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I. BUBBLE-TOWER RADIAL SOLUTIONS IN THE SLIGHTLY
SUPERCRITICAL BREZIS-NIRENBERG PROBLEM

We consider the Brezis-Nirenberg problem

Au~+ uPTe 4+ Au=0 in B (1)
u>0 inB, u=0 on 0B

in dimension N > 4, in the supercritical case: p = %“_Lg e > 0.

If e — 0 and if, simultaneously, A\ — 0 at the appropriate rate,
then there are radial solutions which behave like a superposition
of bubbles: M; — 400 and M; = o(M;41) for all j and

k 4 —(N=-2)/2
(N(N —2))(N=2)/4 3~ <1+M;V—2 |y|2> M;(1 + o(1))

=1



1. Parametrization of the solutions

Let B be the unit ball in RN, N >4, and consider for p = 312

and € > 0 the positive solutions of

Au—~+ uPTE4+ Au=0 in B
u>0 InB, u=0 on 0B

Denote by p = p(a) > 0 the first zero of v given by

v”+¥v’+vp+5—l—v=0 in [0, +00)
v(0)=a>0, 2(0)=0

To any solution w of (1) corresponds a function v on [0,v)) s.t.

v(e]) = AV D y(2/VX) = u(@) = p2/ P o (p |z))
with A = p?(a). The bifurcation diagram (\, ||u]|z~) is therefore
fully parametrized by a — (p2, a p2/(PTe=1)) with p = p2(a).
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2. References, heuristics and main result
p=~N*2 >0, N >4, Bis the unit ball in RN
{ —Auzup+€+)\u, u>0 inB

u=20 on 0B

<1950: Lane, Emden, Fowler, Chandrasekhar (astrophysics)
Sobolev, Rellich, Nash, Gagliardo, Nirenberg, Pohozaev
1976: Aubin, Talenti
1983: Brezis, Nirenberg: case € = 0 is solvable for

O <A< A1 = A1(—=A). Uniqueness (Zhang, 1992).
e subcritical case (0 > e — 0): Brezis and Peletier, Rey, Han
e supercritical case: Symmetry (Gidas, Ni, Nirenberg, 1979).
Budd and Norbury (1987, case € > 0): formal asymptotics, nu-
merical computations. Merle and Peletier (1991): existence of a
unique value A = A\« > 0 for which there exists a radial, singular,
positive solution. Branch of solutions: Flores (thesis, 2001).
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Consider a family of (radial, noincreasing) solutions us of (1) for
A= X — 0. The problem at A =0, € = 0 has no solution:

M. = 7_1 max us = ’y_lug(O) — 400

for some fixed constant v > 0. Let v-(2) = M. uc (M§p+€_1)/2 z)

Av: + v?"’s —- Mg_(p_l_e_l))\gvg =0, |z|< Mg(p_l_s_l)/Q.

Locally over compacts around the origin, v« — w S.t.

Aw+wP =0
L\
: L B N-2 .
with w(0) =~ := (N(N —2)) 4 w(z) =~ (1 n |z|2> :
N—2

_4 T2
Guess: us(y) =’y<1—|—]\4é\[2 |y|2> ’ M:(140(1)) as e — 0.
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Theorem 1 [ k-bubble solution | Assume N > 5. Then, given
an integer k > 1, there exists a number p;. > 0 s.t. if p > pg and

N-4
A = HgN—Q :
then there are constants 0 < a. < aj', 7 =1,...,k which depend

J
on k, N and p and two solutions ux of Problem (1) of the form

N|—
N|—

oy ez (140(1)),

k
ur(y) =7 Y (1+ [afs

7=1

4 —(N-2)/2
|7 yF)

N-—=2
where v = (N(N —2)) 4 and o(1) — O uniformly on B as e — O.

: : N—4 1 g1 1,
Bifurcation curve: A = eN-2f, (c,€ € 2m) for m ~ g2 7.



The numbers ozi

7 can be expressed by the formulae

A 1—; (B—=7)! 4
@ = b3 j(k—1)!8(“)

_ (N=2)vm r4)
ON+2 |—(N+1)

i=1,....k,

where b3 and s (M) are the two solutions of

_ _4 _oN—-4
p= fr(s) == kbysN-2 4 bps “N-2

with by = (N;2)3 N=4 and by = (N —2) - <%—r1>(%)

Remind that u > u; be the minimum value of the function f.(s):

—4 2
b1 k ]N 2 [bQ]N 2

“k:(N_Q)[N—AL 2



3. The asymptotic expansion

The solution of

v —’U—I—esxvp+€—|—( ;1

with v(0) = v(c0) = 0, v > 0 is given as a critical point of

) e (P~DTy =0 on (0, 00)

_ 1\ 2 00
E:(w) = I(w) —% <19T1> )\/O e_(p_l)gr”|w|2 dx

1 [oo 1 roo 00
I (w) = —/ w'|? dz + —/ lw|? do — / 5T |w|PTeT1 dg
2.J0 2.J0 p+e+1J0
N-2 N-2
4N \ 4 __4 N\ T2
U(x) = (N 2) e (1 + e N-2 w) > is the solution of

U'—-U4+UP=0
Ansatz: v(z) =V (z) + ¢, V(z) = Xf_ 1 (U(z — &) —U(&) e™™).



Further choices:

§1=—%|098+|09/\1,

§ig1— & =—loge—logA;yq, i=1,...,k—1.

2
N

Lemma 1 Let N >5 and A= ueN-2. Then
2

E:(V) = kag+eWVL(N) —|—%CL3€ loge 4+ age + €6-(N\)

WL(A) = a1 A2 — kaglog Ay — ag p Ay P~
k

+ > [(k—i+1)azlogA; —ax Aj]
=2

and lim._,g0-(A\) = 0 uniformly and in the Cl-sense.



Constants are explicit:

(

o pptl g

a0 =5 2% (U2 + U?) dz — 31 /2%

(N=2)/2
N-2)/4
R 2)( )/ [ e UP da
3:mf(_>oo%Up+l dx
a4:%(p% [ e (=D z g2 44
1
5 2, U19—|-1|ogUdﬂr:-|—(Jrl)zfoO Urtl g

k
We(A) = @i (A1) + D wi(A)
=2

QO'Z(S) —a1s 2—kazlogs — a4,us_(p_1)
goz(s) =(k—i4+1)azlogs—ans

P (s) =

fr(s)—p = 0 has 2 solutions: W (A) has 2 critical points.
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4. The finite dimensional reduction

Let J.(¢) = E-(V + ¢) where ¢ is the solution of

k

Lep=h+ ) ¢ Z; (2)
i=1

such that ¢(0) = ¢(c0) =0 and [§° Z; ¢ dz = O,

Lotp = _¢// + ¢ — (p+€)66xvp+€—1¢ o )\(]%1>26_(p—1)a:¢

and Z;(z) = Ul(z) — U/(0)e™®, i = 1,...,k. If h = Ne(¢) + Re,

Ne(¢) = 5 [(V + ¢)5T° — vPFe — (p+ e)vPte—1lg] and
R. = esx[vp+€_vp]_|_vp[e€x_1]_|_[Vp_zkz Vp]—|—)\ (1%1)2 6—(19—1)33 vV

1=1 "¢

vgje(g) =0



Under technical conditions, one finds a solution to (2) if h is small
-1
w.r.t. ||h|l«+ = supzso (Z,’le e_alx_§i|> |h(x)|, o small enough.

Let us consider for a number M large but fixed, the conditions:

(&1 > Slog(Me)™t,  log(Me)™! < miny<;p(&i41 — &)
) . (3)
\ & < klog(Me)~1, A< Me7 .

For o chosen small enough:

, 3—
INe(®)]l« < Clll™P2 and  |RE|l. < Ce2 .
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Lemma 2 Assume that (3) holds. Then there is a C > 0 s.t.,
for e > 0 small enough, there exists a unique solution ¢ with

9]« < Ce and ||Deollx < Ce .

Lemma 3 Assume that (3) holds. The following expansion holds

Je(€) = Ee(V) 4 o(e) ,

where the term o(e) is uniform in the Cl-sense.

11



5. The case N =4

Theorem 2 Let N = 4. Given a number k > 1, if

7T
> =k§e2 and e 2= e,

then there are constants 0 < O‘j_ < oz;'_, 7 =1,...,k, which depend
on k and u, and two solutions uZ:

+ 1 . 5
uz (y) = Z(1+M2|2)M]<1+ (1)) ,

N

uniformly on B as € — 0, with M]i = Oz;_L&: ~Jloge| 2
The proof is similar to the case N > 5. For N = 4, the order of
the height of each bubble is corrected with a logarithmic term.
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II. BUBBLING SOLUTIONS IN THE SLIGHTLY

SUPERCRITICAL BREZIS-NIRENBERG PROBLEM

Q C IR3, bounded domain with smooth boundary:
Au+ u+u?i=0 in
u >0 in 2 (1)
u=2~0 on 0X2.

If 1 <qg <5 and O < A < A7 subcritical solutions are ascritical
points of :

Jo IVul? — X g |ul?

o w e HF(Q)\ {0}
o |u o+l

Qx(u) =

and

S\ = inf Qx(u). (2)
ue H3(Q)\{0}
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S\, is achieved thanks to compactness of Sobolev embedding.

Vul?
So = inf s [Vul .
uECHRIO} ( fu3 [ul6)3
Let g =5 and \* =inf{A >0 /S, < Sp}.
Brezis and Nirenberg : 0 < A* < A1, Sy is achieved for \* < A < \q

and (1) is solvable in this range. When 2 is a ball : \* = %, no
solution for A < \*.

Theorem 3 (@) Assume that \* < A < \q{, where \*. Then
there exists a number g1 > 5 such that Problem (1) is solvable
for any q € (5,q1).

(b) Assume that Q2 is a ball and that % < A< A1. Then, given
k > 1 there exists a number q;, > 5 such that Problem (1) has at
least k radial solutions for any q € (5,qy.).
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Blowing-up solution for (1) near the critical exponent: sequence
of solutions u, of (1) for A = )\, bounded, and ¢ = ¢, — 5.

M, = a1 mS%Xun = a1

with o > 0 to be chosen, we see then that the scaled function

un(xp) — 400

n—1)/2
on(y) = My un(zn + M2 )
satisfies

A + vl + My Dy g =0

in the expanding domain 2,, = Méq”_l)/z(fz — Tn).
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If x,, stays away from the boundary of €2: locally over compacts
around the origin, v, converges up to subsequences to w > 0O

Aw+uw’>=0 inR3
w(0) = maxw = o = 31/4. Explicit form:

1/2
_ 21/4 1
o =3 ()

(extremal of the Sobolev constant Sp). In the original variable,
“near xp"’

1/4 1 12

The convergence holds only local over compacts. We say that

the solution un(x) is a single bubble if the equivalent holds with
o(1) — O uniformly in Q.

16



Let A < A1 and consider Green's function G, (z,y)

—AyGy — MG =0z y €, Gy(z,y) =0 y €.
Robin’s function: ¢,(z) = Hy(x,x), where
1

Ty — x|

H)\(.CU,y) — —G)\(iU,y)

g)(x) is a smooth function which goes to 400 as x approaches
0€2. Its minimum value is not necessarity positive but it is de-
creasing in \. It is strictly positive when X is close to 0 and
approaches —oo as A T A1. [Druet] : the number A\* can be
characterized as

A =sup{\>0/ inng)\ > 0}

As A | \*, u, constitute a single-bubble with blowing-up near
the set where g, _attains its minimum value zero.
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Role of Non-trivial critical values of gy, for existence, not only in
the critical case g = 5 and in the sub-critical ¢ = 5—e. Apparently
new even in the case of the ball is established: duality between
the sub and super-critical cases.

Let D be an open subset of 2 with smooth boundary. We recall
that gy, links non-trivially in D at critical level G, relative to B
and By if B and By are closed subsets of D with B connected
and Bg C B such that the following conditions hold: if we set

r={»ecC(B,D) / ®|p, = Id}
then sup g\(y) < Gy = inf_sup g (P(y)),

and for all y € 9D such that g)(y) = G, 37y tangent to 0D at y
such that Vgy(y) - 7y # 0.



Theorem 4 Under the above assumptions,
(a) Assume that G, < 0 q = 5+ e. Then Problem (1) is
solvable for all sufficiently small € > O;

1

1 1 2
w) = 3 ( )21+ o))
) L+ MEy—¢2)
3
— ) 1
where o(1) — O uniformly in Q ase — 0, Mz = 2>(-G,)/2% 2

387w
and (- € D is such that g (¢:) — 9\, Vg () — 0, ase— 0.

(b) Assume that G, > 0, q = 5—¢e. Then Problem (1) has
a solution us of (1) exactly as in part (a) but with

3

2 1

Me = Q—f (g)\)l/Qe 2
338w



QCcR3is symmetric with respect to the coordinate planes if for
all (y1,y>,y3) € 2 we have that

(—y1,92,93), (y1,—vy2,¥3), (y1,y2,—y3) € 2.

Theorem 5 If Q2 is symmetric, g (0) < 0 and ¢ = 5+ ¢, then,
given k > 1, there exists for all sufficiently small € > 0 a solution
Ue

ok ) >
= 34 M. (1 1
ue(m) =35 2 \ Ty pEpe | Mie (o)
j= je
where o(1) — 0 uniformly in Q and, for j = 1,... k,

15\ J—1
o 12 23 22 (k=5 1
Mz = (~9:(0)) <3i;m>(w) T






