The Keller-Segel model and the logarithmic Hardy-Littlewood-Sobolev inequality

Jean Dolbeault

http://www.ceremade.dauphine.fr/~dolbeaul

http://www.sciencesmaths-paris.fr/

Ceremade, Université Paris-Dauphine

March 18, 2012

Kaust

A – The two-dimensional parabolic-elliptic Keller-Segel model

Outline

- Introduction: the two-dimensional parabolic-elliptic Keller-Segel model, the $M<8\pi$ regime, scalings, etc
- The asymptotic behaviour of the solutions of the Keller-Segel model for small mass

References on the general theory of Keller-Segel systems:

[Horstmann]

Disclaimer: many references!

Introduction

The parabolic-elliptic Keller and Segel system

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u - \nabla \cdot (u \nabla v) & x \in \mathbb{R}^2, \ t > 0 \\ -\Delta v = u & x \in \mathbb{R}^2, \ t > 0 \\ u(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

We make the choice:

$$v(t,x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log|x-y| \ u(t,y) \ dy$$

and observe that

$$\nabla v(t,x) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \frac{x-y}{|x-y|^2} u(t,y) dy$$

Mass conservation: $\frac{d}{dt} \int_{\mathbb{R}^2} u(t, x) \ dx = 0$

Blow-up

 $M = \int_{\mathbb{R}^2} n_0 \, dx > 8\pi$ and $\int_{\mathbb{R}^2} |x|^2 \, n_0 \, dx < \infty$: blow-up in finite time a solution u of

$$\frac{\partial u}{\partial t} = \Delta u - \nabla \cdot (u \, \nabla v)$$

satisfies

$$\frac{d}{dt} \int_{\mathbb{R}^{2}} |x|^{2} u(t,x) dx$$

$$= -\underbrace{\int_{\mathbb{R}^{2}} 2x \cdot \nabla u \, dx}_{-4M} + \frac{1}{2\pi} \iint_{\mathbb{R}^{2} \times \mathbb{R}^{2}} \underbrace{\frac{2x \cdot (y-x)}{|x-y|^{2}} u(t,x) u(t,y) \, dx \, dy}_{\underbrace{\frac{(x-y) \cdot (y-x)}{|x-y|^{2}} u(t,x) u(t,y) \, dx \, dy}_{=4M - \frac{M^{2}}{2\pi}} < 0 \quad \text{if} \quad M > 8\pi$$

Existence and free energy

 $M = \int_{\mathbb{R}^2} n_0 \, dx \le 8\pi$: global existence [Jäger, Luckhaus], [JD, Perthame], [Blanchet, JD, Perthame], [Blanchet, Carrillo, Masmoudi]

If u solves

$$\frac{\partial u}{\partial t} = \nabla \cdot \left[u \left(\nabla \left(\log u \right) - \nabla v \right) \right]$$

the free energy

$$F[u] := \int_{\mathbb{R}^2} u \log u \, dx - \frac{1}{2} \int_{\mathbb{R}^2} u \, v \, dx$$

satisfies

$$\frac{d}{dt}F[u(t,\cdot)] = -\int_{\mathbb{R}^2} u \left| \nabla \left(\log u \right) - \nabla v \right|^2 dx$$

Log HLS inequality [Carlen, Loss]: F is bounded from below if $M < 8\pi$

The dimension d = 2

- In dimension d, the norm $L^{d/2}(\mathbb{R}^d)$ is critical. If d=2, the mass is critical
- Scale invariance: if (u, v) is a solution in \mathbb{R}^2 of the parabolic-elliptic Keller and Segel system, then

$$\left(\lambda^2 u(\lambda^2 t, \lambda x), v(\lambda^2 t, \lambda x)\right)$$

is also a solution

• For $M < 8\pi$, the solution vanishes as $t \to \infty$, but saying that "diffusion dominates" is not correct: to see this, study "intermediate asymptotics"

The existence setting

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u - \nabla \cdot (u \nabla v) & x \in \mathbb{R}^2, \ t > 0 \\ -\Delta v = u & x \in \mathbb{R}^2, \ t > 0 \\ u(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

Initial conditions

$$n_0 \in L^1_+(\mathbb{R}^2, \left(1+|x|^2\right) dx) \;, \quad n_0 \log n_0 \in L^1(\mathbb{R}^2, dx) \;, \quad M := \int_{\mathbb{R}^2} n_0(x) \, dx < 8 \, \pi$$

Global existence and mass conservation: $M = \int_{\mathbb{R}^2} u(x,t) dx$ for any $t \geq 0$, see [Jäger-Luckhaus], [Blanchet, JD, Perthame] $v = -\frac{1}{2\pi} \log |\cdot| * u$

Time-dependent rescaling

$$u(x,t) = \frac{1}{R^2(t)} n\left(\frac{x}{R(t)}, \tau(t)\right) \quad \text{and} \quad v(x,t) = c\left(\frac{x}{R(t)}, \tau(t)\right)$$
with $R(t) = \sqrt{1+2t}$ and $\tau(t) = \log R(t)$

$$\begin{cases} \frac{\partial n}{\partial t} = \Delta n - \nabla \cdot (n(\nabla c - x)) & x \in \mathbb{R}^2, \ t > 0 \\ c = -\frac{1}{2\pi} \log |\cdot| * n & x \in \mathbb{R}^2, \ t > 0 \\ n(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

[Blanchet, JD, Perthame] Convergence in self-similar variables

$$\lim_{t\to\infty}\|n(\cdot,\cdot+t)-n_\infty\|_{L^1(\mathbb{R}^2)}=0\quad\text{and}\quad\lim_{t\to\infty}\|\nabla c(\cdot,\cdot+t)-\nabla c_\infty\|_{L^2(\mathbb{R}^2)}=0$$

means "intermediate asymptotics" in original variables:

$$\|u(x,t)-\frac{1}{R^2(t)}n_{\infty}\left(\frac{x}{R(t)},\tau(t)\right)\|_{L^1(\mathbb{R}^2)} \searrow 0$$

The stationary solution in self-similar variables

$$n_{\infty} = M \frac{e^{c_{\infty} - |x|^2/2}}{\int_{\mathbb{R}^2} e^{c_{\infty} - |x|^2/2} dx} = -\Delta c_{\infty} , \qquad c_{\infty} = -\frac{1}{2\pi} \log |\cdot| * n_{\infty}$$

- Radial symmetry [Naito]
- Uniqueness [Biler, Karch, Laurençot, Nadzieja]
- As $|x| \to +\infty$, n_{∞} is dominated by $e^{-(1-\epsilon)|x|^2/2}$ for any $\epsilon \in (0,1)$ [Blanchet, JD, Perthame]
- Bifurcation diagram of $\|n_{\infty}\|_{L^{\infty}(\mathbb{R}^2)}$ as a function of M:

$$\lim_{M\to 0_+}\|n_\infty\|_{L^\infty(\mathbb{R}^2)}=0$$

[Joseph, Lundgreen] [JD, Stańczy]

The free energy in self-similar variables

$$\frac{\partial n}{\partial t} = \nabla \left[n \left(\log n - x + \nabla c \right) \right]$$

$$F[n] := \int_{\mathbb{R}^2} n \log n \, dx + \int_{\mathbb{R}^2} \frac{1}{2} |x|^2 n \, dx - \frac{1}{2} \int_{\mathbb{R}^2} n \, c \, dx$$

satisfies

$$\frac{d}{dt}F[n(t,\cdot)] = -\int_{\mathbb{R}^2} n |\nabla (\log n) + x - \nabla c|^2 dx$$

A last remark on 8π and scalings: $n^{\lambda}(x) = \lambda^2 n(\lambda x)$

$$F[n^{\lambda}] = F[n] + \int_{\mathbb{R}^{2}} n \log(\lambda^{2}) \, dx + \int_{\mathbb{R}^{2}} \frac{\lambda^{-2} - 1}{2} |x|^{2} \, n \, dx + \frac{1}{4\pi} \int_{\mathbb{R}^{2} \times \mathbb{R}^{2}} n(x) \, n(y) \, \log \frac{1}{\lambda} \, dx \, dy$$

$$F[n^{\lambda}] - F[n] = \underbrace{\left(2M - \frac{M^{2}}{4\pi}\right)}_{>0 \text{ if } M < 8\pi} \log \lambda + \frac{\lambda^{-2} - 1}{2} \int_{\mathbb{R}^{2}} |x|^{2} n \, dx$$

First result on rates

Theorem

There exists a positive constant M^* such that, for any initial data $n_0 \in L^2(n_\infty^{-1} \ dx)$ of mass $M < M^*$ satisfying the above assumptions, there is a unique solution $n \in C^0(\mathbb{R}^+, L^1(\mathbb{R}^2)) \cap L^\infty((\tau, \infty) \times \mathbb{R}^2)$ for any $\tau > 0$

Moreover, there are two positive constants, C and δ , such that

$$\int_{\mathbb{R}^2} |n(t,x) - n_{\infty}(x)|^2 \frac{dx}{n_{\infty}} \le C e^{-\delta t} \quad \forall \ t > 0$$

As a function of M, δ is such that $\lim_{M\to 0_+} \delta(M) = 1$

The condition $M \leq 8 \pi$ is necessary and sufficient for the global existence of the solutions, but there are two extra smallness conditions in our proof:

- Uniform estimate: the method of the trap
- Spectral gap of a linearised operator \mathcal{L}

Proof of the first result on rates

- First step: the trap
- Second step: weighted H^1 estimates
- Third step: linearization and spectral gap
- Fourth step: collecting the estimates

The parabolic-elliptic Keller and Segel system

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u - \nabla \cdot (u \nabla v) & x \in \mathbb{R}^2, \ t > 0 \\ -\Delta v = u & x \in \mathbb{R}^2, \ t > 0 \\ u(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

Initial conditions

$$n_0 \in L^1_+(\mathbb{R}^2, (1+|x|^2) dx) \;, \quad n_0 \log n_0 \in L^1(\mathbb{R}^2, dx) \;, \quad M := \int_{\mathbb{R}^2} n_0(x) dx < 8 \,\pi$$

First step: the trap

Decay Estimates of u(t) in $L^{\infty}(\mathbb{R}^2)$

Lemma

For any $M < M_1$, there exists C = C(M) such that, for any solution $u \in C^0(\mathbb{R}^+, L^1(\mathbb{R}^2)) \cap L^{\infty}(\mathbb{R}^+_{loc} \times \mathbb{R}^2)$

$$||u(t)||_{L^{\infty}(\mathbb{R}^2)} \leq C t^{-1} \quad \forall \ t > 0$$

The method of the trap... prove that

$$H(\psi(t), M) \leq 0$$
 where $\psi(t) := t \|u(\cdot, t)\|_{L^{\infty}(\mathbb{R}^2)}$

where $z \mapsto H(z, M)$ is a continuous function which is

- negative on $[0, z_1)$
- positive on (z_1, z_2) for some z_1, z_2 such that $0 < z_1 < z_2 < \infty$

 ψ is continuous and $\psi(0) = 0 \Longrightarrow \psi(t) \le z_1 \le z_0(M)$ for any $t \ge 0$ if $H(z_0(M), M) = \sup_{z \in [z_1, z_2]} H(z, M) \ge 0$

The method of the trap amounts to prove that $H(z, M) \leq 0$ implies that $z = \psi(t)$ is bounded by $z_0(M)$ as long as $H(z_0(M), M) > 0$

Duhamel's formula:

$$\begin{split} u(x,t_0+t) &- \int_{\mathbb{R}^2} N(x-y,t) \ u(y,t_0) \ dy \\ &= \int_0^t \int_{\mathbb{R}^2} N(x-y,t-s) \ \nabla \cdot \left[u(y,t_0+s) \nabla v(y,t_0+s) \right] \ dy \ ds \\ \text{where } N(x,t) &= \frac{1}{4\pi t} \ e^{-|x|^2/(4t)}. \ \text{Let } \kappa_\sigma = \|\partial N/\partial x_i(\cdot,1)\|_{L^\sigma(\mathbb{R}^2)} \\ \|u(\cdot,t_0+t)\|_{L^\infty(\mathbb{R}^2)} &- \frac{1}{4\pi t} \|u(\cdot,t_0)\|_{L^1(\mathbb{R}^2)} \\ &\leq \sum_{i=1,2} \int_0^t \left\| \frac{\partial N}{\partial x_i}(\cdot,t-s) * \left[\left(u \frac{\partial v}{\partial x_i} \right)(\cdot,t_0+s) \right] \right\|_{L^\infty(\mathbb{R}^2)} ds \\ &\leq \sum_{i=1,2} \kappa_\sigma \int_0^t (t-s)^{-(1-\frac{1}{\sigma})-\frac{1}{2}} \left\| \left(u \frac{\partial v}{\partial x_i} \right)(\cdot,t_0+s) \right\|_{L^\rho(\mathbb{R}^2)} ds \end{split}$$

HLS inequality + Hölder and take $t_0 = t$

$$2t \|u(\cdot,2t)\|_{L^{\infty}(\mathbb{R}^{2})} - \frac{M}{2\pi}$$

$$\leq \frac{2 \kappa_{\sigma} C_{\text{HLS}}}{\pi} M^{\frac{1}{p} + \frac{1}{r}} t \int_{0}^{t} (t-s)^{\frac{1}{\sigma} - \frac{3}{2}} (t+s)^{\frac{1}{p} + \frac{1}{r} - 2} \left[\psi(t)\right]^{2 - \frac{1}{p} - \frac{1}{r}} ds$$

with $\psi(t) := \sup_{0 \le s \le t} 2s \|u(\cdot, 2s)\|_{L^{\infty}(\mathbb{R}^2)}$ and

$$t\int_0^t (t-s)^{\frac{1}{\sigma}-\frac{3}{2}} (t+s)^{\frac{1}{p}+\frac{1}{r}-2} ds = \frac{\sigma}{2-\sigma}$$

$$\psi(t) \leq \frac{M}{2\pi} + C_0 \left(\psi(t)\right)^{\theta} \quad \text{with} \quad C_0 = \frac{2 \,\kappa_\sigma \, C_{\text{HLS}}}{\pi} \, M^{\frac{1}{p} + \frac{1}{r}} \, \frac{\sigma}{2 - \sigma} \;, \quad \theta = 2 - \frac{1}{p} - \frac{1}{r}$$

Choice: $H(z, M) = z - C_0 z^{\theta} - M/(2\pi)$

How small is the mass?

The exponents σ , ρ , p, q and r are related by

$$\begin{cases} \frac{1}{\sigma} + \frac{1}{\rho} = 1, & 1 < \sigma < 2 \\ \frac{1}{\rho} + \frac{1}{q} = \frac{1}{\rho}, & p, q > 2 \\ \frac{1}{r} - \frac{1}{q} = \frac{1}{2}, & r > 1 \end{cases}$$

For the choice r = 4/3, q = 4, $C_{\text{HLS}} = 2\sqrt{\pi}$

$$C_0 = \frac{4\kappa_{\sigma}}{\sqrt{\pi}} M^{\frac{1}{p} + \frac{1}{4}} \frac{\sigma}{2 - \sigma}$$
 with $\sigma = \frac{4p}{3p - 4}$

... there exists $M_0(p)$ such that $H(z_0(M),M)>0$ if and only if $M< M_0(p)$ and $\sup_{p\in(4,+\infty)}M_0(p)=\lim_{p\to+\infty}M_0(p)\approx 0.822663$ $<8\pi\approx25.1327$

Other norms: interpolation

Corollary

For any mass $M < M_1$ and all $p \in [1, \infty]$, there exists a positive constant C = C(p, M) with $\lim_{M \to 0_+} C(p, M) = 0$, such that

$$||u(t)||_{L^{p}(\mathbb{R}^{2})} \leq C t^{-(1-\frac{1}{p})} \quad \forall \ t > 0$$

RemarkThe above rates are optimal as can easily be checked using the self-similar solutions (n_{∞}, c_{∞})

Second step: weighted \mathcal{H}^1 estimates

L^p and H^1 estimates in the self-similar variables

Consider the solution of

$$\begin{cases} \frac{\partial n}{\partial t} = \Delta n - \nabla \cdot (n(\nabla c - x)) & x \in \mathbb{R}^2, \ t > 0 \\ c = -\frac{1}{2\pi} \log |\cdot| * n & x \in \mathbb{R}^2, \ t > 0 \\ n(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

For any $p \in (1, \infty]$

$$||n(t)||_{L^p(\mathbb{R}^2)} \leq C_1 \quad \forall \ t>0$$

for some positive constant C_1 , and for p > 2

$$2\pi \ \|\nabla c(t)\|_{L^{\infty}} \leq \underbrace{\sup_{x \in \mathbb{R}^{2}} \int_{|x-y| \geq 1} \frac{n(t,y)}{|x-y|} \ dy}_{\leq M} + \underbrace{\sup_{x \in \mathbb{R}^{2}} \int_{|x-y| \leq 1} \frac{n(t,y)}{|x-y|} \ dy}_{\leq \left(2\pi \frac{\rho-1}{\rho-2}\right)^{\frac{\rho}{\rho-1}} \|n\|_{L^{p}(\mathbb{R}^{2})}}$$

$$\|n(t)\|_{L^p(\mathbb{R}^2)} \leq C_1 \quad \text{and} \quad \|\nabla c(t)\|_{L^\infty(\mathbb{R}^2)} \leq C_2 \quad \forall \ t>0$$

Lemma

The constants C_1 and C_2 depend on M and are such that

$$\lim_{M\to 0_+} C_i(M) = 0 \quad i=1, 2$$

Exponential weights

With $K = K(x) = e^{|x|^2/2}$, let us rewrite the equation for n as

$$\frac{\partial n}{\partial t} - \frac{1}{K} \nabla \cdot (K \nabla n) = -\nabla c \cdot \nabla n + 2n + n^2$$

Proposition

For any mass $M \in (0, M_1)$, there is a positive constant C such that

$$||n(t)||_{H^1(K)} \leq C \quad \forall \ t > 0$$

First ingredient [M. Escobedo and O. Kavian]: for any q>2 and $\varepsilon>0$, there exists a positive constant $C(\varepsilon,q)$ such that

$$\int_{\mathbb{R}^2} n^2 \, K \, dx \leq \varepsilon \int_{\mathbb{R}^2} |\nabla n|^2 \, K \, dx + C(\varepsilon, q) \, \|n\|_{L^q(\mathbb{R}^2)}^2$$

$L^2(K)$ estimate

Multiply the equation by nK and integrate by parts

$$\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^2} |n|^2 K dx + \int_{\mathbb{R}^2} |\nabla n|^2 K dx$$

$$= -\int_{\mathbb{R}^2} n \nabla c \cdot \nabla n K dx + 2 \int_{\mathbb{R}^2} n^2 K dx + \int_{\mathbb{R}^2} n^3 K dx$$

$$\leq \varepsilon \int_{\mathbb{R}^2} |\nabla n|^2 K dx + C$$

and so

$$\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^2}|n|^2\ K\ dx + (1-\varepsilon)\underbrace{\int_{\mathbb{R}^2}|\nabla n|^2\ K\ dx}_{\geq \int_{\mathbb{R}^2}|n|^2\ K\ dx} \leq C$$

(expand the square in $\int_{\mathbb{D}^2} |\nabla(nK)|^2 K^{-1} dx \ge 0$)

$H^1(K)$ estimate (1/2)

Let S(t) be the semi-group generated by $-K^{-1} \nabla \cdot (K \nabla \cdot)$ on $L^2(K)$

$$n(t,x) = S(t) n_0(x) - \int_0^t S(t-s) (\nabla c \cdot \nabla n)(s) ds + \int_0^t S(t-s) (2n+n^2)(s) ds$$

$$||n(t)||_{H^{1}(K)} - ||S(t)|n_{0}||_{H^{1}(K)}$$

$$\leq \int_{0}^{t} ||S(t-s)(\nabla c \cdot \nabla n)(s)||_{H^{1}(K)} ds + \int_{0}^{t} ||S(t-s)(2n+n^{2})(s)||_{H^{1}(K)} ds$$

Second ingredient: $||S(t)h||_{H^1(K)} \le \kappa (1 + t^{-1/2}) ||h||_{L^2(K)}$

$$\frac{1}{\kappa} \left(\| n(t) \|_{H^{1}(K)} - \| S(t) \, n_{0} \|_{H^{1}(K)} \right) \\
\leq C_{2} \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| \nabla n(s) \|_{L^{2}(K)} \, ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}} \right) \| n(s) \|_{L^{2}(K)} ds + (2 + C_{1}) \|_{L^{2}(K)} ds + (2 + C_$$

$H^1(K)$ estimate (2/2)

$$\frac{1}{\kappa} \| \textit{n}(t+\tau) \|_{\textit{H}^{1}(\textit{K})} \leq \left(1 + \frac{1}{\sqrt{t}}\right) \ \textit{C}_{1} + \textit{C}_{3} \int_{0}^{t} \left(1 + \frac{1}{\sqrt{t-s}}\right) \| \textit{n}(s+\tau) \|_{\textit{H}^{1}(\textit{K})} \ \textit{d}s$$

Let
$$H(T) = \sup_{t \in (0,T)} \int_0^t \left(1 + \frac{1}{\sqrt{t-s}}\right) \|n(s+\tau)\|_{H^1(K)} ds$$
 and choose

$$T > 0$$
 such that $\frac{1}{2\kappa} = C_3 \int_0^T \left(1 + \frac{1}{\sqrt{T-s}}\right) ds = C_3 \left(T + 2\sqrt{T}\right)$

$$\frac{1}{\kappa}H(T) \leq \left(\pi + 4\sqrt{T} + T\right)C_1 + \frac{1}{2\kappa}H(T) \implies H(T) \leq 2\left(\pi + 4\sqrt{T} + T\right)\kappa C_1$$

For any $t \in (0, T)$

$$\frac{1}{\kappa} \| n(t+\tau) \|_{H^1(K)} \leq \left(1 + \frac{1}{\sqrt{t}} \right) C_1 + C_3 H(T) \leq \left(1 + \frac{1}{\sqrt{t}} \right) C_1 + 2 \left(\pi + 4\sqrt{T} + T \right)$$

Conclusion: bound in $H^1(K)$

The estimate

$$\frac{1}{\kappa} \| n(t+\tau) \|_{H^1(K)} \leq \left(1 + \frac{1}{\sqrt{t}} \right) C_1 + C_3 H(T) \leq \left(1 + \frac{1}{\sqrt{t}} \right) C_1 + 2 \left(\pi + 4\sqrt{T} + T \right) C_1 + C_3 H(T) \leq \left(1 + \frac{1}{\sqrt{t}} \right) C_1 + 2 \left(\pi + 4\sqrt{T} + T \right) C_1 + C_3 H(T) \leq \left(1 + \frac{1}{\sqrt{t}} \right) C_1 + 2 \left(\pi + 4\sqrt{T} + T \right) C_1 + C_3 H(T) \leq \left(1 + \frac{1}{\sqrt{t}} \right) C_1 + 2 \left(\pi + 4\sqrt{T} + T \right) C_1 + C_3 H(T) \leq \left(1 + \frac{1}{\sqrt{t}} \right) C_1 + C_3 H(T) \leq \left($$

Lemma

$$\|\mathit{n}(t)\|_{H^1(K)} \leq C \, \max\left\{1, rac{\sqrt{T}}{\sqrt{t}}
ight\} \quad orall \, \, t>0$$

for any $t \in (0, T)$ gives a bound on $||n(T + \tau)||_{H^1(K)}$ for any $\tau > 0$

Actually n(t) can be bounded also in $H^1(n_{\infty}^{-1})$ but further estimates are needed...

Third step: linearization and spectral gap

A linearized operator

Introduce f and g defined by

$$n(x,t) = n_{\infty}(x)(1+f(x,t))$$
 and $c(x,t) = c_{\infty}(x)(1+g(x,t))$

(f,g) is solution of the non-linear problem

$$\begin{cases} \frac{\partial f}{\partial t} - \mathcal{L}(t, x, f, g) = -\frac{1}{n_{\infty}} \nabla \cdot [f \, n_{\infty} \, \nabla \, (g \, c_{\infty})] & x \in \mathbb{R}^{2}, \ t > 0 \\ -\Delta(c_{\infty} \, g) = f \, n_{\infty} & x \in \mathbb{R}^{2}, \ t > 0 \end{cases}$$

where \mathcal{L} is the linear operator given by

$$\mathcal{L}(t,x,f,g) = \frac{1}{n_{\infty}} \nabla \cdot [n_{\infty} \nabla (f - g c_{\infty})]$$

The conservation of mass is replaced here by $\int_{\mathbb{R}^2} f \, n_{\infty} \, dx = 0$

A spectral gap estimate

Proposition

For any $M \in (0, M_2)$, for any $f \in H^1(n_\infty dx)$ such that

$$\int_{\mathbb{R}^2} f \, n_\infty \, dx = 0 \quad \Longrightarrow \quad \int_{\mathbb{R}^2} |\nabla f|^2 \, n_\infty \, dx \ge \Lambda(M) \int_{\mathbb{R}^2} |f|^2 \, n_\infty \, dx$$

for some $\Lambda(M)>0$ and $\lim_{M\to 0_+}\Lambda(M)=1$

Let
$$h = \sqrt{n_{\infty}} f = \sqrt{\lambda} e^{-|x|^2/4 + c_{\infty}/2} f$$

$$\lambda |\nabla f|^2 n_{\infty} = |\nabla h|^2 + \frac{|x|^2}{4} h^2 + \frac{1}{4} |\nabla c_{\infty}|^2 h^2 + h \nabla h \cdot (x - \nabla c_{\infty}) - \frac{1}{2} x \cdot \nabla c_{\infty} h^2$$

(integrations by parts)

$$\int_{\mathbb{R}^{2}} h \nabla h \cdot x \, dx = -\int_{\mathbb{R}^{2}} h^{2} \, dx
\int_{\mathbb{R}^{2}} h \nabla h \cdot \nabla c_{\infty} \, dx = \frac{1}{2} \int_{\mathbb{R}^{2}} h^{2} \left(-\Delta c_{\infty}\right) \, dx \leq \frac{1}{2} \|n_{\infty}\|_{L^{\infty}(\mathbb{R}^{2})} \int_{\mathbb{R}^{2}} h^{2} \, dx
\frac{1}{2} \int_{\mathbb{R}^{2}} x \cdot \nabla c_{\infty} h^{2} \, dx \leq \frac{\sigma^{2} - 1}{\sigma^{2}} \int_{\mathbb{R}^{2}} \frac{|x|^{2}}{4} h^{2} \, dx + \frac{1}{4} \frac{\sigma^{2}}{\sigma^{2} - 1} \int_{\mathbb{R}^{2}} |\nabla c_{\infty}|^{2} h^{2} \, dx$$

$H^1(n_{\infty}^{-1})$ estimate

Assume that $n_0/n_\infty \in L^2(n_\infty)$ There exists a constant C > 0 such that

$$|x| > 1 \implies \left| c_{\infty} + M/(2\pi) \log |x| \right| \le C$$

$$n_{\infty}\,K=e^{c_{\infty}}$$
 behaves like $O\bigl(|x|^{-M/(2\pi)}\bigr)$ as $|x|\to\infty$

$$\frac{\partial n}{\partial t} - n_{\infty} \nabla \cdot \left(\frac{1}{n_{\infty}} \nabla n\right) = (\nabla c_{\infty} - \nabla c) \cdot \nabla n + 2n + n^{2}$$

Corollary

If $M < M_2$, then any solution n is bounded in

$$L^{\infty}(\mathbb{R}^+, L^2(n_{\infty}^{-1} dx)) \cap L^{\infty}((\tau, \infty), H^1(n_{\infty}^{-1} dx))$$

for any $\tau > 0$

Fourth step: collecting the estimates

Proof of the exponential rate of convergence

$$\begin{cases} \frac{\partial f}{\partial t} - \mathcal{L}(t, x, f, g) = -\frac{1}{n_{\infty}} \nabla \cdot [f \, n_{\infty} \, \nabla \, (g \, c_{\infty})] & x \in \mathbb{R}^{2}, \ t > 0 \\ -\Delta(c_{\infty} \, g) = f \, n_{\infty} & x \in \mathbb{R}^{2}, \ t > 0 \end{cases}$$

Multiply by $f n_{\infty}$ and integrate by parts

$$\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^2} |f|^2 n_{\infty} dx + \int_{\mathbb{R}^2} |\nabla f|^2 n_{\infty} dx$$

$$= \underbrace{\int_{\mathbb{R}^2} \nabla f \cdot \nabla (g c_{\infty}) n_{\infty} dx}_{=II} + \underbrace{\int_{\mathbb{R}^2} \nabla f \cdot \nabla (g c_{\infty}) f n_{\infty} dx}_{=II}$$

Cauchy-Schwarz' inequality

$$I = \int_{\mathbb{R}^2} \nabla f \cdot \nabla (g c_{\infty}) \ n_{\infty} \ dx \leq \|\nabla f\|_{L^2(n_{\infty} dx)} \|\nabla (g c_{\infty})\|_{L^2(n_{\infty} dx)}$$

first term

Hölder's inequality (with q > 2)

$$\|\nabla(g\,c_{\infty})\|_{L^{2}(n_{\infty}\,dx)} \leq M^{1/2-1/q}\,\|n_{\infty}\|_{L^{\infty}(\mathbb{R}^{2})}^{1/q}\,\|\nabla(g\,c_{\infty})\|_{L^{q}(\mathbb{R}^{2})}$$

HLS inequality (with 1/p = 1/2 + 1/q)

$$\|\nabla(g\,c_{\infty})\|_{L^{q}(\mathbb{R}^{2})} \leq \frac{1}{2\pi} \left(\int_{\mathbb{R}^{2}} \left| (f\,n_{\infty}) * \frac{1}{|\cdot|} \right|^{q} \, dx \right)^{\frac{1}{q}} \leq \frac{C_{\mathrm{HLS}}}{2\pi} \, \|f\,n_{\infty}\|_{L^{p}(\mathbb{R}^{2})}$$

Hölder's inequality: $\|f\|_{L^p(\mathbb{R}^2)} \le \|f\|_{L^2(n_\infty,d_\times)} \|n_\infty\|_{L^{q/2}(\mathbb{R}^2)}^{1/2}$

$$I = \int_{\mathbb{R}^2} \nabla f \cdot \nabla(g \, c_{\infty}) \, f \, n_{\infty} \, dx \leq C_*(M) \, \|f\|_{L^2(n_{\infty} \, dx)} \, \|\nabla f\|_{L^2(n_{\infty} \, dx)}$$

$$C_*(M) := C_{\mathrm{HLS}} \, (2\pi)^{-1} \, M^{1/2 - 1/q} \, \left\| n_\infty \right\|_{L^{q/2}(\mathbb{R}^2)}^{1/2} \, \left\| n_\infty \right\|_{L^\infty(\mathbb{R}^2)}^{1/q} \to 0 \, \, \mathrm{as} \, \, M \to 0$$

second term and conclusion

Use $g c_{\infty} = c - c_{\infty}$ and the Cauchy-Schwarz inequality

$$\int_{\mathbb{R}^2} \nabla f \cdot \nabla (g c_{\infty}) f n_{\infty} dx \leq \underbrace{\|\nabla c - \nabla c_{\infty}\|_{L^{\infty}(\mathbb{R}^2)}}_{\leq 2 C_2(M) \searrow 0} \|f\|_{L^2(n_{\infty} dx)} \|\nabla f\|_{L^2(n_{\infty} dx)}$$

Spectral gap estimate

$$\underbrace{\sqrt{\Lambda(M)}}_{\to 1} \|f\|_{L^2(n_\infty dx)} \leq \|\nabla f\|_{L^2(n_\infty dx)}$$

With
$$\gamma(M) := \frac{C_*(M) + 2 C_2(M)}{\sqrt{\Lambda(M)}} \setminus 0$$
,
$$\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^2} |f|^2 n_{\infty} dx \le -\left[1 - \gamma(M)\right] \int_{\mathbb{R}^2} |\nabla f|^2 n_{\infty} dx$$

Uniqueness

If n_1 and n_2 are two solutions in $C^0(\mathbb{R}^+, L^1(\mathbb{R}^2)) \cap L^\infty((\tau, \infty) \times \mathbb{R}^2)$ for any $\tau > 0$, with $f = (n_2 - n_1)/n_\infty$ we also get

$$\frac{1}{2}\frac{d}{dt}\int_{\mathbb{R}^2}|f|^2\,n_\infty\,dx\leq -\left[1-\gamma(M)\right]\Lambda(M)\,\int_{\mathbb{R}^2}|f|^2\,n_\infty\,dx$$

As a consequence, if the initial condition is the same, then $n_1 = n_2$

B – Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Gagliardo-Nirenberg inequalities

Consider the following sub-family of Gagliardo-Nirenberg inequalities

$$||f||_{\mathrm{L}^{2p}(\mathbb{R}^d)} \le \mathsf{C}_{p,d} ||\nabla f||_{\mathrm{L}^2(\mathbb{R}^d)}^{\theta} ||f||_{\mathrm{L}^{p+1}(\mathbb{R}^d)}^{1-\theta}$$

with
$$\theta = \theta(p) := \frac{p-1}{p} \frac{d}{d+2-p(d-2)}$$

- $1 if <math>d \ge 3$
- 1

[M. del Pino, J.D.] equality holds in if $f=F_{\rho}$ with

$$F_p(x) = (1 + |x|^2)^{-\frac{1}{p-1}} \quad \forall \ x \in \mathbb{R}^d$$

and that all extremal functions are equal to F_p up to a multiplication by a constant, a translation and a scaling.

- If $d \ge 3$, the limit case p = d/(d-2) corresponds to Sobolev's inequality [T. Aubin, G. Talenti]
- When $p \to 1$, we recover the euclidean logarithmic Sobolev inequality in optimal scale invariant form [F. Weissler]
- If d = 2 and $p \to \infty$...

Onofri's inequality as a limit case

When d=2, Onofri's inequality can be seen as an endpoint case of the family of the Gagliardo-Nirenberg inequalities [J.D.]

Proposition

 $[\mathrm{J.D.}]$ Assume that $g\in\mathcal{D}(\mathbb{R}^d)$ is such that $\int_{\mathbb{R}^2}g\ d\mu=0$ and let

$$f_p := F_p (1 + \frac{g}{2p})$$

With $\mu(x) := \frac{1}{\pi} (1 + |x|^2)^{-2}$, and $d\mu(x) := \mu(x) dx$, we have

$$1 \leq \lim_{\rho \to \infty} \mathsf{C}_{\rho,2} \, \frac{\|\nabla f\|_{\mathsf{L}^2(\mathbb{R}^2)}^{\theta(\rho)} \, \|f\|_{\mathsf{L}^{\rho+1}(\mathbb{R}^2)}^{1-\theta(\rho)}}{\|f\|_{\mathsf{L}^{2\rho}(\mathbb{R}^2)}} = \frac{e^{\frac{1}{16\,\pi} \, \int_{\mathbb{R}^2} |\nabla g|^2 \, dx}}{\int_{\mathbb{R}^2} e^{\,g} \, d\mu}$$

The standard form of the euclidean version of Onofri's inequality is

$$\log \left(\int_{\mathbb{R}^2} e^{g} \ d\mu \right) - \int_{\mathbb{R}^2} g \ d\mu \leq \frac{1}{16\,\pi} \, \int_{\mathbb{R}^2} |\nabla g|^2 \ dx$$

Legendre duality: Onofri and log HLS

Legendre's duality: $F^*[v] := \sup \left(\int_{\mathbb{R}^d} u \, v \, dx - F[u] \right)$

$$F_1[u] := \log \left(\int_{\mathbb{R}^2} \mathrm{e}^u \ d\mu \right) \quad \text{and} \quad F_2[u] := \frac{1}{16 \, \pi} \int_{\mathbb{R}^2} |\nabla u|^2 \ dx + \int_{\mathbb{R}^2} u \, \mu \ dx$$

Onofri's inequality amounts to $F_1[u] \leq F_2[u]$ with $d\mu(x) := \mu(x) dx$, $\mu(x) := \frac{1}{\pi (1+|x|^2)^2}$

Proposition

For any $v \in L^1_+(\mathbb{R}^2)$ with $\int_{\mathbb{R}^2} v \ dx = 1$, such that $v \log v$ and $(1 + \log |x|^2) \ v \in L^1(\mathbb{R}^2)$, we have

$$F_1^*[v] - F_2^*[v] = \int_{\mathbb{R}^2} v \log\left(\frac{v}{\mu}\right) dx - 4\pi \int_{\mathbb{R}^2} (v - \mu) (-\Delta)^{-1} (v - \mu) dx \ge 0$$

[Carlen-Loss, Beckner, Calvez-Corrias]

A puzzling result of Carlen, Carrillo and Loss ($d \geq 3$)

[E. Carlen, J.A. Carrillo and M. Loss] The fast diffusion equation

$$\frac{\partial v}{\partial t} = \Delta v^m \quad t > 0 , \quad x \in \mathbb{R}^d$$

with exponent m = d/(d+2), when $d \ge 3$, is such that

$$\mathsf{H}_d[v] := \int_{\mathbb{R}^d} v (-\Delta)^{-1} v \ dx - \mathsf{S}_d \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2$$

obeys to

$$\begin{split} \frac{1}{2} \, \frac{d}{dt} \mathsf{H}_d[v(t,\cdot)] &= \frac{1}{2} \, \frac{d}{dt} \left[\int_{\mathbb{R}^d} v \, (-\Delta)^{-1} v \, dx - \mathsf{S}_d \, \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \right] \\ &= \frac{d \, (d-2)}{(d-1)^2} \, \mathsf{S}_d \, \|u\|_{\mathrm{L}^{q+1}(\mathbb{R}^d)}^{4/(d-1)} \, \|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 - \|u\|_{\mathrm{L}^{2q}(\mathbb{R}^d)}^{2q} \end{split}$$

with $u = v^{(d-1)/(d+2)}$ and $q = \frac{d+1}{d-1}$. If $\frac{d(d-2)}{(d-1)^2} S_d = (C_{q,d})^{2q}$, the r.h.s. is nonnegative. Optimality is achieved simultaneously in both functionals (Barenblatt regime): the Hardy-Littlewood-Sobolev inequalities can be improved by an integral remainder term

... and the two-dimensional case

Recall that $(-\Delta)^{-1}v = G_d * v$ with

•
$$G_d(x) = \frac{1}{d-2} |\mathbb{S}^{d-1}|^{-1} |x|^{2-d} \text{ if } d \ge 3$$

•
$$G_2(x) = \frac{1}{2\pi} \log |x| \text{ if } d = 2$$

Same computation in dimension d=2 with m=1/2 gives

$$\frac{\|v\|_{\mathrm{L}^{1}(\mathbb{R}^{2})}}{8} \frac{d}{dt} \left[\frac{4 \pi}{\|v\|_{\mathrm{L}^{1}(\mathbb{R}^{2})}} \int_{\mathbb{R}^{2}} v (-\Delta)^{-1} v \, dx - \int_{\mathbb{R}^{2}} v \log v \, dx \right]
= \|u\|_{\mathrm{L}^{4}(\mathbb{R}^{2})}^{4} \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{2})}^{2} - \pi \|v\|_{\mathrm{L}^{6}(\mathbb{R}^{2})}^{6}$$

The r.h.s. is one of the Gagliardo-Nirenberg inequalities (d = 2, q = 3): $\pi (C_{3,2})^6 = 1$

The l.h.s. is bounded from below by the logarithmic Hardy-Littlewood-Sobolev inequality and achieves its minimum if $v = \mu$ with

$$\mu(x) := \frac{1}{\pi (1 + |x|^2)^2} \quad \forall \ x \in \mathbb{R}^2$$

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev's inequality in \mathbb{R}^d , $d \geq 3$,

$$||u||_{L^{2^*}(\mathbb{R}^d)}^2 \le S_d ||\nabla u||_{L^2(\mathbb{R}^d)}^2 \quad \forall \ u \in \mathcal{D}^{1,2}(\mathbb{R}^d)$$
 (1)

and the Hardy-Littlewood-Sobolev inequality

$$\mathsf{S}_d \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \ge \int_{\mathbb{R}^d} v(-\Delta)^{-1} v \, dx \quad \forall \, v \in \mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)$$
 (2)

are dual of each other. Here S_d is the Aubin-Talenti constant and $2^* = \frac{2d}{d-2}$. Can we recover this using a nonlinear flow approach? Can we improve it?

Keller-Segel model: another motivation [Carrillo, Carlen and Loss] and [Blanchet, Carlen and Carrillo]

Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

$$\frac{\partial v}{\partial t} = \Delta v^m \quad t > 0 \;, \quad x \in \mathbb{R}^d$$
 (3)

If we define $H(t) := H_d[v(t, \cdot)]$, with

$$\mathsf{H}_d[v] := \int_{\mathbb{R}^d} v (-\Delta)^{-1} v \ dx - \mathsf{S}_d \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2$$

then we observe that

$$\frac{1}{2} H' = - \int_{\mathbb{R}^d} v^{m+1} \ dx + S_d \left(\int_{\mathbb{R}^d} v^{\frac{2d}{d+2}} \ dx \right)^{\frac{2}{d}} \int_{\mathbb{R}^d} \nabla v^m \cdot \nabla v^{\frac{d-2}{d+2}} \ dx$$

where $v = v(t, \cdot)$ is a solution of (??). With the choice $m = \frac{d-2}{d+2}$, we find that $m+1 = \frac{2d}{d+2}$

A first statement

Proposition

[J.D.] Assume that $d \ge 3$ and $\frac{d-2}{d+2}$. If v is a solution of (??) with nonnegative initial datum in $L^{2d/(d+2)}(\mathbb{R}^d)$, then

$$\frac{1}{2} \frac{d}{dt} \left[\int_{\mathbb{R}^d} v (-\Delta)^{-1} v \, dx - \mathsf{S}_d \|v\|_{\mathbf{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \right] \\
= \left(\int_{\mathbb{R}^d} v^{m+1} \, dx \right)^{\frac{2}{d}} \left[\mathsf{S}_d \|\nabla u\|_{\mathbf{L}^2(\mathbb{R}^d)}^2 - \|u\|_{\mathbf{L}^{2^*}(\mathbb{R}^d)}^2 \right] \ge 0$$

The HLS inequality amounts to $H \le 0$ and appears as a consequence of Sobolev, that is $H' \ge 0$ if we show that $\limsup_{t>0} H(t) = 0$ Notice that $u = v^m$ is an optimal function for $(\ref{eq:thm1})$ if v is optimal for $(\ref{eq:thm2})$ By integrating along the flow defined by $(\ref{eq:condition})$, we can actually obtain optimal integral remainder terms which improve on the usual Sobolev inequality $(\ref{eq:condition})$, but only when $d \geq 5$ for integrability reasons

Theorem

[J.D.] Assume that $d \geq 5$ and let $q = \frac{d+2}{d-2}$. There exists a positive constant $\mathcal{C} \leq \left(1 + \frac{2}{d}\right)\left(1 - e^{-d/2}\right)\mathsf{S}_d$ such that

$$||S_{d}||w^{q}||_{L^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} - \int_{\mathbb{R}^{d}} w^{q} (-\Delta)^{-1} w^{q} dx$$

$$\leq C ||w||_{L^{2^{*}}(\mathbb{R}^{d})}^{\frac{8}{d-2}} \left[||\nabla w||_{L^{2}(\mathbb{R}^{d})}^{2} - |S_{d}||w||_{L^{2^{*}}(\mathbb{R}^{d})}^{2} \right]$$

for any $w \in \mathcal{D}^{1,2}(\mathbb{R}^d)$

Solutions with separation of variables

Consider the solution of $\frac{\partial v}{\partial t} = \Delta v^m$ vanishing at t = T:

$$\overline{v}_T(t,x) = c (T-t)^{\alpha} (F(x))^{\frac{d+2}{d-2}}$$

where F is the Aubin-Talenti solution of

$$-\Delta F = d(d-2) F^{(d+2)/(d-2)}$$

Let
$$||v||_* := \sup_{x \in \mathbb{R}^d} (1 + |x|^2)^{d+2} |v(x)|$$

Lemma

[M. delPino, M. Saez], [J. L. Vázquez, J. R. Esteban, A. Rodríguez] For any solution v with initial datum $v_0 \in L^{2d/(d+2)}(\mathbb{R}^d)$, $v_0 > 0$, there exists T > 0, $\lambda > 0$ and $x_0 \in \mathbb{R}^d$ such that

$$\lim_{t \to T_{-}} (T - t)^{-\frac{1}{1 - m}} \| v(t, \cdot) / \overline{v}(t, \cdot) - 1 \|_{*} = 0$$

with
$$\overline{V}(t,x) = \lambda^{(d+2)/2} \overline{V}_T(t,(x-x_0)/\lambda)$$

Improved inequality: proof (1/2)

 $J(t) := \int_{\mathbb{R}^d} v(t,x)^{m+1} dx$ satisfies

$$\mathsf{J}' = -(m+1) \| \nabla \mathsf{v}^m \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \le - \frac{m+1}{\mathsf{S}_d} \, \mathsf{J}^{1-\frac{2}{d}}$$

If $d \geq 5$, then we also have

$$J'' = 2 m(m+1) \int_{\mathbb{R}^d} v^{m-1} (\Delta v^m)^2 dx \ge 0$$

Notice that

$$\frac{\mathsf{J}'}{\mathsf{J}} \leq -\frac{m+1}{\mathsf{S}_d} \, \mathsf{J}^{-\frac{2}{d}} \leq -\kappa \quad \text{with} \quad \kappa \, \mathsf{T} = \frac{2\,d}{d+2} \, \frac{\mathsf{T}}{\mathsf{S}_d} \left(\int_{\mathbb{R}^d} v_0^{m+1} \, dx \right)^{-\frac{2}{d}} \leq \frac{d}{2}$$

Improved inequality: proof (2/2)

By the Cauchy-Schwarz inequality, we have

$$\frac{J'^{2}}{(m+1)^{2}} = \|\nabla v^{m}\|_{L^{2}(\mathbb{R}^{d})}^{4} = \left(\int_{\mathbb{R}^{d}} v^{(m-1)/2} \, \Delta v^{m} \cdot v^{(m+1)/2} \, dx\right)^{2} \\
\leq \int_{\mathbb{R}^{d}} v^{m-1} \, (\Delta v^{m})^{2} \, dx \int_{\mathbb{R}^{d}} v^{m+1} \, dx = Cst \, \mathsf{J}'' \, \mathsf{J}$$

so that $Q(t) := \|\nabla v^m(t, \cdot)\|_{L^2(\mathbb{R}^d)}^2 \left(\int_{\mathbb{R}^d} v^{m+1}(t, x) \ dx \right)^{-(d-2)/d}$ is monotone decreasing, and

$$\mathsf{H}' = 2\,\mathsf{J}\,(\mathsf{S}_d\,\mathsf{Q} - 1)\;,\quad \mathsf{H}'' = \frac{\mathsf{J}'}{\mathsf{J}}\,\mathsf{H}' + 2\,\mathsf{J}\,\mathsf{S}_d\,\frac{\mathsf{Q}'}{\mathsf{Q}'} \leq \frac{\mathsf{J}'}{\mathsf{J}}\,\mathsf{H}' \leq 0$$

$$\mathsf{H}'' \le -\kappa \,\mathsf{H}'$$
 with $\kappa = \frac{2d}{d+2} \frac{1}{\mathsf{S}_d} \left(\int_{\mathbb{R}^d} v_0^{m+1} \, dx \right)^{-2/d}$

By writing that $-H(0) = H(T) - H(0) \le H'(0) (1 - e^{-\kappa T})/\kappa$ and using the estimate $\kappa T \le d/2$, the proof is completed

$$\mathsf{H}_2[v] := \int_{\mathbb{R}^2} \left(v - \mu\right) (-\Delta)^{-1} (v - \mu) \; dx - \frac{1}{4 \, \pi} \int_{\mathbb{R}^2} v \, \log \left(\frac{v}{\mu}\right) \, dx$$

With $\mu(x) := \frac{1}{\pi} (1 + |x|^2)^{-2}$. Assume that v is a positive solution of

$$\frac{\partial v}{\partial t} = \Delta \log (v/\mu) \quad t > 0, \quad x \in \mathbb{R}^2$$

Proposition

If $v=\mu\,e^{u/2}$ is a solution with nonnegative initial datum v_0 in $L^1(\mathbb{R}^2)$ such that $\int_{\mathbb{R}^2} v_0\ dx=1$, $v_0\log v_0\in L^1(\mathbb{R}^2)$ and $v_0\log \mu\in L^1(\mathbb{R}^2)$, then

$$\begin{split} \frac{d}{dt}\mathsf{H}_2[v(t,\cdot)] &= \frac{1}{16\,\pi} \int_{\mathbb{R}^2} |\nabla u|^2 \; dx - \int_{\mathbb{R}^2} \left(\mathsf{e}^{\frac{u}{2}} - 1 \right) u \; d\mu \\ &\geq \frac{1}{16\,\pi} \int_{\mathbb{R}^2} |\nabla u|^2 \; dx + \int_{\mathbb{R}^2} u \; d\mu - \log\left(\int_{\mathbb{R}^2} \mathsf{e}^u \; d\mu \right) \geq 0 \end{split}$$

C: Keller-Segel model

- Small mass results
- Spectral analysis
- Collecting estimates: towards exponential convergence

Keller-Segel with subcritical mass in self-similar variables

$$\begin{cases} \frac{\partial n}{\partial t} = \Delta n - \nabla \cdot (n(\nabla c - x)) & x \in \mathbb{R}^2, \ t > 0 \\ c = -\frac{1}{2\pi} \log |\cdot| * n & x \in \mathbb{R}^2, \ t > 0 \\ n(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

$$\lim_{t \to \infty} \|n(\cdot, \cdot + t) - n_\infty\|_{L^1(\mathbb{R}^2)} = 0 \quad \text{and} \quad \lim_{t \to \infty} \|\nabla c(\cdot, \cdot + t) - \nabla c_\infty\|_{L^2(\mathbb{R}^2)} = 0$$

$$n_\infty = M \frac{e^{c_\infty - |x|^2/2}}{\int_{\mathbb{R}^2} e^{c_\infty - |x|^2/2} dx} = -\Delta c_\infty, \qquad c_\infty = -\frac{1}{2\pi} \log |\cdot| * n_\infty$$

A parametrization of the solutions and the linearized operator

$$\left[\text{ Campos, JD } \right] \\ -\Delta c = M \, \frac{e^{-\frac{1}{2}\,|x|^2 + c}}{\int_{\mathbb{R}^2} e^{-\frac{1}{2}\,|x|^2 + c} \,\,dx}$$

Solve

$$-\phi'' - \frac{1}{r}\phi' = e^{-\frac{1}{2}r^2 + \phi}, \quad r > 0$$

with initial conditions $\phi(0) = a$, $\phi'(0) = 0$ and get

$$M(a) := 2\pi \int_{\mathbb{R}^2} e^{-\frac{1}{2}r^2 + \phi_a} dx$$

$$n_a(x) = M(a) \frac{e^{-\frac{1}{2}r^2 + \phi_a(r)}}{2\pi \int_{\mathbb{R}^2} r e^{-\frac{1}{2}r^2 + \phi_a} dx} = e^{-\frac{1}{2}r^2 + \phi_a(r)}$$

With $-\Delta \varphi_f = n_a f$, consider the operator defined by

$$\mathcal{L} f := \frac{1}{n_a} \nabla \cdot (n_a(\nabla (f - \varphi_f))), \quad x \in \mathbb{R}^2$$

Spectrum of \mathcal{L} (lowest eigenvalues only)

Figure: The lowest eigenvalues of $-\mathcal{L}$ (shown as a function of the mass) are 0, 1 and 2, thus establishing that the spectral gap of $-\mathcal{L}$ is 1

Simple eigenfunctions

Kernel Let $f_0 = \frac{\partial}{\partial M} c_{\infty}$ be the solution of

$$-\Delta\,f_0=n_\infty\,f_0$$

and observe that $g_0 = f_0/c_\infty$ is such that

$$\frac{1}{n_{\infty}}\nabla\cdot\left(n_{\infty}\nabla(f_0-c_{\infty}\,g_0)\right)=:\mathcal{L}\,f_0=0$$

Lowest non-zero eigenvalues $f_1 := \frac{1}{n_{\infty}} \frac{\partial n_{\infty}}{\partial x_1}$ associated with

$$g_1 = \frac{1}{c_{\infty}} \frac{\partial c_{\infty}}{\partial x_1}$$
 is an eigenfunction of \mathcal{L} , such that $-\mathcal{L} f_1 = f_1$

With
$$D := x \cdot \nabla$$
, let $f_2 = 1 + \frac{1}{2} D \log n_{\infty} = 1 + \frac{1}{2 n_{\infty}} D n_{\infty}$. Then

$$-\Delta (D c_{\infty}) + 2 \Delta c_{\infty} = D n_{\infty} = 2 (f_2 - 1) n_{\infty}$$

and so $g_2 := \frac{1}{G_{\infty}} (-\Delta)^{-1} (n_{\infty} f_2)$ is such that $-\mathcal{L} f_2 = 2 f_2$

Functional setting...

$$F[n] := \int_{\mathbb{R}^2} n \log \left(\frac{n}{n_{\infty}}\right) dx - \frac{1}{2} \int_{\mathbb{R}^2} (n - n_{\infty}) (c - c_{\infty}) dx$$

achieves its minimum for $n=n_{\infty}$ according to log HLS and

$$Q_1[f] = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon^2} F[n_{\infty}(1 + \varepsilon f)] \ge 0$$

if $\int_{\mathbb{R}^2} f \; n_\infty \; dx = 0.$ Notice that f_0 generates the kernel of Q_1

Lemma

For any $f\in H^1(\mathbb{R}^2,n_\infty\,dx)$ such that $\int_{\mathbb{R}^2}f\,n_\infty\,dx=0$, we have

$$\int_{\mathbb{R}^2} |\nabla (g c_{\infty})|^2 n_{\infty} dx \le \int_{\mathbb{R}^2} |f|^2 n_{\infty} dx$$

... and eigenvalues

With g such that $-\Delta(g c_{\infty}) = f n_{\infty}$, Q_1 determines a scalar product

$$\langle f_1, f_2 \rangle := \int_{\mathbb{R}^2} f_1 f_2 n_\infty dx - \int_{\mathbb{R}^2} f_1 n_\infty (g_2 c_\infty) dx$$

on the orthogonal to f_0 in $L^2(n_\infty\,dx)$ and with $G_2(x):=-\frac{1}{2\pi}\,\log|x|$

$$Q_2[f] := \int_{\mathbb{R}^2} |\nabla (f - g c_\infty)|^2 n_\infty dx \quad \text{with} \quad g = \frac{1}{c_\infty} G_2 * (f n_\infty)$$

is a positive quadratic form, whose polar operator is the self-adjoint operator $\mathcal L$

$$\langle f, \mathcal{L} f \rangle = \mathsf{Q}_2[f] \quad \forall \ f \in \mathcal{D}(\mathsf{L}_2)$$

Lemma

In this setting, $\mathcal L$ has pure discrete spectrum and its lowest eigenvalue is positive

An interpolation inequality induced by log HLS

Lemma

For any $f\in L^2(\mathbb{R}^2,n_\infty\,dx)$ such that $\int_{\mathbb{R}^2}f\,f_0\,n_\infty\,dx=0$ holds, we have

$$-\frac{1}{2\pi} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) \, n_{\infty}(x) \, \log|x - y| \, f(y) \, n_{\infty}(y) \, dx \, dy$$

$$\leq \int_{\mathbb{R}^2} |f|^2 \, n_{\infty} \, dx$$

where g $c_{\infty}=$ $G_{2}*(f n_{\infty})$ and, if $\int_{\mathbb{R}^{2}}f n_{\infty}\ dx=0$ holds,

$$\int_{\mathbb{R}^2} |\nabla (g c_{\infty})|^2 dx \le \int_{\mathbb{R}^2} |f|^2 n_{\infty} dx$$

Equalities in the above inequality then holds if and only if f = 0

A new Onofri type inequality

f L The spectral gap inequality of f L is a refined version of

Theorem (Onofri type inequality)

For any
$$M\in (0,8\pi)$$
, if $n_\infty=M\frac{e^{c_\infty-\frac{1}{2}|x|^2}}{\int_{\mathbb{R}^2}e^{c_\infty-\frac{1}{2}|x|^2}dx}$ with $c_\infty=(-\Delta)^{-1}\,n_\infty$, $d\mu_M=\frac{1}{M}\,n_\infty\,dx$, we have the inequality

$$\log\left(\int_{\mathbb{R}^2} e^{\phi} \ d\mu_M\right) - \int_{\mathbb{R}^2} \phi \ d\mu_M \leq \frac{1}{2\,M} \int_{\mathbb{R}^2} |\nabla \phi|^2 \ dx \quad \forall \ \phi \in \mathcal{D}_0^{1,2}(\mathbb{R}^2)$$

Back to Keller-Segel: exponential convergence for any mass $M < 8\pi$

$$-\frac{1}{2\pi} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) \, n_{\infty}(x) \, \log|x - y| \, f(y) \, n_{\infty}(y) \, dx \, dy$$

$$\leq (1 - \varepsilon) \int_{\mathbb{R}^2} |f|^2 \, n_{\infty} \, dx$$

• Exponential convergence of the relative entropy follows [Campos, JD, work in progress] but estimates are delicate

Thank you for your attention!