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Diffusions, rates and inequalities . £ s .
q Confinement: Poincaré inequality
No confinement: Nash inequality

Fokker-Planck equations and Poincaré inequalities

If u > 0 is a solution of the Fokker-Planck equation
0
ait‘ =Au+V-(uVV) in R

with initial datum ug € L'(R?) (of mass 1), if = e~V is the density
of a probability measure such that the Poincaré inequality
1
/ lu — ul* du < f/ |Vaul?dp Yu € HH(RY, du)
R4 A Rd

then uw = u/p solves the Ornstein-Uhlenbeck equation

Ou =Au—Vu-VV

ot

and [Ju(t, -)|lLrma,ap) = [[w(t, )|l @a,an) = lvollLr e, qu) =

£||u(t7 ')_’alli?(Rd,du) = —2||Vu(t, ')Hiz(Rd,dp,) < =2 ult, ')_aHi?(Rd,du)
and / \u(t,-)fﬂ,\Qdug/ lug — ul? dp e Yt >0
Rd R
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Diffusions, rates and inequalities . £ s .
q Confinement: Poincaré inequality

No confinement: Nash inequality

Proofs of Poincaré inequalities

> Compactness methods
> Direct computation of the spectral gap (e.g. when V is radial)
> Bakry-Emery or carré du champ method: prove

d
p [Vu(t, ')||i2(]Rd,du) < =20 Va(t, ')”iQ(Rd,du)

> Equivalence between Fokker-Planck and Schrédinger spectral

estimates: with v = e¥/2 4, the Poincaré inequality is equivalent to

/ (V]2 + W [o]2) d:cz)\/ (0|2 dz
Rd Rd

then use Persson’s lemma

Vol?2 + W |[v]?) dx
0 <infoes(—A+ W)= lim inf fRd (| | 5 [V )
R—+00 supp(v)CB§, f]Rd |U| dx
> Constructive method: the IMS truncation method
> Lyapunov criterion
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Diffusions, rates and lnequ'mlltlsi
L2 11 yPocoercivity
K equations: decay and cc ence rate

Confinement: Poincaré inequality
No confinement: Nash inequality

The decay rate of the heat equation

If u is a solution of the heat equation

(21; =Au in R?
with initial datum ug € L!(R?), then
lu(t, )l ®e,dz) = lluollLr re,da)
d 2
EHU(’% ')||L2(Rd,dm) = —2||Vu(t, )||L2(Rd dz) —Cu(t, )||L2(Rd dz)

by Nash’s inequality

+
Julls"# < Cxaan [lull{ IVul3

and so
Jult, 2 ra, ) < ClluollLzra,ary (1+1) "2

J. Dolbeault L2 Hypocoercivity & inequalities



Diffusions, rates and inequalities S _ P,
Confinement: Poincaré inequality

No confinement: Nash inequality

Proofs of Nash’s inequality

> Nash’s proof (Stein): use Fourier variables, optimize on R > 0

2 N 2 NP i 2 150N ]2
= [ aorae< [ el e gy [ de
—_——

=wq R ||u|? =R~2||Vull}

> The optimal constant is given by the spectral gap of the Laplace
operator on a ball with Neumann boundary conditions (Carlen, Loss
91)
> (Bouin, JD, Schmeiser) As a limit case of the Gagliardo-Nirenberg
inequalities , ,
1—
[ully < Can [IVully [[ull,

as p — 14. Up to normalizations, optimal functions solve

—Au = u — uP~!, are radial and have compact support if p < 2
(Pucci, Serrin, Zou 99) so that v = u — 1 solves —Av = v with
Neumann boundary conditions on its support (a ball)
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Diffusions, rates,and inequalities An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
Kinetic equations: decay and convergence rates Refined decay rates in the whole space

L2 Hypocoercivity

> Abstract statement, diffusion limit
> Mode-by-mode analysis in Fourier variables
> Refined decay rates in the whole space

Collaboration with C. Mouhot and C. Schmeiser
+ E. Bouin, S. Mischler
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5, An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space

An abstract evolution equation

Let us consider the equation

dF
E g
a

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (K, (-, -))
* denotes the adjoint with respect to (-, )

IT is the orthogonal projection onto the null space of L
The estimate
1d

— —||F||? = (LF, F) < — A\, (1 = T F?
thl\ | =(LF, F) < ¢ JF|

is not enough to conclude that || F(t,-)||? decays exponentially
< microscopic coercivity
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5, An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space

o Formal macroscopic / diffusion limit

F =F(tz,v), T=v-V,, L good collision operator. Scaled evolution

equation

dF
—_ TF—fLF
sdt—i—

on the Hilbert space H. F. = Fy +eFy + &2 Fo + 0(e®) as ¢ — 04
el LFy =0,
el : TFy=LF,
el P L TR =LE
The first equation reads as u = Fy = I1Fy
The second equation is simply solved by Fy = — (TII) F
After projection, the third equation is
4 (IIFy) — IIT (TH) Fy =TILF, =0
Opu + (TIH* (T u =0
is such that d |u||2 —2||(TI) ul|? < =2 X ||lul?

= Mauoswptc coercivity
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wes, and inequalitic An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
1d convergenc 1t e

Kinetic equatior Refined decay rates in the whole space

The macro part and the Poincaré inequality

> Free transport operator: TF = v -V, F

If Fo(x,v) = u(z) M(v) with M(v) = (2r) =42 e=I"I*/2 then
(TID* (TID) Fy = (—Azu) M

and we obtain the heat equation (e.g. on T%)

Ou=Au

> With an external potential V' so that TF =v-V,F —V,V -V, ,F
we obtain the Fokker-Planck equation

Oru=Au+V-(uVV)

The operator A := (1 + (TH)*TH)A(TH)* is such that

(ATIIF, F) > An |[TLF||?
1+ Ay

if the Poincaré inequality [.. [Vu|® dp > Ay [ga |u— @]? dp holds
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wes, and inequalitic An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
Kinetic equations: decay and convergence rate Refined decay rates in the whole space

The assumptions in the compact case

Am, Au, and C)y are positive constants such that, for any F' € H
> microscopic coercivity:

—(LF.F) = A\ |1 - IDFI? (H1)
D> macroscopic coercivity:
ITILE|[? > Ay ||TLF 2 (H2)
> parabolic macroscopic dynamics:
IOTIIF =0 (H3)
> bounded auziliary operators:

[AT(L = I F| + |ALF[| < Car [|(1 = T F| (H4)
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5, An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space

Equivalence and entropy decay

For some J > 0 to be chosen, the L? entropy / Lyapunov functional is
defined by
HIF] := § || F||> + 6 Re(AF, F)

> norm equivalence of H[F] and ||F||?
L IIFIP < HIF] < 22 |1F)

Entropy decay: 4H[F] = — D[F]
> entropy decay rate: for any § > 0 small enough and A = A(9)

D[F] > AH[F]

Under (H1)—(H4), for any t > 0,

H[F(t,)] < H[Fo]e "
IE(,)? < ClFollPe ™t with €= 20

°’)|
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b An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space

a Basic examples

We consider the Cauchy problem
8tf+vv$f:Lf’ f(O,l',U):fo($,U)
L is the Fokker-Planck operator Ly or the linear BGK operator Lo

Lif=A,f+V,-(vf) and Lof:=prM—f

- Lo
% is the normalized Gaussian function

pf = Jpa fdv is the spatial density

M(v) =

1
dy:=~v(v)dv where -~ := M

||fHL2 (dzdvy) * // 1‘ ’U |2d$d7

where either X = R? or X = T¢
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b An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space

a Fourier variables: mode-by-mode hypocoercivity

Let us consider the Fourier transform in z, denote by ¢ € R¢ the
Fourier variable, so that F' = f solves

OWF+TF=LF, F(0,&v)=fo&v), TF=i(v-F

Goal: apply the abstract method with £ considered as a parameter

H=12() . P~ [ PPy, TF= [ Fdo=2p

The operator A is now defined as

- 1+Z|§|2 ~/RdwF(w)de(v)

and, with X := ||(1 — II)F|| and Y := ||TIF||, we have that

(AF)(v)

|£‘ XY, ||FH2 _ X2 +)/2

Re(AF, F) < "
1 6|§| 2 2 1 5|€| 2 2
2(1—1+|§|2>(X +Y )SH[F]§2<1+1+|§|2)(X +Y?)
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b An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space

Entropy production

AT J ‘€|2

D[F] = —(LF,F) + 6 (ATIIF, F) + 6 (...)
6 Am
> _ 2, 9AM 2
>Am—0)X +1+)\MY 0Cu XY
s(1+\/§5)

; — — 2 _. 2 —
Wlth)\m—]., AM—|f| =857, CM— 1—|—82

D[F] — AH[F)
(1_1—‘,-3 %)XZ_H-S (1 +‘/§5+)‘)XY+(1+2_*)Y2

s (for any s = [¢] > 0) a nonnegative quadratic form of X and Y iff...
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Hypocoercivity Fourier variables and mode-by-mode analysis
Kinetic equations: decay and convergence rates Refined decay rates in the whole space
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Figure: Horizontal axis: 4, vertical axis: A. Admissible region: grey
triangle. Negative discriminant: dark grey area, shown here for s =5
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Diffusions, rates and inequalities
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Kinetic equations: decay and convergence rates

An abstract hypocoercivity result
Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space
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b An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space

Comments

> Not much originality so far, ¢f. (JD, Mouhot, Schmeiser) and
(Bouin, JD, Mischler, Mouhot, Schmeiser)

> Last curves are part of a joint work (Arnold, JD, Schmeiser,
Whohrer) in progress intended to compare L? hypocoercivity methods
with a twist induced by the analysis of the diffusion limit, i.e., given
by d Re(AF, F'), and results based on Lyapunov matriz inequalities:
cf. Anton’s lecture of yesterday

> The methods are very close with the Lyapunov matrix inequality
based on the deformation matrix P, the twisted Euclidean norm
|F||% := (F, P F) and the computation

d *
S IFlp = —(F,(C"P+ PO)F) < =2 || F|7

Estimate even coincide in some cases (Goldstein-Taylor model)

> Orders of magnitude are ok (estimate of the rate \)

> Estimates are compatible with diffusion limits and optimal in some
asymptotic regimes
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b An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space

Decay in the whole space

If s — A(s) is a positive non-decreasing bounded function on RY, let

ha(M, R, s) :== A(R) (wd R*M? — 8) , AY(M,s) = _%i%h)‘(M’ R, s)

s dz
Van(s) = = /1 N (M, 2)

Lemma

If lim, 0, ¥ u(s) = +oo and if u € C(RT, L' NL?(dx))is such that
lut, MLty < M, Ja(t, ) < [a(0,€)[* e > DT v (1,6)

then

Jult, MEagany < Yihe (2t +0rm (000, ) o)) VEERY
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b An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space

Lemma

Under the previous assumptions, if for some bounded continuous
function C' with C(s) > 1 for any s > 0,

[t ) < C(IgD) 1(0,8) 2 =22V v (£,¢)
then
lu(t, IE2 4y < Tar(t)
where M := ||Jug||L1(dz), @ := [|w(0,-)||lL2(dz) and War,q(t)is defined as

inf </ C(s) e 22t 581 ds dwy M? + sup C(s) _2’\(R)tQ2>

R>0 s>R

V.
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b An abstract hypocoercivity result
L2 Hypocoercivity Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space

Theorem

Assume that fo € L2(RY x R?, dx dy) N L2 (Rd, dry; Ll(Rd7dx)) and
L =Ly or L =Lsy, then we have the estimate

||f(t7 X ‘)”%ﬁ(Rded,dm dv) < (2 ﬂ-)_d \IJMVQ(t)

using C(s) = gfggg

M = ||f0||L2(Rd’d%Ll(Rd’dm)) and Q = || follLz e xR, d dv)

Here A and § are estimates arising from the hypocoercivity method
and they must satisfy some conditions (which are fulfilled in the two
examples)
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Diffusions, rates and inequalities Without confinement: Nash inequality
L2 Hypocoercivity Very weak confinement: Caffarelli-Kohn-Nirenberg
Kinetic equations: decay and convergence rates Sub-exponential local equilibria

Decay and convergence rates for
kinetic equations

What can we do when at least one of the coercivity conditions is
missing ¢ microscopic coercivity (H1) or macroscopic coercivity (H2)

In collaboration with Emeric Bouin, Stéphane Mischler, Clément
Mouhot, Christian Schmeiser + Laurent Lafleche
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Without confinement: Nash inequality
Very weak confinement: Caffarelli-Kohn-Nirenberg
Kinetic equations: decay and convergence rates Sub-exponential local equilibria

The global picture: from diffusive to kinetic

@ Depending on the local equilibria and on the external potential
(H1) and (H2) (which are Poincaré type inequalities) can be replaced
by other functional inequalities:

> microscopic coercivity (H1)

- <LF7F> Z >\m ”(1 _H)FH2

— weak Poincaré inequalities or
Hardy-Poincaré inequalities

> macroscopic coercivity (H2)
ITILE|? > Ay [[ILF

—> Nash inequality, weighted Nash or
Caffarelli- Kohn- Nirenberg inequalities

@ This can be done at the level of the diffusion equation
(homogeneous case) or at the level of the kinetic equation
(non-homogeneous case)

J. Dolbeault L2 Hypocoercivity & inequalities



Without confinement: Nash inequality
Very weak confinement: Caffarelli-Kohn-Nirenberg
Kinetic equations: decay and convergence rates Sub-exponential local equilibria

Diffusion (Fokker-Planck) equations

— o~ _ o _ a
Potential V=0 Viz) =7 loglal Vix) =[] V(z) =zl

v<d a€(0,1) a>1
Jeak Poincaré
) Caffarelli-Kohn Weak Poincaré .
Inequality Nash Nirenber or Poincaré
8 Weighted Poincaré
Asymptotic g {=(d=)/2 1 or t‘ﬁ—a) g
behavior decay decay convergence convergence

Table 1: Qwu=Au+ V- (uVV)
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Kinetic equations: decay and convergence rates

Without confinement:

Very weak confinement:

Sub-exponential local equili

a Kinetic Fokker-Planck equations

h inequality
farelli-Kohn-Nirenberg
oria

B
S

= Bouin, L. = Lafleche, M = Mouhot, MM

= Mischler, Mouhot

= Schmeiser
Viz) =71 V(z) = |z|* Vix) = |z“‘d
Potential V=0 (@) =~ log |z| r) =z a>1,or T
v<d @€ (0,1) Macro Poincaré
DMS,
: a0 e—t” is -
Micro Poincaré BD}S\;IS' BDS: ¢t—(d—/2 Cao: e™ ", Mischler
F(v) = e—” B>1 t deca b<1,8=2 Mouhot
T decay ey convergence e
convergence
BDLS: ¢t ¢,

Fv) = ",

B€(0,1) min{g,%’
decay
BDLS,

F(v) = (v)™4 8 fractional

in progress

Table 1: Oy f +v-Vof =FV, (F’1 va)A Notation: (v)

J. Dolbeault
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Diffusions, rates and inequalities Without confinement: Nash inequality
L“ Hypocoercivity

Very weak confinement: Caffarelli-Kohn-Nirenberg
Kinetic equations: decay and convergence rates Sub-exponential local equilibria

a A result based on Nash’s inequality

(0f +v-Vaf =Lf, (t.z,v) €R* x R x R?

DIf) = ~HI7) > a (I~ MfI* + 2(ATNS, 1)

We observe that

A*f=TN(+ (TMY*TM ' f
=TA+ TN T ' Nf=MTuy=vM-Vuy

if uy is the solution in HY(R?) of uy — © Auy = py, and

||uf(t» ')HLl(dw) = pr(t?‘)HLl(dw) = ||f0||L1(dzdv)

1
2 2 2
HufHL2(dx) < pr||L2(dx) ) vauf”]ﬁ(dm) < o) (ATOf, f)

2 2 2
10412 aey = ITAIT < Mlugllie ey + 2 (ATIS, £)
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Without confinement: Nash inequality
Very weak confinement: Caffarelli-Kohn-Nirenberg
Kinetic equations: decay and convergence rates Sub-exponential local equilibria

Nash’s inequality

_4 2d
el aay < Covasn [ T2y [Vl 5y Y € L (R

Use |Nf]? < ®~1(2(ATNf, f)) with &~ (y) :==y + (¥ )d+2 to get

(L= A +2 (ATNF. 1) = S(IFI) = (125 HY)
DI (1, )] = —HIF( )] > a (25 HIF (1, )

As s — 04, B(s) ~ 72 + Gronwall: H[f(t,-)] ~ ¢~ %2 as t — +o0

HIfL = 5 1f 12z ayy) + O (AS, laway

There exists a constant C' > 0 such that, for anyt > 0

2 2 2 —d
1ty WEsaoany < C (IfollEzas ary + IolEaar; igacy ) (2 +6)72
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Diffusions, rates and inequalities Without confinement: Nash inequality
L2 Hypocoercivity Very weak confinement: Caffarelli-Kohn-Nirenberg

Kinetic equations: decay and convergence rates Sub-exponential local equilibria

Very weak confinement: Caffarelli-Kohn-Nirenberg

21: =Au+V, (V.Vu) =V, (e_V Ve (ev u))

Here x € R?, d >3, and V is a potential such that e~V ¢ L!(R%)
corresponding to a very weak confinement

Two examples
Vi(xz) =~ loglz| and Va(z) =~ log(z)
with v < d and (z) := /1 + |z|2 for any = € R?

In collaboration with Emeric Bouin and Christian Schmeiser
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wnd inequalitie Without confinement: sh inequality

Diffusions, rate 1
L2 Hypocoercivity Very weak confinement: Caffarelli-Kohn-Nirenberg

Kinetic equations: decay and convergence rates Sub-exponential local equilibria
. =71 Viz) = |z =z|*
bl | v_g  |V@=1leld | V=l [Vi=4
v<d ae(0,1) a>1
. Weak Poincaré
. Caffarelli-Kohn e Fotcare L
Inequality Nash Nirenber or Poincaré
& Weighted Poincaré
Asymptotic {d/2 ¢=(d=)/2 1 or t’2(lk—a) e M
behavior decay decay convergence convergence

Table 2: Oyu=Au+V - (uVV)

Actually, this is more complicated, because the rate depends on the
functional space (and of the range of the parameters)...
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Without confinement: Nash inequality
Very weak confinement: Caffarelli-Kohn-Nirenberg

Kinetic equations: decay and convergence rates Sub-exponential local equilibria

Using moments

Theorem

Letd>1,0<y<d, V=V, or V="V, and up € L} NL?(e")
with |lz[*uo ||, < oo for some k > max{2,~/2}

2 2 — &=
Vi > 07 ||’U/(t7 ')HLZ(evdm) < ||u0||L2(evdm) (]‘ + Ct) 2

for some ¢ depending on d, 7, k, |[uolli2(ev 4z) lwolly, and [l lF o]

J. Dolbeault L2 Hypocoercivity & inequalities



Diffusions, rates and inequalities Without confinement: Nash inequality
L“ Hypocoercivity Very weak confinement: Caffarelli-Kohn-Nirenberg
Kinetic equations: decay and convergence rates Sub-exponential local equilibria

Proof

Growth of the moment

My (t) :== ./Rd |z|Fu da

From the equation
2 _2
M,g:k(d+k—2—fy)/ u|x|k*2dz§k(d+k—2—’y)M0§ M,: F
]Rd

then use the Caffarelli-Kohn-Nirenberg inequality

a 2(1—a)
/ lz[Tu?dx < C (/ x| ™7 |V (m|7u)2d:1:> (/ |2|* |ul d:u)
Rd R4 Rd

J. Dolbeault L2 Hypocoercivity & inequalities



Diffusions, rates and inequalitic Without confinement: Nash inequality
L2 Hypocoercivity Very weak confinement: Caffarelli-Kohn-Nirenberg
Kinetic equations: decay and convergence rates Sub-exponential local equilibria

a Kinetic Fokker-Planck equation, very weak
confinement

Let us consider the kinetic equation
Oif +v-Vof =V, V-V, f=Lf

where Lf is one of the two following collision operators

(a) a Fokker-Planck operator
Lf =V, - (FVU (F~ f) )
(b) a scattering collision operator

Lf = | o) () F() = f() F(v')) d'

Rd

V(x) ~7loglal, € (0.d)]

J. Dolbeault L2 Hypocoercivity & inequalities



Without confinement: Nash inequality
Very weak confinement: Caffarelli-Kohn-Nirenberg

Kinetic equations: decay and convergence rates Sub-exponential local equilibria
Vi) = 1 Ve el | oD
Potential V=0 () = 7 log|z| = 1" a>1,orT
v<d a € (0,1) Macro Poincaré
DMS,
. neye e—t? i -
Micro Poincaré BDEVEVZIS. BDS: ¢—(d—)/2 Cao: e, Mischler
Y t b<l1l,8=2 Mouhot
Fv)=e ,B8>1 decay ! —At
decay convergence €
convergence

BDLS: ¢,
Fv) = e 7, ¢ =
B e(0.1) min {§, %
decay
BDLS,
F(v) = (v)y 47 fractional

in progress

Table 2: Oy f +v-Vaf = FV,,(F7l Vl,f). Notation: (v) = /1 + |[v]2
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Without confinement: Nash inequality
Very weak confinement: Caffarelli-Kohn-Nirenberg
Kinetic equations: decay and convergence rates Sub-exponential local equilibria

a Decay rates

‘ 2

V(z,v) e RIxRY,  F(z,v) = M(w)e V@ | M) = (27r)7% ezl
(H1) 1<o(v,v) <7, Vov,v €R?, forsome 7>1
(H2) / (o(v,0") —o(¥',v)) M(v)dv' =0 Vv eR?
Rd

+ Caffarelli-Kohn-Nirenberg inequalities

Theorem

Letd> 1,V =V, withy € [0,d), k > max{2,v/2} and
fo € LA(M~Ydx dv) such that

ffRded (x)* fo dx dv + ffRded |v|® fodxdv < +oo
If (H1)—~(H2) hold, then there exists C' > 0 such that

_d—y

vi>0, [f(- ’)||i2(3vt—1dmdv) SC(+1) 2
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Without confinement: Nash inequality
Very weak confinement: Caffarelli-Kohn-Nirenberg
Kinetic equations: decay and convergence rates Sub-exponential local equilibria

Sub-exponential equilibria

> We consider the homogeneous Fokker-Planck equation
g =V, (MY,(M"g))
associated with sub-exponential equilibria
M) =Coe™ ™" ae(0,1)

or the corresponding Ornstein-Uhlenbeck equation for h = g/M
— decay rates based on the weak Poincaré inequality (Kavian,
Mischler)

— decay rates based on a weighted Poincaré / Hardy-Poincaré
inequality

In collaboration with Emeric Bouin, Laurent Lafleche and Christian
Schmeiser
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Without confinement: Nash inequality
Very weak confinement: Caffarelli-Kohn-Nirenberg
Kinetic equations: decay and convergence rates Sub-exponential local equilibria

— — (e — «
R R L T I R
y<d a€e(0,1) a>1
. Caffarelli-Kohn Weak Poincaré L
Inequality Nash Niretber or Poincaré
& Weighted Poincaré
Asymptotic a2 {(d=)/2 pH op {70 e M
behavior decay decay convergence convergence

Table 3: Opu=Au+V - (uVV)
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Weak Poincaré inequality

2
T++
Leo(R4)

/Rd h—%)zdg < Cor (/Rd |Vh|2d£)

for some explicit positive constant C,, , b= f]Rd hd¢. Using
d
dt
where h = g/M and d§¢ = M dv + Hoélder’s inequality

-

~|2
) B dg =2 [ VP
a R

1

~12 ~12 T
Jua | = 7] ag < (fRd h=h| (o) ﬁdf) (fRd 7 <v>ﬂfd£)
Lo (R4)
2/T
with (7 +1)/7 = B/n, then for with M = sup,¢ (g ) ‘h( hHL (&)

2 ~2 7 2771 )
h(t,-)—h‘ d¢ < (/R h(O«)—h\ df) Tt
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Weighted Poincaré inequality

There exists a_constant € > 0 such that
2
/ V2 Fdv > e/ ‘h - h) (0)~P Fdv
Rd Rd

with =2 (1 —a), h:= Jga hFdv and F(v) = Cye ()" and
ae€(0,1)

Written in terms of g = h M, the inequality becomes
_ 2 _ 9 (l-a
[ vaoctgf seanze [ g-gP )20 du
Rd Rd

where dy = Mdv and g := ([pa gdv) M
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g/ |h(t,v)]? (v)F M do + 2/ |V, 1|2 (v)F Mdo
dt ]Rd Rd

= _ Vv(hQ) . (Vv<v>k) Mdv

With{=2—-«a,a€R, be (0,400)
k

Vo (MV,(0)*) = OE

(d+ (k+d—2)v]* —a{v)® |v|2) < a—b(v)fz

Proposition (Weighted L2 norm)

There exists a constant Ky, > 0 such that, if h solves the
Ornstein- Uhlenbeck equation, then

Vi>0 At )lliziwyrag < K HhinHLz‘(@)k de)
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~12 ~12
4 h(t,-)—h’ dg:_z/ |V, h[2dé < —2€ h—h‘ (v)=P de¢
dt R4 R4 Rd
+ Holder

Theorem

Assume that o € (0,1). Let g™ € LY (dp) NL2((v)*du) for some k >0
and consider the solution g to the homogeneous Fokker-Planck
equation with initial datum g™. If § = ([ga gdv) M, then

gk —k/B
2 in 12 256
) — < _ Bl
/Rd|9(t») [ dﬂ-((/Rd 9" — 7] d“) +kg<ﬁ/kt>

with B =2 (1 — a) and X := K3 ||gi“||i2(<v>kdu) + Oy, (fRd g™ dU)2
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a Kinetic Fokker-Planck, no confinement and
sub-exponential local equilibria

@ the Fokker-Planck operator
Lif =V, (MY, (0 )
@ the scattering collision operator
Laf = [ o) (500 = FOME)) do
R4

under assumptions (H1)—(H2)
V=0 |F)=e ™" ge(0,1)
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Kinetic equations: decay and convergence rates

Without confinement: Nash inequality
Very weak confinement:

Jaffarelli-Kohn-Nirenberg
Sub-exponential local equilibria

Vi) =1 V) = el | LT
Potential V=0 (z) =7 log | r) =z a>1,orT
y<d ae(0,1) Macro Poincaré
DMS,
: ao: e—t" _
Micro Poin(:%ré B]?M}\zls BDS: ¢t—(@—/2 deti. ; ,2 1\1&:‘;31121;
F)=e®" g8>1 " >ca <L bFs= '
@ - decay decay convergence e N
convergence
, BDLS: ¢ ¢,
F(v) = e ™7, =
B e (0,1) min{%,%}
decay
BDLS,
F(v) = (v)y~ 478 fractional

in progress

Table 3: Oy f +v -V, f = FV,,(F’l V,,f)4 Notation: (v) = /1 + [v]?
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a The decay rate with sub-exponential local equilibria

Theorem

Let a € (0,1), >0, k>0 and let M(v) = Co e~ . Assume that
either L=L; and f =2(1 —a), or L =Ly + Assumptions. There
exists a numerical constant € > 0 such that any solution f of

ohf+v-Vof=Lf, £(0,)=f"eL*(v)*dzdp) NLL (dzdv)

satisfies

2 [l
VE>0, [IfE -l // . t:cv|dxd,u<€(1+ ol;

with rate ¢ = min {d/2,k/B}, for some positive k which is an explicit
function of the two quotients, } = ‘ / | = ’k and | e =

|L1 (dz dv) / |

V.
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Proof (1/2)

D[f] :=— (Lf. f) + 6 (ATTf, TUf)
+5(ATAd - M) f,Nf) — 6 (TAQd — M) f, (Id — M) f)
— 5 (AL(Id — )£, 1)
Q@ microscopic coercivity. If L = L, we rely on the weighted
Poincaré inequality
(Lffy < —ead—-mf|%,
If L = Lo, we assume that there exists a constant € > 0 such that

/ |h =) ()~ Mdv < e// (v,0") |1 = h|* MM dv d/
R4 R4 xR4

@ Weighted L? norms. Let k > 0, f € L2({(v)* dzdy) a solution
34X, > 1 such that

vt>0, |f(-, ')HL2(<v>k dzdp) < Kk HfinHL‘Z(@)k da dp)
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a Proof (2/2)

Holf] = 5 I+ 6 (AF, 7). Hslf] = ~DIf

@ There exists k£ > 0 such that V f € L? ((v)~# dodp) N L (dz dv),
DIf) = & (Jl(1d ~ M)fI” ; + (ATAL )
@ For any f € L'(dz du) N L%(dz dv),

(ATOEf) > @ ([NF)°)

-1 y\ 7 — 2
o7(y) =2y +(2)™ . c=0end Ifltina,

@ For any f € L2((v)*dadu) N LY (dx dv),

Jaa -7, > v (Jad - 1) f)P)

U(y) i= Coy*P/k, Cpim (ﬂ<k (1+6x) Hfmllk)
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Nash’s inequality. Atti della Accademia Nazionale dei Lincei.
Rendiconti Lincei. Matematica e Applicazioni, 31: 211-223, April
2020. Nash
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These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Lectures/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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