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A. Fast diffusion equations: entropy,
linearization, inequalities,
1mprovements

@ entropy methods
Q@ linearization of the entropy

@ improved Gagliardo-Nirenberg inequalities
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Existence, classical results

u=Au" xeRY, t>0

Self-similar (Barenblatt) function: U(t) = O(t=9/(=d1=m)) a5
t — +o0
[Friedmann, Kamin, 1980] ||u(t,-) — U(t, )| = o(t~9/(=d1=m)))

heat equation

fast diffusion equation - -
porous media equation

' ! — > m
! ! T L

d—2 d—1
- 1

extinction in finite time global existence in L'

Existence theory, critical values of the parameter m
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Time-dependent rescaling, Free energy

@ Time-dependent rescaling: Take u(r,y) = R™4(7) v (t,y/R(T))

where dR
— = RIA=m-1  ROY=1, t=logR
. , R(O)=1, og
@ The function v solves a Fokker-Planck type equation
%:Avm—i—v-(xv), Vir=0 = Uo

@ [Ralston, Newman, 1984] Lyapunov functional:
Generalized entropy or Free energy

— v Lo
]-'[v].—/Rd (m_1—|—2|x| v> dx — Fo

Entropy production is measured by the Generalized Fisher
mformation

m 2

Vv

+ x| dx

d
E]—"[v] =-TI[v], I|v]:= /]Rd v

4
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Relative entropy and entropy production

Q@ Stationary solution: choose C such that ||Veo|[;r = ||uljp =M >0

Vo (x) = (C + o [x?) /0™

Relative entropy: Fix Fy so that Flvee] =0
Q. Entropy — entropy production inequality

d23,m€[%,+oo) m>—,m7é1

Z|v] > 2 F|v]

A solution v with initial data ug € L. (RY) such that |x|* up € L}(RY),
ul € LY(RY) satisfies Flv(t, )] < Fluo] e~ 2
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An equivalent formulation: Gagliardo-Nirenberg inequalities

2
v 1 1 vvm 1
[v] /Rd<m_1—|—2|x|v>x 0_2/Rdv’ ” + x| dx 5 [v]
Rewrite it with p = >2=, v = w?, v™ = wP™! as
1/ 2m \? 1
= i |Vw|?dx + (| —— —d |w|*Pdx — K >0
2\2m—-1 Rd 1-m Rd
o for some v, K = Ko (fgo v dx = [pa w?P dx)ﬂy

1/2p .

QW= Wy = Vo

is optimal

[Del Pino, J.D.] With 1 < p < 5% (fast diffusion case) and d > 3

GN
1wl izorey < Coigt IV W1 aggay 1WI 1525 ey

CON _ (y(p—l)z)% (2y—d>ﬂ (72 )5 p___den |, pt
P: 2nd 2y ro-9) V7 p@r-@—2p Y T b1
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. a proof by the Bakry-Emery method

Consider the generalized Fisher information
m
Z[v] ::/ viz]® dx  with z:= v + x
Rd v
and compute
%I[v(t, IN+2Z[v(t, )] = -2 (m—l)/ (divz)? dx— 2’;1/ (0:2)?
9 the Fisher information decays exponentially:
T[v(t,-)] < Z[uo] e 2t
@ limi, oo Z[v(t,-)] = 0 and lim;_,o F[v(t,-)] =0
° g (I[v(t, 9] =2 Flv(t, )]) < 0 means Z[v] > 2 F|[v]

[Carrillo, Toscani], [Juengel, Markowich, Toscani], [Carrillo, Juengel,
Markowich, Toscani, Unterreiter], [Carrillo, Vazquez|
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The Bakry-Emery method: details (1/2)

With z(x, t) := n Vu™ 1 — 2 x, the equation can be rewritten as
Ou
at

(up to a time rescaling, which introduces a factor 2) and we have

0z

FTi

+V-(uz)=0

n(l-mV (W™ ?2V-(uz)) and VRz=nVeVu"!-2Id

d s ou, 0z
— dx = — |z|"dx+2 -—d
i f iR [ GrleF o2 [ usFas

(9] (I

_ 2 g 2
(1) = y 8t |z| dx = / V - (uz) |z|%dx

= 277(1—m)/Rdu"’_2(Vu-z) dx + 277(1—m)/]R U™ N (Vu-2)(V-2) dx

d

—|—217(1—m)/ U™ N z®@ Vi) (V@ z) dx — 4/ u | z|%dx
RY -
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The Bakry-Emery method: details (2/2)

(II)—2/Rduz-%dx
= —2n(1- m)/]Rd [u™(V - 2)? +2u™ (Vu-2) (V- 2) + u™ 2(Vu-2)°] dx

/ |z|2dx—|—4/ u | z|?dx
Rd

=—2n(1- )/u 2PV 22+ u(Vu-2)(V-2)

= —277—/ |Vz|2 (1=m) (V- 2)2) dx
By the arithmetic geometric inequality, we know that
Vz]2 = (1-m) (V-2)*>0
ifl-m<1/d, thatis,if m>m =1-1/d
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Fast diffusion: finite mass regime

Inequalities...

Sobolev
logarithmic Sobolev
/ Gagliardo-Nirenberg

—> m

f
d—1
T T

t
_d_
d d+2

v e L imPy e [}

Bakry-Emery method (relative entropy)

global existence in L'

. existence of solutions of u; = Au™
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Fast diffusion equations: the infinite
mass regime by
linearization of the entropy
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Extension to the infinite mass regime, finite time vanishing

e If m>m. = % < m < my, solutions globally exist in L!(R9)
and the Barenblatt self-similar solution has finite mass
@ For m < m., the Barenblatt self-similar solution has infinite mass

FExtension to m < m. 2 Work in relative variables !

}-[VDllvDo] =0 VD1 — VDo ert!
vo— Vp, € L! F[VD,1Vp,] < 00
Vp, = Vb, ¢ L ‘ v, Vp € L
l ; ; : : > m
d=4 -2 _d_ a1 ]
d-2 d+2 d Gagliardo-Nirenberg
‘ I ™M e Ll, 1% c !

Bakry-Emery method (relative entropy)

global existence in L'

My Me mi
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Entropy methods and linearization: intermediate
asymptotics, vanishing

[A. Blanchet, M. Bonforte, J.D., G. Grillo, J.L. Vazquez|
1—
% = -V - (uVu™ ) = Tm Au™ (1)
@ m. < m< 1, T =+o0: intermediate asymptotics, 7 — 400
R(7) i= (T + 1) 7o
@ 0<m< mg, T <+o0: vanishing in finite time lim,; ~7 u(7,y) =0

R(r) := (T — 1) 7=m

Self-similar Barenblatt type solutions exists for any m
. 1—-m R(1) ] 1 y
t.= > IOg (W) and x := m m
1

Generalized Barenblatt profiles: Vp(x) := (D + |x[?) ™"
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Sharp rates of convergence

Assumptions on the initial datum vy
(H1) Vp, < v < Vp, for some Dy > Dy >0

(H2) if d > 3 and m < m,, (vy — V) is integrable for a suitable
D € [D1, Dy

Theorem

[Blanchet, Bonforte, J.D., Grillo, Vézquez] Under Assumptions
(H1)-(H2), if m <1 and m # m, := 9=2, the entropy decays according
to

Flv(t,)] < Ce20=mAaat vt >0

where N4 > 0 is the best constant in the Hardy—Poincaré inequality

/\a,d/ IF? dpte—1 g/ V> due Ve H (dua)
R4 R4

with a :=1/(m —1) <0, dpg := hy dx, ha(x) := (1 + |x]?)

4
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Plots (d = 5)

K s -

A= 80— 4(d+2)

Spectrum of
(M =m) Lyfon-1)a

—6a—2(d+2) (@=5)

Aoy 5 —da

Aor 5 —4a—2d

Essential spectrum of Lo
A= Hd+2a -2

V-2
o

o= —VaITT- 4t

7

Au < -2a

Essential spectrum
of (1 =) £1 /-1

&
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Entropy methods
The infinite mass regime by linearization of the entropy
Gagliardo-Nirenberg inequalities: improvements

Fast diffusion equations: entropy, linearization, inequalities, improvements
Fast diffusion equations: new points of viev

Fast diffusion equations on manifolds and sharp functional inequalities

Improved asymptotic rates

[Bonforte, J.D., Grillo, Vazquez] Assume that m € (my,1), d > 3.
Under Assumption (H1), if v is a solution of the fast diffusion
equation with initial datum vy such that fRd x vp dx = 0, then the
asymptotic convergence holds with an improved rate corresponding to

vim)

the improved spectral gap.

)
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Higher order matching asymptotics

[J.D., G. Toscani] For some m € (m¢,1) with m. := (d — 2)/d, we
consider on R? the fast diffusion equation

ou m_1y
E+V-(UVU )=0

Without choosing R, we may define the function v such that
u(t,y +x0) = R*dv(t,x) , R=R(r), t= % logR, x= %
Then v has to be a solution of

% v {v (U%W*mf)v\/m—l - 2x)} —0 t>0, xcR?
with (as long as we make no assumption on R)

dR
) 2

d
2 —g(m—mc) _ led(lfm
7 dt
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Refined relative entropy

Consider the family of the Barenblatt profiles

1
B,(x) =0 % (Cu+2[x?)™" VxeR? (2)
Note that ¢ is a function of t: as long as % # 0, the Barenblatt

profile B, is not a solution (it plays the role of a local Gibbs state) but
we may still consider the relative entropy

1
Folv] = —— [v"— Bl —mBI' ' (v—B,)] dx
m-—1 R
The time derivative of this relative entropy is

d do ( d m -1 1) v
d No (4 p [ () &
dtfg(t)[\/(t’ )] dt <d0’ F [V]) \a:o’(t_)Fm -1 RY (V o(t) ) ot dx

choose it =0
<= Minimize F,[v] w.rt. 0 <= [, [x]? By dx =[5, |x][? v dx
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The entropy / entropy production estimate

Using the new change of variables, we know that

d mao(t)s(m=me) _ m—111%
= Folv(t, )] = —L/dv v [yt Bt ax
R

(1)

dt 1—-m
Let w := v/B, and observe that the relative entropy can be written as

m

Folv] = [W—1—%(w"’—1)} B™ dx

1—-m Rd

(Repeating) define the relative Fisher information by

L= [

so that %]—'U(t)[v(t, N=—m(l—m)o(t) Lwlv(t,)] V>0

When linearizing, one more mode is killed and o(t) scales out

2
ﬁ V(w1 = 1) B ‘ B, w dx
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Improved rates of convergence

Theorem (J.D., G. Toscani)

Let m € (my1,1), d > 2, v € LL(R?) such that v, |y|* v € LY(RY)
Flv(t, )] < Ce 27Mt vt>0

((d=2) m—(d—4))?

where Sanem o fme(m,m
Wm) = 4(d+2)m—4d ifme [, m]
4 ifme [m27 1)
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Spectral gaps and best constants

m2 =4

did
d+6

d+1

e Caise 1
— Case 2

e Case 3

0 m

J. Dolk I Di

1
s: entropies relatives, “best matching” et délais




Fast diffusion equations: entropy, linearization, inequalities, improvements Entropy methods
Fast diffusion equations: new points of view The infinite mass regime by linearization of the entropy
Fast diffusion equations on manifolds and sharp functional inequalities Gagliardo-Nirenberg inequalities: improvements

Comments

Q A result by [Denzler, Koch, McCann|Higher order time asymptotics
of fast diffusion in Euclidean space: a dynamical systems approach

@ The constant C in
Flv(t, )] < Ce 27Mt vi>0

can be made explicit, under additional restrictions on the initial
data [Bonforte, J.D., Grillo, Vézquez]
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An explicit constant C 7

d
EF[W(t’ )N =—-Z[w(t,")] Yt>0

A2 / [FI2 V3™ dx <2 Flw] < /12*'"/|f|2 V3™ dx
where f := (w — 1) V51, h:= max{supgsw(t, ), 1/infpaw(t,-)}
/ |VF? Vp dx < 2™ Z[w]+d (1 —m) [h*C=m) / [F|2 V3~ dx

0<h_1<C}'d+z d+1)m

Flw(t,-)] < G(t, h(0), Fw(0,-)]) for any t >0, where

dG Na,d — Y(h) 1-—m
— =-2—— 7 G, h=1+CGdzw@mm @G = .
dt [1+ X(h)] h2—m + ; G(0) = Flw(0,-)]
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Fast diffusion equations on manifolds and sharp functional inequalities Gagliardo-Nirenberg : impr

Gagliardo-Nirenberg

and Sobolev inequalities :

improvements

[J.D., G. Toscani]

[m] = -
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Best matching Barenblatt profiles

(Repeating) Consider the fast diffusion equation

%+V- {u (U%(mfmc)vl,m—l_zxﬂ =0 t>0, xeR?

with a nonlocal, time-dependent diffusion coefficient

1
o(t) = K_M /Rd |x|2 ulx,t)dx, Ky := /]Rd |X|2 Bi(x) dx

where )
Ba(x) =A% (Cu+ L |x>)™" VxeR?
and define the relative entropy

1

]:)\[U] = m-—1 R4

[u™ — B — mBY ™ (u— By)] dx
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Three ingredients for global improvements

Q infaso Fafu(x, t)] = Forp[u(x, t)] so that

d
E-Fa(t)[u(xa t)] = _Ja(t)[u('7 t)]
where the relative Fisher information is
Talu] = Azm=md [y |9yt vBr Tt dx
1—m Rd A

Q In the Bakry-Emery method, there is an additional (good) term

Folu(-, )] | d d
m] gt FoluC ) = Z (TooluC 1)])

4 1—|—2Cm,d

© The Csiszdr-Kullback inequality is also improved

Folu] = Cinllu = Bo[F1 g0y

m
8 Jpa Bf" dx
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improved decay for the relative entropy

].(l—r——— — — — — — ———

"
A

k)

.

0.8

0.6+

04

00

Figure: Upper bounds on the decay of the relative entropy: t — f(t)e* /£(0)
(a): estimate given by the entropy-entropy production method

(b): exact solution of a simplified equation

(c): numerical solution (found by a shooting method)
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A Csiszar-Kullback(-Pinsker) inequality

Let m € (mq, 1) with m; = #12 and consider the relative entropy

1

Folu] = 1 ) [u™ — B —mBI ' (u— B,)] dx

Theorem

Let d > 1, m € (m1,1) and assume that u is a nonnegative function in
LY(RY) such that u™ and x + |x|? u are both integrable on RY. If
[ullLisey = M and [ [x1? udx = [pq [x]> By dx, then

Foldl o m (a8 +l/ P lu— By dx)
J%(l—m) = 8fRd B{n . M o [|ILL(S9) o Jo o

4
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Csiszar-Kullback(-Pinsker): proof (1/2)

Let v := u/B, and du, := BT dx

/(v—l)du,,:/ B(',"_l(u—BU)dx
Rd Rd

. cm/ (u—By)dx+ofm=m | |x(u—B,)dx=0
RY R?

/(v—l)du,,:/ (v—l)dug—/ (1-v)du,=0

Rd v>1 v<1
[v=tidu = [ v-Ddut [ @-v)de
R4 v>1 v<1

|U—BU|B[T_10'X:/ |v—1|duU:2/ v —1| dus
RY R v<1
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Csiszar-Kullback(-Pinsker): proof (2/2)

A Taylor expansion shows that

1

J—_.U[U] - m—1 R4

V"—1-m(v—1)] due = E/ M2 lv—112 dpe
2 Joo
>0 [ v-1P
2 v<1
Using the Cauchy-Schwarz inequality, we get

2 m  m 2
(fv<1|v—1| dug) = (fv<1|v—1|Bc,2 B2 dx) < fv<1|v—1|2duUfRd BT dx

and finally obtain that

2
.F [U]>ﬂ (fv<1|v_1| du”) _E (fRd|u_BU|B¢r7nildX)2
=2 [LBrdx 8 oo B dx
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An improved Gagliardo-Nirenberg inequality: the setting

The inequality
||f||L2P(Sd < Coa IV F 1T age) Il oy

l1<p<oo 1f d 2, can be rewrltten in a non- bcale invariant form, as

/|Vf|2dx+/ [FIPTLdx > Kp g (/ |f|2f’dx)
RY Rd Rd

with v = y(p, d) := %. Optimal function are given by

1 _ 2\ T p-1
M,y,o(x) = — (CM + L vl ) VxeR?
o2 g

where Cy; is determined by fRd M Yo dx =M
My = {fuy.o : (M,y,0) € Mg :=(0,00) x R? x (0,00)}
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An improved Gagliardo-Nirenberg inequality (1/2)

Relative entropy functional

PI[F1 -— 1-p 2p _ ,2p) _ 2p p+1 _ ptl
R vyggwﬁwk- (1122 — g27) = 25 (1F17* = g”*) | o

Theorem

Let d > 2, p > 1 and assume that p < d/(d —2) ifd > 3. If

fRd |x|?|f[?P dx _ d(p—1)o. M1 — (4 9+2-p(d-2) T
(Joa [f2Pdx)” — dF2mp(d=2) a+(p) D2 (prD)

for any f € LPT N DY2(RY), then we have

gl (R(p)[f])2
Vf2d+/ P dx—K (/ f2pd) >Chod 7"
LR [ 10 bt ([ 177 0) 2 o s
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An improved Gagliardo-Nirenberg inequality (2/2)

A Csiszar-Kullback inequality

ROf] > Cox [IFI2057  inf [[1F12P — g2°|121s0)
geaﬁf,”)
with Cox = 253 4422000-2) M Let

. 2
€pd = Ca,p Cek

Corollary

Under previous assumptions, we have

v
/ |Vf|2dx+/ [FIPT dx — Kp.g (/ |f|2pdx>
Rd RY

2 4) .
> CoallFIRE nf IR = 7l

4

J. Dolbeault Diffusions non-linéaires: entropies relatives, “best matching” et délais



Fast diffusion equations: entropy linearization, inequalities |mprovements Entropy methods
Fast diffusion equations: ne ie The infinite mass regime by linearization of the entropy
Fast diffusion equations on manifolds and sharp functional inequalities Gagliardo-Nirenberg inequalities: improvements

Conclusion 1: improved inequalities

@ We have found an improvement of an optimal Gagliardo-Nirenberg
inequality, which provides an explicit measure of the distance to the
manifold of optimal functions.

@ The method is based on the nonlinear flow

@ The explicit improvement gives (is equivalent to) an improved
entropy — entropy production inequality
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Conclusion 2: improved rates

If me (mq,1), with
f(t) == Folu(-, t)]

= — / X
J(t) := Ty [u(-, 1)]
E(mfmc)
L/ u |Vumt - VBt d
m

Tolu] = T
we can write a system of coupled ODEs
fl=—j<0
o' =-2d —(1;;2732 o8(m=m) £ < (3)

i+ 4j:g(m—mc)[ t4d(1—m) }a —r
In the rescaled variables, we have found an improved decay (algebraic
rate) of the relative entropy. This is a new nonlinear effect, which

matters for the initial time laver
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Gagliardo-Nirenberg inequalities: improvements

Conclusion 3: Best matching Barenblatt profiles are
delayed

Let u be such that
d

7 1 X
v(r,x) = m u (5 log R(D 1), R(DT))

with 7 — R(7) given as the solution to

2 —g(m—mc)
LdR _ ( H x| v(T, x) dx) , R(0)=1

R dr Ky Jge
Then " :
1dR [, 1 —(m=m
7%’(mfmc)

2% = (R3(r) o (0))

that is R(7) = Ro(7) < Ro(7) where
Ro(T — §) for some delay § > 0

and asymptotically as 7 — oo, R(7)

[l =l=
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B. Fast diffusion equations:

New points of view

@ improved inequalities and scalings
Q@ scalings and a concavity property

@ improved rates and best matching
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The logarithmic Sobolev inequality

dp = pdx, p(x) = (27)"92eX°/2 on RY with d > 1
Gaussian logarithmic Sobolev inequality

1
[ vz [ 1o oglu? di
R2 2 Jre
for any function u € H'(R?, dy) such that [p, [u[?>dp =1

d 2t 2t
o(t) = [exp (7>_1_7} VteR

[Bakry, Ledoux (2006)], [Fathi et al. (2014)], [Dolbeault, Toscani
(2014)]

Proposition

1
[verau—3 [ o2 |0g|U|2dqu0</ Juf? log|u|2du)
R2 R2 R2

Vue BR? dy) st | |uPdu=1 and [ |xP|uldu=d
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Consequences for the heat equation

Ornstein-Uhlenbeck equation (or backward Kolmogorov equation)
of
— =Af —x-Vf
ot X

with initial datum fy € L} (R, (1 + |x|?) dp and define the entropy as
E[f] = / flogfdu, “&[f]= —4/ IVVF2 dp < —2€]f]
R2 dt R2

thus proving that E[f(t,-)] < &[fy] e 2. Moreover,

d

— f|x|2du:2/ f(d—|x*) du
dt R2 R2

Assume that E[fy)] is finite and [, fo [x|* dp = d [, fo dp. Then

Elf(t, )] < —; log [1 - (1 . e—%flfol) e—ﬂ Vt>0
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Gagliardo-Nirenberg inequalities and the FDE

—9
19wy W55 gy = Caons [Wllgongeey

With the right choice of the constants, the functional

1 %
Jw] := 2 (¢*°—1) /]Rd |Vw|? dx+83 /Rd lw|9Hh dx—KC C&y (/]Rd |w|? dx)

is nonnegative and J{w] > J[w,] =0

Theorem

[Dolbeault-Toscani] For some nonnegative, convex, increasing ¢
JW] > ¢ [B (fpa Iwa |9 dx — [og [w|9F dx)]

for any w € LI (RY) such that [, |Vw|? dx < co and
i WP X2 i = g w29 ] i

Consequence for decay rates of relative Rényi entropies:
see [Carrillo-Toscani]
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The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in RY, d > 1

ou
- p
T Au

with initial datum u(x, t = 0) = up(x) > 0 such that [, updx =1 and
Jgo |XI? up dx < +-00. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

1 X
U (t, x) = B*( )
( X) (Ktl/“)d K t1/p
where
| 2pp /e

=2+d(p—-1 = |—
0 +d(p—-1), =& o1
and B, is the Barenblatt profile
(C— |x|2)i/(p71) ifp>1

(Co+ x)YP™Y ifp<t
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The entropy

The entropy is defined by

E::/ uP dx
Rd

and the Fisher information by
I ::/ ulVv|?dx with v = P
Rd

If u solves the fast diffusion equation, then

E=(1-p)l
To compute I, we will use the fact that
%:(p—l)vAv—|—|Vv|2
. o 2 1 2 1
Fi=E" with o= =1 S4p-1)=S—" 1
BT G +1—p<d+p ) dl-p

has a linear growth asymptotically as t — +oo
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The concavity property

[Toscani-Savaré] Assume that p>1—2 ifd >1andp>0ifd = 1.
Then F(t) is increasing, (1 — p) F"(t) S 0 and

lim ()= (1-p)o lim E" M= (1-p)oES L,

t—+oo t t—+oo

[Dolbeault-Toscani] The inequality
E°tI > ET,
is equivalent to the Gagliardo-Nirenberg inequality

IV WP asey 1Wlipedisey = Can lIwllizese

1f1——<P<1 Hint: uP~1/2 = g g =t

- HWHL2!I (s9) 2p—1
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The proof

d
=2 | ulVvPdx= _2/ uP (||D2v||2 +(p—1) (Av)2) dx
Rd Rd

2
ID?v|[? =

Q|+

1
(Av)2 + H D?v — 7 AvId

ﬁ E> 7 (E°)' =(1-p)(o—1) (/Rd Vv dx>2

—2(1 1>/ updx/ uP (Av)? dx
d Rd Rd
-2 / uP
Rd RY
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Temperature (fast diffusion case)

The second moment functional (temperature) is defined by

ot) = %/R I u(t, x) dx

and such that

S (54 (1) 0L
5 (5 + 7o) O s

0 t

<> Too = limg— oo 7(s)
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Improved inequalities and scalings
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case) and delay

Let U] be the best matching Barenblatt function, in the sense of
relative entropy F[u|U;], among all Barenblatt functions (U5 )sso. We
define s as a function of t and consider the delay given by

Porous medium case

A

J. Dolbeault

t
Too = liMg—s 00 7($)
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A result on delays

Assume that p > 1 — % and p # 1. The best matching Barenblatt

function of a solution u is (t, x) — U,(t + 7(t), x) and the function
t — 7(t) is nondecreasing if p > 1 and nonincreasing if 1 — % < p <1

With G := 012, = d(1— p) =2 — u, the Rényi entropy power
functional H := ©7 2 E is such that

G =puH with H:=0"%E
H’ i n  dE2 , ol
1_p:e 2((9|—dE):eg+1(q—1) with Q-:ﬁ21

1 21 2
dEz——(—/ x - V(uP) dx ——(/ x-qudx)
d RY d \ Jre

1
S—/ u|x|2dx/ u|Vvi2dx =0l
d Rd Rd
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An estimate of the delay

Ifp>1—1andp+#1, then the delay satisfies

| 0(0) 10-»  (H, —H()"
Jim_tr(®) = r(0) 2 1~ pl =5 ©(0) 1(0) — d E(0)2
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C. Fast diffusion equations on
manifolds and sharp functional
inequalities

@ The sphere
@ The line
@ Compact Riemannian manifolds

@ The cylinder: Caffarelli-Kohn-Nirenberg
inequalities
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Interpolation inequalities on the
sphere

Joint work with M.J. Esteban, M. Kowalczyk and M. Loss
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A family of interpolation inequalities on the sphere

The following interpolation inequality holds on the sphere

_92 2/p
PT/ |V ul? dvg—i—/ lul> dv, > </ |ulP dvg> Y ue HY(SY, dvg)
s s 8

@ for any p € (2,2*] with 2* = 2% if d >3

@ for any p € (2,00) if d =2

Here dv, is the uniform probability measure: vgz(S9) = 1

Q@ 1 is the optimal constant, equality achieved by constants

Q p = 2* corresponds to Sobolev’s inequality...
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Stereographic projection

J. Dolbeault Diffusions non-linéaires: entropies relatives, “best matching” et délais



The sphere

The line
I ) ! W poll e Compact Riemannian manifolds
Fast diffusion equations on manifolds and sharp functional inequalities
The Cylinder

Sobolev inequality

The stereographic projection of SY ¢ R? x R > (p ¢, z) onto RY:
top?+22=1,z E [~1,1], p > 0, ¢ € S~ we associate x € RY such
that r = |x|, ¢ =

- \XI

-1 2 2r

:—:1—— e
‘ rr+1 rP4+1’ p r4+1

and transform any function v on S¢ into a function v on RY using
r % 41 % -2
uy)=(5) 7 v(x)=(51) 7 v(x)=(1-2)" = v(x)

@ p=2",S4=1d(d—2)[S?*? Euclidean Sobolev inequality

d—2

/ |Vv|? dx > Sy [/ |v|% dx} Vv € DV3(RY)
RY RY
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Extended inequality

2/p
/ |Vul? dv, > % [( |ulP dvg) —/ |ul? dvg] Vue HY(SY, dp)
sd p—= Sd sd

is valid
@ for any p € (1,
@ for any p € (1,

YU(2,00) if d =1, 2
YU (2,2°]if d >3

NN

Q@ Case p = 2: Logarithmic Sobolev inequality

|ul? 1(qd
|Vul? dvg > / |u|? Iog( dvg YueHY(S?, du)
/ £ f§d| ul? dvg ¢

@ Case p = 1: Poincaré inequality

/Sd|Vu|2dvg2d/Sd|u—E|2dvg with U::/Sdudvg Vue HY(SY, du)
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Optimality: a perturbation argument

@ Forany pe (1,2*]if d >3,any p>1ifd=1or 2, itis
remarkable that

Q[u] - ( ) ||VU||L2 59)

” ”LP(Sd ||u||L2(Sd) a ueHl(Sd dp)

1
Qfu] = d
is achieved in the limiting case

IVvIE
Ol +ev]~ — LFE) 4 e—0

s
when v is an eigenfunction associated with the first nonzero
eigenvalue of Az, thus proving the optimality

Q p < 2: a proof by semi-groups using Nelson’s hypercontractivity
lemma. p > 2: no simple proof based on spectral analysis is available:
[Beckner], an approach based on Lieb’s duality, the Funk-Hecke
formula and some (non-trivial) computations

@ elliptic methods / ', formalism of Bakry-Emery /monlinear flows
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Schwarz symmetrization and the ultraspherical setting

(€0, &1, .-€q) €89, €9 = 2, 10 &[> = 1 [Smets-Willem]

Up to a rotation, any minimizer of Q depends only on £4 = z

la

o Let do() = S0 dp, 74 = \/—r(rf,ﬁ); Vv e HY([0, 7], do)

2

’%2 OW IV (0)2 da—l—/ow V(O)] do > </07T v(0)]? da)i

e Change of variables z = cos#, v(#) = f(z)

2
P—< 2 72 ' 2 ' ?
— |f| vdvg + |f|© dvg > |fIP dvy

-1 -1

where v4(2) dz = dvg(z) :== Z;* vildz, v(z) :=1— 22
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The ultraspherical operator

With dvg = Z;* vildz, v(z) := 1 — 22, consider the space
L2((—1,1), dvy) with scalar product

1 1 :
<f1,f2>:/ fih dvg, ||f||p—(/ fpdud>
—1 -1

The self-adjoint ultraspherical operator is
d
Lf:= (1—22)f”—dzf’:1/f”—|—§1/f’

which satisfies (f, L f) = f fifvdug

Proposition

Let pe[1,2)U(2,2"], d > 1

112 — 113

- Ve HY([-1,1], dvg)

1
—(f,Lf) :/ If'1? v dvg > d
-1
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Flows on the sphere

Q@ Heat flow and the Bakry-Emery method

@ Fast diffusion (porous media) flow and the choice of the exponents

Joint work with M.J. Esteban, M. Kowalczyk and M. Loss
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Heat flow and the Bakry-Emery method

With g = fP, d.e. f =g* witha=1/p

10— lg?

(neq)  —{f.LF) = —(g° Lg*) = T[g) > g B —IETI _ Fpgy
Heat flow 5
g _
ot £
% lalli=0. gl = 202 (5.LA) =2(p-2) [ [FF v
. =Y, . = - - ) = - d
dr "¢l dt ! )
which finally gives
d d d. ..
E]:[g(t’ )= Th_2dt g% = —2dZ[g(t,")]

eq. = SFlg(t,)] < 2 Flg(t,)] = STla(t,)] < ~2dT[g(r. )]
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The equation for g = fP can be rewritten in terms of f as

of IdE

1d [,
—EE/_1|7(| I/dVd—

i d 12 712

dtI[g(t,~)] + 2d7Z[g(t,))] = p |f| vdug+ 2d |f| v dug

1 4 12 £11
d |f’| —1|f| f
=-2 2+ (p—1 —2(p—-1)—— 2
/_1<| FH-Dgm e 2Ny ) vV

is nonpositive if

LS
f'

%(f,ﬁf)z(ﬁf,ﬁf>+(P—1)< v, L)

N =

d |f/|4 ( ) d—1 |f/|2 f
d+2 Pmds2 7
is pointwise nonnegative, which is granted if

-1

"2+ (p—1) —

2

d 242 +1 24
i 1 e p< 2T gt o 2D o
d+2} =P335 P=Tad-1) R
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up to the critical exponent: a proof in two slides

i _ I r_ "o /
[dz’ﬁ] u=(Lu) —Lu=-2z4"—du

1 1 1
/ (Lu)? dvg = / % dVd+d/ /)2 v duyg
-1 -1 -1
1 112 1 114 1 12
|| d ', d_l/ ",
Lu)—vd = — dvg — 2 d
/,1( u) = v dva d+2), @ U T g2 ), a U

On (—1,1), let us consider the porous medium (fast diffusion) flow

22 |u'|?
ut—u_ﬁ(ﬁ + K )
u

If Kk = B(p—2)+ 1, the LP norm is conserved

1 1
% uPP dud:ﬁp(/@'—ﬁ(p—Z)—l)/ uPP=2) |12y dug =0
-1 -1

J. Dolbeault Diffusions non-linéaires: entropies relatives, “best matching” et délais



The sphere
The line

Fast diffusion equations on manifolds and sharp functional inequalities CompactRismannianlmanifolds
The Cylinder

F= 1 By + 5% (171220 = 1oy ) 207

! "2 2 d—1 ! //|/|2
A::/71|u|1/ dVd—Qﬁ( —l—ﬁ—l)/ ut = v? duy

-1

1 4
+[H(ﬁ_1)+ diz(/ﬁ—ﬁ—l)]/ ";' V2 duy

-1

A is nonnegative for some f if

G- D@ —p)>0

A is a sum of squares if p € (2,2*) for an arbitrary choice of 3 in a
certain interval (depending on p and

A= [

" p+2 w2 ?
u

V2 dvg >0 ifp:2*auadf3:6L
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The rigidity point of view

712
Which computation have we done ? u; = u>=2# (C u+k % y)

/12
—Lu—(6—1)|u| v+ A u= A u”
u p

Multiply by £ u and integrate

1 1
u
/ Euu”dud:—ﬁ/ u —|dud
—1 —1 u

lu')?

Multiply by « =~ and integrate

’
u
1 /2
...:+H/ u"|u| dvy

-1 u

The two terms cancel and we are left only with the two-homogenous
terms
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Improvements of the inequalities
(subcritical range)

@ as long as the exponent is either in the range (1,2) or in the range
(2,2*), on can establish improved inequalities

@ An improvement automatically gives an explicit stability result of
the optimal functions in the (non-improved) inequality

Q@ By duality, this provides a stability result for Keller-Lieb-Tirring
inequalities
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What does “improvement” mean ?

An improved inequality is

dd(e)<i VueH(SY) st.

||”||iZ(sd) =1

for some function ® such that ®(0) =0, ¢’(0) =1, ¢’ > 0 and
®(s) > s for any s. With W(s) :=s— (s)

i—de>d(Wod)(e) VuecH(S)) sit.

||U||i2(gd) =1

Lemma (Generalized Csiszdr-Kullback inequalities)
d

IV ulaeny = = [l = lullEzn]
2 llu ||2(1(§d’) r =r|2 1l/qd
> d [|ulfz(gey (W o ®){ C T2, oo [|u I La(s) VueH(S)

s(p) := max{2, p} and p € (1,2): q(p) :=2/p, r(p) := p; p € (2,4):
g=p/2,r=2p>4 q=p/(p—2), r=p—2
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Linear flow: improved Bakry-Emery method

Fast diffusion equations on manifolds and sharp functional inequalities

Cf. [Arnold, JD]
w2
wi=Lw+K——v

w

With 2t := 2441

(d-1)2
= Ez(—l)(2#—) if d>1 —Pol g
n={g33) P P L omi= =
If p € [1,2) U (2,29 and w is a solution, then
d 1 |W/ 4 |e/|2
—(i—de) < — dvg < —y —M— M——
Gli—de = [ Bhan <o T
Recalling that ¢’ = — i, we get a differential inequality
/|2
1 d / > |e|
e +de =N (5 _-2)e (p—2)e

After integration: d ®(e(0)) < i(0)
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Nonlinear flow: the Holder estimate of J. Demange

2-2 w'[?
Wt—W'B(LW—FIi )
w

Forall pe[1,2*], k=8(p—2)+1, & 11W'deVd_0
—ob & 1 (I Py 4 55 (w2 —20) ) dvg = 5 [, 2 0 dg

For all w € H!((~1,1), dvg), such that f_ll whP dug = 1

1 W 1 f 2y dug f_ll W2V dug
- V2 dug > = =
1w ﬁ ( 1 28 )
Jo,w? duy

.. but there are conditions on
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Admissible (p, 3) for d =5

. M- - Ll
0.5 1.0 15 2.0 25 3.0 35 4.0
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The line

@ A first example of a non-compact manifold

Joint work with M.J. Esteban, A. Laptev and M. Loss
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One-dimensional Gagliardo-Nirenberg-Sobolev inequalities

1oy < Can(p) 112 1FllTay i P (2,00)
11l < Can(p) 1 I Famy Iy i pe(1,2)

w1th9——andn—ﬁ

The threshold case corresponding to the limit as p — 2 is the
logarithmic Sobolev inequality

, s 1122,
fo? o () b = e o (2 g

If p> 2, u(x) = (cosh x)fﬁ solves

—(p—2%u"+4u—2p|uP2u=0

If p € (1,2) consider u.(x) = (cosx)ﬁ7 x € (—7m/2,7/2)
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Flow

Let us define on H!(R) the functional
4
FIv] = IV [If ey + -2p V2@ = ClIVIEsm) st Flu] =0

With z(x) := tanh x, consider the flow

ViR, 2p o, p VPR 2
Vfiﬂm{v +p_z”+§T+p_zv}

Theorem (Dolbeault-Esteban-Laptev-Loss)

Let p € (2,00). Then

%}'[v(t)] <0 and lim Flv(t)] =0

%]:[V(t)] =0 < w(x)=u(x—x)

Similar results for p € (1, 2)
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The inequality (p > 2) and the ultraspherical operator

Q The problem on the line is equivalent to the critical problem for the
ultraspherical operator

/|v|2 dx—|— /|v|2 dx>C(/|v|pdx)

z(x) =tanhx, v, =(1- ZQ)ﬁ and  v(x) = v (x) f(z(x))

With

equality is achieved for f = 1 and, if we let v(z) := 1 — 22, then

1 1 1 2

2p 2p P

f°v d +7/ 12 d >7</ fIP d )
/,1| [P dva (p—2)? 71| | Y2y 71| 1" dva

where dv, denotes the probability measure dv,(z) := c_l,, =

_ 2p _ 24
d*p—z — P=3
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E noen - foweere
TRANSEORITATION
Co—=D
0 - [,7\& R
. . RapiaL CASE ©OF Grsuinepo - NigeNAERG

!:/’;;Zﬁ?;w Sogocev's INEQALTY ow THE LINE

VR THE ON THE EJCLiDEAN

-4 ULTrnsPicht S pAce
Ove r ATO (R

Change of variables = stereographic projection + Emden-Fowler
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Compact Riemannian manifolds

Q@ no sign is required on the Ricci tensor and an improved integral
criterion is established

Q@ the flow explores the energy landscape... and shows the
non-optimality of the improved criterion
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Riemannian manifolds with positive curvature

(91, g) is a smooth closed compact connected Riemannian manifold
dimension d, no boundary, A, is the Laplace-Beltrami operator
vol(IM) = 1, R is the Ricci tensor, Ay = A\1(—Ag)

—inf inf M
pi=inf inf N(E.E)

Theorem (Licois-Véron, Bakry-Ledoux)

Assume d > 2 and p > 0. If

dp (d=1)(p-1)
< — _— =
A 9)/\1+9d—1 e d(d—|—2)+p—1>

then for any p € (2,2*), the equation

A
— - _ P =
Agv+p_2(v v =0

has a unique positive solution v € C?(IM): v =1

4
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Riemannian manifolds: first improvement

Theorem (Dolbeault-Esteban-Loss)
For any p € (1,2) U (2,2%)

6d
{(1 —0) (Agu)* + —— SR(VU,VU)} dvg
. . d—1
O< A< A= inf
uEH? (9M) Jon [Vul? dvg

there is a unique positive solution in C2("M): u=1

limp—1, 8(p) = 0= limp_1, As(p) = A1 if p is bounded
M=A=dp/(d—1)=dif M =S since p=d — 1

(1—9)A1+9%§A*§A1
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Riemannian manifolds: second improvement

d-1)2(p—1
Hgu denotes Hessian of v and 0 = d((d n ;) (—ll—)p _)1

g (d-=1)(p—-1) [Vu®dVu g |Vuf?
= Hyu— & Ayu— _ & var
Qeu:=Heu = Bt = 30 u d u
0d
(1=0) [ (agurav+ 35 [ [1Quu1? + 970, V0)
. H m
A, = inf
weH2(IM)\ {0}

/ |Vul?dv,

Assume that A\, > 0. For any p € (1,2) U (2,2*), the equation has a
unique positive solution in C?(IM) if A € (0,A,): u=1

Theorem (Dolbeault-Esteban-Loss)
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Optimal interpolation inequality

For any p € (1,2)U(2,2*) or p=2*if d >3

A
19Vam) > 5= [IVIEscm) — 1vIEemy| Vv € M)

Theorem (Dolbeault-Esteban-Loss)

Assume N, > 0. The above inequality holds for some X\ = N € [A, M]
If Ny < A1, then the optimal constant N is such that

AN <A< )\

Ifp=1, then N = \;

Using u =1+ e as a test function where ¢ we get A < \;
A minimum of
Vi ||VV||i2(9n) - ﬁ ||V||ip(m) - ||V||i2(9n)

under the constraint ||v||ppon) = 1 is negative if A > Ay
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The flow
The key tools the flow
2
2-2 |Vul
ur = u B(Agu—km y , k=1+8(p-2)

If v = v, then Z||v| om) = 0 and the functional

Flu] := /M|V(uﬁ)|2dvg+ ﬁ l/m 2P dv, — (/m Udevg>2/p]

is monotone decaying
Q@ J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on

manifolds with positive curvature, J. Funct. Anal., 254 (2008),
pp- 593-611. Also see C. Villani, Optimal Transport, Old and New
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Elementary observations (1/2)

Let d > 2, u € C?(9M), and consider the trace free Hessian

Leu:=Hgu— %Agu

d

d
/(Agu)2dvg:—/ ||Lgu||2dvg—|——/ R(Vu,Vu)dvg
o d—1 )y d—1 )y

Based on the Bochner-Lichnerovicz-Weitzenbock formula

1
54 IVul? = ||[Hgul? + V(Agu) - Vu +R(Vu, Vu)
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Elementary observations (2/2)

2
/Agu [Vl dvg
m u

_d |Vul* Vu® Vu
*d—+z/§m 79V~ d+2/ (Ll [7]"

/ (Agu)’dv, > )\1/ |Vul?dvg YueH* (M)
n m

and \1 is the optimal constant in the above inequality
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The key estimates

G [ [P (ae+ (25— 52+ 9~ 5

u?

1 d
s == =0 [ (A dv -0l [ [VuPdy,

- u u Vul?
u::Lgu—%Z—é(n—i—ﬁ—l){V@V %‘ |}

u

0d Vult
g[“]:m {./931 ||er“||2dVg+/m§R(Vu,Vu)dvg]—u/m| ul2j| dvg
with 1= (S22 o B =1 = n (- 1) = (6 + 5= 1) 75
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The end of the proof

Assume that d > 2. If 6 = 1, then p is nonpositive if

B-(p) < B < B+(p) Vpe(l,2)

2
where [y = 2Eyb—a vzt;La witha=2—-p+ {7('1_1) (p_l)} and b = 913°P

d+2 d+2
Notice that S_(p) < B+(p) if p € (1,2*) and S_(2*) = S+(2)

dd+2)+p—1

Proposition
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The Moser-Trudinger-Onofri
inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban

Q@ Extension to compact Riemannian manifolds of dimension 2...
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We shall also denote by 9 the Ricci tensor, by Hgu the Hessian of u
and by

g
d

the trace free Hessian. Let us denote by M, u the trace free tensor

Leu:=Hzu— = Agu

Myu:=Vu® Vu— % |Vul?
We define

./931 [||Lgu—%Mgu||2+%(Vu,Vu) e /% dv,

Ay = inf
ueH2(M)\ {0} / Vul e 2 dv,
m
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Assume that d = 2 and A\, > 0. If u is a smooth solution to

1
—EAgu—i—)\:e”

then u is a constant function if A € (0, A)

The Moser-Trudinger-Onofri inequality on 20

1
2 ||Vu||iz(m) + A / udvg > X log </ e“dvg) Vu e HY(OM)
m m

for some constant A > 0. Let us denote by A; the first positive
eigenvalue of — A,

If d = 2, then the MTO inequality holds with A = A\ := min{4 7, A\, }.
Moreover, if A is strictly smaller than \1/2, then the optimal constant
in the MTO inequality is strictly larger than N\

J. Dolbeault Diffusions non-linéaires: entropies relatives, “best matching” et délais



The sphere
The line
Compact Riemannian manifolds

Fast diffusion equations on manifolds and sharp functional inequalities The Cylinder

The flow

of

E _ Ag(e—f/2) _ % |Vf|2 e—f/2

GAlf] == /m | Lgf — 3 Mgf |Pe "2 dv, + /m R(VF,VF)e dv,

—)\/ |VF2e 2dy,
m
Then for any A < A, we have

i]-}[f( )= /m (=3 Dgf + ) (Ag(e—m) — L |vfP e—f/2> dv

= —Ga[f(t,")]
Since F) is nonnegative and lim;—,o. Fx[f(t,-)] = 0, we obtain that

Falu] > /000 Galf(t,-)] dt
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Weighted Moser-Trudinger-Onofri inequalities on the
two-dimensional Euclidean space

On the Euclidean space R?, given a general probability measure s
does the inequality

1

—— [ |Vu?dx > \|log /e“du —/ udp
167'(' R2 R2 R2

hold for some A > 0 7 Let

A, = inf —2lo8n
x€R2  8mp

Assume that p is a radially symmetric function. Then any radially
symmetric solution to the EL equation is a constant if A < A, and the
inequality holds with A\ = A, if equality is achieved among radial functions
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Caftarelli-Kohn-Nirenberg

inequalities

Work in progress with M.J. Esteban and M. Loss
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Caffarelli-Kohn-Nirenberg inequalities and the symmetry
breaking issue

Let D, p 1= { veLr(RY |x|7Pdx) : [x|7?|Vv| € L2 (R, dx) }

p 2/p 2
(/ v dx> <[ Mo vien,,
R

@ |x|PP re |x[?2

hold under the conditions that a < b<a+1ifd>3,a<b<a+1if
d=2a+1/2<b<a+lifd=1and a<a.:=(d—2)/2

- 2d
- d—2+2(b-a)

p

> With

A

2
_ (p—2) (2c—2)) 72 . _
Vi (x) (1 + |x]| ) and C}, TEERAE

do we have Cyp = C} , (symmetry)
or Cop > C; ) (symmetry breaking) ¢
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The Emden-Fowler transformation and the cylinder

v(r,w)=r""%*p(s,w) with r=|x|, s=—logr and w= X
;

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as

10s@lE2(ery + IV llFaiery + AMlelfey = M) [@lfoey Ve € HHC)

where A := (a. — a)?, C = R x S9! and the optimal constant u(A) is

u(/\):C with a=a.+ VA and b:%i\/x
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Numerical results

50 - l‘L

40

N I asymptotic

------- symmetric
20

non-symmetric

Parametric plot of the branch of optimal functions for p =2.8, d =5,

0 = 1. Non-symmetric solutions bifurcate from symmetric ones at a
bifurcation point computed by V. Felli and M. Schneider. The branch
hehanes for larae values of N as nredicted hbu F. Catrina and 7 -0 Wana
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The symmetry result
d(ac — a)
brs(a) == +a—ac

2y/(ac —a)2+d-1

Let d > 2 and p < 4. If either a € [0,a.) and b > 0, or a < 0 and
b > brs(a), then the optimal functions for the Caffarelli-Kohn-Nirenberg
inequalities are radially symmetric
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N

Symmetry region

b = bdirect(a)

-
-
-
-

Symmetry breaking region

The Felli-Schneider region, or symmetry breaking region, appears in dark

grey and is defined by a < 0, a < b < bwg(a). We prove that symmetry

holds in the light grey region defined by b > brs(a) when a < 0 and for any

bela,a+1] ifac]0,ac)
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A change of variables

With (r = |x|, w = x/r) € R* x S971 the Caffarelli-Kohn-Nirenberg
inequality is

2
(/ / lv|P rd=bP i dw) < Ca,b/ / |Vv[? rd-22 T dw
0 §d—1 r 0 §d—1 r

Change of variables r — r<, v(r,w) = w(r®, w)

2
o 2
_2 d—bp dr P
ol Tk lw|P r—=" — dw
0 §d—1 r

> 200w|? | 1 2 d=2a-2 45 dr
S Ca,b (Oé |W| + z |wa| ) r @ — dw
0 Sd—l

r

Choice of «
d—bp d—-2a-2

(0% (67

n—=

+2

Then p = % is the critical Sobolev exponent associated with n
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A Sobolev type inequality

The parameters a and n vary in the ranges 0 < @ < occ and d < n < >
and the Felli-Schneider curve in the (o, n) variables is given by
d—1
n—1

o = =!I AFS
With

— ow 1 . ,n—1
Dw = (QE,FVMW> , dp:=r""drdw

the inequality becomes

2
al~h (/ [w|P d,u> <C.p [ |DwW]?du
R R

Proposition

Let d > 4. Optimality is achieved by radial functions and C, , = C , if
a < aps

Ml o ok A0 3 NT b 2 a1 ] P IR
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Notations

When there is no ambiguity, we will omit the index ,, and from now
on write that V =V, denotes the gradient with respect to the
angular variable w € S97! and that A is the Laplace-Beltrami
operator on S9!, We define the self-adjoint operator £ by

-1 A
LW::—D*DW:a2W"—|—a2n—W/—|——2W
r r

The fundamental property of £ is the fact that

/ W1£de,u:—/ Dwy - Dwodp Vwy, WgED(Rd)
RY Rd

> Heuristics: we look for a monotonicity formula along a well chosen
nonlinear flow, based on the analogy with the decay of the Fisher
information along the fast diffusion flow in R?
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Fisher information

Let uz~n =|w| <= u=|w]P,p= 20

m 1
Ilu] := Dpl? d =— "1 d =1-=
[u] /R,,”| pIPdp, p=1——u and  m -

Here 7 is the Fisher information and p is the pressure function

Proposition

With A = 4a?/(p — 2)? and for some explicit numerical constant r, we
have

ki p(N) = inf {Z[u] : [lulliise,du,) )
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The fast diffusion equation
ou 1

ot n

Barenblatt self-similar solutions

. r? "
W\t =t «t 5
bty rw) ¢ +2(n—1)oz2t2

> Strategy:
1) prove that ZZ[u(t,-)]
2) prove that £Z[u(t, )]

means that v = u, up to a time shift
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Decay of the Fisher information along the flow ?

op 1 5
_— = = — D
B ~pLp |Dp|

1
Qlpl =5 £ IDp|> —Dp-DLp

Kloli= [ (0l 2 (eo?) o an

d n—1
2 Zlu(t, )] = =2(n = 1) K[p]

If u is a critical point, then X[p] =0
Boundary terms ! Regularity !
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Proving decay (1/2)

1 1 1
klp] := Q(p) — < (£p)* = 5 L|Dp|* = Dp-D Lp — —(Lp)*

1
kan[p] := 5 A [Vp[> = Vp - VAp — -1 (Ap)* — (n—2)a? |Vp|?

Lemma

Let n # 1 be any real number, d € N, d > 2, and consider a function
p € C3((0,00) x M), where (M, g) is a smooth, compact Riemannian
manifold. Then we have

1 p’ Ap 2
_ 4 _ = /=
=2 (1 n) {p r aQ(n—l)r2]
- vpl? 1
I —_—
P r

1
+2042ﬁ +ka[p]

4
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Proving decay (2/2)

Assume that d > 3, n> d and 9t = S9~1. There is a positive constant
(s such that

Proof based on the Bochner-Lichnerowicz-Weitzenbock formula

Let d > 2 and assume that o < ars. Then for any nonnegative function
u € LY(RY) with Z[u] < +oc0 and [o, udp =1, we have

Tlu] > Z.
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A perturbation argument

@ If u is a critical point of 7 under the mass constraint fRd udp=1,
then

o(e)=Zu+eLu™ —Z[u]l = —2(n—1)"te K[p] + o(e)

because € £ u™ is an admissible perturbation. Indeed, we know that

/(u—l—eﬁum)du:/ udp =1
RY RY

and, as we take the limit as ¢ — 0, u 4+ ¢ £ u™ makes sense and, in
particular, is positive
@ If a < afg, then K[p] = 0 implies that v = u,
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Q@ the sphere: the flow tells us what to do, and provides a simple
proof (choice of the exponents / of the nonlinearity) once the problem
is reduced to the ultraspherical setting + improvements

@ [not presented here: Keller-Lieb-Thirring estimates| the spectral
point of view on the inequality: how to measure the deviation with
respect to the semi-classical estimates, a nice example of bifurcation
(and symmetry breaking)

Q@ Riemannian manifolds: no sign is required on the Ricci tensor and
an improved integral criterion is established. We extend the theory
from pointwise criteria to a non-local Schrédinger type estimate
(Rayleigh quotient). The method generically shows the
non-optimality of the improved criterion

Q@ the flow is a nice way of exploring an energy space: it explain how
to produce a good test function at any critical point. A rigidity result
tells you that a local result is actually global because otherwise the
flow would relate (far away) extremal points while keeping the energy
minimal
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These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Conferences/
> Lectures
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Thank you for your attention !

o F = A
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