = 2

a(x) = a

(
x2

|x|2 ,
−x1

|x|2

)
, x = (x1, x2) ∈ R2 , a ∈ R

and recall the inequality (Laptev, Weidl, 1999)∫
R2
|(i∇+ a) Ψ|2 dx ≥ min

k∈Z
(a− k)2

∫
R2

|Ψ|
|x|2 dx

J. Dolbeault Magnetic interpolation inequalities
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A new Hardy inequality

∫
R2
|(i∇+a) Ψ|2 dx ≥ τ

∫
R2

ϕ(x/|x|)
|x|2 |Ψ|2 dx ∀ϕ ∈ Lq(S1) , q ∈ (1,+∞)

Corollary

Let p > 2, a ∈ [0, 1/2], q = p/(p− 2) and assume that ϕ is a
non-negative function in Lq(S1). Then the inequality holds with τ > 0
given by

αa,p
(
τ ‖ϕ‖Lq(S1)

)
= 0

Moreover, τ = a2/‖ϕ‖Lq(S1) if 4 a2 + ‖ϕ‖Lq(S1) (p− 2) ≤ 1

For any a ∈ (0, 1/2), by taking ϕ constant, small enough in order that
4 a2 + ‖ϕ‖Lq(S1) (p− 2) ≤ 1, we recover the inequality∫

R2
|(i∇+ a) Ψ|2 dx ≥ a2

∫
R2

|Ψ|2

|x|2 dx

J. Dolbeault Magnetic interpolation inequalities
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Proofs (Keller-Lieb-Thirring inequality)

Hölder’s inequality

‖ψ′ + i a ψ‖2L2(S1) −
∫ π

−π
ϕ |ψ|2 dσ ≥ ‖ψ′ + i a ψ‖2L2(S1) − µ ‖ψ‖

2
Lp(S1)

where µ = ‖ϕ‖Lq(S1) and 1
q + 2

p = 1: choose µa,p(α) = µ

‖ψ′ + i a ψ‖2L2(S1) − µ ‖ψ‖
2
Lp(S1) ≥ −α ‖ψ‖

2
L2(S1)

J. Dolbeault Magnetic interpolation inequalities



Magnetic rings
Magnetic interpolation in the Euclidean space

Magnetic interpolation on the circle
Consequences

Proofs (Hardy inequality)

Let τ ≥ 0, x = (r, ϑ) ∈ R2 be polar coordinates in R2

∫
R2

(
|(i∇+ a) Ψ|2 − τ ϕ

|x|2
|Ψ|2

)
dx

=
∫ ∞

0

∫
S1

(
r |∂rΨ|2︸ ︷︷ ︸
≥0

+1
r
|∂ϑΨ + i aΨ|2 − τ ϕ

r
|Ψ|2

)
dϑdr

≥ λ1 (Ha − τ ϕ)
∫ ∞

0

∫
S1

1
r
|Ψ|2 dϑ dr

≥ −αa,p(τ ‖ϕ‖Lq(S1))
∫ ∞

0

∫
S1

1
r
|Ψ|2 dϑ

If τ = 0, then αa,p(τ ‖ϕ‖Lq(S1)) = αa,p(0) = − a2

αa,p(τ ‖ϕ‖Lq(S1)) > 0 for τ large
=⇒ ∃ ! τ > 0 such that αa,p(τ ‖ϕ‖Lq(S1)) = 0

J. Dolbeault Magnetic interpolation inequalities
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Comments

B The region a2 (p+ 2) + α (p− 2) < 1 is exactly the set where the
constant functions are linearly stable critical points
B The proof of the rigidity result is based
- neither on the carré du champ method, at least directly
- nor on a Fourier representation of the operator as it was the case in
earlier proofs (p = +∞, or p > 2 and α = 0)
B Magnetic rings: see (Bonnaillie-Noël, Hérau, Raymond, 2017)
B Deducing Hardy’s inequality applied with Bohm-Aharonov magnetic
fields from a Keller-Lieb-Thirring inequality is an extension of
(Hoffmann-Ostenhof, Laptev, 2015) to the magnetic case
B Our results are not limited to the semi-classical regime

J. Dolbeault Magnetic interpolation inequalities
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Three interpolation inequalities and their dual forms
Estimates in dimension d = 2 for constant magnetic fields

Magnetic interpolation inequalities
in the Euclidean space

B Three interpolation inequalities and their dual forms
B Estimates in dimension d = 2 for constant magnetic fields

Lower estimates
Upper estimates and numerical results
A linear stability result (numerical) and an open question

Warning: assumptions are not repeated
Estimates are given only in the case p > 2 but similar estimates

hold in the other cases

J. Dolbeault Magnetic interpolation inequalities
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Three interpolation inequalities and their dual forms
Estimates in dimension d = 2 for constant magnetic fields

Magnetic Laplacian and spectral gap

In dimensions d = 2 and d = 3: the magnetic Laplacian is

−∆A ψ = −∆ψ − 2 iA · ∇ψ + |A|2ψ − i (divA)ψ

where the magnetic potential (resp. field) is A (resp. B = curlA) and

H1
A(Rd) :=

{
ψ ∈ L2(Rd) : ∇Aψ ∈ L2(Rd)

}
, ∇A := ∇+ iA

Spectral gap inequality

‖∇Aψ‖22 ≥ Λ[B] ‖ψ‖22 ∀ψ ∈ H1
A(Rd) (4)

Λ depends only on B = curlA
Assumption: equality in (4) holds for some ψ ∈ H1

A(Rd)
If B is a constant magnetic field, Λ[B] = |B|
If d = 2, spec(−∆A) = {(2j + 1) |B| : j ∈ N} is generated by the

Landau levels. The Lowest Landau Level corresponds to j = 0

J. Dolbeault Magnetic interpolation inequalities



Magnetic rings
Magnetic interpolation in the Euclidean space

Three interpolation inequalities and their dual forms
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Magnetic interpolation inequalities

‖∇Aψ‖22 + α ‖ψ‖22 ≥ µB(α) ‖ψ‖2p ∀ψ ∈ H1
A(Rd) (5)

for any α ∈ (−Λ[B],+∞) and any p ∈ (2, 2∗),

‖∇Aψ‖22 + β ‖ψ‖2p ≥ νB(β) ‖ψ‖22 ∀ψ ∈ H1
A(Rd) (6)

for any β ∈ (0,+∞) and any p ∈ (1, 2)

‖∇Aψ‖22 ≥ γ
∫
Rd
|ψ|2 log

(
|ψ|2

‖ψ‖22

)
dx+ξB(γ) ‖ψ‖22 ∀ψ ∈ H1

A(Rd) (7)

(limit case corresponding to p = 2) for any γ ∈ (0,+∞)

Cp :=

 minu∈H1(Rd)\{0}
‖∇u‖2

2+‖u‖2
2

‖u‖2
p

if p ∈ (2, 2∗)

minu∈H1(Rd)\{0}
‖∇u‖2

2+‖u‖2
p

‖u‖2
2

if p ∈ (1, 2)

µ0(1) = Cp if p ∈ (2, 2∗), ν0(1) = Cp if p ∈ (1, 2)
ξ0(γ) = γ log

(
π e2/γ

)
if p = 2

J. Dolbeault Magnetic interpolation inequalities
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Three interpolation inequalities and their dual forms
Estimates in dimension d = 2 for constant magnetic fields

Technical assumptions

A ∈ Lαloc(Rd), α > 2 if d = 2 or α = 3 if d = 3 and

lim
σ→+∞

σd−2
∫
Rd
|A(x)|2 e−σ |x| dx = 0 if p ∈ (2, 2∗)

lim
σ→+∞

σ
d
2−1

log σ

∫
Rd
|A(x)|2 e−σ |x|

2
dx = 0 if p = 2

lim
σ→+∞

σd−2
∫
|x|<1/σ

|A(x)|2 dx if p ∈ (1, 2)

J. Dolbeault Magnetic interpolation inequalities
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Three interpolation inequalities and their dual forms
Estimates in dimension d = 2 for constant magnetic fields

A statement

Theorem

p ∈ (2, 2∗): µB is monotone increasing on (−Λ[B],+∞), concave and

lim
α→(−Λ[B])+

µB(α) = 0 and lim
α→+∞

µB(α)α
d−2

2 −
d
p = Cp

p ∈ (1, 2): νB is monotone increasing on (0,+∞), concave and

lim
β→0+

νB(β) = Λ[B] and lim
β→+∞

νB(β)β−
2 p

2 p+d (2−p) = Cp

ξB is continuous on (0,+∞), concave, ξB(0) = Λ[B] and

ξB(γ) = d
2 γ log

(
π e2

γ

)
(1 + o(1)) as γ → +∞

Constant magnetic fields: equality is achieved
Nonconstant magnetic fields: only partial answers are known

J. Dolbeault Magnetic interpolation inequalities
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Three interpolation inequalities and their dual forms
Estimates in dimension d = 2 for constant magnetic fields

2 4 6 8 10

2

4

6

8

Figure: Case d = 2, p = 3, B = 1: plot of α 7→ (2π)
2
p
−1
µB(α)
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Three interpolation inequalities and their dual forms
Estimates in dimension d = 2 for constant magnetic fields
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Figure: Case d = 2, p = 1.4, B = 1: plot of β 7→ νB(β). The horizontal axis
is measured in units of (2π)1− 2

p β
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Three interpolation inequalities and their dual forms
Estimates in dimension d = 2 for constant magnetic fields

Magnetic Keller-Lieb-Thirring inequalities

λA,V is the principal eigenvalue of −∆A + V
αB : (0,+∞)→ (−Λ,+∞) is the inverse function of α 7→ µB(α)

Corollary

(i) For any q = p/(p− 2) ∈ (d/2,+∞) and any potential
0 ≥ V ∈ Lq(Rd)

λA,V ≥ −αB(‖V ‖q)

limµ→0+ αB(µ) = Λ and limµ→+∞ αB(µ)µ
2 (q+1)
d−2−2 q = −C

2 (q+1)
d−2−2 q
p

(ii) For any q = p/(2− p) ∈ (1,+∞) and any 0 < W−1 ∈ Lq(Rd)

λA,W ≥ νB
(
‖W−1‖−1

q

)
(iii) For any γ > 0 and any W ≥ 0 s.t. e−W/γ ∈ L1(Rd)

λA,W ≥ ξB (γ)− γ log
(∫

Rd e
−W/γ dx

)
J. Dolbeault Magnetic interpolation inequalities
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Three interpolation inequalities and their dual forms
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A more general duality result

Proposition

Let d = 2 or 3. Let φ ∈ L1
loc(Rd) be an arbitrary potential

(i) If q > d/2, p = 2 q
q−1 , we have

λA,φ ≥ − (αB (‖(λ− φ)‖q,+)− λ)

(ii) If q ∈ (1,+∞), p = 2 q
q+1 , we have

λA,φ ≥ λ+ νB
(
‖(φ− λ)−1‖−1

q

)
These estimates hold for any λ ∈ R such that all above norms are well
defined, with the additional condition that φ ≥ λ a.e. in Case (ii)
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Preliminaries: interpolation without magnetic field

Assume that p > 2 and let Cp denote the best constant in

‖∇u‖22 + ‖u‖22 ≥ Cp ‖u‖2p ∀u ∈ H1(Rd)

By scaling, if we test the inequality by u
(
· /λ
)
, we find that

‖∇u‖22 + λ2 ‖u‖22 ≥ Cp λ2− d (1− 2
p ) ‖u‖2p ∀u ∈ H1(Rd) ∀λ > 0

An optimization on λ > 0 shows that the best constant in the
scale-invariant inequality

‖∇u‖d (1− 2
p )

2 ‖u‖2−d (1− 2
p )

2 ≥ Sp ‖u‖2p ∀u ∈ H1(Rd)

is given by

Sp = 1
2 p (2 p− d (p− 2))1−d p−2

2 p (d (p− 2))
d (p−2)

2 p Cp
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... and with magnetic field

Proposition

Let d = 2 or 3. For any p ∈ (2,+∞), any α > −Λ = −Λ[B] < 0

µB(α) ≥ µinterp(α) :=

 Sp (α+ Λ) Λ−d
p−2
2 p ifα ∈

[
−Λ, Λ (2 p−d (p−2))

d (p−2)

]
Cp α1−d p−2

2 p ifα ≥ Λ (2 p−d (p−2))
d (p−2)

Let t ∈ [0, 1]. From the diamagnetic inequality ‖∇|ψ|‖2 ≤ ‖∇Aψ‖2
and from the inequality with λ = α+Λ t

1−t , we deduce that

‖∇Aψ‖22 + α ‖ψ‖22 ≥ t
(
‖∇Aψ‖22 − Λ ‖ψ‖22

)
+ (1− t)

(
‖∇|ψ|‖2 + α+ Λ t

1− t ‖ψ‖
2
2

)
≥ Cp (1− t)

d (p−2)
2 p (α+ tΛ)1−d p−2

2 p ‖ψ‖2p

and optimize on t ∈ [max{0,−α/Λ}, 1]
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Lower estimates: d = 2, constant magnetic field

Assume that B = (0, B) is constant, d = 2 and choose

A1 = B
2 x2 , A2 = −B2 x1 ∀x = (x1, x2) ∈ R2

Proposition

(Loss, Thaller, 1997) Consider a constant magnetic field with field
strength B in two dimensions. For every c ∈ [0, 1], we have∫

R2
|∇Aψ|2 dx ≥

(
1− c2

) ∫
R2
|∇ψ|2 dx+ cB

∫
R2
ψ2 dx

and equality holds with ψ = u eiS and u > 0 if and only if

(
−∂2u

2, ∂1u
2) = 2u2

c
(A +∇S)
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... a computation (d = 2, constant magnetic field)

∫
R2
|∇Aψ|2 dx =

∫
R2
|∇u|2 dx+

∫
R2
|A +∇S|2 u2 dx

=
(
1− c2

) ∫
R2
|∇u|2 dx+

∫
R2

(
c2 |∇u|2 + |A +∇S|2 u2) dx︸ ︷︷ ︸
≥
∫
R2 2 c |∇u| |A+∇S|u dx

with equality only if c |∇u| = |A +∇S|u

2 |∇u| |A +∇S|u = |∇u2| |A +∇S| ≥
(
∇u2)⊥ · (A +∇S)

where
(
∇u2)⊥ :=

(
−∂2u

2, ∂1u
2)

Equality case:
(
−∂2u

2, ∂1u
2) = γ (A +∇S) for γ = 2u2/c

Integration by parts yields∫
R2

(
c2 |∇u|2 + |A +∇S|2 u2) dx ≥ B c∫

R2
u2 dx
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Lower estimate (d = 2, constant magnetic field):
a result

Proposition

Consider a constant magnetic field with field strength B in two
dimensions. Given any p ∈ (2,+∞), and any α > −B, we have

µB(α) ≥ Cp
(
1− c2

)1− 2
p (α+ cB)

2
p =: µLT(α)

with

c = c(p, η) =
√
η2 + p− 1− η

p− 1 = 1
η +

√
η2 + p− 1

∈ (0, 1)

and η = α (p− 2)/(2B)
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Upper estimate (1): d = 2, constant magnetic field
For every integer k ∈ N we introduce the special symmetry class

ψ(x) =
(
x2+ i x1
|x|

)k
v(|x|) ∀x = (x1, x2) ∈ R2 (Ck)

(Esteban, Lions, 1989): if ψ ∈ Ck, then

1
2π

∫
R2
|∇Aψ|2 dx =

∫ +∞

0
|v′|2 r dr +

∫ +∞

0

(
k
r −

B r
2
)2 |v|2 r dr

and optimality is achieved in Ck

Test function vσ(r) = e− r
2/(2σ): an optimization on σ > 0 provides

an explicit expression of µGauss(α) such that

Proposition

If p > 2, then
µB(α) ≤ µGauss(α) ∀α > −Λ[B]

This estimate is not optimal because vσ does not solve the
Euler-Lagrange equations

J. Dolbeault Magnetic interpolation inequalities



Magnetic rings
Magnetic interpolation in the Euclidean space

Three interpolation inequalities and their dual forms
Estimates in dimension d = 2 for constant magnetic fields

Upper estimate (2): d = 2, constant magnetic field

A more numerical point of view. The Euler-Lagrange equation in C0 is

− v′′ − v′

r
+
(
B2

4 r2 + α
)
v = µEL(α)

(∫ +∞

0
|v|p r dr

) 2
p−1

|v|p−2 v

We can restrict the problem to positive solutions such that

µEL(α) =
(∫ +∞

0
|v|p r dr

)1− 2
p

and then we have to solve the reduced problem

− v′′ − v′

r
+
(
B2

4 r2 + α
)
v = |v|p−2 v
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Figure: Case d = 2, p = 3, B = 1: comparison of the upper estimates
α 7→ µGauss(α) and α 7→ µEL(α) with the lower estimates α 7→ µinterp(α)
and α 7→ µLT(α)
Plots represent the curves log10(µGauss/µEL), log10(µLT/µEL) and
log10(µinterp/µEL) so that α 7→ µEL(α) corresponds to a straight line at
level 0. The exact value associated with µB lies in the grey area
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Asymptotics (1): Lowest Landau Level

Proposition
Let d = 2 and consider a constant magnetic field with field strength B.
If ψα is a minimizer for µB(α) such that ‖ψα‖p = 1, then there exists
a non trivial ϕα ∈ LLL such that

lim
α→(−B)+

‖ψα − ϕα‖H1
A(R2) = 0

Let ψα ∈ H1
A(R2) be an optimal function for (5) such that ‖ψα‖p = 1

and let us decompose it as ψα = ϕα + χα, where ϕα ∈ LLL and χα is
in the orthogonal of LLL

µB(α) ≥ (α+B) ‖ϕα‖22 +(α+3B) ‖χα‖22 ≥ (α+3B) ‖χα‖22 ∼ 2B ‖χα‖22
as α→ (−B)+ because ‖∇χα‖22 ≥ 3B ‖χα‖22
Since limα→(−B)+ µB(α) = 0, limα→(−B)+ ‖χα‖2 = 0 and

µB(α) = (α+B) ‖ϕα‖22 + ‖∇A χα‖22 + α ‖χα‖22 ≥ 2
3 ‖∇A χα‖22

concludes the proof
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Asymptotics (2): semi-classical regime
Let us consider the small magnetic field regime. We assume that the
magnetic potential is given by

A1 = B
2 x2 , A2 = −B2 x1 ∀x = (x1, x2) ∈ R2

if d = 2. In dimension d = 3, we choose A = B
2 (−x2, x1, 0) and

observe that the constant magnetic field is B = (0, 0, B), while the
spectral gap in (4) is Λ[B] = B.

Proposition

Let d = 2 or 3 and consider a constant magnetic field B of
intensity B with magnetic potential A
For any p ∈ (2, 2∗) and any fixed α and µ > 0, we have

lim
ε→0+

µεB(α) = Cp α
d
p−

d−2
2

Consider any function ψ ∈ H1
A(Rd) and let ψ(x) = χ(

√
ε x),√

εA
(
x/
√
ε
)

= A(x) with our conventions on A
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Numerical stability of radial optimal functions
Let us denote by ψ0 an optimal function in (C0) such that

−ψ′′0 −
ψ′0
r

+
(
B2

4 r2 + α
)
ψ0 = |ψ0|p−2 ψ0

and consider the test function

ψε = ψ0 + ε ei θ v

where v = v(r) and ei θ = (x1 + i x2)/r
As ε→ 0+, the leading order term is

2π
[∫

R2
|v′|2 dx+

∫
R2

(( 1
r−

B r
2
)2+ α

)
|v|2 dx− p

2

∫ +∞

0
|ψ0|p−2 v2 r dr

]
ε2

and we have to solve the eigenvalue problem

− v′′ − v′

r
+
(( 1

r −
B r
2
)2 + α

)
v − p

2 |ψ0|p−2 v = µ v
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Figure: Case p = 3 and B = 1: plot of the eigenvalue µ as a function of α
A careful investigation shows that µ is always positive, including in the
limiting case as α→ (−B)+, thus proving the numerical stability of the
optimal function in C0 with respect to perturbations in C1
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An open question of symmetry

(Bonheure, Nys, Van Schaftingen, 2016) for a fixed α > 0 and
for B small enough, the optimal functions are radially symmetric
functions, i.e., belong to C0
This regime is equivalent to the regime as α→ +∞ for a given B, at
least if the magnetic field is constant

Numerically our upper and lower bounds are (in dimension d = 2,
for a constant magnetic field) numerically extremely close

The optimal function in C0 with respect to perturbations in C1

Prove that the optimality case is achieved among radial function if
d = 2 and B is a constant magnetic field
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