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Interpolation inequalities on the
sphere

> A spectral point of view on fractional and non-fractional
interpolation inequalities

> The bifurcation point of view

> Flows on the sphere
@ Carré du champ

@ Can one prove Sobolev’s inequalities with a heat flow ?

@ Some open problems: constraints and improved inequalities

Beckner, 1993], [J.D., Zhang, 2016]

Bakry, Emery, 1984]

Bidault-Véron, Véron, 1991}, [Bakry, Ledoux, 1996]
Demange, 2008][J.D., Esteban, Loss, 2014 & 2015]
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Interpolation inequalities on the sphere Spectral methods
Nonlinear flows on the sphere
The bifurcation point of view

Non-fractional interpolation inequalities

On the d-dimensional sphere, let us consider the interpolation
inequality

d d
IVullFa ey + b2 lullf2sey = b2 lullfpgey VueHY(S, dp)

where the measure dy is the uniform probability measure on
S9 ¢ Rt induced by the Lebesgue measure on R9+1

2d

1<p<?2 2<p< 2= —n
<p or p< 77

if d > 3. We adopt the convention that 2* = co if d =1 or d = 2.
The case p = 2 corresponds to the logarithmic Sobolev inequality

|ul?

d u
2 2
Vol > § [ luf tog <|u

L2(89)
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Interpolation inequalities on the sphere Spectral methods
Nonlinear flows on the sphere
The bifurcation point of view

Optimal interpolation inequalities for fractional operators

@ The sharp Hardy-Littlewood-Sobolev inequality on S™ [Lieb, 1983]

- r(n)r(n;A) 2
/ /S RN 1l Fl) a(€) d) < s Flte

A€ (0,n), p= 5215 €(1,2)

A= 22 where 2 + L =1
e P qx

Q A subcritical interpolation inequality
dp is the uniform probability measure on S”

L is the fractional Laplace operator of order s € (0, n)

qe [1a 2) U (2a q*]a qx = n2_ns

| F1ugeny — 1 FI2gon

<Cqs | FLFdu YFeH/3S"
q-—2 §n
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The bifurcation point of view

Interpolation inequalities on the sphere

The sharp constants

[J.D., Zhang] Let n > 1. If either s € (0,n], g € [1,2) U (2, q4],

ors=nandq € [1,2) U(2,00), then

(g—2) fsn FLFdu

Cl=n(L)= _inf Q[F], QIF:=
q 1 FeHs/2(S")\R HFHiq(S”) - ”F”iQ(S")

Q  Sharp subcritical fractional logarithmic Sobolev inequalities

[J.D., Zhang] Let s € (0, n]

F
|F|? log <|> du < cz)s/ FLFdu YFeH/?S
Sn ||F||L2(s") Sn
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From HLS to Sobolev

Lieb’s approach... Decomposition on spherical harmonics:

F=> o Fe)
Funk- Hecke formula

//M F(C)[¢ =0l F(n) du(¢) du(n)

()T (% )°°r§r(+ 2
_zAr(g)r(ﬂ)gr; /lF 1> du

0

@ The fractional Sobolev inequality

o0

HF”iq*(Sn) S/SHFICSFdM = Zﬁ/k(qi*> /SH‘F(k)FdM

k=0

is dual of HLS, where q, =

is the critical exponent and

Frx)f(n—x+k) (n+k—-1-x)(n+k—-2—-x)...(n—x)
F(n—x)T(x+k) (k=14+x)(k—=2+x)...x
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Interpolation inequalities on the sphere Spectral methods
Nonlinear flows on the sphere
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The subcritical inequalities

Le = ! (Ks —Id) with kps:= r(a) = r(n;s)
s r(n—=o r(ns

Subcritical interpolation inequalities: g € [1,2) U (‘72*7 s

Fllagsny — I1F 120
IFIR (sq ! 12 (s0) gcq,s/ FLFdu YFeH/2(S
Sn

Y5
[J.D., Zhang]| For any n > 1, the function q — —~——— is monotone
q p—

increasing on (1,00) for any k > 2

@ [Beckner, 1993]: if g € (2, ¢«(2)], g« = q+(2) = 2n/(n — 2), then

1
5(x) = — (W(g) ) = 60(2) < (&) = k(k+n—1)
n,s
vesults in [|Fugen — | F o < 52 IVFIRaen
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Interpolation inequalities on the sphere Spectral methods
Nonlinear flows on the sphere
The bifurcation point of view

q
4:(s)
2
1
—n 0 2 ns

Figure: The optimal constant Cq s is independent of q and determined for any
given s by the critical case q = q.(s) which corresponds to the
Hardy-Littlewood-Sobolev inequality if s € (—n,0) and to the Sobolev
inequality if s € (0, n)

The case s = 0 corresponds to the critical fractional logarithmic Sobolev
inequality if s = O [Beckner, 1993] and the subcritical fractional logarithmic
Sobolev inequality if s € (0, n].
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Interpolation inequalities on the sphere Spectral methods
Nonlinear flows on the sphere
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Sketch of the proof

g — Yk(n/q) is strictly convez with respect to g iff
XY +2v,>0 Vxe(0,n)

= oy(x) = — 3:&; = Zf;ol Bj(x) with Bj(x) = nﬂ S+ JJF—X solves

o —aj— 2 >0

> A proof by induction: from

k=1 k=1
0aF =26 B+ B
= =0
86— By — 2By=0

and

2 j 2j
200 6+ 8] = B = 1 5 = oy ta G

we deduce that

k—1
ook - Tew 2 X e ey k22
=1
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Interpolation inequalities on the sphere Spectral methods
Nonlinear flows on the sphere
The bifurcation point of view

The non-fractional interpolation inequalities (again)

On the d-dimensional sphere, let us consider the interpolation
inequality

d d
IVullfagey + b2 lullfasey = b2 |ullZpey VueHY(S, dp)
where the measure dy is the uniform probability measure on

S? ¢ RY*! corresponding to the measure induced by the Lebesgue
measure on R and the exposant p > 1, p # 2, is such that

2d
<ot = 20
P> d—2

if d > 3. We adopt the convention that 2* = cc if d =1 or d = 2.
The case p = 2 corresponds to the logarithmic Sobolev inequality

d
2 2
HVUHLZ(Sd) 2 E /Sd |U‘ |Og (

J. Dolbeault Optimal constants and spectral gaps

'3'2 ) du YueHYSY, dp)\ {0}

HUHLZ(Sd)



Interpolation inequalities on the sphere Spectral methods
Nonlinear flows on the sphere
The bifurcation point of view

The Bakry-Emery method

Entropy functional
2
Eplo) = 55 {fgd p> dip— (g p du)"] if p#2

52[/)] = fgd p log (Hp\lfl@d)) du
Fisher information functional
1
Lolp) = Jsa VPP ? dp
Bakry-Emery (carré du champ) method: use the heat flow
dp
LA
ot
and compute £&,[p] = —I,[p] and LT,[p] < — d Z,[p] to get
d
dt (Zolpl —d&lp]) <0 = Iplp] = d &l

. . 2
with p = |u|P, if p < 27 := %
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Interpolation inequalities on the sphere Spectral methods
Nonlinear flows on the sphere
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The evolution under the fast diffusion flow

To overcome the limitation p < 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

dp m
5 = B (1)

[Demange], [J.D., Esteban, Kowalczyk, Loss|: for any p € [1,2*]

Kolel = 5 (Tl -~ d&50al) <0

L L
25 30

(p, m) admissible region, d =5
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Cylindrical coordinates, Schwarz symmetrization,
stereographic projection...

X o, =
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. and the ultra-spherical operator

Change of variables z = cosf, v(0) = f(z), dvg == v dz/Zy,
v(z):=1-2°

The self-adjoint ultraspherical operator is
AW/ / 1" d ! gl
Lf=01-2z)f"—dzf'=vf +§I/f

which satisfies (A, L f) = f i vduy

Proposition

Let p € [1,2) U (2,2%], d > 1. For any f € HY([-1,1], dvg),

—(f .cf)‘/l F'2 v dvg > d 11t = 1Pl
) - . d Z p— 2
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Interpolation inequalities on the sphere Spectral methods
Nonlinear flows on the sphere
The bifurcation point of view

The heat equation % = L g for g = fP can be rewritten in terms of f
as
of |f'|2
f -1
T =Lf+(p—-1) v

1d [, 1d B |f')?

d d 1 1
= Tlg(t, )] + 2d Z[g(t, )] = 7/ 12 v dug + 2d/ 12 v dug
dt dt |, .

1 4 12 g1
d |f'| d—1|f"|*f
—_9 f//2 1) —— -2 1) —= 2
/1(| | (p )d—|—2 f2 (p )d—|—2 f v dvg

is nonpositive if

d |f/|4 d_1|f‘/|2f//
2 2P Vgm s
is pointwise nonnegative, which is granted if

_ 112 2
d 1}_(_) 2 +1 _y _ 2d .

[(p_l)d+2 2 PSS d=2

FP+p—1)
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Interpolation inequalities on the sphere Spectral methods
Nonlinear flows on the sphere
The bifurcation point of view

Improved functional inequalities

@ The range 2% < p < 2* is covered using the adapted fast
diffusion eq.

ap _ AP
~ luf?®

(p, B) representation of the admissible range of parameters when d =5
[J.D., Esteban, Kowalczyk, Loss]

J. Dolbeault Optimal constants and spectral gaps



Interpolation inequalities on the sphere Spectral methods
Caffarelli-Kohn-Nirenberg inequalities Nonlinear flows on the sphere
Fast diffusion equations, large time asymptotics, spectrum The bifurcation point of view

Can one prove Sobolev's inequalities with a heat flow ?

10 15 20 25 30 35

(p, B) representation when d =5. In the dark grey area, the functional
is not monotone under the action of the heat flow [J.D., Esteban,

Loss]
J. Dolbeault Optimal constants and spectral gaps



Interpolation inequalities on the sphere Spectral methods
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Fast diffusion equations, large time asymptotics, spectrum The bifurcation point of view

The bifurcation point of view

1(A) is the optimal constant in the functional inequality

IVullEagey + Mlulfagey = 0N lullfge Vo€ H(S?, du)

Here d =3 and p=14

J. Dolbeault Optimal constants and spectral gaps



Interpolation inequalities on the sphere Spectral methods
Caffarelli-Kohn-Nirenberg inequalities Nonlinear flows on the sphere
Fast diffusion equations, large time asymptotics, spectrum The bifurcation point of view

IVulaay + Allull?
@ A critical point of u— Q,\[u] := i) EED golves
HuHLp(Sd)

—Au+Au=|ulP?u (EL)
up to a multiplication by a constant (and a conformal transformation
if p=12%)

@ The best constant p(\) = inf O, [u] is such that

ueH(S9,d )\{0}
w(A) < Aif A > and p(A) = Aif A < %5 so that

p2’

d .
Py =min{A >0 : p(A) < A}

@ Rigidity : the unique positive solution of (EL) is u = A\Y/(P=2) if

J. Dolbeault Optimal constants and spectral gaps



Interpolation inequalities on the sphere Spectral methods
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Constraints and improvements

@ Taylor expansion:

(P - 2) HVU”%;(Sd)

2

d= in >
ueH (S9,dp)\{0} ||u||Lp(Sd) - ||u||L2(Sd)

is achieved in the limit as ¢ — 0 with v =1 4+ € 1 such that
—Dp; =dp;

> This suggest that improved inequalities can be obtained under
appropriate orthogonality constraints...

J. Dolbeault Optimal constants and spectral gaps



Interpolation inequalities on the sphere Spectral methods
Nonlinear flows on the sphere
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Integral constraints

With the heat flow...

For any p € (2,2%), the inequality

1
A A
72 25 2

1
Ve Y((-1,1),dvy) st / z|f|P dvg =0
=1l
holds with (d— 1y
> AT T ) (o# * _
A>d+ TCES) (27 —p) (A —d)

V.

.. and with a nonlinear diffusion flow ?

J. Dolbeault Optimal constants and spectral gaps
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Antipodal symmetry

With the additional restriction of antipodal symmetry, that is

u(—x) = u(x) Vxes?

Theorem

Ifpe(1,2)U(2,2*), we have

d (2 —4) (2" — p)
2 2 2
/Sd|vu| a2 [1+ 112 o) (el — )

for any u € HY(SY, du) with antipodal symmetry. The limit case p = 2
corresponds to the improved logarithmic Sobolev inequality

_ d(d+3) e
Vu du> S [ 1uf tog
/ SFICES): TelP ey
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Interpolation inequalities on the sphere Spectral methods
Caffarelli-Kohn-Nirenberg i s Nonlinear flows on the sphere
Fast diffusion equations, large time asymptotics, The bifurcation point of view

The larger picture: branches of antipodal solutions

Case d =5, p = 3: wvalues of the shooting parameter a as a
function of A

J. Dolbeault Optimal constants and spectral gaps



Interpolation inequalities on the sphere Spectral methods
Nonlinear flows on the sphere

The bifurcation point of view

The optimal constant in the antipodal framework

12e. .

l . N

10t

15 20 25 30

Numerical computation of the optimal constant when d =5 and
1 < p <10/3 = 3.33. The limiting value of the constant is numerically
found to be equal to A\, = 2'72/P d ~ 6.59754 with d =5 and p = 10/3

J. Dolbeault Optimal constants and spectral gaps
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Symmetries, symmetry breaking

and bifurcations

in Caffarelli-Kohn-Nirenberg
inequalities

> Symmetry, symmetry breaking and branches of solutions
> The sharp result on symmetry
> Bifurcation and branches

J. Dolbeault Optimal constants and spectral gaps
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Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Fast diffusion equations, large time asymptotics, spectrum Generalizations and comments

Critical Caffarelli-Kohn-Nirenberg inequalities

Let D, p 1= { velpP (Rd, |x| P dx) Cx|7 | Vv| € L2 (Rd, dx) }

P 2/p 2
(/ v dx) <o [ Mo vven,,
R

s |x[PP re |X[?2

holds under the conditions that a< b<a+1ifd>3,a<b<a+1
ifd=2,a+1/2<b<a+lifd=1and a<a.:=(d—-2)/2

= 2d (critical case)
P=d=2+2(b-a)
> An optimal function among radial functions:
vi(x) = (1 + \X|(p_2)(a‘_a)>_p%2 and C*, = M
=P Ix Vw3

Question: Cyp = Cj ) (symmetry) or C,p > C} |, (symmetry breaking) ¢

J. Dolbeault Optimal constants and spectral gaps



Symmetry, symmetry breaking and branches of solutions
Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Generalizations and comments

Critical CKN: range of the parameters

Figure: d =3 b

. p 2/p . 2
/ VP g < cab/ Vo o
Jra |x|PP " Jre |x[22

~1

/ 0
a

a<b<a+lifd>3

a<b<a+lifd=2a+1/2<b<a+1lifd=1

and a < ac := (d — 2)/2
2d

p:

[Glaser, Martin, Grosse, Thirring (1976)]
d—2+2(b—a) [F. Catrina, Z.-Q. Wang (2001)]

J. Dolbeault Optimal constants and spectral gaps



Symmetry, symmetry breaking and branches of solutions
Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Generalizations and comments

Proving symmetry breaking

[F. Catrina, Z.-Q. Wang], [V. Felli, M. Schneider (2003)]

/A/

[J.D., Esteban, Loss, Tarantello, 2009] There is a curve which
separates the symmetry region from the symmetry breaking region,
which is parametrized by a function p — a+ b

J. Dolbeault Optimal constants and spectral gaps



Symmetry, symmetry breaking and branches of solutions
The sharp result on symmetry
Generalizations and comments

Interpolation inequalities on the sphere
Caffarelli-Kohn-Nirenberg inequalities
Fast diffusion equations, large time asymptotics, spectrum

Moving planes and symmetrization techniques

[Chou, Chu], [Horiuchi]

[Betta, Brock, Mercaldo, Posteraro]

+ Perturbation results: [CS Lin, ZQ Wang], [Smets, Willem], [J.D.,
Esteban, Tarantello 2007], [J.D., Esteban, Loss, Tarantello, 2009]

J. Dolbeault Optimal constants and spectral gaps



Symmetry, symmetry breaking and branches of solutions
Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Generalizations and comments

Linear instability of radial minimizers:

the Felli-Schneider curve
b/

/ 0 a

[Catrina, Wang], [Felli, Schneider] The functional

. [ VP vIP NP
a,b/ 53 dx — 5 dx
R4 |X| Rd |X|

is linearly instable at v = v,

J. Dolbeault Optimal constants and spectral gaps



Interpolation inequalities on the sphere Symmetry, symmetry breaking and branches of solutions
Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Fast diffusion equations, large time asymptotics, spectrum Generalizations and comments

Direct spectral estimates

[J.D., Esteban, Loss, 2011]: sharp interpolation on the sphere and a
Keller-Lieb-Thirring spectral estimate on the line

J. Dolbeault Optimal constants and spectral gaps



Interpolation inequalities on the sphere Symmetry, symmetry breaking and branches of solutions
Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Fast diffusion equations, large time asymptotics, spectrum Generalizations and comments

Numerical results

50

B I —— asymptotic

-------- symmetric
20

non-symmetric

Parametric plot of the branch of optimal functions for p = 2.8, d = 5.
Non-symmetric solutions bifurcate from symmetric ones at a bifurcation
point computed by V. Felli and M. Schneider. The branch behaves for large
values of N as predicted by F. Catrina and Z.-Q. Wang

J. Dolbeault Optimal constants and spectral gaps



Interpolation inequalities on the sphere Symmetry, symmetry breaking and branches of solutions
Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Fast diffusion equations, large time asymptotics, spectrum Generalizations and comments

Other evidences

@ Further numerical results [J.D., Esteban, 2012] (coarse / refined /
self-adaptive grids)

60
50
40

30

20

@ Formal commutation of the non-symmetric branch near the
bifurcation point [J.D., Esteban, 2013]
@ Asymptotic energy estimates [J.D., Esteban, 2013]

J. Dolbeault Optimal constants and spectral gaps



Interpolation inequalities on the sphere Symmetry, symmetry breaking and branches of solutions
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Fast diffusion equations, large time asymptotics, spectrum Generalizations and comments

Symmetry versus symmetry breaking:
the sharp result

A result based on entropies and nonlinear flows

b

[J.D., Esteban, Loss, 2015]: http://arxiv.org/abs/1506.03664

J. Dolbeault Optimal constants and spectral gaps
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Symmetry, symmetry breaking and branches of solutions
Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Generalizations and comments

The symmetry result

The Felli & Schneider curve is defined by

o d(ac—a) a2
brs(a) = 2y/(ac—a)+d-1 M ‘

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and
b > bws(a), then the optimal functions for the Caffarelli-Kohn-Nirenberg
inequalities are radially symmetric

J. Dolbeault Optimal constants and spectral gaps



Interpolation inequalities on the sphere Symmetry, symmetry breaking and branches of solutions
Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Fast diffusion equations, large time asymptotics, spectrum Generalizations and comments

The Emden-Fowler transformation and the cylinder

> With an Emden-Fowler transformation, Caffarelli-Kohn-Nirenberg
iequalities on the Fuclidean space are equivalent to

Gagliardo-Nirenberg inequalities on a cylinder

v(r,w)=r""*g(s,w) with r=|x|, s=—logr and w= X

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as

10:211E2(c) + IVwllaiey + Allelitaey = M) Illirey Ve € HY(C)

where A := (a — a)?, C = R x S?~! and the optimal constant u(A) is

d
uN) = c— with a=a.+ VA and b:Ei\/K

J. Dolbeault Optimal constants and spectral gaps



Symmetry, symmetry breaking and branches of solutions

Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Generalizations and comments

Generalized Caffarelli-Kohn-Nirenberg inequalities (CKN)

Let 2* = o0 ifd=10r d=2,2* =2d/(d —2) if d > 3 and define
d(p-2)
2p

[Caffarelli-Kohn-Nirenberg-84] Let d > 1. For any 6 € [d(p, d), 1],
with p = #"(b_a), there exists a positive constant Ccxn (0, p, a)
such that

2 0 1—-6
e\ [ Vuf? [ Juf?
dx ) < Coxnl(8,p, d ]
(/ xjpp &) = Canl@pa)| | s &) { [, ke &

In the radial case, with A = (a — a.)?, the best constant when the
inequality is restricted to radial functions is C&xn (0, p, @) and

Hp, d) ==

Cern(0, p, a) > Cixn(0, p,a) = Coxn (0, p) A7

C* 0 _ |2 2852 (p—2) B2 24(26-1) p 0 4 & @ 5
cxn (0. p) [r(d/z)} |:2+(2071)pi| { 2p0 ][p+2} V()

J. Dolbeault Optimal constants and spectral gaps
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Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Generalizations and comments

The method of Catrina-Wang / Felli-Schneider

Among functions w € H'(C) which depend only on s, the minimum of

2
2]

Tlwl = fo (IVwl + 3 (d =2~ 2a)? [wP?) dx — [C*(6,p. )] ¥ ((ffcl“”l”"*))fe
o lw|?dx) @
is achieved by w(y) := [ cosh(A s)]_ﬁ, y = (s,w) € R x S =C with

)\::%(d—2—23)(p—2) 2139”_7+(i_2)asasolutionof

M(p—2P2w' —4w+2p|lwP2w=0
Spectrum of £ 1= —A + s WP~2 + 1 is given for «/1—|—4/<2,//\2 >2j+1
by Aij=p+i(d+i—2)—2 (w/1+4/<&/)\2—(1+2j)> Vi,jeN

@ The eigenspace of L corresponding to Ag is generated by w

@ The eigenfunction ¢; ) associated to Ao is not radially symmetric
and such that [, W ¢(1,0)dx =0 and [, WP~ ¢1,0) dx =0

Q If A\ g <0, optimal functions for (CKN) cannot be radially
symmetric and C(6, p,a) > C*(0, p, a)

J. Dolbeault Optimal constants and spectral gaps
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Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Fast diffusion equations, large time asymptotics, spectrum Generalizations and comments

A parametrization of the solutions

All optimal functions can be computed
> by solving (numerically)

—Au+pu=uPt

> by computing A = A(p) (reparametrization)
and the corresponding optimal constant is given by

(1) = Qo L]
where
2 2 0 2(1-0)
(IVul220) + Allul2ac) a2

Qb[u] :=
" ||U||2£p(c)

If v, is symmetric, then

S () = J°(1) p

J. Dolbeault Optimal constants and spectral gaps
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Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
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Parametric plot of u +— (A%(u), J’(11)) for p= 2.8, d = 5,
=1

50

ol 1 e asymptotic

________ symmetric
20

non-symmetric
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Symmetry, symmetry breaking and branches of solutions
The sharp result on symmetry
Generalizations and comments

Parametric plot of u +— (A%(u), J’(11)) for p= 2.8, d = 5,
6=0.38

Caffarelli-Kohn-Nirenberg inequalities

n 170
r " Ji (1) I
141 ,’ e
r e .
r : -_____.--b-
13F et
S R — J ()
[ 1 L
12+ 1 .
r } ------------------ asymptotic
nf /",'
7 A ittt symmetric
10F .
; non-symimetric
oF \ . .
r bifurcation
[ 6
’. “\‘“‘\““\““\“A‘(‘/L)\
10 20 30 40 50
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Symmetry, symmetry breaking and branches of solutions
Caffarelli-Kohn-Nirenberg inequalities The sharp result on symmetry
Generalizations and comments

Parametric plot of u +— (A%(u), J°(u)) for p = 2.8, d = 5,
6 =0.72

T ) ;ﬂl," - asymptotic
[ ; .
[ ] e symmetric
851 K
I / ——— non-symmetric
[ !
F 1
80 S —————
[ J (1)
r bifurcation
I )
[ L L L L L L L L L L L L L L L L L L L L L L L L \[\\ \(H) L
4 3 4 5 6 7 8
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Enlargement for p = 2.8, d

Symmetry, symmetry breaking and branches of solutions
The sharp result on symmetry
Generalizations and comments
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Enlargement for p = 2.8, d =5, § = 0.72
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Critical case 6 = ¥(p, d)
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Parametric plot of u +— (A(u),

d = 5, 5=l

Symmetry, symmetry breaking and branches of solutions
The sharp result on symmetry
Generalizations and comments
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Symmetry, symmetry breaking and branches of solutions
The sharp result on symmetry
Generalizations and comments

Interpolation inequalities on the sphere
Caffarelli-Kohn-Nirenberg inequalities
Fast diffusion equations, large time asymptotics, spectrum

Parametric plot of u +— (A%(u), J°(11)) for p = 3.15, d = 5,
6 =0.95
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Case p =3.15, d =5, 6 = 9(3.15,5) =~ 0.9127
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Local and asymptotic criteria for 8 = 9(p, d) — numerical

0.15

. .,
o s,
-
o .,
o N
\,
.

-0.05

I B E e
.

-0.10

e
o

Q@ Local criterion: based on an expansion of the solutions near the
bifurcation point, it decides whether the branch goes to the right to to the
left.

Q@ Asymptotic criterion: based on the energy of the branch as N — 400
and an analysis in a semi-classical regime
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Fast diffusion equations, large time
asymptotics, spectrum

> Weighted fast diffusion equations

The equation and the self-similar solutions
Without weights

A perturbation result

Symmetry breaking

More on symmetry

> Large time asymptotics

> Linearization and optimality

Most recent results: joint work with M. Bonforte, M. Muratori and
B. Nazaret,
and with M.J. Esteban and M. Loss
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Linearization and optimality

Fast diffusion equations with weights: self-similar solutions

Let us consider the fast diffusion equation with weights
u+ 7V (x| P uvu™ ) =0 (t,x) € RT x R?
Here 8 and v are two real parameters, and m € [my, 1) with

. 2d=2-f—y
M= 3=

Generalized Barenblatt self-similar solutions

u(pt,x) = t=eld=) B3,y (t_p X) ) %ﬁﬂ(x) = (1 + |X|2+5_’Y) =

where 1/p = (d — v) (m — m¢) with m. := d;i;ﬁ <m <1

Self-similar solutions are known to govern the asymptotic behavior of
the solutions when (8,v) = (0,0)
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Q@ Mass conservation

Ly
dt Jga |x|7

and self-similar solutions suggest to introduce the

@ Time-dependent rescaling
u(t,x) =R v ((2 +B8—7)"" logR, R)

with R = R(t) defined by

dR

o =2+B8-9)R R(m=D(y=d)=(2+=y)+1 R(0)=1
— 28— .\’
R(t) = (1 + =5 t)

with 1/p = (1= m) (y — d) + 2+ f — 7 = (d — ) (m — m.)
@ A Fokker-Planck type equation

ve + X7V - [|X\*/j vV(vm*1 — |x\2+ﬂ7"’)} =0

with initial condition v(t =0,-) = up
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Without weights: time-dependent rescaling, free energy

@ Time-dependent rescaling: Take u(7,y) = R™9(7) v (t,y/R(T))

where 4R 1
- _ Rd(i-m)-1 t==log R
dr ’ 2 °8
@ The function v solves a Fokker-Planck type equation
% =LAV + V- (xv)

@_ [Ralston, Newman, 1984] Lyapunov functional:
Generalized entropy or Free energy

Flv] ::/ (—V—|—|x|2v> dx — Fo
Rd m

Entropy production is measured by the Generalized Fisher
information

i]-'[v] =—TI|[v], Z|v] ::/ v Vv 4 2x 2 dx
dt R4
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Without weights: relative entropy, entropy production

Q_ Stationary solution: choose C such that ||veol|lr: = ||ullpr =M >0

Vo (x) = (C 4 [x2) VO™

Relative entropy: Fix Fo so that Flve] =0
@ Entropy — entropy production inequality

Theorem

d23,m6[%,+oo),m>%,m7é1

IIv] > 4 F[v]

| A\

Corollary

A solution v with initial data ug € LY (R?) such that |x|? up € L}(RY),
uf’ € LY(RY) satisfies Flv(t,)] < Fluo] e **

N
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More simple facts...

> The entropy — entropy production inequality is equivalent to the
Gagliardo-Nirenberg inequality
[del Pino, J.D.] With 1 < p < 2% (fast diffusion case) and d > 3

HWHL?P(R") < CGd ||VWHL2 (R9) ||WHLp+1 (R9)

Proofs: variational methods [del Pino, J.D.], or carré du champ
method (Bakry-Emery): [Carrillo, Toscani|, [Carrillo, Vézquez],
[CIMTU]

> Sharp asymptotic rates are determined by the spectral gap in the
linearized entropy — entropy production (Hardy—Poincaré) inequality
[Blanchet, Bonforte, J.D., Grillo, Vézquez]

> Higher order matching asymptotics can be achieved by best
matching methods: [Bonforte, J.D., Grillo, Vazquez], [J.D., Toscani]
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> Improved entropy — entropy production inequalities o(F|[v]) < Z[v]
can be proved [J.D., Toscani|, [Carrillo, Toscani]

> Rényi entropy powers: concavity, asymptotic regime (self-similar
solutions) and Gagliardo-Nirenberg inequalities in scale invariant form
[Savaré, Toscani], [J.D., Toscani]

> Concavity of second moment estimates and delays [J.D., Toscani]

> Stability of entropy — entropy production inequalities (scaling
methods), and improved rates of convergence [Carrillo, Toscani],
[J.D., Toscani]
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Spectrum of the linearized operator

Spectrum of
(A=m) Ly 1),

~(m)

Essential spectrum
of (1= m) £1/(m-1),0.

e Cise 1
— Case 2

4 — Case
. Case 3

)

e = 422 1
e =7
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a With one weight: a perturbation result

On the space of smooth functions on RY with compact support

[Wlono ey < Co VW 2y WL oy

o2 (p-1) (d=7) (p=1)
h = =
where 9 2p(25-p—1) "~ p(d+2-2y—p(d-2)) and
_ 1
[WllLen ey := (Jga [w]7|x[77 dx) /7" and [IWllLo(ea) = W llLoo(ea

and d >3, v € (0,2), p € (1,2%/2) with 2% := 2 9=2

[J.D., Muratori, Nazaret] Let d > 3. For any p € (1,d/(d — 2)), there
exists a positive v* such that equality holds for all v € (0,~v*) with

wi(x) = (1+ |X|2’7)_ﬁ Vx € R?
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Caffarelli-Kohn-Nirenberg inequalities (with two weights)

_ 1
Norms: [|wl|Len (ge) = (fpo [W|7|X[77 dx) /e, [wllparay = [Iw(lLaoe)
(some) Caffarelli-Kohn-Nirenberg interpolation inequalities (1984)

1Wllzne ety < Coimop VWl Py WIS e (CKN)

Here Cg,,, denotes the optimal constant, the parameters satisfy

d>2, 7=2<fB< 92y, ye(—o0,d), pe(lp] withp, =357
and the exponent ¢ is determined by the scaling invariance, i.e.,

9 = (d=) (p—1)
p (d+ﬁ+2—2’Y—P(d—5—2))

@ Is the equality case achieved by the Barenblatt / Aubin-Talenti
type function

wi(x) = (1+ \x|2+ﬂ_7)_1/(p_1) VxeRY 7

@ Do we know (symmetry) that the equality case is achieved among
radial functions?
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Range of the parameters
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CKN and entropy — entropy production inequalities

When symmetry holds, (CKN) can be written as an entropy — entropy
production inequality

=1 (24§ —7)2 FIV < T[]

and equality is achieved by B . Here the free energy and the
relative Fisher information are defined by

_— 1 m m m—1 o dx
.F[V] = m o (V — %577 m%67,y (V %5,7)) 7|x|7
2 dx
v = | v]ovmtowsp S
[v] /Rd vIVv 8 | IxP

If v solves the Fokker-Planck type equation
vk XV [TV IV < X2 =0 (WFDE-FP)
then
da

ST = — T TIv(, )]

1—
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Proposition

Let m= ’;—J;l and consider a solution to (WFDE-FP) with nonnegative

initial datum ug € L7(RY) such that ||uf'|[11.~re) and
Jge to [x|*TP727 dx are finite. Then

Flv(t, )] < Flug)e @7t v >0
if one of the following two conditions is satisfied:

(i) either ug is a.e. radially symmetric
(ii) or symmetry holds in (CKN)

J. Dolbeault Optimal constants and spectral gaps



Weighted fast diffusion flows
Large time asymptotics
Fast diffusion equations, large time asymptotics, spectrum Linearization and optimality

a With two weights: a symmetry breaking result

Let us define

Brs(y) = d =2 = /(d =27~ 4(d— 1)

Symmetry breaking holds in (CKN) if

d—2
7 <0 and ﬂFs(’Y)<5<T

In the range Brs(v7) < B < 27, wi(x) = (1 + |X|2+5_7)—1/(p—1) is
not optimal.
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18

p=Prs(r)

The grey area corresponds to the admissible cone. The light grey area
is the region of symmetry, while the dark grey area is the region of
symmetry breaking. The threshold is determined by the hyperbola

(d=7)?—(B—d+27—4(d—1)=0
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A useful change of variables

With

B—"

d—
Oc—l—f—T and n=2 v

B+2—7’

(CKN) can be rewritten for a function v(|x|*~! x) = w(x) as
HV”L2P d—n(Rd) < Ka n,p H;D VHLZ d—n(R9) HV”]p\l d—n(Rd)

with the notations s = |x|, Dav = ( g;, LV, v) Parameters are in

the range

n

d>2, a>0, n>d and pe(l,p], px:= 5
h_

By our change of variables, w, is changed into
vi(x) = (1+ |X|2)71/(p71) Vx € R
The symmetry breaking condition (Felli-Schneider) now reads

d—1

o> aps with apg =
n—1
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The second variation

j[v] =1 Iog (H@aVHLZ,d—n(Rd)) + (1 — ?9) Iog (||V||Lp+1,d7n(Rd))
+ logKg,np — log (||V||L2p,d—n(Rd))

Let us define djus := us(x) dx, where pus(x) := (1 + |x|?)~°. Since v, is
a critical point of 7, a Taylor expansion at order 2 shows that

||©oév*H12'J2,d—n(Rd) j[V* + € s )2 f} = % e Q[f] + 0(52)

. 2
with § = p—fl and

O[f] = Jau [Daf2 X"~ dpus — 2295 [ 12 x|"~9 dpisia

p—1
We assume that [p, f [x|"? dpus41 = 0 (mass conservation)
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a Symmetry breaking: the proof

Proposition (Hardy-Poincaré inequality)

Letd > 2, a € (0,+00), n>d and § > n. If f has O average, then
[ a2 I dps = A [ 11X dssa
Rd Rd

with optimal constant A = min{2a? (28 — n),2a?§n} where 1 is the

unique positive solution ton(n+n—2) = (d —1)/a?. The corresponding

2
eigenfunction is not radially symmetric if a® > %.

Q>0 iff 4pp_ Of < A and symmetry breaking occurs in (CKN) if
4pa?

2026 <

—= 7n<l1

= 7:n(n+n—2)<n—1 < a> ars
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Fast diffusion equations with
weights: a symmetry result

@ Rényi entropy powers
@ The symmetry result

o The strategy of the proof

Joint work with M.J. Esteban, M. Loss in the critical case
B=d—2+21

Joint work with M.J. Esteban, M. Loss and M. Muratori in the
subcritical case d — 2 + 3;—" <B< % ~y
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Rényi entropy powers

[Savaré, Toscani] We consider the flow 2% = Au™ and the

Gagliardo-Nirenberg inequalities (GN)
Iwlloe(ee) < Cg IV WITaay W10 o

where u = w?P, that is, w = u™ /2 with p = m Straightforward
computations show that (GN) can be brought into the form

(o+1)m—1 2
/ u dx <CIZE ' where 6= —— —1

where & := [p, u™ dx and T := [, u|VP[? dx, P = {2 u™ ! is the
pressure variable. If F = £7 is the Rényi entropy power and

o= % — 1, then F” is proportional to

—2(1-m) (Tr ((HessP — & AP14)*) )+(1-m)* (1-0) ((&P - (AP))?)

where we have used the notation (A) := [, u™ A dx/ [q u™ dx
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a The symmetry result

> critical case: [J.D., Esteban, Loss; Inventiones]

> subcritical case: [J.D., Esteban, Loss, Muratori; CR Math.]

Theorem

Assume that 3 < Brs(7). Then all positive solutions in H _ (R?) of
—div(]x| 7P Vw) = x| (w1 = wP) in RY\ {0}

are radially symmetric and, up to a scaling and a multiplication by a
constant, equal to w,(x) = (1+ |x|2+ﬁ_“’)71/(p71)

J. Dolbeault Optimal constants and spectral gaps



Weighted fast diffusion flows
Large time asymptotics
Fast diffusion equations, large time asymptotics, spectrum Linearization and optimality

The strategy of the proof (1/3)

The first step is based on a change of variables which amounts to
rephrase our problem in a space of higher, artificial dimension n > d
(here n is a dimension at least from the point of view of the scaling
properties), or to be precise to consider a weight |x|"~¢ which is the
same in all norms. With
d—

F=n and n=2-2""T_

2 B+2—~
we claim that Inequality (CKN) can be rewritten for a function
v([x[*1 x) = w(x) as

v(x|Ix) = w(x), a=1+"—7+

1Vilena-n(ray < Kanp 1DavlLzo-sge) VI 5Ga age Vv €HG_, 4_n(RY)
with the notations s = |x|, D,v = (o 2%, 1 V,v) and
d>2, a>0, n>d and pe(l,p].
By our change of variables, w, is changed into
vi(x) == (1+ |x|2)_1/(p_1) Vx e R?
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The strategy of the proof (2/3): concavity of the Rényi
entropy power

The derivative of the generalized Rényi entropy power functional is

o—1
Glu] := (/ um du) / u|D.PP>du
R R

—— — 1. Here du = |x|"~? dx and the pressure is

_2
where 0 = 5 —

m
Pi=——ym!
1—m
Proving the symmetry in the inequality amounts to
proving the monotonicity of G[u]

along a well chosen fast diffusion flow
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With £, = — DD, = a? (u” + ”%1 u’) + S% A, u, we consider the
fast diffusion equation

@ =L,u™

ot

in the subcritical range 1 —1/n < m < 1. The key computation is the
proof that

— 5 Glu(t, )] (fpo u™ ) ™7
u|DaP2du

> (]‘ - m) (0 - 1) f]Rd u™ ‘E"P - fRded um™dp
. ’ 2 2
#2f (o (=) P = = a2 P - T2

+2 [pa ((” —2) (adg — a?) |VuPP + c(n,m,d) \v;i;rj u™dp =: H[u]

2

du

for some numerical constant c(n, m,d) > 0. Hence if a < arg, the
r.h.s. H[u] vanishes if and only if P is an affine function of |x|?, which
proves the symmetry result.
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The strategy of the proof (3/3): integrations by parts

This method has a hidden difficulty: integrations by parts ! Hints:

Q@ use elliptic regularity: Moser iteration scheme, Sobolev regularity,
local Holder regularity, Harnack inequality, and get global regularity
using scalings... to deduce decay estimates

@ use the Emden-Fowler transformation, work on a cylinder,
truncate, evaluate boundary terms of high order derivatives using
Poincaré inequalities on the sphere
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Fast diffusion equations with
weights: large time asymptotics

@ Relative uniform convergence
e Asymptotic rates of convergence

e From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

vt XV [PV (v - X)) =0 (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret

J. Dolbeault Optimal constants and spectral gaps



Weighted fast diffusion flows
Large time asymptotics
Fast diffusion equations, large time asymptotics, spectrum Linearization and optimality

Relative uniform convergence

¢= 1— (1— g (1= 50)

= m) (2+8—7) . -
b=a m) S Gra) s is in the range 0 < 0 < 3= <1

Theorem

For “good” initial data, there exist positive constants KC and ty such that,
for all g € [3=2,cc], the function w = v /B satisfies

HW(t) - 1||L‘7«"r(]Rd) < Ke 2 = AC(t ) vyt >t

in the case v € (0,d), and

”W(t) - 1||Lq,w(Rd) < K:e_2 2 m A(t ) Vit>ty

in the case v < 0

J. Dolbeault Optimal constants and spectral gaps



Interpolation inequalities on the sphere Weighted fast diffusion flows
Caffarelli-Kohn-Nirenberg inequaliti Large time asymptotics
Fast diffusion equations, large time asymptotics, spectrum Linearization and optimality

Essential spectrum

Essential spectrum

The spectrum of £ as a function of § = ﬁ, with n =5. The
essential spectrum corresponds to the grey area, and its bottom is
determined by the parabola ¢ — Aess(6). The two eigenvalues Ag 1 and
A1,0 are given by the plain, half-lines, away from the essential
spectrum. The spectral gap determines the asymptotic rate of
convergence to the Barenblatt functions
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Main steps of the proof:

@ Existence of weak solutions, L7 contraction, Comparison
Principle, conservation of relative mass

Q@ Self-similar variables and the Ornstein-Uhlenbeck equation in
relative variables: the ratio w(t, x) := v(t, x)/B(x) solves

Ix|77 wy = — % V- (|X\7f3 BwV ((W’"*1 -1) ‘Bmfl) ) in Rt x RY

Vvo/B in RY

w(0,-) = wp :

Q@ Regularity, relative uniform convergence (without rates) and
asymptotic rates (linearization)

Q@ The relative free energy and the relative Fisher information:
linearized free energy and linearized Fisher information

@ A Duhamel formula and a bootstrap
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a Regularity (1/2): Harnack inequality and Holder
regularity

We change variables: x + |x|*~! x and adapt the ideas of
F. Chiarenza and R. Serapioni to

e + D;;[a(Dau+Bu)} —0 in R xRY

Proposition (A parabolic Harnack inequality)

Letd >2, « >0 and n> d. If uis a bounded positive solution, then for
all (to, xo) € R* x R? and r > 0 such that Q,(ty, %) C RT x By, we have

sup u<H inf u
Qr (to,x0) Q (to,x0)

The constant H > 1 depends only on the local bounds on the coefficients
a,Bandond, o, and n

v

By adapting the classical method a la De Giorgi to our weighted
framework: Holder regularity at the origin
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a Regularity (1/2): from local to global estimates

Lemma

If w is a solution of the the Ornstein-Uhlenbeck equation with initial
datum wy bounded from above and from below by a Barenblatt profile
(+ relative mass condition) = ‘good solutions”, then there exist

v € (0,1) and a positive constant K > 0, depending on d, m, 3, v, C,
C1, G such that:

Q1
IVV() L By \8y) < = Vt>1, VA>1,

sup [|Wllcxeryxey) <00 VKEN, ¥e>0
sup [|w(t)ll v (rey < o0
t>1

sup Iw(7) = 1 co(mey < K sup W(T) = Ulpeomey VE=1
T>t T2t

J. Dolbeault Optimal constants and spectral gaps



Weighted fast diffusion flows
Large time asymptotics
Fast diffusion equations, large time asymptotics, spectrum Linearization and optimality

Asymptotic rates of convergence

Assume that m € (0,1), with m # m, with m, :=. Under the relative
mass condition, for any ‘“good solution” v there exists a positive
constant C such that

Flv(t)] < Ce 20=mAt y¢ >0,

@ With Csiszar-Kullback-Pinsker inequalities, these estimates provide
a rate of convergence in L17(RY)

Q@ Improved estimates can be obtained using “best matching
techniques”
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From asymptotic to global estimates

When symmetry holds (CKN) can be written as an entropy — entropy
production inequality

(2+8 -2 F < 77— 1v]

1 —
so that

FIv(t)] < Flu(0)] e 20-mM ¢t yr>0 with A, = G0

Let us consider again the entropy — entropy production inequality
K(M) Flv] < Z[v] Vv eLY7(RY) such that Vil rey = M,
where K(M) is the best constant: with A(M) := 2 (1 — m)=2 K(M)

Flv(t)] < Fv(0)] e 2A=mAME ¢ >0
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a Symmetry breaking and global entropy — entropy
production inequalities

e In the symmetry breaking range of (CKN), for any M > 0, we have
0<K(M) < 2(1—m)?Nos

o If symmetry holds in (CKN) then
K(M) > 122 (24 8 —7)?

Corollary

| A

Assume that m € [my,1)
(i) For any M > 0, if A(M) = A, then 8 = Brs(7)
(i) If B > Brs(y) then N1 < A and A(M) € (0, Ao 1] for any M > 0

(iii) For any M > 0, if B < Brs(7y) and if symmetry holds in (CKN), then
A(M) > A,

v
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Linearization and scalar products

With u. such that

u. = B, (1 +e fBi_m) and u. dx = M,
Rd
at first order in ¢ — 0 we obtain that f solves
f
% =Lf where Lf:=(1-m)BI ?|x|"D} (|x|"?B.Daf)

Using the scalar products

()= [ ARB™ 7 e and ()= [ Duf-DafB. x| dx
Rd Rd

we compute

1
1d (Ffy=(FLFf)= [ F(LFB|x|7 dx = — / Do f1? B x| 77 dx -
2 dt R4 Rd
for any f smooth enough, and

1d

> a<<f, ) = /Rd Dof Do (LF)ulx|7? dx = — (f,LF)
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Linearization of the flow, eigenvalues and spectral gap

Now let us consider an eigenfunction associated with the smallest
positive eigenvalue A1 of £

—LAh=Mh
so that f; realizes the equality case in the Hardy-Poincaré inequality
(g.8) =—(f.L>2Nlg—&l*. Z:=1(1)/(L1)

— (g, Lg) =M (g.8)

Proof: expansion of the square :
~((e—2),L(g—8)=(L(g—8)L(g—&)=IL(g—23)°

@ Key observation:
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Symmetry breaking in CKN inequalities

@ Symmetry holds in (CKN) if J[w] > J[w,] with
T(w] = 9 10g (D Wil sz +(1—9) Tog (Wl sey) —1og (1]l pans sy
with 0 ;== d — n and
Tw. +cg] = €* Qlg] + o(?)
where
5 D0 wi[F20-n(rey Qle]

= ||DagHLz d=n(Rd) + £ (p+61)2’y [d Y= p(d 2-— B / |g‘2 l.)i|x|2

_ 1) 2+8- "/ 2 X"
P(QP 1 (p— 1 / |g| (1+\x| )2

is a nonnegative quadratic form if and only if a < apg

@ Symmetry breaking holds if a > apg
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Information — production of information inequality

Let K[u] be such that
d
d—I[u(T7 )] = — Klu(r, )] = — (sum of squares)
-

If o« < apg, then A1 > 4 and

Kld]

g

ur—

is a nonnegative functional whose minimizer is achieved by u = B,.
With u, = B, (1 +e fBi”"), we observe that

K Kl (RLF) (AR
b= T S I Y T T ) T (RA)

@ if Ay =4, that is, if « = apg, then inf £/Z = 4 is achieved in the
asymptotic regime as u — B, and determined by the spectral gap of £
@ if A\; > 4, that is, if @ < aFg, then K/Z > 4
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Symmetry in Caffarelli-Kohn-Nirenberg inequalities

If & < apg, the fact that X/Z > 4 has an important consequence.
Indeed we know that
d
o7 ()] = 4Fu(r,)]) < 0
so that
Zlu) — 4 Flu] > Z[B.] — 4 F[Bs] =0

This inequality is equivalent to J[w] > J[ws], which establishes that
optimality in (CKN) is achieved among symmetric functions. In other
words, the linearized problem shows that for a < agg, the function

7= Z[u(r, )] — 4 Flu(r, )]

is monotone decreasing
Q@ this explains why the method based on nonlinear flows provides
the optimal range for symmetry
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Entropy — production of entropy inequality

Using & (Z[u(r,-)] = C2 Flu(r,-)]) < 0, we know that
I[U] - C2 ]:[U] > I[B*] - C2f[8*] =0

As a consequence, we have that

: Z[u] _ . Kly]
Ci:= uf Flu] >Cr = nlwlf (]

With v, = B, (1+¢fB:™™), we observe that

Tlu] _ (LA (ALA)

< I f = = —
Cos limint 2] = A (i, ), 'Y Tl

@ If lim._ginff I[”E] = (p, then C; = Cr = \;

This happens if @ = apg and in particular in the case without weights
(Gagliardo-Nirenberg inequalities)
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These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Conferences/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list /
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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