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A — The two-dimensional
parabolic-elliptic Keller-Segel model
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Outline

@ Introduction: the two-dimensional parabolic-elliptic Keller-Segel
model, the M < 87 regime, scalings, etc

@ The asymptotic behaviour of the solutions of the Keller-Segel
model for small mass

References on the general theory of Keller-Segel systems:
[ Horstmann |

Disclaimer: many references !
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The parabolic-elliptic Keller and Segel system

%:AU—V-(UVV) xeR?, t>0
—Av=u xeR?, t>0
u(t=0)=ng >0 x € R?

We make the choice:
1
t = —— I - t d
v(t, x) 27T/Rz og|x — ylu(t,y) dy
and observe that

1 X—y
t,x)=—— [ —=u(t,y)d
VV( ’X) 27_[_ R? |X _y|2 U( 7y) y

. d
Mass conservation: — [ u(t,x) dx =0
R2
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Blow-up

M = [, nodx > 8r and [, |x|? ng dx < oo: blow-up in finite time

a solution u of 9
8—: =Au—-V-(uVv)

satisfies

—/|x| (t,x)

=— | 2x-Vudx+— // =9 (¢, x) u(t,y) dxd
/RZ = [ EE (e uie.y) dxdy

_ (x=y)-(y=x)
T =y P2

u(t,x) u(t,y) dx dy

2
:4M—%<0 if M>8r
2
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Existence and free energy

M =[5, no dx < 8m: global existence [ Jéger, Luckhaus |, [ JD, Perthame ],
[ Blanchet, JD, Perthame ], [ Blanchet, Carrillo, Masmoudi ]

If u solves 9
a_: =V [u (V(logu) — Vv)]

the free energy

satisfies

1
Flu] ::/ ulogudx——/ uv dx
R2 2 Jg2
d

EF[u(t, I =- /RZ u|V (log u) — Vv|* dx

Log HLS inequality [ Carlen, Loss |: F is bounded from below if
M < 8w
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The dimension d = 2

@ In dimension d, the norm L9/2(R9) is critical. If d = 2, the mass
is critical

@ Scale invariance: if (u, v) is a solution in R? of the
parabolic-elliptic Keller and Segel system, then

(A2 u(\2t,Ax), v(\2t, Ax))
is also a solution
@ For M < 8w, the solution vanishes as t — oo, but saying that

”diffusion dominates” is not correct: to see this, study
”intermediate asymptotics”
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The existence setting

%:AU—V-(UVV) xe€R?, t>0
—Av=u xeER?, t>0
u(t=0)=ny >0 x € R?
Initial conditions
no € LY (R?, (1+|x[*) dx), mologno € L*(R?,dx), M:= [ no(x)dx <8n

R2

Global existence and mass conservation: M = fRZ u(x, t) dx for any
t > 0, see [ Jager-Luckhaus |, [ Blanchet, JD, Perthame |

v=— log| |*u
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Time-dependent rescaling

u(x, t) = R%(t) n <%,T(t)) and v(x,t) = c (%,7@))

with R(t) = +/1+ 2t and 7(t) = log R(t)

0

a_::An—V-(n(Vc—x)) xeR?, t>0

c=——log|-|*n x€R2, t>0
2m

n(-,t=0)=ng >0 x € R?

[ Blanchet, JD, Perthame | Convergence in self-similar variables
tl'JQO [n(,- 4+ t) = nocll ey =0 and tl’go [Ve(, -+ t) = Vool 2ge) = 0
means ”intermediate asymptotics” in original variables:

lue.t) = kg e (g 7(8)) ey O
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The stationary solution in self-similar variables

@ Coo —|x|?/2
oo e

1
Noo = = —-Acy , Coo:—§|0g|-|*noo

o Radial symmetry [ Naito |

@ Uniqueness [ Biler, Karch, Laurengot, Nadzieja |

o As |x| — 400, ns is dominated by e=(=9X*/2 for any ¢ € (0,1)
[ Blanchet, JD, Perthame |

@ Bifurcation diagram of |[necl| g2y @s a function of M:

M“j& [P0l oo (r2) = O

[ Joseph, Lundgreen | [ JD, Stanczy |
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The free energy in self-similar variables

an
ot

Fn] ::/ nlogndx+/ l|x|2nd —1/ nc dx
R2 R22 2 R2

9 Fln(t, )] = —/ 0|V (logn) + x — V[ dx
dt R2

:V[n(logn—x—ch)}

satisfies

A last remark on 87 and scalings: n*(x) = A2 n(\ x)

Fln'] = F[n]+/n|og()\2) dx+/ =1 |x|*n dx+4i n(x) n(y) Iog% dx dy

R2 xR2
M2 )\72 _
F[n] — F[n] = (2M — —) log \ + Ix|2 n dx
RZ
~—_———————
>0 if M<8n
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First result on rates

Theorem

There exists a positive constant M* such that, for any initial data

ng € L?(n! dx) of mass M < M* satisfying the above assumptions,
there is a unique solution n € CO(R*, L1(R?)) N L°°((7, 00) x R?) for any
7>0

Moreover, there are two positive constants, C and §, such that

/ |n(t,x)—noo(x)|2£§Ce_5t Vt>0
R2

Neo

As a function of M, § is such that limy_o, 6(M) =1

The condition M < 8 is necessary and sufficient for the global
existence of the solutions, but there are two extra smallness
conditions in our proof:

@ Uniform estimate: the method of the trap

@ Spectral gap of a linearised operator £
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Proof of the first result on rates

@ First step: the trap
@ Second step: weighted H! estimates
@ Third step: linearization and spectral gap

@ Fourth step: collecting the estimates
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The parabolic-elliptic Keller and Segel system

0

8—::AU—V'(UVV) x€ER?, t>0
—Av=u xeR?, t>0
u(t=0)=ng >0 x € R?

Initial conditions

no € L (R?, (1+|x[*) dx), nologno € LY(R?,dx), M := /2 no(x)dx < 8m
R
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First step: the trap
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Decay Estimates of u(t) in L(RR?)

For any M < M, there exists C = C(M) such that, for any solution

u € CORT, LY(R?)) N L>=°(R, x R?)

loc

||”(t)||Loo(]R2) <Ct! vt>o0

The method of the trap... prove that
H(y(t), M) <0 where () = tlu(:, t)l| oo (re)

where z — H(z, M) is a continuous function which is

- negative on [0, z;)

- positive on (z1, z) for some z;, z such that 0 < z; < z < 00

1 is continuous and (0) = 0 = ¢(t) < z1 < z(M) for any t > 0 if
H(ZO(M)7 M) = Supze[zl,zz] H(Zv M) Z 0
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M
2

_ Mo(p)
2m

The method of the trap amounts to prove that H(z, M) <
that z = ¢(t) is bounded by zy(M) as long as H(z(M), M

H{(z0(M),M)

H(z,M)
20(M) z

z0(Mo(p))

J. Dolbeault
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Duhamel’s formula:
uxito+ 1)~ [ Nix= v, uly. ) dy
RZ
t
:/ / N(x—y,t—s)V-[u(y,to+5s)Vv(y, to+s)] dy ds
0 Jr?

where N(x, t) = 7= e X’/ Let ko = [ON/0x; (-, 1| (o (r2)

1
|u(-, to + t)||Loo(1R2) = g7 0G0l a ey
v
3X: ) x Ku 8_Xi)(.’t0+5)} Lo (R2) *
<Z,@,/ (£ - 57094 | (u Ov )oto+) ds
i=1,2 Oxi Lr(R2)
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HLS inequality + Hoélder and take tog =t

M
2t Jlu(-, 2t)|[ oo g2y — o
25, t o
< 260 Gurs ppais t/ (=) 2 ()72 o)) 7 s
™ 0

with 9(t) := supg<s<, 25 ||u('725)||L°°(]R2) and

w(t)§%+co(¢(t))9 with Cp =

Choice: H(z,M) =z — Cyz% — M/(2~)
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How small is the mass ?

The exponents o, p, p, g and r are related by

1+1=1, 1<o<2
1 1 _ 1

E+E_pa p7q>2
1 1 _ 1

7—5—5, r>1

For the choice r = 4/3, g = 4, Cyrs =27

_ 4kg lyd o : _ _4p
Co——ﬁ M 2_O_W1th0'——3p_4

... there exists My(p) such that H(z(M), M) > 0 if and only if
M < Mo(p) and suppe (s +o0) Mo(p) = limp— 100 Mo(p) ~ 0.822663
< 81 ~ 25.1327
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Other norms: interpolation

For any mass M < My and all p € [1, ], there exists a positive constant
C = C(p, M) with limp—o, C(p, M) =0, such that

||”(t)||Lp(]R2) <C =12 viso0

RemarkThe above rates are optimal as can easily be checked using the
self-similar solutions (N, €xo)
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Second step: weighted H' estimates
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[P and H! estimates in the self-similar variables

Consider the solution of

0

8—::An—v-(n(VC—X)) xeR?, t>0

c=——log|-|*n x€R2, t>0
2m

n(-,t=0)=ng >0 x € R?

For any p € (1, o]
||”(t)||1_p(R2) <G VvVt>0

for some positive constant Cy, and for p > 2

t t
T B e Y = T
x€ER?2 J |x—y|>1 |X - y| x€R? J |x—y|<1 |X - y|
=M <(2m 223) 7T 1l ey

J. Dolbeault The Keller-Segel model and the log Hardy-Littlewood-Sobolev inequality



1O ey < G and V() ouey < G V>0

The constants C; and C, depend on M and are such that

lim G(M)=0 i=1,2
M—0,
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Exponential weights

With K = K(x) = el*’/2  let us rewrite the equation for n as

— — =V -(KVn)=—-Vc-Vn+2n+n?

Proposition

For any mass M € (0, My), there is a positive constant C such that

||n(t)||Hl(K) <C Vt>0

First ingredient [ M. Escobedo and O. Kavian |: for any g > 2 and
€ > 0, there exists a positive constant C(e, g) such that

/ P Kdx<e | |Vl Kdx+ Cle,q) |z
R2 R?
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[%(K) estimate

Multiply the equation by n K and integrate by parts

2dt/ |n|2de+/ |Vn|? K dx

_—/ nVec - Vanx—|—2/ nQde—i—/ n® K dx
R2 R2 R2

e/ |Vn|? Kdx + C
RZ

and so
1d

2 _ 2 <
P |n| Kdx+ (1 5)/RZ|Vn| Kdx < C

ZIRZ |n‘2 K dx

(expand the square in [, |[V(n K)[? K~1dx > 0)
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H(K) estimate (1/2)

Let S(t) be the semi-group generated by —K~1V - (K V) on L?(K)

n(t,x) = S(t) no(x)—/O S(t—s)(Vc-Vn)(s) ds—i—/O S(t—s) (2n+n?)(s) ds

[n(E) [ (k) = 1S(E) ol Hr(ky
5/0 [5(t—5) (Ve-Vn)(s) |y d5+/0 15(t=s) (2n+07)(s) | () ds

Second ingredient: ||S(t) Al < K (1 + t72) || Al 2k

(In(e) ey = 15(E) moll rr k)

t t
<G /O (1+ ) I9n(3)llizqry ds + (2 + G) /0 (14 ) 1)l

3=

Vi=s
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H'(K) estimate (2/2)

1 t
~lin (t+r)||H1<K)<(1+ )C1+C3/ ( WIT) [n(s+7)| (k) ds

Let H(T) = sup.c(o,1) fo (1 + \/—) |n(s + 7)||H1(k) ds and choose
T > 0such that & = G J (1+ A ) ds = C3(T+2ﬁ)

%H(T)g (w+4\/?+ T) Cﬁ—iH(T) = H(T)g2(w+4ﬁ+ T)/-;c

For any t € (0, T)

%II (t+T)||H1(K)<<1+ )C1+C3 H(T) < (1+ )C1+2(7T—|—4\/——|—T

/
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Conclusion: bound in H(K)

The estimate
1
~lIn(t+Dllmpo < (1+ %) GHGHT < (1+ %) G2 (r+aV/T+T

for any t € (0, T) gives a bound on ||n(T 4 7)1 (k) for any 7 >0

1n() 11 <Cmax{1,‘§} Vt>0

Actually n(t) can be bounded also in H'(n32!) but further estimates
are needed...
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Third step: linearization and spectral gap
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A linearized operator

Introduce f and g defined by
n(x,t) = neo(x)(1 + f(x,t)) and c(x,t) = coo(x)(1 + g(x, t))

(f, g) is solution of the non-linear problem

f 1
%—E(t,x,f,g):—n—v-[fnooV(gcoo)] x€R?, t>0
—A(Coo g) = f N xeR?, t>0

where L is the linear operator given by
1
L(t,X, fvg) = n_v ' [HDQV(f—gCOO)]

The conservation of mass is replaced here by fRZ fnedx=0
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A spectral gap estimate

Proposition

For any M € (0, M,), for any f € H'(ns dx) such that

/ fnedx=0 = / |VF|? noo dx > A(I\/I)/ |f|? noo dx
R2 R2 R2

for some A(M) > 0 and limpy—o, A(M) =1

Let h= /ng f = Ve X*/4+e/2 ¢

IXI

A |VF? noe = |[Vh*+ |Vcoo|2 h?+h ¥V h-(x— VCOO)—— x-Veoo h?

(integrations by parts)
Jee hVh-x dx = — [, h* dx
iz h V- Vs di =3 fra 1P (~Bsc) o < 3 l1nsly ey Joa 12
L fox Ve de < 252 [ B de 4 Lg% [ Ve |2 12 dx
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H(ny!) estimate

Assume that ng/n. € L?(ns)
There exists a constant C > 0 such that

X|>1 = ’coo + M/(@2r)log|x|| < €
Neo K = €= behaves like O(|x|~M/(?™)) as |x| — oo

%—nwv- (iVn) = (Vcw — V) - Vn+2n+ n?

If M < My, then any solution n is bounded in

L=(RT, L2(n} dx)) N L%((1, 00), HY(n} dx))

oo

for any 7 > 0

J. Dolbeault The Keller-Segel model and the log Hardy-Littlewood-Sobolev inequality



Fourth step: collecting the estimates
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Proof of the exponential rate of convergence

f 1
%—E(t,x,f,g):—n—v-[fnooV(gcoo)] x€ER?, t>0
—A(Coo g) = f N xeR?, t>0

Multiply by f ny, and integrate by parts

2dt/ |FI? noo dx+/ |VF|? neo dx

V-V (gco) Noo dx+ | VI V(g coo)f Noo dx
R2 R2

=I =II

Cauchy-Schwarz’ inequality

[ VF- V(g e) b < 905, 0 198 <l 0
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first term

Holder’s inequality (with g > 2)

1
V(& coo)lli2ne ay < M2 101 o) IV (& €o0) ey

HLS inequality (with 1/p=1/2+1/q)

1
¥ el < 5 /.

Hélder’s inequality: [[f neo | 1orey < 11l 200 ax) 10|l

1
q @ Cuis
(fnm)*ﬁ‘ dx) S

1/2
L9/2(R2)

LV V(g ) oo dx < CAMY[IFlliz(oe 0 [V F L2

C.(M) := Cus (2m) "t MY/2-1/a ||”00||%/22 R?) ||”00||1_o<>(R2) —0asM—0
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second term and conclusion

Use g coo = € — € and the Cauchy-Schwarz inequality

/ VF-V(g o) f oo dx < ||V = Ve |lroo@2) [1fll12(nm dx) | VIl 2(ne dx)
RZ

<2 G(M)NO

Spectral gap estimate

VAM) 1l 2 ary < IV L2 a)
——

—1

With (M) := % 0,

12 noo dx < —[1 — 7 /sznoodx
55 L7 1= [ 1v7]
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Uniqueness

If n; and ny are two solutions in CO(R™, L}(R?)) N L*°((7, 00) x R?) for
any 7 > 0, with f = (np — n1)/ns we also get

2 <_f1- 2
3o L e <~ =2 (MIAM) [ 17 o

As a consequence, if the initial condition is the same, then n; = n;
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B — Sobolev and
Hardy-Littlewood-Sobolev
inequalities:

duality, flows
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Gagliardo-Nirenberg inequalities

Consider the following sub-family of Gagliardo-Nirenberg inequalities
1 Flluasgeey < Cona IV F Iy 115 e
p—1 d
with 6 = 0(p) := p TT5=p(d=7)
9 l<p< g 2 ifd>3
dl<p<xifd=2
[M. del Pino, J.D.] equality holds in if f = F, with

Fo(x) = (1+|x[?) 771 VxeR?

and that all extremal functions are equal to F, up to a multiplication
by a constant, a translation and a scaling.

o If d > 3, the limit case p = d/(d — 2) corresponds to Sobolev’s
inequality [T. Aubin, G. Talenti]

@ When p — 1, we recover the euclidean logarithmic Sobolev
inequality in optimal scale invariant form [F. Weissler]

e Ifd=2and p— c0...
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Onofri's inequality as a limit case

When d = 2, Onofri’s inequality can be seen as an endpoint case of
the family of the Gagliardo-Nirenberg inequalities [J.D.]

[J.D.] Assume that g € D(R?) is such that [, g dju =0 and let

8
fp := Fp(l"‘g)

With p(x) := 2 (1 + [x[*)72, and du(x) := pu(x) dx, we have

L i o VI IRy exte e 198r o
B R T P Jy2 % dit

The standard form of the euclidean version of Onofri’s inequality is

1
log /egdu —/gduS—/ [Vg[? dx
R2 R2 167 R2
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Legendre duality: Onofri and log HLS

Legendre’s duality: F*[v] := sup ([pa uv dx — F[u])

Fi[u] := log / e'du | and Ffu] = L/ |Vul? dx+/ up dx
R2 167 R2 R2

Onofri’s inequality amounts to Fi[u] < Fo[u] with du(x) := p(x) dx,
n(x) = sy

Proposition

For any v € L} (R?) with [, v dx =1, such that v log v and
(1 + log |x|?) v € L}(R?), we have

AR = [ viog (%) axotr [ (v (-8) My =) b0

[ Carlen-Loss, Beckner, Calvez-Corrias |
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A puzzling result of Carlen, Carrillo and Loss (d > 3)

[E. Carlen, J.A. Carrillo and M. Loss| The fast diffusion equation
— =Av" t>0, xecR
with exponent m = d/(d + 2), when d > 3, is such that

Hylv] == /Rdv(—A) v dx —Sq||v|]? 24

Ld+2 (RY)

1d 1d
3 g el =54 [/Rd v(=8) v dx = Sa VI 5y (R9)

d d— 2 4/(d—1)
= ( ) Sd || ||L{7+1 Rd) ||vu||L2(Rd ||u||LZq(Rd)

with u = vd=1/(d+2) and g = HL If d(d 2 ) Sy = (Cq.q), the r.hs.
is nonnegative. Optimality is achleved blmultaneously in both
functionals (Barenblatt regime): the Hardy-Littlewood-Sobolev

inequalities can be improved by an integral remainder, term
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. and the two-dimensional case

Recall that (—A)~tv = Gy x v with
0 Gy(x) = 75 S92 Hx|Pdifd >3
0 Gy(x) = 5= log|x| if d =2

Same computation in dimension d = 2 with m = 1/2 gives

vz d [ 4 / 1 / }
— v(=A)""vdx — v log v dx
8 dt ”VHLl(RZ) R2 ( ) R2 &

= [lullFegrey I VullZageey = 7 V]I 26wz

The r.h.s. is one of the Gagliardo-Nirenberg inequalities (d = 2,
q= 3) 71'((:3’2)6 =1

The Lh.s. is bounded from below by the logarithmic
Hardy-Littlewood-Sobolev inequality and achieves its minimum if
v = p with )

. 2
p(x) = T X VxeR
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Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev’s inequality in R?, d > 3,
ullfes (goy < Sa [ VullFomey ¥ ue DVA(RY) (1)

and the Hardy-Littlewood-Sobolev inequality

— 2d
Su VI 34, 0 / V(A v Yveld®) ()

are dual of each other. Here Sy is the Aubin-Talenti constant and
2* = j—fz. Can we recover this using a nonlinear flow approach 7 Can
we improve it ?

Keller-Segel model: another motivation [Carrillo, Carlen and Loss]
and [Blanchet, Carlen and Carrillo]
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Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

%:Av’" t>0, xeR (3)

If we define H(t) := Hqy[v(t,-)], with

Hy[v] = /R v(-8) v = SolvI gy

then we observe that

2
1 : 7
—H’:—/ v’"de—i—Sd(/ vdszdx> Vv . Vv dx
2 RY R Rd

where v = v(t, -) is a solution of (??). With the choice m = =2, we

d+2°
find that m+1 = d2_:2
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A first statement

Proposition

[J.D.] Assume that d >3 and m = 9=2. If v is a solution of (??) with

d+2
nonnegative initial datum in 129/(d+2)(R9), then
1d =il 2
o UR AT A e |v||Ld2+d2(Rd)]

2
d
= (/Rd ym+l dx> [Sd HVUHiZ(Rd) = ||u||i2*(Rd)} >0

The HLS inequality amounts to H < 0 and appears as a consequence
of Sobolev, that is H' > 0 if we show that limsup,.,H(t) =0

Notice that u = v™ is an optimal function for (??) if v is optimal
for (77)
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Improved Sobolev inequality Q

By integrating along the flow defined by (??), we can actually obtain
optimal integral remainder terms which improve on the usual Sobolev
inequality (?7?), but only when d > 5 for integrability reasons

Theorem

[J.D.] Assume that d > 5 and let q = 9*3. There exists a positive

constant C < (1 + d) (1—e"92)s, such that

Sa w712 g, o) = [ W (=)
< C W2 gy (171 e ey = Sa 1122

for any w € DY2(R9)
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Solutions with separation of variables

Consider the solution of % = Av"™ vanishing at t = T:

d+2

vr(t,x)=c(T —t)* (F(x))7>
where F is the Aubin-Talenti solution of
—AF =d(d —2) Fld+2/(d-2)
Let ||v]|« := supyepa(1 + |x]?)92 |v(x)|

Lemma

[M. delPino, M. Saez], [J. L. Vdzquez, J. R. Esteban, A. Rodriguez|
For any solution v with initial datum vy € 1.24/(d+2)(R9), vy > 0, there
exists T >0, A > 0 and xp € RY such that

Jim (T — 0777 |[v(t,)/v(t,) = 1] =0

with V(t, x) = Nd+t2/291(t, (x — x0)/)\)

<
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Improved inequality: proof (1/2)

J(t) == fgo v(t,x)™T dx satisfies

m m+1
JI = —(m+ ].) ||VV ||i2(]Rd) S S

If d > 5, then we also have

J'=2m(m+ 1)/ v (AV™)? dx > 0
Rd

Notice that

J m+1 _> 2d T —3
< — i< — ith S m+1
7= s, J7d < —k with & 125, </]Rd dx)

IN
N
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Improved inequality: proof (2/2)

By the Cauchy-Schwarz inequality, we have

Jz? - 2
(m7+ 1)2 = vamH?ﬂ(Rd) — (/Rd V(m 1)/2 AVm . V(m+1)/2 dx)
< / ymt (Avm)2 dx/ vl gy = Cst J' )
Rd Rd
so that Qt) := [ Vv (8, [Fx(ae) (Jeo v (1) ab) ~ s

monotone decreasing, and

/ /
H =2J(S4Q—1), H”:JTH’+2JSdQ’§JjH’§O

/ vé"“ dx)
]Rd

By writing that —H(0) = H(T) — H(0) < H'(0) (1 — e *T)/k and
using the estimate x T < d/2, the proof is completed O

—2/d
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d = 2: Onofri’s and log HLS inequalities

Ha[v] := /RZ(V_M)(_A)A(V_M) dx_ﬁ/wmog (5) dx

With pi(x) := 2 (14 |x|?)72. Assume that v is a positive solution of

%:Alog(v/u) t>0, xcR?

Proposition

If v = pe'/? is a solution with nonnegative initial datum vy in L*(R?)
such that [o, vo dx =1, v log vo € L(R?) and v log pu € L*(R?), then

d 1 u
—H * = —— 2 2 ]-
it 2[v(t,-)] 16 /2 |Vul* dx — /2 (e2 ) udup

1
> — |Vu|2dx+/ udu — log / e'du) >0
167 R2 R2 R2

J. Dolbeault
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C: Keller-Segel model

@ Small mass results
@ Spectral analysis

@ Collecting estimates: towards exponential
convergence
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Keller-Segel with subcritical mass in self-similar variables

0

8_::An—V~(n(Vc—x)) x€R?, t>0

c=——log||*n x€R2, t>0
2m

n(-,t=0)=ng >0 x € R?

Jim (-4 £) = nscllpsary =0 and  lim [[Ve(- + 1) = Vesl|zgazy = 0

ecoo_‘X|2/2 1
Noo =M -————— = —Ac Coo =—=—log|-|*n
= S €= 7IXIP/2 dx oo > 2 gl - [ e
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A parametrization of the solutions and the linearized

operator
[ Campos, JD | o=} IxP+c
—Nc=M B I TS
f]Rz e~ 3 XPPFe dx
Solve

—q&”—lqb’:e’%’z*d’, r>0
p

with initial conditions ¢(0) = a, ¢'(0) = 0 and get

M(a) := 27r/ e 37t gy
R2

1,2
—5 "+,
e 3 r ¢(r) 7e—%r2+¢a(r)

ny(x) = M(a =
CJ ()27rfR2re_%’2+¢a dx

With —A ¢f = n, f, consider the operator defined by
1
Lfi=—V-(n(V(f=¢r)), xe R?
a
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Spectrum of L (lowest eigenvalues only)

I L L I L
5 10 15 20 25

Figure: The lowest eigenvalues of —L (shown as a function of the mass) are 0,
1 and 2, thus establishing that the spectral gap of —L is 1
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Simple eigenfunctions

Kernel Let fy = 8%%0 be the solution of
—Afy=ns fo

and observe that go = fy/coo is such that

iV- (neoV(fo — coo 80)) =: Lo =0

Noo
Lowest non-zero eigenvalues f; := -1 BS’LT associated with
OO
_ 1 Oce _
8= % is an eigenfunction of £, such that —Lf = f

With D :=x -V, letf2—1—|— Dlognoo—l—i—2 D n,.. Then
—A(Dcy)+2Ac0 =Dne =2(fh — 1) neo

and 50 g := = (—A) " (ne £) is such that —L £ =21
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Functional setting...

Fln] :_/RZnIog<é> dx—%/RZ(n—noo)(c—coo)dx

achieves its minimum for n = n., according to log HLS and
1
Q1[f] elm) = Flne(l+ef)] >0

if fRZ f ns dx = 0. Notice that fy generates the kernel of Q

For any f € H*(R?, no dx) such that g, f ne dx =0, we have

/ |V(gcoo)|2noo dxg/ |f|2 Noo dX
R? R?
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. and eigenvalues

With g such that —A(g ¢x) = f noo, Q1 determines a scalar product
(i, 5) ::/ i oo dx—/ fi oo (g2 Co0)
R2 R2

on the orthogonal to fy in L?(nu dx) and with Gy(x) := —5= log |x|

Q2[f] ::/ |V(f —gcoo)|2 Ny dx with g = ci G * (f nyo)
R2 00

is a positive quadratic form, whose polar operator is the self-adjoint
operator L

(f,LFf)=Q[f] VfeD(L)

In this setting, L has pure discrete spectrum and its lowest eigenvalue is
positive
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An interpolation inequality induced by log HLS

For any f € [*(R?, ny dx) such that [g, f fy ne dx =0 holds, we have

//Rzmz (x) log|x — y[ f(y) nos(y) dx dy

< |f|? noo dx
R2

where g coo = Gy * (f noo) and, if [, f nee dx =0 holds,

/ V(g co)? dxg/ 12 oo dx
R2 R2

Equalities in the above inequality then holds if and only if f =0
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A new Onofri type inequality

@ The spectral gap inequality of £ is a refined version of

Theorem (Onofri type inequality)

Coo x|2
For any M € (0,87), if noo = M 72“ with oo = (=) 7" noo,

Y 2
fzecw 2” dx

duy = noo dx, we have the inequality

1
o / e dum | — / ¢ dpm < =— / IVe|2 dx V¥ ¢ € Dy2(R?)
RZ ]R2 2M RZ

<
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Back to Keller-Segel: exponential convergence for any
mass M < 8«

@ [ Campos, JD | Uniform convergence of n(t,-) to ny can be
established for any M € (0,87) by an adaptation of the
symmetrization techniques of [ Diaz, Nagai, Rakotoson |

@ Spectral gap of £ can be established (Persson’s lemma or
concentration-compactness methods). An improved interpolation
inequality also holds:

//]RZX]RZ (x) log|x — y[ f(y) noc(y) dx dy
S(l—s)/Rz|f|2noo dx

@ Exponential convergence of the relative entropy follows [ Campos,
JD, work in progress | but estimates are delicate
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Thank you for your attention !

J. Dolbeault
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