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Entropy methods, gradient flows
and rates of convergence

> The Bakry-Emery method

> Gradient flow interpretation
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The Fokker Planck equatlon

The linear Fokker-Planck equation

ou
5 = Aut V- (uVo)

on a domain Q C R?, with no-flux boundary conditions
(Vu+uVe)-v=0 on 9N

is equivalent to the Ornstein-Uhlenbeck (OU) equation

v
E—AU—V@{%V’U—.L’U

The unique stationary solution (with mass normalized to 1) is
e®

V:fﬂe‘i’dx
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Entropy methods, gradient flows and rates of convergence
The Bakry-Emery method

Gradient flow interpretation

The Bakry-Emery method

With v such that [, vdy =1, ¢ € (1,2], the g-entropy is defined by
1
g i= [0 =1 g(v-1)dy
q9—1Ja
Under the action of (OU), with w = v¥/2, J,[v] := %fﬂ |Vw|? dv,
d

d
T8lu(t, )] = = Tyu(t )] and S (3[0] = 20 E,[0]) <O

Ja (2 q%ql |[Hess w||? + Hess ¢ : Vu ® Vw) dy
with A := inf

we H(Q,dv)\{0} Jo lw[? dry

(Bakry, Emery, 1984) (JD, Nazaret, Savaré, 2008) Let §2 be conver.
If A > 0 and v is a solution of (OU), then J,[v(t,)] < J,[v(0,-)] e=2 ¢
and &€ [v(t,-)] < &,[v(0,-)] €2}t for any t > 0 and, as a consequence,

I [v] > 2X0E,[v] VveHY(Q,dy)

J. Dolbeault From entropy methods to symmetry breaking



Entropy methods, gradient flows and rates of convergence
The Bakry-Emery method
Gradient flow interpretation

Remarks, consequences and applications

Q@ Grisvard’s lemma: by convexity of {2, boundary terms have the
right sign
Q@ ¢=2: p=2/q =1, Poincaré inequality

el = [ (w?— %) dy < 550l = 5 [ (Vuf iy

@ Limit case ¢ = 1: p =2/q = 2, logarithmic Sobolev inequality

&1[v] ::/vlogvd7<xﬂl /|Vf|2d'y
Q

@ Improvements based on remainder terms: (Arnold, JD), (Arnold,
Bartier, JD), (Bartier, JD, Illner, Kowalczyk),...

@ Applications:

> Brownian ratchets (JD, Kinderlehrer, Kowalczyk), (Blanchet, JD,
Kowaleczyk)

> Keller-Segel models: (Blanchet, Carrillo, Kinderlehrer, Kowalczyk,
Laurengot, Lisini)
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Entropy methods, gradient flows and rates of convergence
The Bakry-Emery method
Gradient flow interpretation

Gradient flow interpretations

A question by F. Poupaud (1992)... Let ¢ s.t. Hess¢ > A, p := e~ ¢ £4¢
Entropy : &(p) = [z ¥(p) dp

; - _ wp?
Action density : ¢(p, w) := n)

Action functional : ®(p, w) := [p, ¢(p, w) dy
T(po, p1): (phs, Vs)sefo,1) 18 an admissible path connecting pg to puy if
there is a solution (i, vs)sejo,1) to the continuity equation

as,us-f-V'l/s:O, 56[071]

h-Wasserstein distance

1
Wi (pos ) = inf{/o (s, vs) ds = (p,v) € F(uo»m)}
(JD, Nazaret, Savaré): (OU) is the gradient flow of & w.r.t. Wj.
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Flows and sharp interpolation
inequalities on the sphere

> Rigidity, I's framework, and flows
> Linear versus nonlinear flows
> Constraints and improved inequalities

> Onofri inequalities, Riemannian manifolds, Lin-Ni type problems

(Bakry, Emery, 1984)

(Bidault-Véron, Véron, 1991), (Bakry, Ledoux, 1996)

(Demange, 2008), (JD, Esteban, Loss, 2014 & 2015)

(JD, Esteban, Kowalczyk, Loss, 2013-15), (JD, Kowalczyk, 2016)
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The interpolation inequalities

On the d-dimensional sphere, let us consider the interpolation
inequality

d d
IV ull 20 + b2 lullfe gy > b2 lullfpsey VueH(S, dpy)

where the measure du is the uniform probability measure on
S? ¢ R4+ corresponding to the measure induced by the Lebesgue
measure on R%*1 and the exposant p > 1, p # 2, is such that
2d
<2% = ——

p= d—2
if d > 3. We adopt the convention that 2* = oo if d =1 or d = 2. The
case p = 2 corresponds to the logarithmic Sobolev inequality

d 2
IValan > 5 [ luP log< [y )du Vue HI(S%, du)\ {0}

Tl o,
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The Bakry—Emery method

Entropy functional
&lol = 55 [fsdp% dp = (fsap du)z} if p#2

E2[p] == de p log (||P\|L1(sd)) dp

Fisher information functional

1
| == fgd |Vp? |2 dp
Bakry-Emery (carré du champ) method: use the heat flow

dp
N
ot~ 7
and compute & ,[p] = —I,[p] and £7,[p] < — dI,[p] to get

d
a Jplol = d&plp]) <0 = Tplp] = d&,[p]
with p = |u|?, if p < 27 := ((idzi")l
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Rigidity, I'y framework, and flows

Entropy methods, gradient flows and rates of convergence
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The evolution under the fast diffusion flow

To overcome the limitation p < 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type
dp
— =Ap™. 1
5 = Ap (1)
(Demange), (JD, Esteban, Kowalczyk, Loss): for any p € [1,2*]

Kyl = (9,00] — de,la]) <0

(p, m) admissible region, d =5
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The rigidity point of view (nonlinear flow)

In cylindrical coordinates with z € [—1,1], let

d
Lf:= (1—z2)f”—dzf':yf"+§y’f’
be the ultraspherical operator and consider

/12 by by
—Lu—(ﬂ—1)|u| v+ u= u”
u p

Multiply by £ v and integrate

1 -1 |ul|2
/ Luu“dud:—n/ u —— duy
—1 —1 U

Multiply by & % and integrate

1 |I‘2
.:-I-n/ u” dvg
J-1 u

2 /2| 4
u,,__p—i— —|u|‘y2dyd:0 ifp=2"and = ——
6—p u 6—7p
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Rigidity, I'y framework, and flows

Linear versus nonlinear fows

Constraints and improved inequalities

Onofri inequalities, Riemannian manifolds, etc.

Improved functional inequalities

Flows and sharp interpolation inequalities on the sphere

(p, B) representation of the admissible range of parameters when d =5
(JD, Esteban, Kowalczyk, Loss)
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Can one prove Sobolev’s inequalities with a heat flow ?

10 15 20 25 30 35

(p, B) representation when d = 5. In the dark grey area, the functional
is not monotone under the action of the heat flow (JD, Esteban, Loss)
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Rigidity, 'y framework, and flows
Flows and sharp interpolation inequalities on the sphere Linear versus nonlinear fows

Constraints and improved inequalities

Onofri inequalities, Riemannian manifolds, etc.

Integral constraints

With the heat flow...

Proposition

For any p € (2,2%), the inequality

/ PR dve+ 2 I = 2 2
o L P

1

Ve Y ((—1,1),dvg) s.t. / z|f|P dva =0

—1

holds with

—1)2
)\>d—|—(d )

> m@#—w()\*—d)

v

. and with a nonlinear diffusion flow ?
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Antipodal symmetry

With the additional restriction of antipodal symmetry, that is

w(—z) = u(z) VazeS?

Theorem

Ifp € (1,2) U (2,2%), we have

d_[,, (@-0@-p
Lwat? uz 2 1 I (g, g — ulaen)

for any u € HY(S?, du) with antipodal symmetry. The limit case p = 2
corresponds to the improved logarithmic Sobolev inequality

/|Vu|2 au> WO /|u|2 og [
Sd 2 || ||L2 (S4)
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The optimal constant in the antipodal framework

15 20 25 30

Branches of antipodal solutions: numerical computation of the optimal
constant when d =5 and 1 < p < 10/3 = 3.33. The limiting value of
the constant is numerically found to be equal to
A\, =272/ d ~ 6.59754 with d =5 and p = 10/3
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Rigidity, 'y framework, and flows
Flows and sharp interpolation inequalities on the sphere Linear versus nonlinear fows
Constraints and improved inequalities
Onofri inequalities, Riemannian manifolds, etc.

Onofri inequalities, Riemannian manifolds, Lin-Ni
problems

@ The extension to Riemannian manifolds (JD, Esteban, Loss,
2013): for any p € (1,2) U(2,2*) or p = 2* if d > 3, the FDE
equations provides a lower bound for A in
A
V0l 20m) > ) [”“Hip(sm) —[olf2omy| VoeH (M)

@ Onofri inequality (JD, Esteban, Jankowiak, 2015): the flow

of - _

O — a7~ wp e
determines a rigidity interval for smooth solutions to
— LA u+A=e"
@ Lin-Ni problems (JD, Kowalczyk): rigidity interval for solutions
with Neumann homogeneous boundary conditions on bounded convex
domain

@ Keller-Lieb-Thirring inequalities on manifolds: estimates for
Schrodinger operator that (really) differ from the semi-classical
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Flows and sharp interpolation inequalities on the sphere
Fast diffusion equation: global and asymptotic rates
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Gagliardo-Nirenberg inequalities: optimal constants, rates
Asymptotic rates of convergence
The Rényi entropy powers approach

Fast diffusion equation: global and
asymptotic rates of convergence

> Gagliardo-Nirenberg inequalities: optimal constants and rates
> Asymptotic rates of convergence, Hardy-Poincaré inequality

> The Rényi entropy powers approach
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The fast diffusion equation

Gagliardo-Nirenberg inequalities: optimal constants, rates
Asymptotic rates of convergence
The Rényi entropy powers approach

The fast diffusion equation corresponds to m < 1
=Au™ zeRY, t>0

(Friedmann, Kamin) Barenblatt (self-similar functions) attract all
solutions as ¢ — 400

> Entropy methods allow to measure the speed of convergence of any
solution to W in norms which are adapted to the equation
> Entropy methods provide explicit constants

@ The Bakry-Emery method (Carrillo, Toscani), (Juengel,
Markowich, Toscani), (Carrillo, Juengel, Markowich, Toscani,
Unterreiter), (Carrillo, Vazquez)

@ The variational approach and Gagliardo-Nirenberg inequalities:
(del Pino, JD)

@ Mass transportation and gradient flow issues: (Otto et al.)

@ Large time asymptotics and the spectral approach: (Blanchet,
Bonforte, JD, Grillo, Vazquez), (Denzler, Koch, McCann), (Seis)
@ Refined relative entropy methods
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= Gagliardo-Nirenberg inequalities: optimal constants, rates
Asymptotic rates of convergence
The Rényi entropy powers approach

Time-dependent rescaling, free energy

@ Time-dependent rescaling: Take u(7,y) = R~4(7) v (t,y/R(7))

where iR
20— pdi-m)-1 R(0) =1 t=log R
o , R(O)=1, og
@ The function v solves a Fokker-Planck type equation
ov
EzAvm+V~(atv)7 Vjr—0 = Up

@_ (Ralston, Newman, 1984) Lyapunov functional:
Generalized entropy or Free energy

™ 1
Flo] := — 4+ 22?0 dz— T
= [ (S5 4 glebo) o5

Entropy production is measured by the Generalized Fisher
information

G0 = ~I0], ] = /R U’v:m e

dx

J. Dolbeault From entropy methods to symmetry breaking



Gagliardo-Nirenberg mequalmeg optimal constants, rates

. 5 . il et O . A N \\n)]f otic rates of convergence
Fast diffusion equation: global and asymptotic rates T Tt entrony Domore comreach

Relative entropy and entropy production

Q. Stationary solution: choose C such that |[|B|f1 = ||ulpr =M >0

1/(1—m)

B(z) = (C+ T2 ),

Relative entropy: Fix Fy so that F[B| =
@ Entropy — entropy production inequality

A solution v with initial data ug € L} (R?) such that |z|*> ug € L*(R?),
ui* € LY(R?) satisfies Flo(t, )] < Flug) e~ 2t
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Gagliardo-Nirenberg inequalities: optimal constants, rates

Fast diffusion equation: global and asymptotic rates Acpamyplieiile @CH GF GOITORIEHEE
The Rényi entropy powers approach

An equivalent formulation: Gagliardo—Nirenberg
inequalities

2

dz = }J[v]
2

Flv] :/ Y + = |z)?v ) dz—TF < f/ v Vo +z
re\m—1 2 2 JRra v

Rewrite it with p = s—=——

1 2m \? 1
2 1+4+p >
2<2 1) /Rd\Vw| dx—l—(l —d)/d|w| dr— K >0

= wPt! ag

[Del Pino, J.D.] With 1 < p < 5% (fast diffusion case) and d >3

lollongrey < €S IV0]%2 gy ool 55
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Entropy methods, gradient flows and rates of convergence

Gagliardo-Nirenberg inequalities: optimal constants, rates
Flows and sharp interpolation inequalities on the sphere - )
N . . g . Asymptotic rates of convergence
Fast diffusion equation: global and asymptotic rates gt
o £ S & . - N The Rényi entropy powers approach
Symmetry and Caffarelli-Kohn-Nirenberg inequalities

Improved asymptotic rates

(Denzler, McCann), (Denzler, Koch, McCann), (Seis)
(Blanchet, Bonforte, J.D., Grillo, Vazquez), (Bonforte, J.D., Grillo,
Vazquez), (J.D., Toscani)

~(m)

0 m

A Hardy-Poincaré inequality : [, [V/f[*B dz > A [, |f|> B~ dz
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Gagliardo-Nirenberg inequalities: optimal constants, rates
Asymptotic rates of convergence

Fast diffusion equation: global and asymptotic rates Ths Ebnyi entropy pawors bopronch

The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in R?, d > 1

ou

T Au™

ot~ "
with initial datum u(z, t = 0) = up(z) > 0 such that [, uo dz =1 and
Jza |2[? ug dz < +00. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

Wt ) = (k tll/u)d B*(/@tal:/ﬂ)
where 2 pm e
w:=2+d(m-1), —]
and B, is the Barenblatt profile
(Co—12?)/ Y it m>1

B (z) :=
(Cot 1) itm <1
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\wmptutu rates of convergence
The Rényi entropy powers approach

The Rényi entropy power £

The entropy is defined by

E ::/ u™ dz
R

and the Fisher information by

| := / uw|VP*dr with P = T ym-t
Rd m—1
If u solves the fast diffusion equation, then
E=(1-m)l

To compute I’, we will use the fact that

OP

— =(m—1)PAP +|VP|?

ot

. 10 2 1 2 1
F:=E° th = =1 - -1)==—-1
Wi d(1—m) +1—m(d+m ) dl—m

has a linear growth asymptotically as ¢t — 400
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Gagliardo-Nirenberg inequalities: optimal constants, rates
N vy Pl S L o o ISk (A Asymptotic rates of convergence
Fast diffusion equation: global and asymptotic rates Ths Ebnyi entropy pawors bopronch

The concavity property

(Toscani-Savaré) Assume that m>1— 2% ifd>1and m>0ifd=1.
Then F(t) is increasing, (1 —m)F"(t) <0 and

1
lim —F(t)=(1-m)o lim E"'l=(1—-m)oEl "I,

t—+oo ¢ t—+o00

(Dolbeault-Toscani) The inequality

E° 11> ETL,
is equivalent to the Gagliardo-Nirenberg inequality
||Vw||L2 (R7) ||w||Lq+1(Rd) > Can [Jwllp2e ey

ifl1-4<m<1
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Gagliardo-Nirenberg inequalities: optimal constants, rates

Asymptotic rates of convergence

Fast diffusion equation: global and asymptotic rates The Rényi entropy powers approach

The proof

If u solves = Au™ with % <m <1, then

= % u| VP2 dp = — 2/ u™ (ID?PIP + (m — 1) (AP)?) do
Ré RY

2
1 1
|D2P||? = v (AP)? 4 H D?P — — APId

1

T EZ 7 ()" =(1-m)(c—1) (/ u|VP|? d:z:)2

1
—2(—|—m—1>/u d:r/

d R4 Rd
—2/ umd:c/ u™

R R4

J. Dolbeault From entropy methods to symmetry breaking
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The symmetry issue in the critical case
Flow, rigidity and symmetry
The subcritical case

Symmetry and symmetry breaking

in Caffarelli-Kohn-Nirenberg
inequalities

> The symmetry issue in the critical case
> Flow, rigidity and symmetry

> The subcritical case

Collaboration with...

M.J. Esteban and M. Loss (symmetry, critical case)

M.J. Esteban, M. Loss and M. Muratori (symmetry, subcritical case)
M. Bonforte, M. Muratori and B. Nazaret (linearization and large
time asymptotics for the evolution problem)
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Fast diffusion equation: global and asymptotic ra
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Critical Caffarelli-Kohn-Nirenberg inequalities

The symmetry issue in the critical case
Flow, rigidity and symmetry
The subcritical case

Let Dy p = { we LP (R, |27 dz) : |z|7*|Vw| € L? (RY, dx) }

P 2/p 2
(/ ] dx) < Capp [Vl dr Ywe Dy,
R R

« |z|*P |z[2@

hold under the conditions that a < b<a+1ifd>3,a<b<a+1
ifd=2,a4+1/2<b<a+1ifd=1,and a < a.:=(d—2)/2
2d
p:
d—24+2(b—a)

> An optimal function among radial functions:
[ 2] =" we |13

[z~ Vw13

_2_
—2

wy () = (1 + \x|(p72)(“"7a)>_p and Cj, =

Question: Cqp = Cj  (symmetry) or Cop > C,  (symmetry breaking) ?

J. Dolbeault From entropy methods to symmetry breaking



Entr \ nethods, gradient flows and ra
H
\

xlobal and

ic
Symmetry and Caﬁatelll Kohn Nlrenberg mequahtleb

€ of co
H]lm” 1‘ 0 in m-lu

The symmetry issue in the critical case
Flow, rigidity and symmetry

o e ~m.( re
1t e T L
I'he subcritical case

>toti

Critical CKN: range of the parameters

Figure: d =3

b
|w|P )2/p / /
d < C, —
(/ E el ST EEI N § e S|

—1

[Vwl?

—_

a<b<a+1ifd>3

b=a

a<b<a+1lifd=2a+1/2<b<a+1ifd=1

and a < a, :=
2

P= 25200 —a)

(d—2)/2

J. Dolbeault

(Glaser, Martin, Grosse, Thirring (1976))
(F. Catrina, Z.-Q. Wang (2001))
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The symmetry issue in the critical case
Flow, rigidity and symmetry

Symmetry and Caffarelli-Kohn-Nirenberg inequalities e SElberiel e

The threshold between symmetry and symmetry
breaking

(F. Catrina, Z.-Q. Wang)
b /

2=
/ 0 a

(JD, Esteban, Loss, Tarantello, 2009) There is a curve which
separates the symmetry region from the symmetry breaking region,
which is parametrized by a function p — a + b
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The symmetry issue in the critical case
Flow, rigidity and symmetry

Symmetry and Caffarelli-Kohn-Nirenberg inequalities e SElberiel e

Linear instability of radial minimizers:

the Felli-Schneider curve
=

/ 0 a

(Catrina, Wang), (Felli, Schneider) The functional

2 14 2/p
c;b/ vf'dx(/ il d:r)
Y g |z re |7]°P

is linearly instable at w = w,
J. Dolbeault From entropy methods to symmetry breaking




Entropy methods, gradient flows and rates of convergence . . L
Py R v ; gen The symmetry issue in the critical case
Flows and sharp interpolation inequalities on the sphere nme
v Sl . ) Flow, rigidity and symmetry
Fast diffusion equation: global and asymptotic rates T bl el G
Symmetry and Caffarelli-Kohn-Nirenberg inequalities

Moving planes and symmetrization

(Chou, Chu), (Horiuchi)

(Betta, Brock, Mercaldo, Posteraro)

+ Perturbation results: (CS Lin, ZQ Wang), (Smets, Willem), (JD,
Esteban, Tarantello 2007), (JD, Esteban, Loss, Tarantello, 2009)
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©oP ’ ) £ The symmetry issue in the critical case
Flows and sharp interpolation inequalities on the sphere e
! : Flow, rigidity and symmetry
Fast diffusion equation: global and asymptotic rates The suboritioal case
Symmetry and Caffarelli-Kohn-Nirenberg inequalities

Direct spectral estimates

(JD, Esteban, Loss, 2011): sharp interpolation on the sphere and a
Keller-Lieb-Thirring spectral estimate on the line

@ Further numerical results (JD, Esteban, 2012) (coarse / refined /
self-adaptive grids). Formal commutation of the non-symmetric
branch near the bifurcation point (JD, Esteban, 2013)

@ Asymptotic energy estimates (JD, Esteban, 2013)
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Entropy methods, gradient flows and rates of convergence

Flows and sharp interpolation inequalities on the sphere
Fast diffusion equation: global and asymptotic rates
Symmetry and Caffarelli-Kohn-Nirenberg inequalities

The symmetry issue in the critical case
Flow, rigidity and symmetry
The subcritical case

Symmetry versus symmetry breaking:
the sharp result in the critical case

A result based on entropies and nonlinear flows

b

(JD, Esteban, Loss (Inventiones 2016))

J. Dolbeault From entropy methods to symmetry breaking


http://10.1007/s00222-016-0656-6
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The symmetry result in the critical case

The Felli & Schneider curve is defined by

. d(ac—a) “—a
brs(a) := 2y/(ac—a)2+d—1 * ‘

Let d > 2 and p < 2*. If either a € [0, a.) and b >0, or a <0 and
b > brs(a), then the optimal functions for the
Caffarelli- Kohn-Nirenberg inequalities are radially symmetric
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Proof (1/3): a change of variables
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(CKN) can be rewritten for a function v(|z|*~!z) = w(z) as

HUH 20 d—n K()z,vzHQQ'U”LZ,d—n(Rd)

<
Ln—2""""(Rd)

with the notations D,v = ( g;’, i \A v), s = |z|, and

d—bp d—2a—2
d>2. a>0, n= P _ 172 195y
(07 (07

By our change of variables, p = Qf” is the critical Sobolev exponent
associated with n and w, is changed into
ve(z) = (1+ |x|2)71/(p71) vz e R?

Fisher information J and pressure function P: with u2 =% = |wl,
Iu] = / u|D.P?dy, P=

Rd 1

Goal: prove that inf J[u] under the mass constraint [o, udp =1 is

achieved by P(z) = 1 + |z|?
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Proof (2/3): decay of J along the fast diffusion flow
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0 1
—u:Lau’”:—C‘D,“;@aum, m=1—-—
ot n
Barenblatt self-similar solutions: .
U*(t, r,w) =t " (C* + W)
d n—1 1—-n
—Ju(t, )] =-2(n-1) k[PJP™ ™" dpu
dt Rd
and (long and painful computation !), with apg := n—j,
Plmat (12 L) [pr -7 AP 2+2 2 1|op VPI
-« n r o a?(n—1)r2 v r
—9 —d
"T4 (a%s _ 042)|VP|2 pl-n 4 G (7;4 ) |VP|4 pl-n

> Boundary terms ! Regularity !
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Proof (3/3): a perturbation argument and elliptic
regularity

@ If u is a critical point of J under the constraint fRd wdp =1, then
0=DIu] - Lou™=-2(n—1)"" / k[P]P'~" dp
Rd

@ Regularity issues and boundary terms: after an Emden-Fowler
transformation, a critical point satisfies the Euler-Lagrange equation

—2p—A,p+Ap=¢P' in C=RxS*!
with p < %: o e~ VAIs| < p(s,w) < Cy e~ VALl

With s = log r, one can prove, e.g., that

P au< 0/r?)

@ If a < apg, then u = u,
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Some subcritical Caffarelli-Kohn-Nirenberg inequalities
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[wlirzeo®e) < Cayp ||VwHL2 B(R?) Hw||Lp+1 7(RY) (CKN)
C,,p is the optimal constant, [|wl|y.~ g = ([g. |w]?|2|7 dz) 1/
d22a 7_2<6<dff7a ’}/E(—OO,d), PE(LP*}, p*::%
d—v) (p—1 . . .
9= p(d+ﬂ_£2_;2y(_7’p(3_ﬁ_2)) is determined by the scalings
@ Is the equality case achieved by the Barenblatt / Aubin-Talenti
type function

w,(z) = (1+ ‘I|2+ﬂ77>71/(p71) VzeR® ?

@ Do we know (symmetry) that the equality case is achieved among
radial functions ?
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Range of the parameters
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CKN and entropy — entropy production inequalities

If symmetry holds, (CKN) is equivalent to
2+ 8= ) Fv] < I[y]
p=1/(2m — 1), and equality is achieved by
1
By, = (1+ |z*H777) T
1
Flv] i = —— m_Br
[} MG

m—1 rv_m%gf;l(v_%ﬁ,v)) —

2 dx
o= [ w|womt - vept L
[v] /Rd v|Vu By FE
If v solves the Fokker-Planck type equation
O+ a1V - [ a7 09 (0™~ |af+9-)] =0

then the free energy and the relative Fisher information satisfy

d m

ZT0(t,)] = = I[u(t, )]
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Decay of the free energy in the symmetry range

Proposition

Let m = 7’2—?1 and consider a solution to
Owv+ |z|7 V- [|;I:\_ﬁ vV (" — \z\“ﬁ‘“f)} =0

with nonnegative initial datum ug € £ 7 (R®) such that llug™ I (re)
and [gq uo |2/~ dx are finite. Then

Flo(t, )] < Flug] e+t vi>0

if one of the following two conditions is satisfied:
(i) either ug is a.e. radially symmetric

(i) or symmetry holds in (CKN)
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o Symmetry and symmetry breaking

(JD, Esteban, Loss, Muratori, 2016)

Let us define Brg(y) == d — 2 — /(d —7)2 —4(d — 1)

Symmetry breaking holds in (CKN) if

2

d—
v<0 and PBrs(y )<B<T'y

In the range Brs(y) < f < 4525, w,(z) = (14 |z2+8-7)~ 1/(p=1) o
not optimal.
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16

B=Prs(y)

The grey area corresponds to the admissible cone. The light grey area
is the region of symmetry, while the dark grey area is the region of
symmetry breaking. The threshold is determined by the hyperbola

(d=9)°—(B-d+2?-4(d=1)=0
[m] =P = =
J. Dolbeault From entropy methods to symmetry breaking
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Some concluding remarks

The so-called entropy methods in PDEs address various questions
which are relevant for applications in physics and biology

@ Symmetry and symmetry breaking

> Sharp conditions for symmetry breaking, phase transitions, etc.
> Characterization of the rates of convergence (for the evolution
equation) in terms of the symmetry of the optimal functions

> Power law non-linearities or weights make sense to explore some
limiting case (blow-up, large scale)

@ Rates of convergence, identification of the optimal
constants

> are crucial for some applications (e.g., in astrophysics)

> raise questions: global vs. asymptotic rates ? corrections (delays) ?
> identify worst case scenarios: numerics, obstructions

@ Functional inequalities: useful not only for a priori estimates,
but also for providing extreme cases and enlightening structures
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These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Conferences/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list/
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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