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Introduction

The stability result of G. Bianchi and H. Egnell

In Sobolev’s inequality (with optimal contant Sy),

SqlIvFI? —IF1? =0

12(rd) L2 (mey =

J

is there a natural way to bound the Lh.s. from below in terms of a “distance’
to the set of optimal [Aubin-Talenti] functions when d = 3 2 A question
raised in [Brezis, Lieb (1985)]

> [Bianchi, Egnell (1991)] There is a positive constant & such that

Sa 19I5 gy = 112 gy = @ i 1VF =Vl

> Various improvements, e.g., [Cianchi, Fusco, Maggi, Pratelli (2009)]
there are constants a and x and f — A(f) such that

S IVFIZ, oy = (L+KA(F)) IF11?

12(re) = 12* (RY)

However, the question of constructive estimates is stillwidely open
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Introduction

From the carré du champ method to stability results

Carré du champ method (adapted from D. Bakry and M. Emery)

ou dz d.s
—=A m, _— , —<-A
5t M T g o

deduce that . — A% is monotone non-increasing with limit 0

> Improved constant means stability
Under some restrictions on the functions, there is some A, = A such that

I-ANF=(A—-N)F
> Improved entropy — entropy production inequality (weaker form)
I = Ay(F)
for some  such that w(0) =0, v'(0)=1land v" >0
I-ANFzAy(F)-F)=0
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Introduction

An application in the Natural Sciences

[Carlen, Figalli, 2013] Stability for a GNS inequality and the log-HLS
inequality, with application to the critical mass Keller-Segel equation
> the log-HLS (Hardy-Littlewood-Sobolev) inequality

Jf[u]:zf ulog dx+—ff2 ,u u(y) loglx—yldxdy+M (1+logm) =0
R2 xR

with M = |lull; is linked with the 87 critical mass in the Keller-Segel model
> the GNS (Gagliardo-Nirenberg-Sobolev) inequality (special case)

fIVflzdxf |f|4dXZ7l'f |£1° dx
R2 R2 R2

[Carlen, Carrillo, Loss, 2010] If u solves =Ayuand f = ul/4 then

Jr2 |£10 dx
fRZ |f|4 dX

1d )
_§E%[u]—‘[R2|Vﬂ dx—-m

Q_ Stability for log-HLS arises from the stability for GNS
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Introduction

Optimal transportation and gradient flows

@ The fast diffusion flow seen as a gradient flow with respect to
Wasserstein’s distance

[McCann, 1997], [Otto, 2001]

[Cordero-Erausquin, Nazaret, Villani, 2004]

[Agueh, Ghoussoub, Kang, 2004]

[Carrillo, Lisini, Savaré, Slepcev, 2009]

[Zinsl, Matthes, 2015], [Zinsl, 2019]

[Tacobelli, Patacchini, Santambrogio, 2019]

[Ambrosio, Mondino, Savaré, 2019]

... already a long story (with apologizes for not quoting all relevant papers)

> the PDE point of view:

—decay of the entropies

—regularization properties of the parabolic equations
— carré du champ method

— some spectral analysis
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Introduction

Outline

@_ Gagliardo-Nirenberg-Sobolev inequalities by variational methods
>> A special family of Gagliardo-Nirenberg-Sobolev inequalities

>> Concentration-compactness

o> Stability results by variational methods

@_ The fast diffusion equation and the entropy methods
> Rényi entropy powers

> Spectral gaps and asymptotics

> Initial time layer

@_ Regularity and stability

> Uniform convergence in relative error

> The threshold time

> Improved entropy-entropy production inequality
> Some consequences
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Gagliardo-Nirenberg-Sobolev inequalities
A variational point of view Concentration-compactness
An abstract stability result

Gagliardo-Nirenberg-Sobolev
inequalities

IVAI 1L = Gons(p) 112, (GNS)

Up to translations, multiplications by a constant and scalings, there is a
unique optimal function

() = (L+1x2) 7T
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Gagliardo-Nirenberg-Sobolev inequalities
A variational point of view Concentration-compactness
An abstract stability result

Gagliardo-Nirenberg-Sobolev inequalities

We consider the inequalities

IVAIS IFILLS = ons(p) I1Fll2p (GNS)

1 . %7 . *
0= %, pe(l,+o0)ifd=1o0r2, pe(l,p*lifd=3, p =d;'_'2

Theorem (del Pino, JD)

Equality case in (GNS) is achieved if and only if

feM:= {g,“ty (A wpy)e (O,+oo)><[Rx[R€d}

1

Aubin-Talenti functions: gy, (x):=pug((x—y)/A), g(x)=(1+|x|?) P!

J. Dolbeault Stability in Gagliardo-Nirenberg-Sobolev inequalities



Gagliardo-Nirenberg-Sobolev inequalities
A variational point of view Concentration-compactness
An abstract stability result

Related inequalities

IVFIS IS = Gans(p) 112, (GNS)
> Sobolev’s inequality: d =3, p=p* =d/(d -2)
Sq IVFlla = [Ifllop-

> Euclidean Onofii inequality

n 1
ehh__de o1y 2 Vi dx
R2 7 (1+1x1?)

d =2, p— +oowith f,(x) := g(x) (1 + 2%, (h(x) _F))’ h= fg2 h(x) n(15|i|2)2

> Euclidean logarithmic Sobolev inequality in scale invariant form

d 2 5
— | —_ Vf
2 Og(ﬂdefmgdl I=dx

or [pa IVFI?dx = 2fRdh‘l2 |°g(|:;:|2)dx+% log (27 €2) fa |12 dx

zf 112 log|£1 dx
Rrd
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Gagliardo-Nirenberg-Sobolev inequalities
A variational point of view Concentration-compactness
An abstract stability result

Deficit, scale invariance

Deficit functional

+1 p+l

Lemma

(GNS) is equivalent to §[f] =0 if and only if

d-p(d-2
8[f]:=(p-1)? Ilvf||%+4% I = Hans 11557

2
Hons = C(p,d) 650

where y = di%(g‘_];)z) and C(p,d) is an explicit positive constant

Take fj(x) = A% f(Ax) and optimize on A >0

81f) 2 1f] - inf 5[] =: 5[] = 0

A simplification: §[f] = 6[|f]] so we shall assume that f =0 a.e.
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Gagliardo-Nirenberg-Sobolev inequalities
A variational point of view Concentration-compactness
An abstract stability result

Relative entropy, relative Fisher information

>> Free energy or relative entropy functional

If f f2”(1,x,|x|2)dx=f g?P (LxIx)dx, geM
RY R

(fp+1_gp+1)dx and 5*[f]:£[f|gl2

RrRd

2
then &[flg]= ﬁf

> Relative Fisher information
+1 2
Flflg]:= P_f |(p—1)Vf+ fpVgl_p) dx
p—1Jgd

> Nonlinear extension of the Heisenberg uncertainty principle

2
( dfp+1dx) SdeVf|2dxfd|X|2 £2P dx
R R R
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Gagliardo-Nirenberg-Sobolev inequalities
A variational point of view Concentration-compactness
An abstract stability result

Some inequalities

Lemma (Csiszar-Kullback inequality)

Let d=1 and p>1. There exists a constant C, >0 such that

[2p -2, . < CoblfIE] if Nfla =gl

L1(RY)

Lemma (Entropy - entropy production inequality)

p+1
p-1

8[f1= 7[flgr] -4&[flgr] =0

Lemma (A weak stability result)

5[f1= 0.[f] ~ &[flg]?
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Gagliardo-Nirenberg-Sobolev inequalities
A variational point of view Concentration-compactness
An abstract stability result

Concentration-compactness

v =inf{(p-1)2 IVFI3+4 S22 1P Feaep(RY), 17130 =M}

I = #gns and Iy = h MY for any M >0

Lemma

If d=1 and p is an admissible exponent with p<d/(d-2), then

Iy ety < Ippy + I, Y My, My >0

| \

Lemma

Let d=1 and p be an admissible exponent with p<d/(d-2) ifd=3. If

(fa)n is minimizing and if limsup sup f |flP* L dx =0, then
n—+00 yeRrd JB(y

JL’EO l fn||2p =0
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Gagliardo-Nirenberg-Sobolev inequalities
A variational point of view Concentration-compactness
An abstract stability result

Existence of a minimizer, further properties

Proposition

Assume that d =1 is an integer and let p be an admissible exponent with
p<d/(d-2) if d=3. Then there is an optimal function for (GNS)

> Pélya-Szego principle: there is a radial minimizer solving
~2(p-1)°Af+4(d-p(d-2)) P~ C2P1=0

Iff =g, then C=8p
> A rigidity result: if f is a minimizer and P = —g—j f1=P, then

2

|VFI2dx
2 Jpd dx

fRd f'P+1 dx

(d—p(d—2))jﬂ-wf‘”+1

AP+(p+1)

+2dprdfp+1 |p? —%APIdH2dx=0

> Weak stability result: the minimizer is unique up to the invariances
F(x) =g(x) = (1+1x?)~2/(P~1)
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Gagliardo-Nirenberg-Sobolev inequalities
A variational point of view Concentration-compactness
An abstract stability result

An abstract stability result

Relative entropy
2 1 -
ZF[f]:= r’;fwd (fp+1 —gPtl— %:gl P(F2P —gzP)) dx
Deficit functional

8[f]:=aIVFI3+ b IFIPT ~ Han 11327 20

Theorem

Let d=1 and pe(1,p*). There is a € >0 such that
O[f] = € F[f]

for any few = {f e LY(RY,(1+|x])?dx) : Vf e L2(RY, dx)} such that

/[Rd f2p(1,x)dx=fRd |g|2p(1,x)dx
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Gagliardo-Nirenberg-Sobolev inequalities
A variational point of view Concentration-compactness

An abstract stability result

A constructive result

The relative entropy

2 1 _
Ff]:= 22 fpu (FP71 P - 5 g1 P (£29 - g2P))dx
The deficit functional
5[f]:=aIVFI3+bIFIET - Hon 11557 20

Theorem

Letd=1, pe(1,p*), A>0 and G>0. There is a € >0 such that
o[f] = € F[f]
for any f e W :={f e LY(RY, (1 +|xI)%dx) : Vf e L2(R?, dx)} such that

ff2pd><:f Iglzpdx, fxszdX:O
Rd R Rd

d-p(d-4)

supr  pI f f2Pdx<A and Z[f]<G
Ix|>r

r>0
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Entropy growth rate and Rényi entropy powers
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
Initial and asymptotic time layers

The fast diffusion equation and the
entropy methods

ou

— =Au"
ot

@ The Rényi entropy powers and the Gagliardo-Nirenberg inequalities
@ Self-similar solutions and the entropy-entropy production method

@ Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)
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Entropy growth rate and Rényi entropy powers
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
Initial and asymptotic time layers

The fast diffusion equation in original variables

Consider the fast diffusion equation in R, d > 1, me (0,1)
ou
ot

with initial datum u(t = 0, x) = up(x) = 0 such that

Au™

fuodX=M>0 and f|x|2u0dx<+oo
R4 R4

The large time behavior is governed by the self-similar Barenblatt
solutions

B(t,x):=

X
B
(xc t1/m)? (Ktl//“‘)

2um

1/p
where p:=2+d(m-1),x:= )m and 4 is the Barenblatt profile

B(x):=(C+ IXIZ)_ﬁ
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Entropy growth rate and Rényi entropy powers
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
Initial and asymptotic time layers

Entropy growth rate and Rényi entropy powers

With p = 2 — <= m= 2 let us consider f such that v = f2P
m = fP*Land u|V" 1w = (p—1)2|VF|?

M=||f||§g, E[u]::fwumdx:ufngﬁ and [u]:=(p+1) IVFI3

By (GNS), if u solves (1), then

p-1 _p-1 zf 2
E=C_" 1=~ 1 Vfled
7 2 (p+1) | |VFIPdx
p—1 ) 2 _2(1-9) |- momc
E W(PJr 1) (‘chS(p))g ”f”29p "f”p+16 =z Gk
(d+2)m—-d
with Cp := (p+1) (Gans(p ))9 M dd-m)-

1-m
1-m) G | ™ e
f{mdum(t,x)dxz(fwu(')”dx+%t) Vt=0
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Entropy growth rate and Rényi entropy powers
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
Initial and asymptotic time layers

The entropyis defined by

and the Fisher information by

m

l:= f ulVP?dx with P= u™ L is the pressure variable
R m-1

If u solves the fast diffusion equation, then

E'=(1-m)l

The Rényi entropy power F := E7 = ( [pa u™ dx)” with o = % Lm 1
applied to self-similar Barenblatt solutions has a linear growth in t

[Toscani, Savaré, 2014], [JD, Toscani, 2016]
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Entropy growth rate and Rényi entropy powers
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
Initial and asymptotic time layers

Nonlinear carré du champ method

I’:f A(u™) VP2 dx + 2[ uVP-V((m-1)PAP+|VP2) dx
Rd R
If v is a smooth and rapidly decaying function on RY, then
fdA(u’")IVPIde+ 2f uVP-V((m-1)PAP+|VP2)dx
R
=_2fdu’" |p2P- APId” dx—2(m- ml)f ™ (AP)2 dx
R

Let d =1 and assume that me (my,1). If u solves (1) with initial datum
ug € LY(RY) such that fpa |xI? ugdx < +oo and if, for any t=0, u(t,-) is a
smooth and rapidly decaying function on RY, then for any t =0 we have

|og('2 £330 ) Ja u™|D2P — 3 AP1A|* dx+(m—my) fa u™|AP + L[ dx

V.
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Entropy growth rate and Rényi entropy powers
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
Initial and asymptotic time layers

Self-similar variables: entropy-entropy production inequality

With a time-dependent rescaling based on self-similar variables
1 X dR 1-
=— - - = 0 _1
u(t,x)—Kde V(T’KR) where 7 =R"7H, 1(t):=5 logR(t)

g—‘t’ = Au™ is changed into a Fokker-Planck type equation

%+V-[V(Vum_1—2x)]:0 (2)

Generalized entropy (free energy) andFisher information
— 1 m m m-1
Ff[v].——;fﬂd(v -B"-mAB (v—@))dx
m-1 2
J[v]::[ V‘Vv +2X‘ dx
RrRd

are such that .#[v] = 4 Z[v] by (GNS) [del Pino, JD, 2002] so that
Fv(t,)] s Fvole
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Entropy growth rate and Rényi entropy powers
Self-similar variables, spectral gap and asymptotics
Initial and asymptotic time layers

Spectral gap: sharp asymptotic rates of convergence

The fast diffusion equation and the entropy methods

[Blanchet, Bonforte, JD, Grillo, Vazquez, 2009]
oL oy —L
(Co+IxI7) T < vy < (Cr+1Ix[7) T (H)

g[v(t,-)]SCe_zy(m)t Vt=0, y(m):=(1-m)Agq

where A, 4 > 0is the best constant in the Hardy-Poincaré inequality

Aa'd/ f2d,ua_1sf \VF2du, ¥ FeH (dug), ffd,ua_lzo
R4 Rd R

with a := ﬁ <0, dyg := hg dx, he(x) = (1+|x]?)%

Lemma (already a stability result)

Under assumption (H), .Z[v] = (4+n)Z][v] for some 1€ (0,2(y(m)-2))

Much more is know, e.g., [Denzler, Koch, McCann, 2015]

J. Dolbeault Stability in Gagliardo-Nirenb bolev i




Entropy growth rate and Rényi entropy powers
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
Initial and asymptotic time layers

Spectral gap and the asymptotic time layer

5(m)
4
T = 4
a6
5
Case 1
— Case 2
Case 3
0 m
1

Flv(t,)] < Ce 2r(Mt yi>0
[BBDGYV, 2009] [BDGYV, 2010] [JD, Toscani, 2015]
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Entropy growth rate and Rényi entropy powers
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
Initial and asymptotic time layers

The asymptotic time layer improvement

Linearized free energy and linearized Fisher information
F[g]:sz g’ #* Mdx and |[g]:=m(1—m)/ IVg|? 2 dx
2 Jrd Rd

Hardy-Poincaré inequality. Let d =1, me (m1,1) and g € L?(R?, 28%~™ dx)
such that Vg € L2(R?, B dx), [pd g B> Mdx =0and [paxg B> Mdx=0

l[g] =4aF[g] where a=2-d(1-m)

Proposition

Let me(my,1) ifd=2, me(1/3,1) ifd=1,n=2d(m-m;) and
x=m/(266+56m). If [pavdx =M, [gaxvdx=0 and

(1-e)B=vs(l+e)RB

for some € € (0,xn), then

2[v]:= j[[ >4+

v]
]
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Entropy growth rate and Rényi entropy powers
The fast diffusion equation and the entropy methods Self-similar variables, spectral gap and asymptotics
Initial and asymptotic time layers

The initial time layer improvement: backward estimate

Rephrasing the carré du champ method, 2[v] := % is such that
d2
—=2(2-4
7 =2(2-4)

Assume that m> my and v is a solution to (2) with nonnegative initial
datum vp. If for some n>0 and T >0, we have 2[v(T,-)] =4+, then

4ne‘4T

2v(t, )]z 4+ —1—
(e = 4+ o

Vtel0,T]
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Uniform convergence in relative error
Regularity and stability The threshold time
Improved entropy-entropy production inequality

Regularity and stability

Our strategy

Choosde > 0, small enough

Get a threshold time t(¢) )

€
‘ Backward estimate ‘* Forward estimate
by entropy methods based on a spectral gap
Initial time layer Asymptotic time layer
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Uniform convergence in relative error
Regularity and stability The threshold time
Improved entropy-entropy production inequality

Uniform convergence in relative error

Theorem

Assume that me (my,1) ifd=2, me(1/3,1) ifd=1 and let e€(0,1/2),

small enough, A>0, and G >0 be given. There exists an explicit time

t. =0 such that, if u is a solution of
ou
— =Au" 2
ot " @

with nonnegative initial datum ug € LY(RY) satisfying

d(m-mc)
supr (1-m) f ugdx < A<oo (Ha)
|x|>r

r>0

Jrd Uodx = Jpa Bdx =4 and F[upl < G, then

sup —1ll<e Vt=t,

xeRd

B(t’,x)
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Uniform convergence in relative error
Regularity and stability The threshold time
Improved entropy-entropy production inequality

The threshold time

Let me (my,1) ifd=2, me(1/3,1) ifd=1, e€(0,emq), A>0and G>0

1+Al-m 4+ G3

t* =Cx
ga

Whereazgf:—'" and 9=v/(d+v)

m

cx=ci(md)= sup max{exi(e,m), e?xa(e, m), ex3(e, m)}
€€(0,6m,d)
8c 23-my
x1(g,m):= max{(1+8)l_m_ T 1—(1—5)1—’”}
(4a)* 1 K? 8al
xo(e,m):=——— and x3(e,m):=————
2( ) g%% 3( ) 1—(1—8)1_’"
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Uniform convergence in relative error
Regularity and stability The threshold time
Improved entropy-entropy production inequality

Improved entropy-entropy production inequality

Let me(my,1) ifd=2, me(1/2,1) ifd=1, A>0 and G>0. Then
there is a positive number { such that

Flv] = (4+() F|v]

for any nonnegative function v € L1(R?) such that F[v]=G,
Jpd vdx =M, [paxvdx=0 and v satisfies (Ha)

We have the asymptotic time layer estimate
1 1
€€(0,2¢e4), €x:= > min{emq, xn} with T = 3 log R(t4)
(1-e)B=v(t)<s(1+e)®B Vt=T

and, as a consequence, the initial time layer estimate
4n e tT

It 2+ OF(e )] Ve T], where (==
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Uniform convergence in relative error
Regularity and stability The threshold time
Improved entropy-entropy production inequality

Two consequences

2
Cx 4n ( &% )E
=Z(AF y LA G) = ————, (xi=——
( ( [UO]) ( ) 1+A(1_m)%+G { 4+17 205(:*

> Improved decay rate for the fast diffusion equation in rescaled variables

Let me (my,1) ifd=2, me(1/2,1) ifd=1, A>0 and G>0. Ifv is a
solution of (2) with nonnegative initial datum vg € LY(RY) such that
Flwl=G, [gavodx =M, [paxvodx=0 and vy satisfies (Ha), then

Flv(t,)] < Flwle #Dt vi=0

> The stability in the entropy - entropy production estimate
F|v]-4F|v] = Z[v] also holds in a stronger sense

V] - 4F[v] = 4L+(f[v]
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Uniform convergence in relative error
Regularity and stability The threshold time

Improved entropy-entropy production inequality
A general stability result

_ (2dx[FP IFIR T e u%
Alf]:= (W iE , «lfl=
d-p(d-4)
Alf]:= d—p(dj{4) Sup,sgt P T le|>r|f(X+Xf)|2de
AlFT P A1)
+1
E[f ::2_P K[f]p_ fp+1_ p+l _ 1+p 1- p( [] f2p ) dx
=1 fRd(A[f]"pz; & T2 3
p-1
S[f]:= 4%

42 A Z(AFLEIF)

Let d=1 and pe(1,p*). For any feW,k we have

(1913 ||f||p+1)

— (6on I ll2p)*P7 = G[f] I 155" E[f]
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These slides can be found at

http://www.ceremade.dauphine.fr/ ~dolbeaul/Conferences/
> Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/ ~dolbeaul/Preprints/list/
> Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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