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I. Bubble-tower radial solutions in the slightly

supercritical Brezis-Nirenberg problem

We consider the Brezis-Nirenberg problem{
∆u + up+ε + λ u = 0 in B
u > 0 in B , u = 0 on ∂B

(1)

in dimension N ≥ 4, in the supercritical case: p = N+2
N−2 , ε > 0.

If ε → 0 and if, simultaneously, λ → 0 at the appropriate rate,

then there are radial solutions which behave like a superposition

of bubbles: Mj → +∞ and Mj = o(Mj+1) for all j and

(N(N − 2))(N−2)/4
k∑

j=1

(
1 + M

4
N−2
j |y|2

)−(N−2)/2

Mj ( 1 + o(1) )
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1. Parametrization of the solutions

Let B be the unit ball in IRN , N ≥ 4, and consider for p = N+2
N−2

and ε ≥ 0 the positive solutions of{
∆u + up+ε + λ u = 0 in B
u > 0 in B , u = 0 on ∂B

Denote by ρ = ρ(a) > 0 the first zero of v given by{
v′′ + N−1

r v′ + vp+ε + v = 0 in [0,+∞)
v(0) = a > 0 , v′(0) = 0

To any solution u of (1) corresponds a function v on [0,
√

λ) s.t.

v(|x|) = λ−1/(p+ε−1) u(x/
√

λ) ⇐⇒ u(x) = ρ2/(p+ε−1) v(ρ |x|)

with λ = ρ2(a). The bifurcation diagram (λ, ‖u‖L∞) is therefore
fully parametrized by a 7→ (ρ2, a ρ2/(p+ε−1)) with ρ = ρ2(a).
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2. References, heuristics and main result

p = N+2
N−2 , ε ≥ 0, N ≥ 4, B is the unit ball in IRN{

−∆u = up+ε + λ u , u > 0 in B
u = 0 on ∂B

• <1950: Lane, Emden, Fowler, Chandrasekhar (astrophysics)
• Sobolev, Rellich, Nash, Gagliardo, Nirenberg, Pohozaev
• 1976: Aubin, Talenti
• 1983: Brezis, Nirenberg: case ε = 0 is solvable for

0 < λ < λ1 = λ1(−∆). Uniqueness (Zhang, 1992).
• subcritical case (0 > ε → 0): Brezis and Peletier, Rey, Han
• supercritical case: Symmetry (Gidas, Ni, Nirenberg, 1979).
Budd and Norbury (1987, case ε > 0): formal asymptotics, nu-
merical computations. Merle and Peletier (1991): existence of a
unique value λ = λ∗ > 0 for which there exists a radial, singular,
positive solution. Branch of solutions: Flores (thesis, 2001).
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Consider a family of (radial, noincreasing) solutions uε of (1) for

λ = λε → 0. The problem at λ = 0, ε = 0 has no solution:

Mε = γ−1 maxuε = γ−1uε(0) → +∞

for some fixed constant γ > 0. Let vε(z) = Mε uε

(
M

(p+ε−1)/2
ε z

)

∆vε + vp+ε
ε + M

−(p+ε−1)
ε λεvε = 0, |z| < M

(p+ε−1)/2
ε .

Locally over compacts around the origin, vε → w s.t.

∆w + wp = 0

with w(0) = γ := (N(N − 2))
N−2

4 :w(z) = γ

(
1

1 + |z|2

)N−2
2

.

Guess: uε(y) = γ

(
1 + M

4
N−2
ε |y|2

)−N−2
2

Mε ( 1 + o(1) ) as ε → 0.
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Theorem 1 [ k-bubble solution ] Assume N ≥ 5. Then, given

an integer k ≥ 1, there exists a number µk > 0 s.t. if µ > µk and

λ = µ ε
N−4
N−2 ,

then there are constants 0 < α−j < α+
j , j = 1, . . . , k which depend

on k, N and µ and two solutions u±ε of Problem (1) of the form

u±ε (y) = γ
k∑

j=1

1 +
[
α±j ε

1
2−j

] 4
N−2 |y|2

−(N−2)/2

α±j ε
1
2−j (1+ o(1) ) ,

where γ = (N(N−2))
N−2

4 and o(1) → 0 uniformly on B as ε → 0.

Bifurcation curve: λ = ε
N−4
N−2fk

(
c−1
k εk−1

2 m

)
for m ∼ ε

1
2−k.



The numbers α±j can be expressed by the formulae

α±j = b
1−j
3

(k − j)!

(k − 1)!
s±k (µ), j = 1, . . . , k ,

where b3 =
(N−2)

√
π Γ(N

2 )

2N+2 Γ(N+1
2 )

and s±k (µ) are the two solutions of

µ = fk(s) := kb1s
4

N−2 + b2s
−2N−4

N−2

with b1 =
(

N−2
4

)3 N−4
N−1 and b2 = (N − 2) Γ(N−1)

Γ
(

N−4
2

)
Γ
(

N
2

).
Remind that µ > µk be the minimum value of the function fk(s):

µk = (N − 2)
[

b1 k

N − 4

]N−4
N−2

[
b2
2

] 2
N−2
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3. The asymptotic expansion

The solution of

v′′ − v + eεx vp+ε +
(

p− 1

2

)2
λ e−(p−1)x v = 0 on (0,∞)

with v(0) = v(∞) = 0, v > 0 is given as a critical point of

Eε(w) = Iε(w)−
1

2

(
p− 1

2

)2
λ
∫ ∞
0

e−(p−1)x|w|2 dx

Iε(w) =
1

2

∫ ∞
0

|w′|2 dx +
1

2

∫ ∞
0

|w|2 dx−
1

p + ε + 1

∫ ∞
0

eεx|w|p+ε+1 dx

U(x) =
(

4N

N − 2

)N−2
4

e−x
(
1 + e

− 4
N−2 x

)−N−2
2

is the solution of

U ′′ − U + Up = 0

Ansatz: v(x) = V (x) + φ, V (x) =
∑k

i=1(U(x− ξi)− U(ξi) e−x).



Further choices:

ξ1 = −1
2 log ε + logΛ1 ,

ξi+1 − ξi = − log ε− logΛi+1 , i = 1, . . . , k − 1 .

Lemma 1 Let N ≥ 5 and λ = µ ε
N−4
N−2. Then

Eε(V ) = k a0 + εΨk(Λ) +
k2

2
a3 ε log ε + a5 ε + ε θε(Λ)

Ψk(Λ) = a1 Λ−2
1 − k a3 logΛ1 − a4 µΛ−(p−1)

1

+
k∑

i=2

[(k−i+1) a3 logΛi − a2 Λi] ,

and limε→0 θε(Λ) = 0 uniformly and in the C1-sense.
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Constants are explicit:

a0 = 1
2

∫∞
−∞

(
|U ′|2 + U2

)
dx− 1

p+1

∫∞
−∞Up+1 dx

a1 =
(

4N
N−2

)(N−2)/2

a2 =
(

N
N−2

)(N−2)/4 ∫∞
−∞ ex Up dx

a3 = 1
p+1

∫∞
−∞Up+1 dx

a4 = 1
2

(
p−1
2

)2 ∫∞
−∞ e−(p−1)x U2 dx

a5 = 1
p+1

∫∞
−∞Up+1 logU dx + 1

(p+1)2
∫∞
−∞Up+1 dx

Ψk(Λ) = ϕ
µ
k(Λ1) +

k∑
i=2

ϕi(Λi)

ϕ
µ
k(s) = a1 s−2 − k a3 log s − a4 µ s−(p−1)

ϕi(s) = (k − i + 1) a3 log s− a2 s
ϕ

µ
k(s)

′ = fk(s)−µ = 0 has 2 solutions: Ψk(Λ) has 2 critical points.
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4. The finite dimensional reduction

Let Iε(ξ) = Eε(V + φ) where φ is the solution of

Lεφ = h +
k∑

i=1

ci Zi (2)

such that φ(0) = φ(∞) = 0 and
∫∞
0 Zi φ dx = 0,

Lεφ = −φ′′ + φ − (p + ε)eεxV p+ε−1φ − λ
(

p−1
2

)2
e−(p−1)xφ

and Zi(x) = U ′
i(x) − U ′

i(0)e−x, i = 1, . . . , k. If h = Nε(φ) + Rε,

Nε(φ) = eεx
[
(V + φ)p+ε

+ − V p+ε − (p + ε)V p+ε−1φ
]
and

Rε = eεx[V p+ε−V p]+V p[eεx−1]+[V p−
∑k

i=1 V
p
i ]+λ

(
p−1
2

)2
e−(p−1)x V ,

∇ξIε(ξ) = 0
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Under technical conditions, one finds a solution to (2) if h is small

w.r.t. ‖h‖∗ = supx>0

(∑k
i=1 e−σ|x−ξi|

)−1
|h(x)|, σ small enough.

Let us consider for a number M large but fixed, the conditions:
ξ1 > 1

2 log(Mε)−1 , log(Mε)−1 < min1≤i<k(ξi+1 − ξi) ,

ξk < k log(Mε)−1 , λ < M ε
3−p
2 .

(3)

For σ chosen small enough:

‖Nε(φ)‖∗ ≤ C ‖φ‖min{p,2}
∗ and ‖Rε‖∗ ≤ C ε

3−p
2 .
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Lemma 2 Assume that (3) holds. Then there is a C > 0 s.t.,

for ε > 0 small enough, there exists a unique solution φ with

‖φ‖∗ ≤ Cε and ‖Dξφ‖∗ ≤ Cε .

Lemma 3 Assume that (3) holds. The following expansion holds

Iε(ξ) = Eε(V ) + o(ε) ,

where the term o(ε) is uniform in the C1-sense.
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5. The case N = 4

Theorem 2 Let N = 4. Given a number k ≥ 1, if

µ > µk = k
π

25
e2 and λ e−2/λ = µ ε ,

then there are constants 0 < α−j < α+
j , j = 1, . . . , k , which depend

on k and µ, and two solutions u±ε :

u±ε (y) = γ
k∑

j=1

 1

1 + M2
j |y|2

Mj (1 + o(1) ) ,

uniformly on B as ε → 0, with M±
j = α±j ε

1
2−j| log ε|−

1
2.

The proof is similar to the case N ≥ 5. For N = 4, the order of
the height of each bubble is corrected with a logarithmic term.
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II. Bubbling solutions in the slightly
supercritical Brezis-Nirenberg problem

Ω ⊂ IR3, bounded domain with smooth boundary:
∆u + λu + uq = 0 in Ω
u > 0 in Ω
u = 0 on ∂Ω.

(1)

If 1 < q < 5 and 0 < λ < λ1 subcritical solutions are ascritical
points of :

Qλ(u) =

∫
Ω |∇u|2 − λ

∫
Ω |u|2

(
∫
Ω |u|q+1)

2
q+1

, u ∈ H1
0(Ω) \ {0}

and

Sλ = inf
u∈H1

0(Ω)\{0}
Qλ(u). (2)
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Sλ is achieved thanks to compactness of Sobolev embedding.

S0 = inf
u∈C1

0(IR3)\{0}

∫
IR3 |∇u|2

(
∫
IR3 |u|6)

1
3

Let q = 5 and λ∗ = inf{λ > 0 /Sλ < S0}.
Brezis and Nirenberg : 0 < λ∗ < λ1, Sλ is achieved for λ∗ < λ < λ1

and (1) is solvable in this range. When Ω is a ball : λ∗ = λ1
4 , no

solution for λ ≤ λ∗.

Theorem 3 (a) Assume that λ∗ < λ < λ1, where λ∗. Then

there exists a number q1 > 5 such that Problem (1) is solvable

for any q ∈ (5, q1).

(b) Assume that Ω is a ball and that λ1
4 < λ < λ1. Then, given

k ≥ 1 there exists a number qk > 5 such that Problem (1) has at

least k radial solutions for any q ∈ (5, qk).
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Blowing-up solution for (1) near the critical exponent: sequence

of solutions un of (1) for λ = λn bounded, and q = qn → 5.

Mn = α−1 max
Ω

un = α−1un(xn) → +∞

with α > 0 to be chosen, we see then that the scaled function

vn(y) = Mn un(xn + M
(qn−1)/2
n y)

satisfies

∆vn + vqn
n + M

−(qn−1)
n λnvn = 0

in the expanding domain Ωn = M
(qn−1)/2
n (Ω− xn).
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If xn stays away from the boundary of Ω: locally over compacts

around the origin, vn converges up to subsequences to w > 0

∆w + w5 = 0 in IR3

w(0) = maxw = α = 31/4. Explicit form:

w(z) = 31/4
(

1

1 + |z|2

)1/2

(extremal of the Sobolev constant S0). In the original variable,

“near xn”

un(x) ∼ 31/4
(

1

1 + M4
n |x− xn|2

)1/2

Mn ( 1 + o(1) )

The convergence holds only local over compacts. We say that

the solution un(x) is a single bubble if the equivalent holds with

o(1) → 0 uniformly in Ω.
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Let λ < λ1 and consider Green’s function Gλ(x, y)

−∆yGλ − λGλ = δx y ∈ Ω, Gλ(x, y) = 0 y ∈ ∂Ω .

Robin’s function: gλ(x) = Hλ(x, x), where

Hλ(x, y) =
1

4π|y − x|
−Gλ(x, y)

gλ(x) is a smooth function which goes to +∞ as x approaches

∂Ω. Its minimum value is not necessarity positive but it is de-

creasing in λ. It is strictly positive when λ is close to 0 and

approaches −∞ as λ ↑ λ1. [Druet] : the number λ∗ can be

characterized as

λ∗ = sup{λ > 0 / min
Ω

gλ > 0}

As λ ↓ λ∗, uλ constitute a single-bubble with blowing-up near

the set where gλ∗ attains its minimum value zero.
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Role of Non-trivial critical values of gλ for existence, not only in

the critical case q = 5 and in the sub-critical q = 5−ε. Apparently

new even in the case of the ball is established: duality between

the sub and super-critical cases.

Let D be an open subset of Ω with smooth boundary. We recall

that gλ links non-trivially in D at critical level Gλ relative to B

and B0 if B and B0 are closed subsets of D̄ with B connected

and B0 ⊂ B such that the following conditions hold: if we set

Γ = {Φ ∈ C(B, D) / Φ|B0
= Id}

then sup
y∈B0

gλ(y) < Gλ ≡ inf
Φ∈Γ

sup
y∈B

gλ(Φ(y)) ,

and for all y ∈ ∂D such that gλ(y) = Gλ, ∃τy tangent to ∂D at y

such that ∇gλ(y) · τy 6= 0.



Theorem 4 Under the above assumptions,
(a) Assume that Gλ < 0 q = 5 + ε. Then Problem (1) is
solvable for all sufficiently small ε > 0;

uε(y) = 3
1
4

(
1

1 + M4
ε |y − ζε|2

)1
2

Mε ( 1 + o(1) )

where o(1) → 0 uniformly in Ω as ε → 0, Mε = 2
3
2

3
1
8π

(−Gλ)
1/2ε−

1
2

and ζε ∈ D is such that gλ(ζε) → Gλ, ∇gλ(ζε) → 0, as ε → 0.

(b) Assume that Gλ > 0 , q = 5 − ε. Then Problem (1) has
a solution uε of (1) exactly as in part (a) but with

Mε = 2
3
2

3
1
8π

(Gλ)
1/2ε−

1
2



Ω ⊂ IR3 is symmetric with respect to the coordinate planes if for
all (y1, y2, y3) ∈ Ω we have that

(−y1, y2, y3), (y1,−y2, y3), (y1, y2,−y3) ∈ Ω.

Theorem 5 If Ω is symmetric, gλ(0) < 0 and q = 5 + ε, then,
given k ≥ 1, there exists for all sufficiently small ε > 0 a solution
uε

uε(x) = 3
1
4

k∑
j=1

 1

1 + M4
jε|x|2

1
2

Mjε (1 + o(1))

where o(1) → 0 uniformly in Ω and, for j = 1, . . . , k,

Mjε = (−gλ(0))1/2
(

25

3
1
4kπ

)2
15
2

π

j−1
(k − j)!

(k − 1)!
ε
1
2−j,




