Multi-bubbling phenomena

Jean Dolbeault

Ceremade, Université Paris IX-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cédex 16, France

E-mail: dolbeaul@ceremade.dauphine.fr

http://www.ceremade.dauphine.fr/~dolbeaul/

in collaboration with Manuel del Pino (Universidad de Chile) Monica Musso (Politecnico di Torino) Lausanne, 11/02/2004

Plan

I – Multi-bubbling for the exponential nonlinearity in the slightly supercritical case – An ODE approach

II – The Brezis-Nirenberg problem: A phase plane analysis

III – The Brezis-Nirenberg problem: Lyapunov-Schmidt reduction

IV – The Brezis-Nirenberg problem: the general case

I — Multi-bubbling for the exponential nonlinearity in the slightly supercritical case

An ODE approach

Exponential nonlinearity

[Gelfand57, Joseph-Lundgren73]

$$-\Delta u = \lambda e^{u} \quad |x| < 1, \ x \in \mathbb{R}^{n}$$
$$u = 0 \quad \text{if} \quad |x| = 1$$

Bifurcation diagrams in $L^{\infty}(\Omega)$ (bounded solutions are radial): 1. If n = 2, the branch has an asymptote at $\lambda = \lambda^* = 0$, the equation has exactly two solutions for any $\lambda \in (0, \lambda_1^+)$ and no solution if $\lambda > \lambda_1^+$.

2. If 2 < n < 10, the branch oscillates around an asymptote at $\lambda = \lambda^* > 0$, the equation has at least one solution for any $\lambda \in (0, \lambda_1^+), \lambda_1^+ > \lambda^*$, and no solution if $\lambda > \lambda_1^+$. 3. If $n \ge 10$, the branch has an asymptote at $\lambda = \lambda^* > 0$, the equation has (exactly) one solution iff $\lambda \in (0, \lambda^*)$.

Figure 2: Supercritical case: $p < n < p \frac{p+3}{p-1}$

Figure 3: Supercritical case: $n \ge p \frac{p+3}{p-1}$

For $\lambda^* = 2(n-2)$, there exists a unique radial singular solution u^* such that

$$e^{u^*(x)} = \frac{1}{|x|^2},$$

[Cabre, Cabre-Martel98, Cabre-Martel99, Mignot-Puel98]. Radial solutions solve

$$\begin{cases} u'' + \frac{n-1}{r}u' + \lambda e^u = 0, \quad r \in (0,1) \\ u'(0) = 0, \quad u(1) = 0 \end{cases}$$

It is natural to consider n as a real parameter. With $n = 2 + \varepsilon$

$$|x|^{N-2-\varepsilon}\operatorname{div}(|x|^{-(N-2-\varepsilon)}\nabla u) + \lambda e^{u} = 0$$

In analogy with the situation observed in the Brezis-Nirenberg problem [Brezis-Nirenberg83], n = 2 appears as the *critical* case and $n = 2 + \varepsilon$, $\varepsilon > 0$ as the *supercritical* case.

"Criticality" in the Brezis-Nirenberg problem

$$-\Delta u = u^p + \lambda u \quad |x| < 1, \ x \in \mathbb{R}^n$$
$$u = 0 \quad \text{if} \quad |x| = 1$$

1. For $n \ge 3$, the *critical* exponent is (n+2)/(n-2). In terms of the parameter λ , the "first branch" is monotone decreasing.

2. the "first branch" is oscillating in the *supercritical* regime p > (n+2)/(n-2), around an asymptotic value $\lambda = \lambda^*$.

"First branch": the branch of positive radial bounded solutions which bifurcates from the trivial solution at the first eigenvalue of $-\Delta$.

In the supercritical regime, there exists a radial singular solution if and only if $\lambda = \lambda^*$ [Merle-Peletier91].

Figure 4: Positive solutions for Brezis Nirenberg. Top: subcritical case. Middle: critical case. Bottom: supercritical case

Back to the exponential nonlinearity : a more general equation

$$\begin{cases} \Delta_p u + \lambda e^u = 0 & \text{in } \Omega \\ u > 0, \quad u = 0 & \text{on } \partial\Omega \end{cases}$$
(1)

with $1 , where <math>\Omega$ is the unit ball in \mathbb{R}^n . Here we use the standard notation $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$. Written in radial coordinates, the equation is

$$\begin{cases} \Delta_{p,n} u + \lambda e^{u} = 0, \quad r \in (0,1) \\ u(0) > 0, \quad \frac{du}{dr}(0) = 0, \quad u(1) = 0 \\ \Delta_{p,n} u := \frac{1}{r^{n-1}} \frac{d}{dr} \left(r^{n-1} \left| \frac{du}{dr} \right|^{p-2} \frac{du}{dr} \right) \end{cases}$$

Small parameter in the slightly supercritical regime: $\varepsilon = n - p > 0$. The properties of the bifurcation diagram for p > 1 are very similar to the ones of the case p = 2 [Jacobsen-Schmitt02]

1. If n = p, the branch has an asymptote at $\lambda = 0$ and the equation has exactly two solutions for any $\lambda \in (0, \lambda_1^+)$.

2. Let $p_{\pm}(n) = \frac{1}{2}[n-3\pm\sqrt{(n-1)(n-9)}]$. If $p < n < \frac{p(p+3)}{(p-1)}$, i.e. 1 if <math>1 < n < 9, $1 or <math>p_{+}(n) if <math>n \ge 9$ the branch oscillates around an asymptote at $\lambda^* := p^{p-1}(n-p)$ if $3 \le n < 10$. There is a unique radial singular solution $u^* := -p \log r$

3. The branch is monotone with an asymptote at $\lambda = \lambda^* > 0$ if $n \ge p(p+3)/(p-1)$, i.e. $p \in [p_-(n), p_+(n)]$.

Figure 5: Types of bifurcation diagrams in terms of n and p.

Figure 6: The critical limit $\varepsilon = n - p \searrow 0$.

Theorem 1 Let $k \in \mathbb{N}$, $k \ge 1$. There exists $\overline{\lambda}_k^+ > 0$ such that for any $\lambda \in (0, \overline{\lambda}_k^+)$, Equation (1) has a solution u^{ε} which can be written as:

$$\lambda |x|^p e^{u^{\varepsilon}(x)} = \left[\sum_{j=1}^k w_j^k (\log |x| + \mu_j(\varepsilon))\right] (1 + o(1)) \quad as \quad \varepsilon \to 0$$

uniformly on Ω . Moreover

$$\lim_{i \to +\infty} (\mu_{j+1} - \mu_j) = +\infty \quad \forall \ j = 1, 2, \dots k - 1$$

Here the functions w_j^k are smooth, even, positive and such that $w_j^k(s) \searrow 0$ as $s \to \pm \infty$.

Precision: true only for sequences $(\varepsilon_i)_{i \in \mathbb{N}}$ with $\varepsilon_i \searrow 0$. Conjecture: w_i^k depends neither on k nor on $(\varepsilon_i)_{i \in \mathbb{N}}$.

THE GENERALIZED EMDEN-FOWLER CHANGE OF VARIABLES

See [Damascelli-Pacella-Ramaswamy99] and [Brock01] for some recent result on the symmetry properties of the solutions.

Emden-Fowler change of variables: For $r = e^s$, $s \in (-\infty, 0]$, define v(s) := u(r). Then (1) is equivalent to

 $\begin{cases} (p-1) |v'|^{p-2} v'' + (n-p) |v'|^{p-2} v' + \lambda e^{v+ps} = 0, \quad s \in (-\infty, 0) \\ \lim_{s \to -\infty} v(s) > 0, \quad \lim_{s \to -\infty} e^{-s} v'(s) = 0, \quad v(0) = 0 \\ \text{where } v' = \frac{dv}{ds}. \text{ The equation for } v \text{ can be reduced to an } au-tonomous \text{ ODE system as follows. Let} \end{cases}$

$$x(s) = \lambda e^{v(s) + ps}$$
 and $y(s) = |v'(s)|^{p-2} v'(s)$.

$$\begin{cases} x' = x \left(|y|^{p^*-2} y + p \right), & x(0) = \lambda \\ y' = (p-n) y - x, & \lim_{s \to -\infty} e^{-s} |y(s)|^{p^*-2} y(s) = 0 \\ \text{here } p^* = (1 - 1/p)^{-1}, & u = |v'|^{p-2} v' \iff v' = |u|^{p^*-2} u \quad \text{Two} \end{cases}$$

where $p^* = (1 - 1/p)^{-1}$: $y = |v'|^{p-2} v' \iff v' = |y|^{p^*-2} y$. Two fixed points: $P^- = (0,0)$ and $P^+ = p^{p-1}(n-p,-1)$.

Lemma 2 Let $\lambda^* = p^{p-1}(n-p)$, p < n < p(p+3)/(p-1). There exists two sequences $(\lambda_k^-)_{k\geq 1}$ and $(\lambda_k^+)_{k\geq 1}$ such that: (i) $(\lambda_k^-)_{k\geq 1}$ is increasing and $\lim_{k\to +\infty} \lambda_k^- = \lambda^*$. (ii) $(\lambda_k^+)_{k\geq 1}$ is decreasing and $\lim_{k\to +\infty} \lambda_k^+ = \lambda^*$. (iii) (1) has no solutions if $\lambda > \lambda_1^+$, 2k - 1 solutions if $\lambda = \lambda_k^+$ or $\lambda \in (\lambda_{k-1}^-, \lambda_k^-)$, and 2k solutions if $\lambda = \lambda_k^-$ or $\lambda \in (\lambda_{k+1}^+, \lambda_k^+)$. (iv) (1) has infinitely many solutions if and only if $\lambda = \lambda^*$.

Figure 7: Phase portrait in the supercritical case $p < n < p \frac{p+3}{p-1}$ (here n = 2, p = 1.5).

Figure 8: Parametrization of the solutions in the supercritical case (n = 2, p = 1.5). Left: (\bar{x}, \bar{y}) in the phase space. Right: the bifurcation diagram.

The critical case: p = n The system becomes Hamiltonian:

$$x' = x (|y|^{p^*-2}y + p), \quad y' = -x$$

which is explicitly solvable in the case p = 2 [Bratu14]: $u(r) = 2\log(a^2 + 1) - 2\log(a^2 + r^2)$ is a solution of (1) for any a > 0 such that $\lambda = 8a^2(a^2 + 1)^{-2}$.

Lemma 3 Assume that p = n and let $\lambda_1^+ := \sup_{s \in \mathbb{R}} \overline{x}(s)$. Then Equation (1) has no solutions if $\lambda > \lambda_1^+$, one and only one solution if $\lambda = \lambda_1^+$ and two and only two solutions if $\lambda \in (0, \lambda_1^+)$.

Figure 9: Phase portrait in the critical case n = p (here n = 2).

Figure 10: Parametrization of the solutions in the critical case (n = p = 2). Top: (\bar{x}, \bar{y}) in the phase space. Bottom: the bifurcation diagram.

Figure 11: Top: the solution $(\bar{x}^{\varepsilon}, \bar{y}^{\varepsilon})$ in the slightly supercritical regime $\varepsilon > 0$, $\varepsilon \to 0$. Bottom: the corresponding bifurcation diagram. Here n = 2, $\varepsilon = 0.05$.

Figure 12: Bubbles in the logarithmic scale, after the Emden-Fowler transformation.

Description of the critical limit

Lemma 4 For any $k \ge 1$, $\bar{\lambda}_k^+ > 0$ (P_k) and $\bar{\lambda}_1^+ = \lambda_1^{0,+}$. Moreover $(\bar{\lambda}_k^+)_{k\in\mathbb{N}}$ is a strictly decreasing seguence.

Corollary 5 For any $k \ge 1$, as $\varepsilon \to 0$,

$$\bar{x}^{\varepsilon}(s) \to \sum_{j=1}^{k} x_j(s-s_j(\varepsilon))$$

uniformly on any interval $(-\infty, a(\varepsilon)) \in \mathbb{R}$ such that $s_k(\varepsilon) < a(\varepsilon) < s_{k+1}(\varepsilon)$ with $\liminf_{\varepsilon \to 0} (s_{k+1}(\varepsilon) - a(\varepsilon)) = \liminf_{\varepsilon \to 0} (a(\varepsilon) - s_k(\varepsilon)) = +\infty$.

Let $\lambda \in (0, \overline{\lambda}_k^+)$ and define $s_k^{\pm}(\lambda) \in \mathbb{R}$ as the two solutions of $x_k(s_k^{\pm}(\lambda)) = \lambda$, $\pm s_k^{\pm}(\lambda) > 0$. A careful rewriting of the Emden-Fowler change of variables then allows to see the solution of (1) as a superposition of bubbles.

Lemma 6 Let $\lambda \in (0, \overline{\lambda}_k^+]$ for some $k \ge 1$. Then there exist two solutions u^{\pm} of (1) which take the form

$$\lambda r^p e^{u^{\pm}(r)} = \left[\sum_{j=1}^k x_j (\log r + s_k(\varepsilon) - s_j(\varepsilon) + s_k^{\pm}(\lambda))\right] (1 + o(1))$$

as $\varepsilon \to 0$.

This actually amounts to saying that there is a k-bubble solution.

Multi-Bubbling

In the new coordinates $V = \log x$, U = -y, the system becomes

$$\begin{cases} U' = e^V - \varepsilon U, & U(-\infty) = 0\\ V' = U_*^{p^*-1} - U^{p^*-1}, & V(0) = \log \lambda_1^{\varepsilon,+} \end{cases}$$

Define an *energy* and an *angle* respectively by:

$$E = e^{V} - e^{V_{*}} - e^{V_{*}}(V - V_{*}) + \frac{1}{p^{*}} \left(U^{p^{*}} - U_{*}^{p^{*}} \right) - U_{*}^{p^{*}-1}(U - U_{*}) .$$

$$\cos\theta = \frac{U - U_*}{\sqrt{|U - U_*|^2 + |V - V_*|^2}} \quad \text{and} \quad \sin\theta = \frac{V - V_*}{\sqrt{|U - U_*|^2 + |V - V_*|^2}}.$$

Lemma 7 There exists a constant $\nu > 0$ such that

$$0 \ge \frac{dE}{ds} \ge -\varepsilon \, \nu \, E \quad \forall \, s \in \mathbb{R} \; .$$

Given C > 0, there exists a constant $\omega > 0$ such that, if

$$V(s) \ge \log(\varepsilon U_*) - C \quad \forall s \in [s_1, s_2] \subset \mathbb{R}^+,$$

then for $\varepsilon > 0$ small enough and any $s \in [s_1, s_2]$,

$$rac{d heta}{ds} \geq arepsilon \, \omega \; .$$

Corollary 8 Under the above assumptions,

$$E(s) \ge E(s_0) e^{-\frac{\nu}{\omega} \left[\theta(s) - \theta(s_0)\right]}.$$

II — *The Brezis-Nirenberg problem: multi-bubbling in a ball*

A phase plane analysis

References / History

$$p = \frac{N+2}{N-2}, \ \varepsilon \ge 0, \ N \ge 3, \ B \text{ is the unit ball in } \mathbb{R}^N$$
$$\begin{cases} -\Delta u = u^{p+\varepsilon} + \lambda u, & u > 0 & \text{in } B\\ u = 0 & & \text{on } \partial B \end{cases}$$

• <1950: Lane, Emden, Fowler, Chandrasekhar (astrophysics)

- Sobolev, Rellich, Nash, Gagliardo, Nirenberg, Pohozaev
- 1976: Aubin, Talenti
- 1983: Brezis, Nirenberg: case $\varepsilon = 0$ is solvable for $(N \ge 4)$ $0 < \lambda < \lambda_1 = \lambda_1(-\Delta)$. Uniqueness (Zhang, 1992).
- subcritical case $(0 > \varepsilon \rightarrow 0)$: Brezis and Peletier, Rey, Han

• supercritical case: Symmetry (Gidas, Ni, Nirenberg, 1979). Budd and Norbury (1987, case $\varepsilon > 0$): formal asymptotics, numerical computations. Merle and Peletier (1991): existence of a unique value $\lambda = \lambda_* > 0$ for which there exists a radial, singular, positive solution. The Brezis-Nirenberg problem in a ball: radial solutions

$$\begin{cases} u'' + \frac{n-1}{r}u' + |u|^{p-1}u + \lambda u = 0, \quad r \in (0,1) \\ u'(0) = 0, \quad u(1) = 0 \end{cases}$$
(2)

The Emden-Fowler change of variables With $r = e^s$, $u(r) = r^{-2/(p-1)}v(s)$, (2) is equivalent to

$$v'' + |v|^{p-1}v - \beta v = -\alpha v' - \lambda e^{2s}v$$
, $s \in (-\infty, 0) + b.c.$

 $\alpha = n - 2 - 4/(p - 1), \ \beta = 2 \left[(n - 2)p - n \right]/(p - 1)^2, \ p = \frac{n+2}{n-2} + \varepsilon.$ Let $x(s) = v(s), \ y(s) = v'(s)$:

$$x' = y, \quad y' = -(|x|^{p-1}x - \beta x) - \lambda e^{2s}x - \alpha y$$

x(0) = 0, y(0) = $\gamma > 0$

31

Figure 13: Bifurcation curve of the positive solutions in the slightly supercritical case.

Figure 14: Phase space

The critical case [Brezis-Nirenberg83]

[Benguria-J.D.-Esteban00, J.D.-Esteban-Ramaswamy] Define the energy by

$$E(s) = \frac{1}{2} |y(s)|^2 + \frac{1}{p+1} |x(s)|^{p+1} - \frac{\beta}{2} |x(s)|^2$$

and consider its limiting value $\mathcal{E}_{\gamma,\lambda} = \lim_{s \to -\infty} E(s)$. Let $\lambda \in (\lambda^*, \lambda_1)$ be fixed:

- 1. If $\gamma \in (0, \gamma_*(\lambda))$, then $\mathcal{E}_{\gamma, \lambda} < 0$: positive singular
- 2. If $\gamma \in (\gamma_*(\lambda), +\infty)$, then $\mathcal{E}_{\gamma, \lambda} > 0$: singular and oscillating
- 3. If $\gamma = \gamma_*(\lambda)$, then $\mathcal{E}_{\gamma,\lambda} = 0$: (unique) positive bounded

Theorem 9 Let $n \ge 3$, $p^* = \frac{n+2}{n-2} , <math>\kappa \in \mathbb{N}$, $\kappa \ge 1$. If $\lambda \in (\lambda^*, \lambda_1)$, then there exists a solution

$$x(s) = x_0^{\lambda}(s) + \sum_{i=1}^{k} x^*(s + s_i(\varepsilon)) + o(1)$$

for some $k \ge \kappa$, where x_0^{λ} is the bounded solution in the critical case $(p = p^*, \varepsilon = 0)$ with $\gamma = \gamma^*(\lambda)$ and x^* is the unique positive solution of the asymptotic problem

$$x'' + |x|^{p^* - 1}x - \frac{1}{4}(n-2)^2 x = 0$$

such that x'(0) = 0 and with zero energy.

III – The Brezis-Nirenberg problem: Lyapunov-Schmidt reduction BUBBLE-TOWER RADIAL SOLUTIONS IN THE SLIGHTLY SUPERCRITICAL BREZIS-NIRENBERG PROBLEM

We consider the Brezis-Nirenberg problem

$$\begin{cases} \Delta u + u^{p+\varepsilon} + \lambda u = 0 & \text{in } B\\ u > 0 & \text{in } B, \quad u = 0 & \text{on } \partial B \end{cases}$$
(3)

in dimension $N \ge 4$, in the supercritical case: $p = \frac{N+2}{N-2}$, $\varepsilon > 0$. If $\varepsilon \to 0$ and if, simultaneously, $\lambda \to 0$ at the appropriate rate, then there are radial solutions which behave like a superposition of *bubbles*: $M_j \to +\infty$ and $M_j = o(M_{j+1})$ for all j and

$$(N(N-2))^{(N-2)/4} \sum_{j=1}^{k} \left(1 + M_j^{\frac{4}{N-2}} |y|^2\right)^{-(N-2)/2} M_j (1 + o(1))$$

1. Parametrization of the solutions

Let B be the unit ball in \mathbb{R}^N , $N \ge 4$, and consider for $p = \frac{N+2}{N-2}$ and $\varepsilon \ge 0$ the positive solutions of

$$\begin{cases} \Delta u + u^{p+\varepsilon} + \lambda \, u = 0 & \text{in } B\\ u > 0 & \text{in } B, \quad u = 0 & \text{on } \partial B \end{cases}$$

Denote by $\rho = \rho(a) > 0$ the first zero of v given by

$$\begin{cases} v'' + \frac{N-1}{r}v' + v^{p+\varepsilon} + v = 0 & \text{in } [0, +\infty) \\ v(0) = a > 0, \quad v'(0) = 0 \end{cases}$$

To any solution u of (1) corresponds a function v on $[0, \sqrt{\lambda})$ s.t.

$$v(|x|) = \lambda^{-1/(p+\varepsilon-1)} u(x/\sqrt{\lambda}) \iff u(x) = \rho^{2/(p+\varepsilon-1)} v(\rho|x|)$$

with $\lambda = \rho^2(a)$. The bifurcation diagram $(\lambda, ||u||_{L^{\infty}})$ is therefore fully parametrized by $a \mapsto (\rho^2, a \rho^{2/(p+\varepsilon-1)})$ with $\rho = \rho^2(a)$.

2. Heuristics

Consider a family of (radial, noincreasing) solutions u_{ε} of (1) for $\lambda = \lambda_{\varepsilon} \to 0$. The problem at $\lambda = 0$, $\varepsilon = 0$ has no solution:

$$M_{\varepsilon} = \gamma^{-1} \max u_{\varepsilon} = \gamma^{-1} u_{\varepsilon}(0) \to +\infty$$

for some fixed constant $\gamma > 0$. Let $u_{\varepsilon}(z) = M_{\varepsilon} v_{\varepsilon} \left(M_{\varepsilon}^{(p+\varepsilon-1)/2} z \right)$

$$\Delta v_{\varepsilon} + v_{\varepsilon}^{p+\varepsilon} + M_{\varepsilon}^{-(p+\varepsilon-1)} \lambda_{\varepsilon} v_{\varepsilon} = 0, \quad |z| < M_{\varepsilon}^{(p+\varepsilon-1)/2}$$

Locally over compacts around the origin, $v_{arepsilon}
ightarrow w$ s.t.

$$\Delta w + w^p = 0$$

with
$$w(0) = \gamma := (N(N-2))^{\frac{N-2}{4}}$$
: $w(z) = \gamma \left(\frac{1}{1+|z|^2}\right)^{\frac{N-2}{2}}$.
Guess: $u_{\varepsilon}(y) = \gamma \left(1 + M_{\varepsilon}^{\frac{4}{N-2}}|y|^2\right)^{-\frac{N-2}{2}} M_{\varepsilon} \left(1 + o(1)\right)$ as $\varepsilon \to 0$.

λT

Theorem 10 [*k*-bubble solution] Assume $N \ge 5$. Then, given an integer $k \ge 1$, there exists a number $\mu_k > 0$ s.t. if $\mu > \mu_k$ and

$$\lambda = \mu \, \varepsilon^{\frac{N-4}{N-2}} \, ,$$

then there are constants $0 < \alpha_j^- < \alpha_j^+$, j = 1, ..., k which depend on k, N and μ and two solutions u_{ε}^{\pm} of Problem (1) of the form

$$u_{\varepsilon}^{\pm}(y) = \gamma \sum_{j=1}^{k} \left(1 + \left[\alpha_{j}^{\pm} \varepsilon^{\frac{1}{2} - j} \right]^{\frac{4}{N-2}} |y|^{2} \right)^{-(N-2)/2} \alpha_{j}^{\pm} \varepsilon^{\frac{1}{2} - j} \left(1 + o(1) \right),$$

where $\gamma = (N(N-2))^{\frac{N-2}{4}}$ and $o(1) \to 0$ uniformly on B as $\varepsilon \to 0$.

Bifurcation curve:
$$\lambda = \varepsilon^{\frac{N-4}{N-2}} f_k \left(c_k^{-1} \varepsilon^{k-\frac{1}{2}} m \right)$$
 for $m \sim \varepsilon^{\frac{1}{2}-k}$.

After lengthy computations... The numbers α_j^{\pm} can be expressed by the formulae

$$\alpha_j^{\pm} = b_3^{1-j} \frac{(k-j)!}{(k-1)!} s_k^{\pm}(\mu), \quad j = 1, \dots, k ,$$

where $b_3 = \frac{(N-2)\sqrt{\pi} \Gamma(\frac{N}{2})}{2^{N+2} \Gamma(\frac{N+1}{2})}$ and $s_k^{\pm}(\mu)$ are the two solutions of

$$\mu = f_k(s) := kb_1 s^{\frac{4}{N-2}} + b_2 s^{-2\frac{N-4}{N-2}}$$

with $b_1 = \left(\frac{N-2}{4}\right)^3 \frac{N-4}{N-1}$ and $b_2 = (N-2) \frac{\Gamma(N-1)}{\Gamma\left(\frac{N-4}{2}\right)\Gamma\left(\frac{N}{2}\right)}$.

Remind that $\mu > \mu_k$ where μ_k is the minimum value of the function $f_k(s)$:

$$\mu_k = (N-2) \left[\frac{b_1 k}{N-4} \right]^{\frac{N-4}{N-2}} \left[\frac{b_2}{2} \right]^{\frac{2}{N-2}}$$

41

Figure 15: Slightly supercritical case

3. The asymptotic expansion

The solution of

$$v'' - v + e^{\varepsilon x} v^{p+\varepsilon} + \left(\frac{p-1}{2}\right)^2 \lambda e^{-(p-1)x} v = 0 \quad \text{on } (0,\infty)$$

with $v(0) = v(\infty) = 0, v > 0$ is given as a critical point of
 $E_{\varepsilon}(w) = I_{\varepsilon}(w) - \frac{1}{2} \left(\frac{p-1}{2}\right)^2 \lambda \int_0^\infty e^{-(p-1)x} |w|^2 dx$
 $I_{\varepsilon}(w) = \frac{1}{2} \int_0^\infty |w'|^2 dx + \frac{1}{2} \int_0^\infty |w|^2 dx - \frac{1}{p+\varepsilon+1} \int_0^\infty e^{\varepsilon x} |w|^{p+\varepsilon+1} dx$
 $U(x) = \left(\frac{4N}{N-2}\right)^{\frac{N-2}{4}} e^{-x} \left(1 + e^{-\frac{4}{N-2}x}\right)^{-\frac{N-2}{2}}$ is the solution of
 $U'' - U + U^p = 0$
Ansatz: $v(x) = V(x) + \phi, V(x) = \sum_{i=1}^k (U(x-\xi_i) - U(\xi_i) e^{-x}).$

Figure 16: The ansatz

Figure 17: Turning points

Further choices: $\xi_1 = -\frac{1}{2} \log \varepsilon + \log \Lambda_1$, $\xi_{i+1} - \xi_i = -\log \varepsilon - \log \Lambda_{i+1}$, $i = 1, \dots, k-1$.

Lemma 11 Let $N \ge 5$ and $\lambda = \mu \varepsilon^{\frac{N-4}{N-2}}$. Then

$$E_{\varepsilon}(V) = k a_0 + \varepsilon \Psi_k(\Lambda) + \frac{k^2}{2} a_3 \varepsilon \log \varepsilon + a_5 \varepsilon + \varepsilon \theta_{\varepsilon}(\Lambda)$$

$$\Psi_k(\Lambda) = a_1 \Lambda_1^{-2} - k a_3 \log \Lambda_1 - a_4 \mu \Lambda_1^{-(p-1)}$$

$$+ \sum_{i=2}^k \left[(k-i+1) a_3 \log \Lambda_i - a_2 \Lambda_i \right],$$

and $\lim_{\varepsilon \to 0} \theta_{\varepsilon}(\Lambda) = 0$ uniformly and in the C^1 -sense.

 $\Psi_k(\Lambda) = \varphi_k^{\mu}(\Lambda_1) + \sum_{i=2}^k \varphi_i(\Lambda_i)$ $\varphi_k^{\mu}(s)' = f_k(s) - \mu = 0 \text{ has 2 solutions: } \Psi_k(\Lambda) \text{ has 2 critical points.}$

4. The finite dimensional reduction

Let $\mathcal{I}_{\varepsilon}(\xi) = E_{\varepsilon}(V + \phi)$ where ϕ is the solution of

$$\mathcal{L}_{\varepsilon}\phi = h + \sum_{i=1}^{k} c_i Z_i \tag{4}$$

such that $\phi(0) = \phi(\infty) = 0$ and $\int_0^\infty Z_i \phi \, dx = 0$,

$$\mathcal{L}_{\varepsilon}\phi = -\phi'' + \phi - (p+\varepsilon)e^{\varepsilon x}V^{p+\varepsilon-1}\phi - \lambda\left(\frac{p-1}{2}\right)^{2}e^{-(p-1)x}\phi$$

and $Z_{i}(x) = U'_{i}(x) - U'_{i}(0)e^{-x}$, $i = 1, \dots, k$. If $h = N_{\varepsilon}(\phi) + R_{\varepsilon}$,
 $N_{\varepsilon}(\phi) = e^{\varepsilon x}\left[(V+\phi)^{p+\varepsilon}_{+} - V^{p+\varepsilon} - (p+\varepsilon)V^{p+\varepsilon-1}\phi\right]$ and
 $R_{\varepsilon} = e^{\varepsilon x}[V^{p+\varepsilon}_{-}-V^{p}] + V^{p}[e^{\varepsilon x}_{-}-1] + [V^{p}_{-}-\sum_{i=1}^{k}V_{i}^{p}] + \lambda\left(\frac{p-1}{2}\right)^{2}e^{-(p-1)x}V,$
 $\nabla_{\xi}\mathfrak{I}_{\varepsilon}(\xi) = 0$

Under technical conditions, one finds a solution to (4) if h is small w.r.t. $||h||_* = \sup_{x>0} \left(\sum_{i=1}^k e^{-\sigma|x-\xi_i|}\right)^{-1} |h(x)|, \sigma$ small enough.

Let us consider for a number ${\cal M}$ large but fixed, the conditions:

$$\begin{aligned} \xi_1 > \frac{1}{2} \log(M\varepsilon)^{-1}, & \log(M\varepsilon)^{-1} < \min_{1 \le i < k} (\xi_{i+1} - \xi_i), \\ \xi_k < k \log(M\varepsilon)^{-1}, & \lambda < M \varepsilon^{\frac{3-p}{2}}. \end{aligned}$$

$$(5)$$

For σ chosen small enough:

$$\|N_{\varepsilon}(\phi)\|_{*} \leq C \|\phi\|_{*}^{\min\{p,2\}} \quad \text{and} \quad \|R^{\varepsilon}\|_{*} \leq C \varepsilon^{\frac{3-p}{2}}$$

Lemma 12 Assume that (5) holds. Then there is a C > 0 s.t., for $\varepsilon > 0$ small enough, there exists a unique solution ϕ with

 $\|\phi\|_* \leq C\varepsilon$ and $\|D_{\xi}\phi\|_* \leq C\varepsilon$.

Lemma 13 Assume that (5) holds. The following expansion holds

 $\mathfrak{I}_{\varepsilon}(\xi) = E_{\varepsilon}(V) + o(\varepsilon) ,$

where the term $o(\varepsilon)$ is uniform in the C^1 -sense.

5. The case N = 4

Theorem 14 Let N = 4. Given a number $k \ge 1$, if

$$\mu > \mu_k = k \frac{\pi}{2^5} e^2$$
 and $\lambda e^{-2/\lambda} = \mu \varepsilon$,

then there are constants $0 < \alpha_j^- < \alpha_j^+$, j = 1, ..., k, which depend on k and μ , and two solutions u_{ε}^{\pm} :

$$u_{\varepsilon}^{\pm}(y) = \gamma \sum_{j=1}^{k} \left(\frac{1}{1 + M_j^2 |y|^2} \right) M_j \left(1 + o(1) \right) ,$$

uniformly on B as $\varepsilon \to 0$, with $M_j^{\pm} = \alpha_j^{\pm} \varepsilon^{\frac{1}{2}-j} |\log \varepsilon|^{-\frac{1}{2}}$.

The proof is similar to the case $N \ge 5$. For N = 4, the order of the height of each bubble is corrected with a logarithmic term.

Figure 18: Functions corresponding to the first three turning points to the right in the previous bifurcation diagram, with $\varepsilon=0.2$

Figure 19: Functions corresponding to the first three turning points to the right, with $\varepsilon=0.01$

Figure 20: A 3-bubble solution, with $\varepsilon = 0.01$.

IV – *The Brezis-Nirenberg problem: the general case* Case $N \ge 4$: [Ge, Jing, Pacard 04]. From now on: N=3

 $\Omega \subset \mathbb{R}^3,$ bounded domain with smooth boundary:

$$\begin{aligned} \Delta u + \lambda u + u^{q} &= 0 & \text{in } \Omega \\ u &> 0 & \text{in } \Omega \\ u &= 0 & \text{on } \partial \Omega. \end{aligned} \tag{1}$$

If 1 < q < 5 and 0 < λ < λ_1 subcritical solutions are critical points of :

$$Q_{\lambda}(u) = \frac{\int_{\Omega} |\nabla u|^2 - \lambda \int_{\Omega} |u|^2}{(\int_{\Omega} |u|^{q+1})^{\frac{2}{q+1}}}, \quad u \in H_0^1(\Omega) \setminus \{0\}$$

and

$$S_{\lambda} = \inf_{u \in H_0^1(\Omega) \setminus \{0\}} Q_{\lambda}(u).$$
(2)

 S_{λ} is achieved thanks to compactness of Sobolev embedding.

Critical case: Let $q = 5 = \frac{N+2}{N-2}$, N = 3, and define $\lambda^* = \inf\{\lambda > 0 \ /S_{\lambda} < S_0\}$. $S_0 = \inf_{u \in C_0^1(\mathbb{R}^3) \setminus \{0\}} \frac{\int_{\mathbb{R}^3} |\nabla u|^2}{(\int_{\mathbb{R}^3} |u|^6)^{\frac{1}{3}}}$

Brezis and Nirenberg : $0 < \lambda^* < \lambda_1$, S_{λ} is achieved for $\lambda^* < \lambda < \lambda_1$ and (1) is solvable in this range. When Ω is a ball : $\lambda^* = \frac{\lambda_1}{4}$.

Theorem 15 (a) Assume that $\lambda^* < \lambda < \lambda_1$. Then there exists a number $q_1 > 5$ such that Problem (1) is solvable for any $q \in (5, q_1)$. **(b)** Assume that Ω is a ball and that $\frac{\lambda_1}{4} < \lambda < \lambda_1$. Then, given $k \ge 1$ there exists a number $q_k > 5$ such that Problem (1) has at least k radial solutions for any $q \in (5, q_k)$. Blowing-up solution for (1) near the critical exponent: sequence of solutions u_n of (1) for $\lambda = \lambda_n$ bounded, and $q = q_n \rightarrow 5$.

$$M_n = \alpha^{-1} \max_{\Omega} u_n = \alpha^{-1} u_n(x_n) \to +\infty$$

with $\alpha > 0$ to be chosen, we see then that the scaled function

$$u_n(y) = M_n v_n(x_n + M_n^{(q_n-1)/2} y)$$

satisfies

$$\Delta v_n + v_n^{q_n} + M_n^{-(q_n-1)} \lambda_n v_n = 0$$

in the expanding domain $\Omega_n = M_n^{(q_n-1)/2} (\Omega - x_n)$.

If x_n stays away from the boundary of Ω : locally over compacts around the origin, v_n converges up to subsequences to w > 0

 $\Delta w + w^5 = 0 \quad \text{in } \mathbb{R}^3$

 $w(0) = \max w = \alpha = 3^{1/4}$. Explicit form:

$$w(z) = 3^{1/4} \left(\frac{1}{1+|z|^2}\right)^{1/2}$$

(extremal of the Sobolev constant S_0). In the original variable, "near x_n "

$$u_n(x) \sim 3^{1/4} \left(\frac{1}{1 + M_n^4 |x - x_n|^2} \right)^{1/2} M_n \left(1 + o(1) \right)$$

The convergence holds only local over compacts. We say that the solution $u_n(x)$ is a *single bubble* if the equivalent holds with $o(1) \rightarrow 0$ uniformly in Ω .

N = 3. Let $\lambda < \lambda_1$ and consider Green's function $G_{\lambda}(x, y)$

 $-\Delta_y G_\lambda - \lambda G_\lambda = \delta_x \quad y \in \Omega, \quad G_\lambda(x, y) = 0 \quad y \in \partial \Omega.$

<u>Robin's function</u>: $g_{\lambda}(x) = H_{\lambda}(x, x)$, where

$$H_{\lambda}(x,y) = \frac{1}{4\pi|y-x|} - G_{\lambda}(x,y)$$

 $g_{\lambda}(x)$ is a smooth function which goes to $+\infty$ as x approaches $\partial \Omega$. Its minimum value is not necessarily positive but it is decreasing in λ . It is strictly positive when λ is close to 0 and approaches $-\infty$ as $\lambda \uparrow \lambda_1$. [Druet] : the number λ^* can be characterized as

$$\lambda^* = \sup\{\lambda > 0 \ / \ \min_{\Omega} g_{\lambda} > 0\}$$

As $\lambda \downarrow \lambda^*$, u_{λ} constitute a single-bubble with blowing-up near the set where g_{λ_*} attains its minimum value zero. Role of *non-trivial critical values* of g_{λ} for existence, not only in the critical case q = 5 and in the sub-critical $q = 5 - \varepsilon$.

Let \mathcal{D} be an open subset of Ω with smooth boundary. We recall that g_{λ} links non-trivially in \mathcal{D} at critical level \mathcal{G}_{λ} relative to Band B_0 if B and B_0 are closed subsets of $\overline{\mathcal{D}}$ with B connected and $B_0 \subset B$ such that the following conditions hold: if we set

 $\Gamma = \{ \Phi \in C(B, \mathcal{D}) / \Phi |_{B_0} = Id \}$

then $\sup_{y \in B_0} g_{\lambda}(y) < \mathcal{G}_{\lambda} \equiv \inf_{\Phi \in \Gamma} \sup_{y \in B} g_{\lambda}(\Phi(y))$,

and for all $y \in \partial \mathcal{D}$ such that $g_{\lambda}(y) = \mathcal{G}_{\lambda}$, $\exists \tau_y$ tangent to $\partial \mathcal{D}$ at y such that $\nabla g_{\lambda}(y) \cdot \tau_y \neq 0$.

Theorem 16 (a) Super-critical case: Assume that $\mathcal{G}_{\lambda} < 0$, $q = 5 + \varepsilon$. Then Problem (1) is solvable for all sufficiently small $\varepsilon > 0$;

$$u_{\varepsilon}(y) = 3^{\frac{1}{4}} \left(\frac{1}{1 + M_{\varepsilon}^{4} |y - \zeta_{\varepsilon}|^{2}} \right)^{\frac{1}{2}} M_{\varepsilon} \left(1 + o(1) \right)$$

where $o(1) \to 0$ uniformly in $\overline{\Omega}$ as $\varepsilon \to 0$, $M_{\varepsilon} = \frac{2^{\frac{3}{2}}}{3^{\frac{1}{8}\pi}} (-g_{\lambda})^{1/2} \varepsilon^{-\frac{1}{2}}$ and $\zeta_{\varepsilon} \in \mathcal{D}$ is such that $g_{\lambda}(\zeta_{\varepsilon}) \to G_{\lambda}$, $\nabla g_{\lambda}(\zeta_{\varepsilon}) \to 0$, as $\varepsilon \to 0$.

(b) Sub-critical case: Assume that $\mathfrak{G}_{\lambda} > 0$, $q = 5 - \varepsilon$. Then Problem (1) has a solution u_{ε} of (1) exactly as in part (a) but with $M_{\varepsilon} = \frac{2^{\frac{3}{2}}}{3^{\frac{1}{8}}\pi} (\mathfrak{G}_{\lambda})^{1/2} \varepsilon^{-\frac{1}{2}}$ $\Omega \subset \mathbb{R}^3$ is symmetric with respect to the coordinate planes if for all $(y_1, y_2, y_3) \in \Omega$ we have that

$$(-y_1, y_2, y_3), (y_1, -y_2, y_3), (y_1, y_2, -y_3) \in \Omega.$$

Theorem 17 If Ω is symmetric, $g_{\lambda}(0) < 0$ and $q = 5 + \varepsilon$, then, given $k \ge 1$, there exists for all sufficiently small $\varepsilon > 0$ a solution u_{ε}

$$u_{\varepsilon}(x) = 3^{\frac{1}{4}} \sum_{j=1}^{k} \left(\frac{1}{1 + M_{j\varepsilon}^{4} |x|^{2}} \right)^{\frac{1}{2}} M_{j\varepsilon} \left(1 + o(1) \right)$$

where $o(1) \rightarrow 0$ uniformly in $\overline{\Omega}$ and, for $j = 1, \ldots, k$,

$$M_{j\varepsilon} = (-g_{\lambda}(0))^{1/2} \left(\frac{2^{5}}{3^{\frac{1}{4}}k\pi}\right) \left(\frac{2^{\frac{15}{2}}}{\pi}\right)^{j-1} \frac{(k-j)!}{(k-1)!} \varepsilon^{\frac{1}{2}-j},$$

Sketch of Proofs

- a careful analysis of Robin's function
- the Emden-Fowler change of coordinates around a critical point of Robin's function
- an energy expansion: 20 pages of computations, but at the end the constants are explicit !
- build a fixed point in the appropriate weighted norm, using the exponential decay of the bubbles in the new variables, and get the appropriate continuity estimates
- finite dimensional reduction