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Entropy methods in case of compact
domains

> Interpolation inequalities on the sphere
Q Carré du champ
@ Can one prove Sobolev’s inequalities with a heat flow ?

Q@ Some open problems: constraints and improved inequalities

[Beckner, 1993], [J.D., Zhang, 2016]

[Bakry, Emery, 1984]

[Bidault-Véron, Véron, 1991], [Bakry, Ledoux, 1996]
[Demange, 2008][J.D., Esteban, Loss, 2014 & 2015]
> Neumann boundary conditions

[J.D., Kowalczyk]
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Interpolation inequalities on the sphere

On the d-dimensional sphere, let us consider the interpolation
inequality

d d
IVulaon + 5 Nl 2 555 ulas ¥u € HY(SY, dp)

where the measure dy is the uniform probability measure on
S? ¢ R9*! corresponding to the measure induced by the Lebesgue
measure on R and the exposant p > 1, p # 2, is such that
2d
<2¥ = ——
P= d—2
if d > 3. We adopt the convention that 2* = oo if d =1 or d = 2.
The case p = 2 corresponds to the logarithmic Sobolev inequality
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The Bakry-Emery method

Entropy functional
2 2 A
Elo) = 55 {fgd p? di— (fsap du)"] if p#2

&lpl = fgd p log (HPHS(sd)) du
Fisher information functional
Tolo] =[5 |Vp7 2 dpe
Bakry-Emery (carré du champ) method: use the heat flow
dp
LA
ot
and compute $E[p] = — Ip[p] and LT,[p] < — d Z,[p] to get
d
9t (Zolpl = d&plp]) <0 = Iplp] = d &lp]

. . 2
with p = |ulP, if p < 27 := %
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The evolution under the fast diffusion flow

To overcome the limitation p < 2%, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

o _
ot
[Demange|, [J.D., Esteban, Kowalczyk, Loss|: for any p € [1,2%]

Kolol = 2 (T,l0] ~ d&,lp]) <0

m

(p, m) admissible region, d =5
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Cylindrical coordinates, Schwarz symmetrization,
stereographic projection...

o B
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. and the ultra-spherical operator

Change of variables z = cosf), v(0) = f(z), dvg == v~ dz/Z,,
v(z) :=1-2?

The self-adjoint ultraspherical operator is
2 1 !/ 1 d ! gl
Lf=01-2z)f"—-dzf'=vf —&—Eyf

which satisfies (f, L) = f i £ vduy

Proposition

Let p € [1,2) U(2,2%], d > 1. For any f € H}([-1,1], dvy),

! ||f|| d ||f|| 2(sd
_ f f f‘/2 > LPS) L(S)
(f, L )—/_1| |vdvg >d o
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The heat equation E = L g for g = fP can be rewritten in terms of f
as

of /2
—:£f+(p—1)| |

ot
1d [*
—Ea ‘f"zl/dl/d:
1

v

f

N =

d |f’|2
< (LA = (LA LO+(p-1) < y,u>

1
9 (e, )] + 2dTlg(t, )] = 2 / PP v dg + 2d/ 7 v dug
dt dar .

1 114 12 £11
d |f] d—1|f'|*f
_ 112 o 2
- 2/_1(|f t-Vg T 2Py ) v v

is nonpositive if

d |f/|4 B ( B )dfl |f/|2 f
d+2 P a2 f
is pointwise nonnegative, which is granted if
2 2
d 2d°+1 2d
-1 1 < = =2
[( )d+2} sl-Vgm = PGy Sd-2
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Improved functional inequalities

@ The range 2% < p < 2* is covered using the adapted fast
diffusion eq.

(p, B) representation of the admissible range of parameters when d =5
[J.D., Esteban, Kowalczyk, Loss|
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ar HJ s a

The bifurcation point of view

() is the optimal constant in the functional inequality

IVullfaeey + Mullfasey = nA) lullfrgey VueHHS?, dp)

Hered =3 and p=14
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IV ulZaqey + A )220

@ A critical point of u — Qy[u] := solves

||U||Lp(gd)

—Autdu=|uP?u (EL)
up to a multiplication by a constant (and a conformal transformation
if p=2%)

@ The best constant u(\) = inf O, [u] is such that
uEH (87, du)\{O}

w(A) < Nif A > -4 P , and p(A) = N if A < %5 so that

Lz = min{A >0 : p(A) < A}

@ Rigidity : the unique positive solution of (EL) is u = AY/(P=2) if

d
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Constraints and improvements

Q@ Taylor expansion:

(p—2) ||VU||L2 s9)

WEH (891 dju)\ {0} Ul ooy = llullE2eo

d =

is achieved in the limit as ¢ — 0 with v =1 4 £ ¢; such that
—Apr =d

> This suggest that improved inequalities can be obtained under
appropriate orthogonality constraints...
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Integral constraints

With the heat flow...

For any p € (2,2%), the inequality

1
A A
F12 0 dug + —— ||F|I2 > —2— ||f|I2
[ 1R dva 25 11 > 25 11

1
VfeHY((-1,1),dvy) st / z|f|P dvg =0
-1
holds with (d )2
1l
> ) (o# _ W=
)\_d+d(d+2)(2 p) (A" —d)

<

. and with a nonlinear diffusion flow ?
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Antipodal symmetry

With the additional restriction of antipodal symmetry, that is

u(—x) =u(x) Yxes?

Theorem

Ifpe(1,2)U(2,2*), we have

g [, (P9 —p)
2 2 2
Lvuk auz 2114 ST (ug ) ~ fulR )

for any u € HY(S?, du) with antipodal symmetry. The limit case p = 2
corresponds to the improved logarithmic Sobolev inequality

d 3
/va2 - /\|ﬁ% _ul
d+1 1ol
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The larger picture: branches of antipodal solutions

Case d =5, p = 3: values of the shooting parameter a as a
function of A
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The optimal constant in the antipodal framework

9. .

1k ’ \

10F <o

15 20 25 3.0

Numerical computation of the optimal constant when d =5 and
1< p <10/3 = 3.33. The limiting value of the constant is numerically
found to be equal to A\, = 2'7%/P d ~ 6.59754 with d =5 and p = 10/3
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Neumann boundary conditions: the Lin-Ni problem

Q is a smooth bounded domain in RY, |Q| = 1. With
1<p<2*—1=(d+2)/(d—2),let us consider the 3 problems

(P1) For which values of A > 0 does the equation
—Au+Au=uvP in Q, Ou=0 on 0N

has a unique positive solution (rigidity) ?

(P2) For which values A > 0 do we have p(\) = X if

||VU||L2 ré) T A ||“||iz(Rd)

n
ueH!(2)\{0} 1ul1? 51 ey

u(A) =

(P3) Let g = p+1 and denote by A\1(€, —¢) the lowest eigenvalue of
the Schrédlnger operator —A — ¢. For which values of u > 0 do we
know that v(u) = p if (Keller-Lieb-Thirring)

M(Q, —0) > —v([[¢llarey) Vo€ LLUQ)
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An estimate based on the spectral gap inequality

)\1(9,0) =0, X:= )\Q(Q,O) >0

(d—17p

TP RS R

Theorem

Q is convex and d > 2. If A < 1, then
—Au+Au=uvP in Q, O,u=0 on 020
has no non-constant positive solution, where p; is such that

1- 0*(p7 d)
lp—1]

Ao <y < 2
lp—1]

for any p € (0,1) U (1,2*—1)
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Unbounded domains: inequalities
without weights and fast diffusion
equations
> Rényi entropy powers
&> Self-similar variables and relative entropies

> Equivalence of the methods ?
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Rényi entropy powers and fast diffusion

> Rényi entropy powers, the entropy approach without rescaling:
[Savaré, Toscani]: scalings, nonlinearity and a concavity property
inspired by information theory

o> faster rates of convergence: [Carrillo, Toscani|, [JD, Toscani]
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Entropy methods: the non-compact case Self-similar variables and relative entropies
Equivalence of the methods 7

The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in RY, d > 1

ov m

9 Av
with initial datum v(x,t = 0) = vp(x) > 0 such that [, vo dx =1 and
Sz |x|? vo dx < +00. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

1 X
Uit x) = (K tl/u)d B*(Iﬂ? tl/#)
where
| 2pum /e

w=2+d(m-1),
and B, is the Barenblatt profile
(Co— )Y it m > 1

(Cot )Y itm <1

T im=-1

Bi(x) :=
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The Rényi entropy power F

The entropy is defined by

E::/ v dx
]Rd

and the Fisher information by

| := / v|Vpl? dx with p= m_m-
R4 m—1
If v solves the fast diffusion equation, then
E=(1-m)l

To compute I, we will use the fact that

Ip 2

—=(m-1)pA \Y

5 = (m=1)pAp+|Vpl

. L 2 1 2 1
F:=E° th = =1 — —1)l==—__1
W= 1 —m) +1—m<d+m ) di-m

has a linear growth asymptotically as t — +oo
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The concavity property

[Toscani-Savaré] Assume that m>1—1 ifd >1and m> 0 ifd = 1.
Then F(t) is increasing, (1 — m)F"(t) <0 and

. 1 _ H o—1| __ o—1
t_I:TOOEF(t)—(l—m)Ut_I:TOOE I=(1-m)cE{™" I,

[Dolbeault-Toscani] The inequality
Eo-l1>ET I,

is equivalent to the Gagliardo-Nirenberg inequality

/] 1-6
IV Wlz2 ey Wl Lo ey 2= Con WL
eq 1 pe ym—1/2 — w1
if 1 — 5 <m<1 Hint: v7 = Toyseqa)’ 9= 5m=1
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The proof

Ifv so/ves = Av™ Wlth < m< 1, then

d m
V- E/ v |Vp[? dx = —2/ v (D% + (m — 1) (4p)?) o
R4 R4

Explicit arithmetic geometric inequality

2
1 1
%12 - & (an = | D2 - ap1d

There are no boundary terms in the integrations by parts
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Remainder terms

F’" = —o (1 — m)R[v]. The pressure variable is P =

ITm mel
VPP dx|?
R[V] == (0 — 1) (1 — m) E"‘l/ o |ap  Jes VIVPE ax ™
R fRd v dx

+ 2E‘7_1/ v | D?P — 3 APTd || dx
Rd

G[v] := U(E["]m) = (/Rd vm dx>g_1/Rd v|VPJ? dx

The Gagliardo-Nirenberg inequality is equivalent to G[vg] > G[v,]

Let

Proposition

Glvo] > G[v,] + /OOO R[v(t, )] dt
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Entropy methods: the non-compact case Self-similar variables and relative entropies
Equivalence of the methods ?

Self-similar variables and relative entropies

The large time behavior of the solution of % = Av™ is governed by
the source-type Barenblatt solutions

1 X
)= e B (g

) where p:=2+d(m-1)
where B, is the Barenblatt profile (with appropriate mass)
B.(x) = (1+ xP) "V

A time-dependent rescaling: self-similar variables

1 X dR 1— R(t)
V(t, X) = W U(T, ﬁ) where E =R Il, T(t) = % IOg (,‘?0
Then the function u solves a Fokker-Planck type equation
Ju

E_FV. [U(Vumfl—Qx)] =0

J. Dolbeault Nonlinear flows and entropy methods



Rényi entropy powers
Entropy methods: the non-compact case Self-similar variables and relative entropies
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A computation on a large ball, with boundary terms

ou

§+V~[U(Vum_1—2x)}:0 >0, xe€Bgr

where Bg is a centered ball in RY with radius R > 0, and assume that
u satisfies zero-flux boundary conditions

(Vum_1—2x)-|%:0 >0, x€0Bgr.

With z(7, x) := VQ(7, x) := Vu™! — 2x, the relative Fisher
information is such that

d
— u|z\2dx+4/ ulz|? dx
dT Br Br
+2 1;"7/ um (H])?QH2 —(1-m) (AQ)2> dx
m Br
= / u™ (w- V|z|?) do < 0 by Grisvard’s lemma)
9B
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Another improvement of the GN inequalities

Let us define the relative entropy

Elu] = %/Rd (u™ — B — mBI ! (u— B,)) dx

the relative Fisher information

Z[u] ::/ ulz|? dx :/ u ’Vu’"*l — 2x|2 dx
RY d

and R[u] == 27/ HDZQH — m) (AQ)2) dx

Proposition

If1—1/d <m<1andd?>2, then

Zluo] — 4 EJuo] > /000 Rlu(r,-)] dr
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Still another improvement of the GN inequalities

We can use the computation of Rényi entropies to estimate the decay
of the relative Fisher information using the time-dependent change of
variables

R[u] :21*7"’/ u™ D2t — 2 Aum 1 1d|| dx
Rd

+ 2(m—m1)1*Tm/ u™ [Aumt — 2d|2 dx
Rd

Proposition

If1—1/d <m<1andd?>2, then

Tluo] — 4&[uo] = /O S Ru[u(r, ) dr
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Symmetry, symmetry breaking and branches of solutions
A parabolic proof ?

Large time asymptotics and spectral gaps

Linearization and optimality

Entropy methods: the compact case
Entropy methods: the non-compact case
Weighted nonlinear flows and CKN inequalities

Unbounded domains and weighted
nonlinear flows:

Caffarelli-Kohn-Nirenberg
inequalities

> Caffarelli-Kohn-Nirenberg inequalities: symmetry results, elliptic
and parabolic proofs

> Large time asymptotics and spectral gaps

> Optimality cases
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Catftarelli-Kohn-Nirenberg
inequalities and the symmetry
breaking issue

> Symmetry, symmetry breaking and branches of solutions
> The sharp result on symmetry

> Bifurcation and branches

Joint work with M.J. Esteban, M. Loss and M. Muratori
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Critical Caffarelli-Kohn-Nirenberg inequalities

Let D, p i= { veLr (RY |x|"bdx) : |x|72|Vv| € L2 (R, dx) }

p 2/p 2
V] dx < Cop Vv dx YveD,,
Ra |Xx[PP " Jre [x[22 ’

holds under the conditions that a< b<a+1ifd>3,a<b<a+1
ifd=2a+1/2<b<a+lifd=1and a<a.:=(d—-2)/2
B 2d
- d—2+2(b—a)

p (critical case)

> An optimal function among radial functions:

- A
= (1 (p72>(ac—a)) Y and C, = P
09 = (1410 G = v 3

Question: Cyp = Cj  (symmetry) or Cyp > Cj , (symmetry breaking) ¢
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A parabolic proof

Large time asymptotics and spectral gaps

Linearization and optimality

Entropy methods: the compact case
Entropy methods: the non-compact case
Weighted nonlinear flows and CKN inequalities

Critical CKN: range of the parameters

Figure: d =3

» 2/p >
/ V] dx < Ca~b/ Vv dx
e |x[PP " Jre [x[22 ,

-1

/ !
a

a<b<a+lifd>3

a<b<a+lifd=2a+1/2<b<a+1lifd=1

and a < ac := (d — 2)/2
2d

p

B [Glaser, Martin, Grosse, Thirring (1976)]
S d—-2+2(b—a) [F. Catrina, Z.-Q. Wang (2001)]
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Weighted nonlinear flows and CKN inequalities etizga i eyfipiteites et qpasiell gps

Linearization and optimality
Proving symmetry breaking

[F. Catrina, Z.-Q. Wang], [V. Felli, M. Schneider (2003)]

/

/A/

b

[J.D., Esteban, Loss, Tarantello, 2009] There is a curve which

separates the symmetry region from the symmetry breaking region,
which is parametrized by a function p — a+ b
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Weighted nonlinear flows and CKN inequalities arge time asymptotics and sp gap
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Moving planes and symmetrization techniques

[Chou, Chu], [Horiuchi]

[Betta, Brock, Mercaldo, Posteraro]

+ Perturbation results: [CS Lin, ZQ Wang], [Smets, Willem], [J.D.,
Esteban, Tarantello 2007], [J.D., Esteban, Loss, Tarantello, 2009]
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Linear instability of radial minimizers:

the Felli-Schneider curve
=

/ 0 a

[Catrina, Wang], [Felli, Schneider| The functional

2
. / VP / Ve N\
20 Jra |x[22 Ry [X]PP

is linearly instable at v = v,

J. Dolbeault
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Direct spectral estimates

[J.D., Esteban, Loss, 2011]: sharp interpolation on the sphere and a
Keller-Lieb-Thirring spectral estimate on the line
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The Emden-Fowler transformation and the cylinder

> With an Emden-Fowler transformation, Caffarelli-Kohn-Nirenberg
iequalities on the Fuclidean space are equivalent to
Gagliardo-Nirenberg inequalities on a cylinder

a—ac

v(r,w)=r"%p(s,w) with r=|x|, s=—logr and w="2
;

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as

1052 lF2(cy + IVwblliaey + AMelae) = N @lliae) Ve € HY(C)

where A := (a. — a)?, C = R x S~! and the optimal constant u(A) is

u(N) = with a=a.+VA and b:%i\/x
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Large time asymptotics and spectral gaps

Linearization and optimality

Entropy methods: the
Entropy methods: the non
Weighted nonlinear flows and CKN inequalities

mpact case

Numerical results

50

B L asymptotic

........ symmetric
20

non-symmetric

Ap)

20 40 60 80 100

Parametric plot of the branch of optimal functions for p=2.8, d = 5:
u(N) = AV is the solution is symmetric. Bifurcation point: V. Felli and
M. Schneider. Large values of N: F. Catrina and Z.-Q. Wang

@ Further numerical results [J.D., Esteban, 2012]

@ Formal computation near the bifurcation point & asymptotic
energy estimates [J.D., Esteban, 2013]
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Symmetry versus symmetry breaking:
the sharp result

A result based on entropies and nonlinear flows

b

[J.D., Esteban, Loss, 2015]: http://arxiv.org/abs/1506.03664
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Symmetry, symmetry breaking and branches of solutions
A parabolic proof

Weighted nonlinear flows and CKN inequalities ety il eyl el epediel gams
Linearization and optimality

The symmetry result

The Felli & Schneider curve is defined by

o d(ac —a)
brs(a) := 2/(ac — a2 +d—1

+a— ac

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and

b > brs(a), then the optimal functions for the Caffarelli-Kohn-Nirenberg
inequalities are radially symmetric
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Symmetry, symmetry breaking and branches of solutions
A parabolic proof
Large time asymptotics and spectral gaps

Weighted nonlinear flows and CKN inequalities Lincarization and optimality

Subcritical Caffarelli-Kohn-Nirenberg inequalities

- 1/
Norms: [|w/|pe(zey = (fga [W[7 [XI77 dx) 7, WllLo(ea) = [[WllLeo(ze)
(some) Caffarelli-Kohn-Nirenberg interpolation inequalities (1984)

= o R P SN (CKN)

Here Cg 4 p denotes the optimal constant, the parameters satisfy

d—v

d>2, y—2<pf<%2y, ye(-o0,d), pe(lp] withp, =3

and the exponent ¢ is determined by the scaling invariance, i.e.,

9 = (d=) (p=1)
p (d+8+2—27—p(d—B-2))

@ Is the equality case achieved by the Barenblatt / Aubin-Talenti
type function

wi(x) = (1+ \x|2+ﬁ*7)_1/(p_1) VxeR? 7

@ Do we know (symmetry) that the equality case is achieved among
radial functions?
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Range of the parameters
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CKN and entropy — entropy production inequalities

Weighted nonlinear flows and CKN inequalities

When symmetry holds, (CKN) can be written as an entropy — entropy
production inequality

Lm @2+ B—~)?Flv] < I[v]

and equality is achieved by B . Here the free energy and the
relative Fisher information are defined by

R 1 m m m—1 dX
f[V] —m oo (V —%ﬂﬁ—m%ﬁﬁ (V—%@,»Y)) W
2 dx
IV = [ v]wvmtowsp S
[v] /Rd v| Vv b | TxP

If v solves the Fokker-Planck type equation
Vet X[ V- [|xr/3 vV (vt - |x|2+ﬂ*7)] =0  (WFDE-FP)

then
m

d
SN = = T T, )]
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Proposition

Let m = ”2—*;)1 and consider a solution to (WFDE-FP) with nonnegative

initial datum up € L1Y(R?) such that ||uf ||~ rey and
Jpe to [X|>TP=27 dx are finite. Then

FIv(t, )] < Flugle" @0t vi>o0
if one of the following two conditions is satisfied:

(i) either ug is a.e. radially symmetric
(ii) or symmetry holds in (CKN)
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o With two weights: a symmetry breaking result

Let us define

Brs(y) :=d—2—/(d—7)?—4(d - 1)

Symmetry breaking holds in (CKN) if

d—2
~v<0 and ,BFS()<5<TV

In the range Brs(7) < B < 952 v, w,(x) = (1 + |X|2+ﬂ77>71/(;ﬂ71) is
not optimal.
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B

ﬁ:d—z+%‘

The grey area corresponds to the admissible cone. The light grey area
is the region of symmetry, while the dark grey area is the region of
symmetry breaking. The threshold is determined by the hyperbola

(d =P = (5 —d+22 —4(d—1) =0
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A useful change of variables

With 5_ d
2 -
o} + — 5 an n Br2—~"
(CKN) can be rewritten for a function v(|x|*~! x) = w(x) as
1-9

«

HV”L?Pvd*"(Rd) < Ku,n-p|

—"(RY)
with the notations s = |x|, Dov = (« BZ, 1V,v). Parameters are in
the range

n
n—2

d>2, a>0, n>d and pe(l,p], px:=
By our change of variables, w, is changed into
vi(x) = (1+ |X|2)_1/(p_1) Vx € R
The symmetry breaking condition (Felli-Schneider) now reads

d-—1

o> aps with apg =
n—1
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The second variation

J[v] =1 log (”@aV”LZ,dfn(Rd)) + (1 — ’19) log (||V||Lp+1,d7n(]Rd))
+ |Og Ka,n,p — Iog (||V||L2p,d—n(Rd))

Let us define dpus := ps(x) dx, where ps(x) := (1 + |x|?)~°. Since v, is
a critical point of 7, a Taylor expansion at order €2 shows that

||®aV*HiZ,d—n(Rd) j[v* + € pss2 f] = % 29 Q[f] + o(?)
with § = %pl and
p

Qf] = fuo IDaf P 1|79 dpts — 225 [ [FI2 X" dpisia

We assume that [5, f [x|"" dpusi1 = 0 (mass conservation)
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o Symmetry breaking: the proof

Proposition (Hardy-Poincaré inequality)

Letd > 2, a € (0,+00), n>d and § > n. If f has O average, then
[ af el dus 2 A [ 162 " dasa
Rd Rd

with optimal constant A = min{2a? (23 — n),2a?§n} where 1 is the

unique positive solution ton(n+n—2) = (d —1)/a?. The corresponding

2]
eigenfunction is not radially symmetric if o > %.

Q > 0iff 22° < A and symmetry breaking occurs in (CKN) if

p—1
4 2
2026 < P — n<l1
p—1
= ;2:17(17+n—2)<n—1 = o> ars
@
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a The symmetry result

> critical case: [J.D., Esteban, Loss; Inventiones]

> subcritical case: [J.D., Esteban, Loss, Muratori; CR Math.]

Theorem

Assume that 8 < Brs(y). Then all positive solutions in Hgﬂ(Rd ) of
— div(|x|7ﬁ Vw) = |x|77 (w?t — wP) in R\ {0}

are radially symmetric and, up to a scaling and a multiplication by a
constant, equal to w,(x) = (1+ |x|2+ﬁ_’y)_1/(p_l)
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The strategy of the proof (1/3)

Weighted nonlinear flows and CKN inequalities

The first step is based on a change of variables which amounts to
rephrase our problem in a space of higher, artificial dimension n > d
(here n is a dimension at least from the point of view of the scaling
properties), or to be precise to consider a weight |x|"~9 which is the
same in all norms. With
_ B—~ d—vy
v(x[*x)=w(x), a=14+4"—L and n=2———
(1% x) = w(x) . e
we claim that Inequality (CKN) can be rewritten for a function
v(|x|*1 x) = w(x) as

HV”szd n(R9) < K

a —nre)y YV E HY 4o a(RY)
with the notations s = |x|, D,v = (a gv 1y, v) and
d>2, a>0, n>d and pe(lp].
By our change of variables, w, is changed into
vi(x) == (1+ |X|2)71/(p71)
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The strategy of the proof (2/3): concavity of the Rényi
entropy power

The derivative of the generalized Rényi entropy power functional is

o—1
Glu] := (/ u™ du) / u|D.PPdu
R RY

where o = 2 21— — 1. Here dp = |x|"~? dx and the pressure is

P: _m ™t

T 1-m

Proving the symmetry in the inequality amounts to

proving the monotonicity of G[u]
along a well chosen fast diffusion flow
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With L, = =D} Do = o (v + 2L ') + L A, u, we consider the
fast diffusion equatlon

ot

in the subcritical range 1 — 1/n < m < 1. The key computation is the
proof that

2 Glu(t, )] (fga u™ du) -7
g 2 2
> (1= m) (07— 1) fyg um | £aP — L2200 g,

Jpa u™ dp
+2 Jpo (a“ 1-2) i‘;‘z\va/—V;Pf) u™ dp

+2fRd ((”—2) (a%s — ) VP2 + c(n, m,d) W Pl ) u™dp =: Hlu]

- [’aum

n __ P A, P
P” — a?(n—1)s?

for some numerical constant c¢(n, m,d) > 0. Hence if a < apg, the

r.h.s. H[u] vanishes if and only if P is an affine function of |x|?, which
proves the symmetry result.
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The strategy of the proof (3/3): integrations by parts

This method has a hidden difficulty: integrations by parts ! Hints:

Q@ use elliptic regularity: Moser iteration scheme, Sobolev regularity,
local Holder regularity, Harnack inequality, and get global regularity
using scalings... to deduce decay estimates

Q@ use the Emden-Fowler transformation, work on a cylinder,
truncate, evaluate boundary terms of high order derivatives using
Poincaré inequalities on the sphere
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Towards a parabolic proof

For any a > 1,let Do W = (adW, r=t ¥, W) so that
D :V+(a—1)@(x-V):V+(a—1)w6,

and define the diffusion operator L, by

—1 A,
La:DZDa:a2<5‘f+nr a,>+

r2

where A,, denotes the Laplace-Beltrami operator on S9!
% = Log™ is changed into

1
0 2\ w1
8—: =D’ (uz), z:=Daq, q:=u"1=BTl  By(x):= (1 + |;<¢|2>
by the change of variables

98 = R'=1, R(0)=Ro

(1) = 3 log (542)
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If the weight does not introduce any singularity at x = 0...

m d

2
SR d
1-mdr BR"'Z' fin

= / u™ (w-Dalzl?) |x|""?do (< 0 by Grisvard’s lemma)
0Bk
—2Lm(m—1+1) / u™ |Loql? dpin
Br

2
m 4 n__d ALq
_/ u <Ol ml’q T r T aZ(n-1)r?
Br

2
—(n-2) (O‘%S*O‘z)/B Ve dun

2a° ;7 V
+ 24 |Vuq - T

2
o

A formal computation that still needs to be justified (singularity at
x=07?)

@ Other potential application: the computation of Bakry, Gentil and
Ledoux (chapter 6) for non-integer dimensions; weights on manifolds

[..]

r4
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Fast diffusion equations with
weights: large time asymptotics

@ Relative uniform convergence
e Asymptotic rates of convergence

e From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

Ve + X[ V- [|xr5 vV (vl - |x|2+ﬁ*7)} =0  (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret
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Relative uniform convergence

C=1-(1-g553) 0-30)

0= (1—(11681}2;52113)—7 is in the range 0 < 0 < =2 < 1

Theorem

For “good” initial data, there exist positive constants IC and ty such that,

for all g € [%v oo], the function w = v /B satisfies

i
W (E) = Ulpan(gey < Ke™2 5m A0 yi> g

in the case v € (0, d), and

_ 2
”W(t) - 1||La,'v(Rd) < Icei2 (12’"3 A(t—t0) Vt>ty

in the case v < 0
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Essential spectrum

Essential spectrum

The spectrum of £ as a function of § = ﬁ, with n =5. The
essential spectrum corresponds to the grey area, and its bottom is
determined by the parabola ¢ — Aess(0). The two eigenvalues Ag; and
A1,0 are given by the plain, half-lines, away from the essential
spectrum. The spectral gap determines the asymptotic rate of
convergence to the Barenblatt functions
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Main steps of the proof:

@ Existence of weak solutions, L1 contraction, Comparison
Principle, conservation of relative mass

Q@ Self-similar variables and the Ornstein-Uhlenbeck equation in
relative variables: the ratio w(t,x) := v(t, x)/B(x) solves

XYWy =— % V- (|x\75 BwV (wmt—1)Bm1) ) in R* x R

w(0,-) = wp 1= v /B in RY

Q@ Regularity, relative uniform convergence (without rates) and
asymptotic rates (linearization)

Q@ The relative free energy and the relative Fisher information:
linearized free energy and linearized Fisher information

@ A Duhamel formula and a bootstrap
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a Regularity (1/2): Harnack inequality and Holder

We change variables: x — |x|*1 x and adapt the ideas of
F. Chiarenza and R. Serapioni to

up + DZ[a(Dau—f—Bu)} =0 in R xRY

Proposition (A parabolic Harnack inequality)

Letd >2, a >0 and n>d. If uis a bounded positive solution, then for
all (tg, xo) € R* x R? and r > 0 such that Q,(ty, x) C RT x By, we have

sup u<H inf u
Qr (to,x0) Q (to,x0)

The constant H > 1 depends only on the local bounds on the coefficients

— 2(d=7)
a,Bandond, o, and n:= Z 57

By adapting the classical method a la De Giorgi to our weighted
framework: Holder regularity at the origin
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a Regularity (2/2): from local to global estimates

Weighted nonlinear flows and CKN inequalities

If w is a solution of the the Ornstein-Uhlenbeck equation with initial
datum wy bounded from above and from below by a Barenblatt profile
(+ relative mass condition) = ‘good solutions”, then there exist

v € (0,1) and a positive constant K > 0, depending on d, m, (3, v, C,
C1, G such that:

Q1

2+8—
)\ l—r'n’Y +1

IVV() L (By\By) < Vi>1, VA>1,
sup [Wllcx(e,e+1yxBe) <c0 Vk €N, Ve>0
t>

sup [|w(t)l v (rey < 00
>1

T>t

sup [w(T) = 1| copay < K sup Iw(7) = Ulpoomey V21
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Asymptotic rates of convergence

Assume that m € (0,1), with m # m, = Z%g. Under the relative mass
condition, for any ‘good solution” v there exists a positive constant C
such that

Flv(t)] < Ce 2=mAt >0,

@ With Csiszar-Kullback-Pinsker inequalities, these estimates provide
a rate of convergence in L17(RY)

@ Improved estimates can be obtained using “best matching
techniques”

J. Dolbeault Nonlinear flows and entropy methods



Symmetry, symmetry breaking and branches of solutions
A parabolic proof ?

Large time asymptotics and spectral gaps

Linearization and optimality

D tro \ methods: th: ompact ¢
En ethods: the npact case
Weighted nonhnear flows and CKN mequalmes

From asymptotic to global estimates

When symmetry holds (CKN) can be written as an entropy — entropy
production inequality

2+B=FlV < TV
so that
Fu(D] < Fv()] e 20-mMt e >0 with A, = G2
Let us consider again the entropy — entropy production inequality
K(M)F[v] <Z[v] Vv eLY(R?) suchthat ||v|pimgey =M,
where K(M) is the best constant: with A(M) := 2 (1 — m)=2 K(M)

Fv(t)] < FIv(0)] e~ 20-mAMt v > g
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a Symmetry breaking and global entropy — entropy
production inequalities

e In the symmetry breaking range of (CKN), for any M > 0, we have
0< IC(M) < % (1 = m)2 /\0,1

o If symmetry holds in (CKN) then
K(M) > 52 (2+ 8 —7)?

Corollary

Assume that m € [my,1)
(i) For any M > 0, if A(M) = A, then 8 = Brs(7)
(ii) If B > Brs(y) then No1 < A, and A(M) € (0, Ao 1] for any M > 0

(iii) For any M > 0, if 8 < Brs() and if symmetry holds in (CKN), then
A(M) > A,
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Linearization and optimality

Joint work with M.J. Esteban and M. Loss
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Linearization and scalar products

Weighted nonlinear flows and CKN inequalities

With wu, such that
u. = B, (1+€f81*m) and / u. dx = M,
]Rd

at first order in ¢ — 0 we obtain that f solves
of
ot

Using the scalar products

<f1,f2):/ fif827™|x|77 dx and <<f1,f2>>:/ Do fi - Do fo By x| 77 dx
R4 R4

=Lf where Lf:=(1-m)BI?|x|" D}, (|x|7?B.Dsf)

we compute

1d

5 5 (f ) =(f.Lf) :/ F(LF)B2™|x|™7 dx = — / Do fI? By x| 77 dx
Rd Rd

for any f smooth enough, and

; jt«f f) = /Rd Daf-Da(LF)ulx|™" dx = —(f,LF)
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Linearization of the flow, eigenvalues and spectral gap

Weighted nonlinear flows and CKN inequalities

Now let us consider an eigenfunction associated with the smallest
positive eigenvalue \; of £

—LA=Mh
so that fi realizes the equality case in the Hardy-Poincaré inequality
(g.8) =—(f.Lf)>Nllg—2lI, &z:=1(g1)/(L1)

—(g.Lg) > (g 8)

Proof: expansion of the square :
—((e-2)L(e-8))=(L(e—2)L(g—8)=IL(g—2)I
@ Key observation:

d-—1
n—1
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Symmetry breaking in CKN inequalities

@ Symmetry holds in (CKN) if J[w] > J[ws] with

TIw] = 0 10g (1D wllgas(zey)+(1~0) log (IIWllpovr.s(aey) —log (IIWllizns o)
with § :=d — n and

Tlw, +eg] = * Qlg] + o(¢)
where
2 11Da eI 2.6-n(ra) Qle]
= [1Da gl z.a-nqay + 252 [d =y = p(d =2 B) /|g‘2|11||x|2
~p@r- D B [ lef i o

is a nonnegative quadratic form if and only if o < apg

@ Symmetry breaking holds if a > apg
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Information — production of information inequality

Let K[u] be such that

:TI[U( J] = = Klu(7,-)] = — (sum of squares)

If a < apg, then Ay > 4 and

Klu]
Z[u]

—4

is a nonnegative functional whose minimizer is achieved by u = B,.
With v, = B, (1 +€ fB,lf"’), we observe that

Kl[u] Klu] . (f,LF) (A, LAY
4<Ci=inf I[u] = < lim inf Z[u.] = inf (F.FY — (f,f)

@ if \; =4, that is, if « = aps, then inf £/Z = 4 is achieved in the
asymptotic regime as u — B, and determined by the spectral gap of £
@ if A\; > 4, that is, if @ < aFg, then K/Z > 4
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Symmetry in Caffarelli-Kohn-Nirenberg inequalities

If @ < agg, the fact that /Z > 4 has an important consequence.
Indeed we know that
d
—- (Zlu(r )] = 4 F (7)) < 0
so that
Tlul — 4 Flu] > Z[B.] — 4 F[Bs] =0

This inequality is equivalent to J[w] > J[w,], which establishes that
optimality in (CKN) is achieved among symmetric functions. In other
words, the linearized problem shows that for a < apg, the function

7= Z[u(r, )] = 4 Flu(7,-)]

is monotone decreasing
Q@ this explains why the method based on nonlinear flows provides
the optimal range for symmetry
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Entropy — production of entropy inequality

Weighted nonlinear flows and CKN inequalities

Using £ (Z[u(r, )] — Co Flu(,-)]) < 0, we know that
Zlu] — Co Flu) > Z[Bs] — C2 F[B.] =0

As a consequence, we have that

g LMyl Klu]
Cl = II;]Jf _F[u] > C2 I;]lf I[u]

With v, = B, (1 +e fBi_m), we observe that

T[ue] (f,Lfy (A,LA) Klue]
< j— j— — —
C1 E!lmo inf ——= 0] |r}f . = o f,s =)\ €|Imolnf (0]

Q If lim._qinff ’E[[ZE] =C, thenC; =Co = M

This happens if @ = apg and in particular in the case without weights
(Gagliardo-Nirenberg inequalities)
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These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/
> Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list /
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !

J. Dolbeault

Nonlinear flows and entropy methods


https://www.ceremade.dauphine.fr/~dolbeaul/Conferences/
https://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/

	Entropy methods: the compact case
	Interpolation inequalities on the sphere
	The bifurcation point of view
	Neumann boundary conditions

	Entropy methods: the non-compact case
	Rényi entropy powers
	Self-similar variables and relative entropies
	Equivalence of the methods ?

	Weighted nonlinear flows and CKN inequalities
	Symmetry, symmetry breaking and branches of solutions
	A parabolic proof ?
	Large time asymptotics and spectral gaps
	Linearization and optimality


