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I — Multi-bubbling for the exponential

nonlinearity in the slightly supercritical case

An ODE approach



Exponential nonlinearity

[Gelfand57, Joseph-Lundgren73]

—Au=Xe" |zr|]<1,zeR"
u=0 if |z|=1

Bifurcation diagrams in L°°(2) (bounded solutions are radial):
1. If n = 2, the branch has an asymptote at A = \* = 0, the
equation has exactly two solutions for any A\ &€ (O,)\i") and no
solution if A > A}

2. If 2 < n < 10, the branch oscillates around an asymptote
at A = \* > 0, the equation has at least one solution for any
AE (O,Ai"), Ai" > A\*, and no solution if A\ > Ai".

3. If n > 10, the branch has an asymptote at A = A\* > 0, the
equation has (exactly) one solution iff A € (0, \*).
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Figure 3: Supercritical case: n > p 1



For \* = 2(n — 2), there exists a unique radial singular solution

u* such that
1

u (z) — =
’ 22
[Cabre,Cabre-Martel98,Cabre-Martel99,Mignot-Puel98]. Radial

solutions solve
W+ 2=ty 4+ aev =0, re(0,1)

r

wW/'(0)=0, wu(l)=0
It is natural to consider n as a real parameter. With n =2 + ¢
2|V 2= ediv(|z| (V=279 wy) 4+ Aet = 0

In analogy with the situation observed in the Brezis-Nirenberg
problem [Brezis-Nirenberg83], n = 2 appears as the critical case
and n =2 + ¢, € > 0 as the supercritical case.



“Criticality” in the Brezis-Nirenberg problem

—Au=u"+ A u |z|<1, zeR"

u=0 if |z|=1
1. For n > 3, the critical exponent is (n+ 2)/(n —2). In terms
of the parameter )\, the “first branch” is monotone decreasing.

2. the 'first branch” is oscillating in the supercritical regime
p>(n—+2)/(n—2), around an asymptotic value A = \*.

“First branch”: the branch of positive radial bounded solutions
which bifurcates from the trivial solution at the first eigenvalue
of —A.

In the supercritical regime, there exists a radial singular solution
if and only if A = \* [Merle-Peletier91].



Figure 4

Figure 4: Positive solutions for Brezis Nirenberg. Top: subcritical case. Middle:
critical case. Bottom: supercritical case



Back to the exponential nonlinearity : a more general equation

Apu+ e =0 in Q

(1)
u>0, u=0 on 0%

with 1 < p < n, where 2 is the unit ball in R™. Here we use
the standard notation Apu := div(|Vu|P~2Vu). Written in radial
coordinates, the equation is

Appu+Ae» =0, re(0,1)
w(0) >0, %0O)=0, u(l)=0

duP~2 du
dr

dr

. 1 d n—1
Ap,nu . — T'I’L—l % <7“
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Small parameter in the slightly supercritical regime: e =n — p > 0.
T he properties of the bifurcation diagram for p > 1 are very sim-
ilar to the ones of the case p = 2 [Jacobsen-Schmitt02]

1. If n = p, the branch has an asymptote at A = 0 and the
equation has exactly two solutions for any X\ € (O,Ai").

2. Let pir(n) = %[n — 3+ \/(n— Dn—9)]. If p<n< p((pj_f)),
e. 1 <p<nifl<n<?9, 1 <p<p-(n)orpy(n) <
p < nifn >9 the branch oscillates around an asymptote at
N:=pP~1(n—p) if 3<n < 10. There is a unique radial singular

solution u* := —p logr

3. The branch is monotone with an asymptote at A = \* > 0 if
n>pp+3)/(p—1),i.e pe[p-(n),py(n)].
12



Figure 5

Figure 5: Types of bifurcation diagrams in terms of n and p.



Figure 6

Figure 6: The critical limit e =n —p \, 0.
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Theorem 1 Let k € N, k> 1. There exists X,j > 0 such that

for any \ € (O,X,;"), Equation (1) has a solution u¢ which can be
written as:

k
A |x|P e (2) — LZ w?( log |z| + p;(e))| (L+0(1)) as e—0
=1

uniformly on 2. Moreover

lim (,uj_|_1—,uj)=—|—oo Vi=1,2,...k—1

1— 400
Here the functions w"f are smooth, even, positive and such that
w?(s) N\, 0 as s — +co.

Precision: true only for sequences (g;);cn With g; N\, O.
Conjecture: wf depends neither on k nor on (g&;);enN-
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THE GENERALIZED EMDEN-FOWLER CHANGE OF VARIABLES

See [Damascelli-Pacella-Ramaswamy99] and [Brock01] for some
recent result on the symmetry properties of the solutions.

Emden-Fowler change of variables: For r = €%, s € (—o0,0],
define v(s) ;= u(r). Then (1) is equivalent to

((p—1) [V|P720" + (n—p) |v’|p_2 v +Ae?TPS =0, s€ (—00,0)

lim v(s) >0, lim e ®J(s) =0, v(0)=0
S——0O0

(| S——00

where v/ = %. The equation for v can be reduced to an au-

tonomous ODE system as follows. Let

x(s) = Aev(8)FPs  gngd y(s) = |V (s)|P72(s) .

16



(' =z (yP Py+p), (0)=2A

y=@®-ny-=, im e Jy(s)[P P y(s) =0

\

where p* = (1 —1/p) 1 y = /P20 «—= o/ = |[y|[P2y. Two
fixed points: P~ = (0,0) and PT = pP~1(n —p,—1).

Lemma 2 Let N*=pP I(n—p), p<n<pp+3)/(p—1). There
exists two sequences (A )i>1 and (A,;")kzl such that:

(i) (AL )k>1 Is increasing and limy_, 4 A = A\*.

(i) (A,;")kzl is decreasing and limy_, 4 A,;" = \*.

(iii) (1) has no solutions if A> )\, 2k — 1 solutions if A:A,;" or
Ae(N,_1, A, ), and 2k solutions if X =X, or A € (A1, A).

(iv) (1) has infinitely many solutions if and only if A = \*.

17
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Figure 7: Phase portrait in the supercritical case p < n < p
p=1.5).
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Figure 8: Parametrization of the solutions in the supercritical case (n = 2,
p=1.5). Left: (Z,y) in the phase space. Right: the bifurcation diagram.



T he critical case: p=n The system becomes Hamiltonian:

=z (yP Cy+p), v =-z,

which is explicitely solvable in the case p = 2 [Bratul4]:

uw(r) = 2log(a? + 1) — 2log(a? + r2) is a solution of (1) for any
a > 0 such that A =8a2 (a2 +1)"2.

Lemma 3 Assume that p = n and let )\j' = sup,cr x(s). Then
Equation (1) has no solutions if A > >\+, one and only one solu-
tion if A = AT and two and only two solutions if A € (0,A7).

20



Figure 9
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Figure 9: Phase portrait in the critical case n = p (here n = 2).
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Figure 10: Parametrization of the solutions in the critical case (n = p = 2).
Top: (Z,§) in the phase space. Bottom: the bifurcation diagram.
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Figure 11: Top: the solution (Z¢,§°) in the slightly supercritical regime € > 0,
¢ — 0. Bottom: the corresponding bifurcation diagram. Here n = 2, ¢ = 0.05.
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Figure 12: Bubbles in the logarithmic scale, after the Emden-Fowler transfor-
mation.



Description of the critical limit

Lemma 4 For any k> 1,
AF >0 (P)

and X} = A?’f Moreover (X,‘J’)keN is a strictly decreasing se-
quence.

Corollary 5 For any k> 1, ase — 0O,
k

7(s) — O @(s — 5;(2))

j=1
uniformly on any interval (—oo,a(e)) € R such that si(e) <
a(e) < sg41(e) with liminf._o(sg41(e)—a(e)) = liminf._o(ale)—
si(€)) = +oo.

25



Let \ € (0,5\];") and define sf(k) c R as the two solutions of
mk(sf(A)) = \, isf(A) > 0. A careful rewriting of the Emden-
Fowler change of variables then allows to see the solution of (1)
as a superposition of bubbles.

Lemma 6 Let \ € (0, 5\,;"] for some k > 1. Then there exist two
solutions u® of (1) which take the form

k
ArP (M) = LZ zi(logr 4+ si(e) — s;(e) + s,f()\)) (1+0(1))
=1

as e — 0.

This actually amounts to saying that there is a k-bubble solution.

26



MuLTI-BUBBLING

In the new coordinates V = logx, U = —y, the system becomes
(U= —cU, U(—c0) =0
X
Vi=UPTt ol v(0) = log AT

Define an energy and an angle respectively by:

1 * * *
E=ce" —e" - (V-Vi) + = (UP —Uf)—Uf lov-uv).
p

cosf = VU and sing = VW

IU = U2+ |V = V2 JU—U2 4+ |V - Va2

27



Lemma 7 T here exists a constant v > 0 such that

dE
0>—>—cvFE VseR.
ds

Given C > 0, there exists a constant w > 0 such that, if
V(s) >log(eUs) —C Vsé€[sq,s0] CRT,

then for € > 0 small enough and any s € [s1, so],

db
— 2 Ew.
ds

Corollary 8 Under the above assumptions,

E(s) > E(sp) o5 0(s)—=0(s0)]

28



II — T he Brezis-Nirenberg problem:
multi-bubbling in a ball

A phase plane analysis

29
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The Brezis-Nirenberg problem in a ball: radial solutions

n—1

“tu+Au=0, re(0,1)

u//
(2)
W/'(0) =0, u(l)=0
The Emden-Fowler change of variables
With r = e, u(r) = r—2/(P=1)y(s), (2) is equivalent to

' P — Bu = —av = Ae®v, s (—o00,0) + bec.

a=n-2-4/(p-1), B=2[(n-2)p—n]/(p—1)? p="25 +=.
Let z(s) = v(s), y(s) = v'(s):

¥=y, y=-(zI"lz—Bz)—reFz—ay

2(0) =0, y(0) =~ >0

31



Figure 13
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Figure 13: Bifurcation curve of the positive solutions in the slightly supercritical
case.



Figure

14

Figure 14: Phase space

\ 4



T he critical case [Brezis-Nirenberg83]
[Benguria-J.D.-Esteban00, J.D.-Esteban-Ramaswamy]| Define the

energy by

— 2 +1 st
B = 5 0P + ()P = Zfa(o)

and consider its limiting value &, \ = lims—,_o E(s). Let X\ €
(A*, A1) be fixed:

1. If v € (0,7(A)), then &, \ < O: positive singular

2. If v € (7%(N), +0o0), then &, y > O: singular and oscillating

3. If vy =7%(X\), then &, y, = 0: (unique) positive bounded

34



Theorem 9 Let n > 3, p*=%—i_§<p=p*—l—€, keN, k>1. If
A € (A", \1), then there exists a solution

k
2(s) = 23(s) + Y 2*(s + 5;(€)) + o(1)
=1

for some k > k, where acé is the bounded solution in the critical
case (p =p*, e =0) with v =~*()\) and z* is the unique positive
solution of the asymptotic problem

x 1
z" + |x|P _1x—z(n—2)2x=0

such that z/(0) = 0 and with zero energy.
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IIT — The Brezis-Nirenberg problem:
L. yapunov-Schmidt reduction
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BUBBLE-TOWER RADIAL SOLUTIONS IN THE SLIGHTLY
SUPERCRITICAL BREZIS-NIRENBERG PROBLEM

We consider the Brezis-Nirenberg problem

Au~+ uPTe 4+ Au=0 in B (3)
u>0 inB, u=0 on 0B

in dimension N > 4, in the supercritical case: p = %“_Lg e > 0.

If e — 0 and if, simultaneously, A\ — 0 at the appropriate rate,
then there are radial solutions which behave like a superposition
of bubbles: M; — 400 and M; = o(M;41) for all j and

k 4 —(N=-2)/2
(N(N —2))(N=2)/4 3~ <1+M;V—2 |y|2> M;(1 + o(1))

=1

37



1. Parametrization of the solutions

Let B be the unit ball in RN, N > 4, and consider for p = 312
and € > 0 the positive solutions of

Au—~+ uPTE4+ Au=0 in B
u>0 InB, u=0 on 0B

Denote by p = p(a) > 0 the first zero of v given by

v”+¥v’+vp+€—|—v=0 in [0, +o00)
v(0)=a >0, 2'(0)=0

To any solution w of (1) corresponds a function v on [0,V ) s.t.

v(|z]) = A"Y P u(a/ V) <= ulz) = p? 0T D u(p )
with A = p2(a). The bifurcation diagram (\, ||u]|z~) is therefore
fully parametrized by a — (p2, a p2/(PTe=1)) with p = p2(a).
38



2. Heuristics

Consider a family of (radial, noincreasing) solutions u. of (1) for
A= A — 0. The problem at A =0, € = 0 has no solution:

M: =~y T maxus = v tus(0) — o0

for some fixed constant v > 0. Let us(2) = M: v (M§p+€_1)/2 z)

Ave + Pt + Mo P Dy =0, |2 < MPTETD/2
LLocally over compacts around the origin, ve — w S.t.

Aw+wP =0

with w(0) = ~ 1= (N(N — 2)) 7 w(z) =~ (1 +1|Z|2>T.
N-2

Guess: u:(y) =~ (1 + MN? |y|2> ’ M:(1+0(1)) as e — 0.

39



Theorem 10 [ k-bubble solution | Assume N > 5. Then, given
an integer k > 1, there exists a number u;. > 0 s.t. if p > pp and

N—4
)\ e ,LLEN_Q :
then there are constants 0 < Oz] < oz+, 7 =1,...,k which depend
on k, N and p and two solutions uZ of Problem (1) of the form
I Ni —(N—2)/2 )
u?(y)===v'§: (1—F[ai “'] yF) e277 (1+0(1)),
J=1

N-=-2
where v = (N(N—-2)) 4 and o(1) — O uniformly on B as e — 0.

N—4 ( 1 k-1 _k

1 1
Bifurcation curve: A =eN-2f (¢, "e" 2 m) for m ~ g2

40



After lengthy computations... The numbers oz?[

by the formulae

can be expressed

i 1-j (k—J)! i .
o = b3 ](k 1)! (), 3=1,....k,

_ (N-2)y7 [ (3)

SN2 r(N+1) and sf(u) are the two solutions of

where b3

_ _4 _oN—-4
p= fr(s) == kbysN-2 4 bps “N-2

3 _
with b1 = (NZQ) %:‘1‘ and by, = (N — 2) ;Ei\[ 1)N .
~(%5%) T (5)
Remind that pu > pp where pj. is the minimum value of the func-
tion f.(s):

2

_4 2
b1 k ] 2[[)2]N—
N —4 2

,Uk:(N_Q)[

41
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3. The asymptotic expansion

The solution of

v —’U—I—esxvp+8—|—( ;1

with v(0) = v(c0) = 0, v > 0 is given as a critical point of

) e (P~DTy =0 on (0,00)

_ 1\ 2 00
Fe(w) = I:(w) —% (Z%l) )\/O e_(p_l)x|w|2 dx

> 663:|,w|p—|—a€—|—1 dx

1 oo 1 oo
Ie(w) = —/ w'|? dz + —/ lw|? do — /
2.J0 2.J0 p+e+1J0

4 N 4 N2
U(x) = Y e (1 + e N-27 > is the solution of
N — 2

U'—-U4+UP=0
Ansatz: v(z) = V(z) + ¢, V(z) = X1 (U(z — &) —U(&) e™).

43



Figure 16
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Figure 16: The ansatz
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Further choices: ¢; = —3loge + log Ay,
i1 — & = —loge —10gA; 41,2 =1,...,k—1.

N —

Lemma 11 et N >5 and AN = ueN-2. Then

2
E:(V) = kag+eWViL(N) —I—%ags loge + age + £60-(N\)

Wi(A) = a1 A72 — kaglog Ay — ag p AP~

N

k
+ > [(k—i+1)agzlog A; —ap Aj] |
i=2

and lim._ 0:(A\) = 0 uniformly and in the Cl-sense.

W (N)= ol (A1) + 58 5 pi(A)
ng(s)’ = fi(s)—p = 0 has 2 solutions: W, (A) has 2 critical points.
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4. The finite dimensional reduction

Let J.(¢) = E-(V + ¢) where ¢ is the solution of
Lep = h+ fj ¢i Z; (4)
such that ¢(0) = ¢(c0) = 0 and };0122-(/) dx = 0,
Lep = —¢" 4+ ¢ — (p+)eVPT1g — x(251) e~ (- D

and Z;(z) = Ul(z) — U/(0)e~®, i = 1,...,k. If h = Ne(¢) + R-,

Ne(¢) = €2 [(V 4 ¢)P 7 — VPFe — (p+e)VPHe~1g] and
R. = esx[vp+€_vp]_|_vp[e€x_1]_|_[Vp_zkz Vp]—|—)\ (1%1)2 e—(p—1)x vV

1=1 "¢

vgje(g) =0

47



Under technical conditions, one finds a solution to (4) if his small
w.r.t. [[h|l+ = sup,-o (27’?:1 e olr— 5@) \h(z)|, o small enough.

Let us consider for a number M large but fixed, the conditions:

(&1 > Slog(Me)™t,  log(Me)™! < miny<;p(&i41 — &)
< (5)
\ &, < klog(Me)~1, )\<M€ 2

For o chosen small enough:

3_
IN:(®)]l« < CllgllI™P2 and  |RE|.<Ce 2

48



Lemma 12 Assume that (5) holds. Then there is a C > 0 s.t.,
for e > 0 small enough, there exists a unique solution ¢ with

l¢ll« < Ce and || Deoll« < Ce .

Lemma 13 Assume that (5) holds. The following expansion holds

Je(§) = Le(V) +o(e)

where the term o(e) is uniform in the Cl-sense.

49



5. The case N =4

Theorem 14 Let N = 4. Given a number k > 1, if
0>y = k%eQ and Me 2/A = e,

+ .

then there are constantsO0 < o, <« ,3=1,...,k, which depend

J J’
on k and u, and two solutions uZ:

k
uz(y) = 7];1 (1 _H\ZQ |y2> M; (1 4+ o(1)) ,

: 1
~J|loge| 2.

N

uniformly on B as € — 0, with Mji — ozjie

The proof is similar to the case N > 5. For N = 4, the order of
the height of each bubble is corrected with a logarithmic term.

50



Figure 18
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Figure 18: Functions corresponding to the first three turning points to the right
in the previous bifurcation diagram, with ¢ = 0.2



Figure 19
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Figure 19: Functions corresponding to the first three turning points to the right,
with € = 0.01



y = log (1 + u(r))

Figure 20

Figure 20: A 3-bubble solution, with € = 0.01.



IV — The Brezis-Nirenberg problem:
the general case
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Case N > 4: [Ge,Jing,Pacard04]. From now on: N=3

QC R3, bounded domain with smooth boundary:

Au+ u+u?i=0 in
u >0 in 2 (1)
u=20 on 0f2.
If 1 <qg <5 and 0 < A < \q subcritical solutions are critical
points of :

Jo IVul? — X o |ul?

Qx(u) = 5, uwe Hg(2)\{0}
(JqlujaT1)atT
and
Sy=_inf Qy\(w). (2)
u€Hy(£2)\{0}

Sy is achieved thanks to compactness of Sobolev embedding.

55



Critical case:

Let ¢ =5= X712, N =3, and define \* =inf{\ >0 /S) < So}.

2
S = inf fR3|VU| 1
u€CHRI\(O} ( fr3 |ul6)3

Brezis and Nirenberg : O < A* < A1, Sy is achieved for \* < A < \q
and (1) is solvable in this range. When 2 is a ball : \* = %.

Theorem 15 (a) Assume that \* < A < \1. Then there exists
a number g1 > 5 such that Problem (1) is solvable for any q €
(5,q1)-

(b) Assume that Q2 is a ball and that % < A< A1. Then, given
k > 1 there exists a number q;, > 5 such that Problem (1) has at
least k radial solutions for any q € (5,qy).
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Blowing-up solution for (1) near the critical exponent: sequence
of solutions u, of (1) for A = )\, bounded, and ¢ = ¢, — 5.

M, = a1 mS%Xun = a1

with o > 0 to be chosen, we see then that the scaled function

un(xp) — 400

n—1)/2
un(y) = My vn(zn + M2 )
satisfies

A + vl + My Dy g =0

in the expanding domain 2,, = Méq”_l)/z(fz — Tn).
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If x,, stays away from the boundary of €2: locally over compacts
around the origin, v, converges up to subsequences to w > 0O

Aw+w’>=0 inR>
w(0) = maxw = o = 31/4. Explicit form:

1/2
_ 21/4 1
o =3 ()

(extremal of the Sobolev constant Sp). In the original variable,
“near xp"’

1/4 1 12

The convergence holds only local over compacts. We say that

the solution un(x) is a single bubble if the equivalent holds with
o(1) — O uniformly in Q.
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N = 3. Let A < A1 and consider Green’s function G, (z,y)

—AyGy — MG =0z y €, Gy(z,y) =0 y €.
Robin’s function: g (x) = Hy(x,z), where
1
Hy(z,y) = 5 - G(@,v)

Ty — x|

g)(x) is a smooth function which goes to 400 as x approaches
0€2. Its minimum value is not necessarity positive but it is de-
creasing in \. It is strictly positive when X is close to 0 and
approaches —oo as A T A1. [Druet] : the number A\* can be
characterized as

A =sup{\>0/ inng)\ > 0}

As A | \*, u, constitute a single-bubble with blowing-up near
the set where g, _attains its minimum value zero.

59



Role of non-trivial critical values of g, for existence, not only in
the critical case ¢ =5 and in the sub-critical g =5 — €.

Let D be an open subset of 2 with smooth boundary. We recall
that gy links non-trivially in D at critical level G, relative to B
and By if B and Bg are closed subsets of D with B connected
and Bg C B such that the following conditions hold: if we set

r={®eC(B,D)/ Plg,=1d}

then sup g (y) < Gy = inf sup g (®(y)),
y€ By del yeB

and for all y € 9D such that g)(y) = G, 37y tangent to 0D at y
such that Vg,(y) - 7y # 0.

60



Theorem 16 (a) Super-critical case: Assume that G, <0, q =
5+4¢. Then Problem (1) is solvable for all sufficiently small ¢ > O;

1

1 1 2
w) = 3 ( | RICERO)
) L+ My—¢l?) °
_ 3 1
where o(1) — O uniformly in Q ase — 0, M. = 2> (—G,)/2e 2
387

and (c € D is such that g () — G\, Vg\({) -0, ase—DO0.

(b) Sub-critical case: Assume that Gy, > 0, ¢ = 5 — . Then
Problem (1) has a solution us of (1) exactly as in part (a) but

3

) 1

with M. = 22-(G,)}/2 2
387
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Q CR3is symmetric with respect to the coordinate planes if for
all (y1,vy2,y3) € 2 we have that

(_y13y27y3)7 (yla_y27y3)7 (y17y27_y3) c Q.

Theorem 17 If Q2 is symmetric, g,(0) < 0 and q =5 + ¢, then,
given k > 1, there exists for all sufficiently small € > 0 a solution
Ue

1
(2) 3ii( . )2M (1 + o(1))
us(xr) = 7 je 0
j=1 1+Mjg|33|2
where o(1) — 0 uniformly in Q and, for j = 1,... k,
15\ J—1
23 272 k— ) 1_.
My = (cgopV2 (2 ) (22) ot g
3Zk'7'(' 7T (k—l)'
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SKETCH OF PROOFS

- a careful analysis of Robin’s function

- the Emden-Fowler change of coordinates around a critical point
of Robin's function

- an energy expansion: 20 pages of computations, but at the
end the constants are explicit |

- build a fixed point in the appropriate weighted norm, using the
exponential decay of the bubbles in the new variables, and get
the appropriate continuity estimates

- finite dimensional reduction
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