\mathbf{L}^2 hypocoercivity, inequalities and applications

Jean Dolbeault

$http://www.ceremade.dauphine.fr/{\sim}dolbeaul$

Ceremade, Université Paris-Dauphine

Oberwolfach

Classical and Quantum Mechanical Models of Many-Particle Systems

December 4, 2020

<ロト <回ト < 注ト < 注ト = 注

Outline

• Diffusion rates and functional inequalities

- \triangleright Poincaré inequality
- \triangleright Nash inequality

• L² Hypocoercivity

- \rhd Abstract statement, diffusion limit
- \triangleright Mode-by-mode analysis in Fourier variables
- \rhd Refined decay rates in the whole space

• Decay and convergence rates for kinetic equations

- \rhd The global picture
- \rhd Without confinement: Nash inequality
- \triangleright With very weak confinement
- \rhd Without confinement and with sub-exponential local equilibria

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Diffusion, rates and functional inequalities

э

 $\begin{array}{c} \mbox{Diffusions, rates and inequalities} \\ \mbox{L}^2 \mbox{Hypocoercivity} \\ \mbox{Kinetic equations: decay and convergence rates} \end{array}$

a

Fokker-Planck equations and Poincaré inequalities

If $u \ge 0$ is a solution of the Fokker-Planck equation

$$\frac{\partial u}{\partial t} = \Delta u + \nabla \cdot (u \,\nabla V) \quad \text{in} \quad \mathbb{R}^d$$

with initial datum $u_0 \in L^1(\mathbb{R}^d)$ (of mass 1), if $\mu = e^{-V}$ is the density of a probability measure such that the *Poincaré inequality*

$$\int_{\mathbb{R}^d} |u - \bar{u}|^2 \, d\mu \leq \frac{1}{\lambda} \int_{\mathbb{R}^d} |\nabla u|^2 \, d\mu \quad \forall \, u \in \mathcal{H}^1(\mathbb{R}^d, d\mu)$$

then $u = u/\mu$ solves the Ornstein-Uhlenbeck equation

$$\begin{aligned} \frac{\partial u}{\partial t} &= \Delta u - \nabla u \cdot \nabla V \\ \text{nd } \|u(t,\cdot)\|_{\mathrm{L}^{1}(\mathbb{R}^{d},d\mu)} &= \|u(t,\cdot)\|_{\mathrm{L}^{1}(\mathbb{R}^{d},d\mu)} = \|u_{0}\|_{\mathrm{L}^{1}(\mathbb{R}^{d},d\mu)} = \bar{u}, \\ \frac{d}{t} \|u(t,\cdot) - \bar{u}\|_{\mathrm{L}^{2}(\mathbb{R}^{d},d\mu)}^{2} &= -2 \|\nabla u(t,\cdot)\|_{\mathrm{L}^{2}(\mathbb{R}^{d},d\mu)}^{2} \leq -2 \lambda \|u(t,\cdot) - \bar{u}\|_{\mathrm{L}^{2}(\mathbb{R}^{d},d\mu)}^{2} \\ \text{and} \quad \int_{\mathbb{R}^{d}} |u(t,\cdot) - \bar{u}|^{2} d\mu \leq \int_{\mathbb{R}^{d}} |u_{0} - \bar{u}|^{2} d\mu \ e^{-2\lambda t} \quad \forall t \geq 0 \end{aligned}$$

J. Dolbeault I

L² Hypocoercivity & inequalities

 $\begin{array}{c} \mbox{Diffusions, rates and inequalities} \\ \mbox{L}^2 \mbox{ Hypocoercivity} \\ \mbox{Kinetic equations: decay and convergence rates} \end{array}$

Proofs of Poincaré inequalities

- \triangleright Compactness methods
- \triangleright Direct computation of the spectral gap (*e.g.* when V is radial)
- \rhd Bakry-Emery or carré du champ method: prove

$$\frac{d}{dt} \|\nabla u(t,\cdot)\|_{\mathrm{L}^2(\mathbb{R}^d,d\mu)}^2 \le -2\,\lambda\,\|\nabla u(t,\cdot)\|_{\mathrm{L}^2(\mathbb{R}^d,d\mu)}^2$$

 \triangleright Equivalence between Fokker-Planck and Schrödinger spectral estimates: with $v = e^{V/2} u$, the Poincaré inequality is equivalent to

$$\int_{\mathbb{R}^d} \left(|\nabla v|^2 + W \, |v|^2 \right) dx \ge \lambda \int_{\mathbb{R}^d} |v|^2 \, dx$$

then use Persson's lemma

$$0 < \inf \sigma_{\mathrm{ess}}(-\Delta + W) = \lim_{R \to +\infty} \inf_{\mathrm{supp}(v) \subset B_R^c} \frac{\int_{\mathbb{R}^d} \left(|\nabla v|^2 + W |v|^2 \right) dx}{\int_{\mathbb{R}^d} |v|^2 \, dx}$$

 \rhd Constructive method: the IMS truncation method

 \rhd Lyapunov criterion

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 $\begin{array}{c} \mbox{Diffusions, rates and inequalities} \\ \mbox{L^2 Hypocoercivity} \\ \mbox{Kinetic equations: decay and convergence rates} \end{array}$

Confinement: Poincaré inequality No confinement: Nash inequality

The decay rate of the heat equation

If u is a solution of the *heat equation*

$$\frac{\partial u}{\partial t} = \Delta u \quad \text{in} \quad \mathbb{R}^d$$

with initial datum $u_0 \in L^1(\mathbb{R}^d)$, then

$$||u(t,\cdot)||_{\mathcal{L}^1(\mathbb{R}^d,dx)} = ||u_0||_{\mathcal{L}^1(\mathbb{R}^d,dx)}$$

$$\frac{d}{dt} \|u(t,\cdot)\|_{\mathrm{L}^{2}(\mathbb{R}^{d},dx)}^{2} = -2 \|\nabla u(t,\cdot)\|_{\mathrm{L}^{2}(\mathbb{R}^{d},dx)}^{2} \leq -\mathcal{C} \|u(t,\cdot)\|_{\mathrm{L}^{2}(\mathbb{R}^{d},dx)}^{2+\frac{4}{d}}$$

by Nash's inequality

$$\|u\|_{2}^{2+\frac{4}{d}} \leq \mathcal{C}_{\text{Nash}} \|u\|_{1}^{\frac{4}{d}} \|\nabla u\|_{2}^{2}$$

and so

$$||u(t,\cdot)||_{L^2(\mathbb{R}^d,dx)} \le \mathcal{C} ||u_0||_{L^2(\mathbb{R}^d,dx)} (1+t)^{-d/2}$$

 $\begin{array}{c} \mbox{Diffusions, rates and inequalities} \\ \mbox{L}^2 \mbox{ Hypocoercivity} \\ \mbox{Kinetic equations: decay and convergence rates} \end{array}$

Confinement: Poincaré inequality No confinement: Nash inequality

Proofs of Nash's inequality

 \rhd Nash's proof (Stein): use Fourier variables, optimize on R>0

$$\|u\|_{2}^{2} = \int_{\mathbb{R}^{d}} |\hat{u}(\xi)|^{2} d\xi \leq \underbrace{\int_{|\xi| < R} \|\hat{u}\|_{\infty}^{2} d\xi}_{= \omega_{d} R^{d} \|u\|_{1}^{2}} + \underbrace{\frac{1}{R^{2}} \int_{\mathbb{R}^{d}} |\xi|^{2} |\hat{u}(\xi)|^{2} d\xi}_{= R^{-2} \|\nabla u\|_{2}^{2}}$$

 \triangleright The optimal constant is given by the spectral gap of the Laplace operator on a ball with Neumann boundary conditions (Carlen, Loss 91)

 \rhd (Bouin, JD, Schmeiser) As a limit case of the Gagliardo-Nirenberg inequalities

$$\left\|u\right\|_{2} \leq \mathcal{C}_{\mathrm{GN}} \left\|\nabla u\right\|_{2}^{\theta} \left\|u\right\|_{p}^{1-\theta}$$

as $p \to 1_+$. Up to normalizations, optimal functions solve $-\Delta u = u - u^{p-1}$, are radial and have compact support if p < 2(Pucci, Serrin, Zou 99) so that v = u - 1 solves $-\Delta v = v$ with Neumann boundary conditions on its support (a ball)

L^2 Hypocoercivity

- \rhd Abstract statement, diffusion limit
- \vartriangleright Mode-by-mode analysis in Fourier variables
- \rhd Refined decay rates in the whole space

Collaboration with C. Mouhot and C. Schmeiser + E. Bouin, S. Mischler

 $\begin{array}{c} {\rm Diffusions,\ rates\ and\ inequalities}\\ {L^2\ Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

An abstract hypocoercivity result Fourier variables and mode-by-mode analysis Refined decay rates in the whole space

An abstract evolution equation

Let us consider the equation

 $\frac{dF}{dt} + \mathsf{T}F = \mathsf{L}F$

In the framework of kinetic equations, T and L are respectively the transport and the collision operators

We assume that T and L are respectively anti-Hermitian and Hermitian operators defined on the complex Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)^*$ denotes the adjoint with respect to $\langle \cdot, \cdot \rangle$

 Π is the orthogonal projection onto the null space of L

The estimate

$$\frac{1}{2} \frac{d}{dt} \|F\|^2 = \langle \mathsf{L}F, F \rangle \le -\lambda_m \, \|(1 - \Pi)F\|^2$$

is not enough to conclude that $||F(t, \cdot)||^2$ decays exponentially \Leftarrow microscopic coercivity $\begin{array}{c} {\rm Diffusions,\ rates\ and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates}\end{array}$

• Formal macroscopic / diffusion limit

 $F = F(t, x, v), \mathsf{T} = v \cdot \nabla_x, \mathsf{L}$ good collision operator. Scaled evolution equation

$$\varepsilon \, \frac{dF}{dt} + \mathsf{T}F = \frac{1}{\varepsilon} \, \mathsf{L}F$$

on the Hilbert space \mathcal{H} . $F_{\varepsilon} = F_0 + \varepsilon F_1 + \varepsilon^2 F_2 + \mathcal{O}(\varepsilon^3)$ as $\varepsilon \to 0_+$

$$\begin{split} \varepsilon^{-1} : & \mathsf{L} F_0 = 0 \,, \\ \varepsilon^0 : & \mathsf{T} F_0 = \mathsf{L} F_1 \,, \\ \varepsilon^1 : & \frac{dF_0}{dt} + \mathsf{T} F_1 = \mathsf{L} F_2 \end{split}$$

The first equation reads as $u = F_0 = \Pi F_0$ The second equation is simply solved by $F_1 = -(\mathsf{T}\Pi) F_0$ After projection, the third equation is

$$\frac{d}{dt}\left(\Pi F_{0}\right) - \Pi \mathsf{T}\left(\mathsf{T}\Pi\right)F_{0} = \Pi \mathsf{L}F_{2} = 0$$

$$\partial_t u + (\mathsf{T}\Pi)^* (\mathsf{T}\Pi) u = 0$$

is such that $\frac{d}{dt} \|u\|^2 = -2 \|(\mathsf{TII}) u\|^2 \le -2 \lambda_M \|u\|^2 \le Macroscopic \ coercivity$

Diffusions, rates and inequalities L^2 Hypocoercivity Kinetic equations: decay and convergence rates An abstract hypocoercivity result Fourier variables and mode-by-mode analysis Refined decay rates in the whole space

The macro part and the Poincaré inequality

$$\begin{split} & \succ \text{ Free transport operator: } \mathsf{T} F = v \cdot \nabla_x F \\ & \text{ If } F_0(x,v) = u(x) \, \mathfrak{M}(v) \text{ with } \mathfrak{M}(v) = (2\pi)^{-d/2} \, e^{-|v|^2/2} \text{ then} \\ & (\mathsf{TII})^* \, (\mathsf{TII}) F_0 = (-\Delta_x u) \, \mathfrak{M} \\ & \text{ and we obtain the heat equation } (e.g. \text{ on } \mathbb{T}^d) \end{split}$$

 $\partial_t u = \Delta u$

 \triangleright With an external potential V so that $\mathsf{T}F = v \cdot \nabla_x F - \nabla_x V \cdot \nabla_v F$ we obtain the Fokker-Planck equation

 $\partial_t u = \Delta \, u + \nabla \cdot (u \, \nabla V)$

The operator $A := (1 + (T\Pi)^* T\Pi)^{-1} (T\Pi)^*$ is such that

$$\langle \mathsf{AT}\Pi F, F \rangle \ge \frac{\lambda_M}{1 + \lambda_M} \|\Pi F\|^2$$

if the Poincaré inequality $\int_{\mathbb{R}^d} |\nabla u|^2 d\mu \ge \lambda_M \int_{\mathbb{R}^d} |u - \bar{u}|^2 d\mu$ holds

The assumptions in the compact case

 λ_m , λ_M , and C_M are positive constants such that, for any $F \in \mathcal{H}$ \triangleright microscopic coercivity:

$$-\langle \mathsf{L}F, F \rangle \ge \lambda_m \, \| (1 - \Pi)F \|^2 \tag{H1}$$

 \triangleright macroscopic coercivity:

$$\|\mathsf{T}\Pi F\|^2 \ge \lambda_M \, \|\Pi F\|^2 \tag{H2}$$

 \triangleright parabolic macroscopic dynamics:

$$\Pi \mathsf{T} \Pi F = 0 \tag{H3}$$

 \triangleright bounded auxiliary operators:

$$\|\mathsf{AT}(1-\Pi)F\| + \|\mathsf{AL}F\| \le C_M \,\|(1-\Pi)F\| \tag{H4}$$

Diffusions, rates and inequalities L² Hypocoercivity Kinetic equations: decay and convergence rates

Equivalence and entropy decay

For some $\delta>0$ to be chosen, the ${\rm L}^2$ entropy / Lyapunov functional is defined by

 $\mathsf{H}[F] := \frac{1}{2} \|F\|^2 + \delta \operatorname{Re}\langle \mathsf{A}F, F \rangle$

 \triangleright norm equivalence of $\mathsf{H}[F]$ and $||F||^2$

 $\frac{2-\delta}{4} \, \|F\|^2 \leq \mathsf{H}[F] \leq \frac{2+\delta}{4} \, \|F\|^2$

Entropy decay: $\frac{d}{dt} \mathsf{H}[F] = -\mathsf{D}[F]$ \triangleright entropy decay rate: for any $\delta > 0$ small enough and $\lambda = \lambda(\delta)$ $\mathsf{D}[F] > \lambda \mathsf{H}[F]$

Theorem

Under (H1)–(H4), for any $t \ge 0$,

$$\begin{split} \mathsf{H}[F(t,\cdot)] &\leq \mathsf{H}[F_0] \, e^{-\lambda \, t} \\ \|F(t,\cdot)\|^2 &\leq \mathfrak{C} \, \|F_0\|^2 \, e^{-\lambda \, t} \quad \text{with} \quad \mathfrak{C} = \frac{2+\delta}{2-\delta} \end{split}$$

• Basic examples

We consider the Cauchy problem

$$\partial_t f + v \cdot \nabla_x f = \mathsf{L} f \,, \quad f(0,x,v) = f_0(x,v)$$

 L is the Fokker-Planck operator L_1 or the linear BGK operator L_2

$$\mathsf{L}_1 f := \Delta_v f + \nabla_v \cdot (v f)$$
 and $\mathsf{L}_2 f := \rho_f \mathcal{M} - f$

 $\mathcal{M}(v) = \frac{e^{-\frac{1}{2}|v|^2}}{(2\pi)^{d/2}}$ is the normalized Gaussian function $\rho_f := \int_{\mathbb{R}^d} f \, dv$ is the spatial density

$$d\gamma := \gamma(v) \, dv$$
 where $\gamma := \frac{1}{\mathcal{M}}$

$$||f||^2_{\mathcal{L}^2(dx\,d\gamma)} := \iint_{\mathcal{X}\times\mathbb{R}^d} |f(x,v)|^2\,dx\,d\gamma$$

where either $\mathfrak{X} = \mathbb{R}^d$ or $\mathfrak{X} = \mathbb{T}^d$

J. Dolbeault

L² Hypocoercivity & inequalities

イロト イロト イヨト イヨト 三日

Diffusions, rates and inequalities L² Hypocoercivity Kinetic equations: decay and convergence rates

• Fourier variables: mode-by-mode hypocoercivity

Let us consider the Fourier transform in x, denote by $\xi \in \mathbb{R}^d$ the Fourier variable, so that $F = \hat{f}$ solves

$$\partial_t F + \mathsf{T} F = \mathsf{L} F \,, \quad F(0,\xi,v) = \widehat{f}_0(\xi,v) \,, \quad \mathsf{T} F = i \, (v\cdot\xi) F$$

Goal: apply the abstract method with ξ considered as a parameter

$$\mathcal{H} = \mathcal{L}^2\left(d\gamma\right)\,,\quad \|F\|^2 = \int_{\mathbb{R}^d} |F|^2 \,d\gamma\,,\quad \Pi F = \mathcal{M}\,\int_{\mathbb{R}^d} F\,dv = \mathcal{M}\,\rho_F$$

The operator A is now defined as

$$(\mathsf{A}F)(v) = \frac{-i\,\xi}{1+|\xi|^2} \cdot \int_{\mathbb{R}^d} w\,F(w)\,dw\,\mathcal{M}(v)$$

and, with $X := \|(1 - \Pi)F\|$ and $Y := \|\Pi F\|$, we have that

$$\begin{aligned} |\operatorname{Re}\langle \mathsf{A}F,F\rangle| &\leq \frac{|\xi|}{1+|\xi|^2} X Y, \quad \|F\|^2 = X^2 + Y^2 \\ \frac{1}{2} \left(1 - \frac{\delta |\xi|}{1+|\xi|^2}\right) (X^2 + Y^2) &\leq \mathsf{H}[F] \leq \frac{1}{2} \left(1 + \frac{\delta |\xi|}{1+|\xi|^2}\right) (X^2 + Y^2) \\ &\leq 1 - \frac{\delta |\xi|}{1+|\xi|^2} = \frac{\delta$$

J. Dolbeault

L² Hypocoercivity & inequalities

 $\begin{array}{c} {\rm Diffusions,\ rates and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

An abstract hypocoercivity result Fourier variables and mode-by-mode analysis Refined decay rates in the whole space

Entropy production

$$-\langle \mathsf{L}F, F \rangle + \delta \langle \mathsf{ATII}F, F \rangle \ge X^2 + \frac{\delta |\xi|^2}{1 + |\xi|^2} Y^2$$

$$\begin{split} \mathsf{D}[F] &= -\langle \mathsf{L}F, F \rangle + \delta \, \langle \mathsf{ATII}F, F \rangle + \delta \, (\dots) \\ &\geq (\lambda_m - \delta) \, X^2 + \frac{\delta \, \lambda_M}{1 + \lambda_M} \, Y^2 - \, \delta \, C_M \, X \, Y \\ \text{with } \lambda_m &= 1 \,, \quad \Lambda_M = |\xi|^2 =: s^2 \,, \quad C_M = \frac{s \, \left(1 + \sqrt{3} \, s\right)}{1 + s^2} \end{split}$$

$$\begin{split} \mathsf{D}[F] &-\lambda\,\mathsf{H}[F] \\ &\geq \left(1 - \frac{\delta\,s^2}{1 + s^2} - \frac{\lambda}{2}\right)X^2 - \frac{\delta\,s}{1 + s^2}\left(1 + \sqrt{3}\,s + \lambda\right)X\,Y + \left(\frac{\delta\,s^2}{1 + s^2} - \frac{\lambda}{2}\right)Y^2 \end{split}$$

is (for any $s = |\xi| > 0$) a nonnegative quadratic form of X and Y iff...

 $\begin{array}{c} {\rm Diffusions,\ rates\ and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

An abstract hypocoercivity result Fourier variables and mode-by-mode analysis Refined decay rates in the whole space

Q

Figure: Horizontal axis: δ , vertical axis: λ . Admissible region: grey triangle. Negative discriminant: dark grey area, shown here for s = 5

イロト イポト イヨト イヨト

э

 $\begin{array}{c} {\rm Diffusions,\ rates\ and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

An abstract hypocoercivity result Fourier variables and mode-by-mode analysis Refined decay rates in the whole space

 $\begin{array}{c} {\rm Diffusions,\ rates \ and\ inequalities}\\ {\rm L}^2 \ Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

An abstract hypocoercivity result Fourier variables and mode-by-mode analysis Refined decay rates in the whole space

Comments

▷ Not much originality so far, *cf.* (JD, Mouhot, Schmeiser) and (Bouin, JD, Mischler, Mouhot, Schmeiser) ▷ Last curves are part of a joint work (Arnold, JD, Schmeiser, Wöhrer) in progress intended to compare L² hypocoercivity methods with a *twist* induced by the analysis of the diffusion limit, *i.e.*, given by $\delta \operatorname{Re}\langle AF, F \rangle$, and results based on *Lyapunov matrix inequalities: cf.* Anton's lecture of yesterday

 \triangleright The methods are very close with the Lyapunov matrix inequality based on the deformation matrix P, the *twisted Euclidean norm* $|F||_P^2 := \langle F, P F \rangle$ and the computation

$$\frac{d}{dt} \|F\|_P^2 = -\langle F, (C^*P + PC)F \rangle \le -2\,\mu \,\|F\|_P^2$$

Estimate even coincide in some cases (Goldstein-Taylor model)

 \triangleright Orders of magnitude are ok (estimate of the rate λ)

 \triangleright Estimates are compatible with diffusion limits and optimal in some asymptotic regimes

 $\begin{array}{c} {\rm Diffusions,\ rates \ and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

An abstract hypocoercivity result Fourier variables and mode-by-mode analysis Refined decay rates in the whole space

Decay in the whole space

If $s \mapsto \lambda(s)$ is a positive non-decreasing bounded function on \mathbb{R}^+ , let

 $h_{\lambda}(M,R,s) := \lambda(R) \left(\omega_d \, R^d \, M^2 - s \right) \,, \quad \lambda^*(M,s) := -\min_{R>0} h_{\lambda}(M,R,s)$

$$\psi_{\lambda,M}(s) := -\int_1^s \frac{dz}{\lambda^*(M,z)}$$

Lemma

If $\lim_{s\to 0_+} \psi_{\lambda,\mu}(s) = +\infty$ and if $u \in C(\mathbb{R}^+, L^1 \cap L^2(dx))$ is such that

$$\|u(t,\cdot)\|_{\mathrm{L}^{1}(dx)} \leq M, \quad |\hat{u}(t,\xi)|^{2} \leq |\hat{u}(0,\xi)|^{2} e^{-2\lambda(|\xi|)t} \quad \forall (t,\xi)$$

then

$$\|u(t,\cdot)\|_{\mathrm{L}^{2}(dx)}^{2} \leq \psi_{\lambda,M}^{-1} \left(2t + \psi_{\lambda,M} \left(\|u(0,\cdot)\|_{\mathrm{L}^{2}(dx)}^{2}\right)\right) \quad \forall t \in \mathbb{R}^{+}$$

イロト イヨト イヨト

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

э

Lemma

Under the previous assumptions, if for some bounded continuous function C with $C(s) \ge 1$ for any s > 0,

$$|\hat{u}(t,\xi)|^2 \le C(|\xi|) |\hat{u}(0,\xi)|^2 e^{-2\lambda(|\xi|)t} \quad \forall (t,\xi)$$

then

$$||u(t,\cdot)||^2_{L^2(dx)} \le \Psi_{M,Q}(t)$$

where $M := \|u_0\|_{L^1(dx)}$, $Q := \|u(0, \cdot)\|_{L^2(dx)}$ and $\Psi_{M,Q}(t)$ is defined as

$$\inf_{R>0} \left(\int_0^R C(s) \, e^{-\,2\,\lambda(s)\,t} \, s^{d-1} \, ds \, d\,\omega_d \, M^2 + \sup_{s \ge R} C(s) \, e^{-\,2\,\lambda(R)\,t} \, Q^2 \right)$$

(日)

Theorem

Assume that $f_0 \in L^2(\mathbb{R}^d \times \mathbb{R}^d, dx \, d\gamma) \cap L^2(\mathbb{R}^d, d\gamma; L^1(\mathbb{R}^d, dx))$ and $\mathsf{L} = \mathsf{L}_1$ or $\mathsf{L} = \mathsf{L}_2$, then we have the estimate

$$\|f(t,\cdot,\cdot)\|_{\mathrm{L}^2(\mathbb{R}^d\times\mathbb{R}^d,dx\,d\gamma)}^2 \le (2\,\pi)^{-d}\,\Psi_{M,Q}(t)$$

using
$$C(s) = \frac{2+\delta(s)}{2-\delta(s)}$$

 $M = \|f_0\|_{L^2\left(\mathbb{R}^d, d\gamma; L^1(\mathbb{R}^d, dx)\right)}$ and $Q = \|f_0\|_{L^2(\mathbb{R}^d \times \mathbb{R}^d, dx \, d\gamma)}$

Here λ and δ are estimates arising from the hypocoercivity method and they must satisfy some conditions (which are fulfilled in the two examples)

Decay and convergence rates for kinetic equations

What can we do when at least one of the coercivity conditions is missing ? microscopic coercivity (H1) or macroscopic coercivity (H2)

In collaboration with Emeric Bouin, Stéphane Mischler, Clément Mouhot, Christian Schmeiser + Laurent Lafleche $\begin{array}{c} {\rm Diffusions,\ rates\ and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

The global picture: from diffusive to kinetic

• Depending on the local equilibria and on the external potential (H1) and (H2) (which are Poincaré type inequalities) can be replaced by other functional inequalities:

 \triangleright microscopic coercivity (H1)

$$-\langle \mathsf{L}F, F \rangle \ge \lambda_m \, \| (1 - \Pi)F \|^2$$

 \implies weak Poincaré inequalities or Hardy-Poincaré inequalities

 \triangleright macroscopic coercivity (H2)

 $\|\mathsf{T}\Pi F\|^2 \ge \lambda_M \, \|\Pi F\|^2$

 \implies Nash inequality, weighted Nash or Caffarelli-Kohn-Nirenberg inequalities

• This can be done at the level of the *diffusion equation* (homogeneous case) or at the level of the *kinetic equation* (non-homogeneous case)

 $\begin{array}{c} {\rm Diffusions,\ rates\ and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

Diffusion (Fokker-Planck) equations

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0, 1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$
Inequality	Nash	Caffarelli-Kohn -Nirenberg	Weak Poincaré or Weighted Poincaré	Poincaré
Asymptotic behavior	$t^{-d/2}$ decay	$t^{-(d-\gamma)/2}$ decay	$t^{-\mu}$ or $t^{-\frac{k}{2(1-\alpha)}}$ convergence	$e^{-\lambda t}$ convergence

Table 1: $\partial_t u = \Delta u + \nabla \cdot (u \nabla V)$

イロト イボト イヨト イヨト

 $\begin{array}{c} {\rm Diffusions,\ rates \ and\ inequalities}\\ {\rm L}^2 \ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

• Kinetic Fokker-Planck equations

 $\mathbf{B}=\mathbf{Bouin},\,\mathbf{L}=\mathbf{Lafleche},\,\mathbf{M}=\mathbf{Mouhot},\,\mathbf{MM}=\mathbf{Mischler},\,\mathbf{Mouhot}$
 $\mathbf{S}=\mathbf{Schmeiser}$

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0, 1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$, or \mathbb{T}^d Macro Poincaré
Micro Poincaré $F(v) = e^{-\langle v \rangle^{\beta}}, \beta \ge 1$	BDMMS: $t^{-d/2}$ decay	BDS: $t^{-(d-\gamma)/2}$ decay	Cao: e^{-t^b} , $b < 1, \beta = 2$ convergence	DMS, Mischler- Mouhot $e^{-\lambda t}$ convergence
$F(v) = e^{-\langle v \rangle^{\beta}},$ $\beta \in (0, 1)$	BDLS: $t^{-\zeta}$, $\zeta = \min\left\{\frac{d}{2}, \frac{k}{\beta}\right\}$ decay			
$F(v) = \langle v \rangle^{-d-\beta}$	BDLS, fractional in progress			

Table 1: $\partial_t f + v \cdot \nabla_x f = F \nabla_v (F^{-1} \nabla_v f)$. Notation: $\langle v \rangle = \sqrt{1 + |v|^2}$

 $\begin{array}{c} {\rm Diffusions,\ rates, and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

• A result based on Nash's inequality

$$\begin{bmatrix} \partial_t f + v \cdot \nabla_x f = \mathsf{L}f , & (t, x, v) \in \mathbb{R}^+ \times \mathbb{R}^d \times \mathbb{R}^d \end{bmatrix}$$
$$\mathsf{D}[f] = -\frac{d}{dt} \mathsf{H}[f] \ge \mathsf{a}\left(\|(1 - \mathsf{\Pi})f\|^2 + 2\left\langle \mathsf{A}\mathsf{T}\mathsf{\Pi}f, f\right\rangle \right)$$

We observe that

$$\begin{aligned} \mathsf{A}^* f &= \mathsf{T} \mathsf{\Pi} \left(1 + (\mathsf{T} \mathsf{\Pi})^* \mathsf{T} \mathsf{\Pi} \right)^{-1} f \\ &= \mathsf{T} \left(1 + (\mathsf{T} \mathsf{\Pi})^* \mathsf{T} \mathsf{\Pi} \right)^{-1} \mathsf{\Pi} f = M \mathsf{T} \, u_f = v \, M \cdot \nabla_x u_f \end{aligned}$$

if u_f is the solution in $\mathrm{H}^1(\mathbb{R}^d)$ of $u_f - \Theta \Delta u_f = \rho_f$, and

$$\begin{aligned} \|u_{f}(t,\cdot)\|_{\mathrm{L}^{1}(dx)} &= \|\rho_{f}(t,\cdot)\|_{\mathrm{L}^{1}(dx)} = \|f_{0}\|_{\mathrm{L}^{1}(dx\,dv)} \\ \|u_{f}\|_{\mathrm{L}^{2}(dx)}^{2} &\leq \|\rho_{f}\|_{\mathrm{L}^{2}(dx)}^{2} , \quad \|\nabla_{x}u_{f}\|_{\mathrm{L}^{2}(dx)}^{2} \leq \frac{1}{\Theta} \left\langle \mathsf{AT}\Pi f, f \right\rangle \\ \|\rho_{f}\|_{\mathrm{L}^{2}(dx)}^{2} &= \|\Pi f\|^{2} \leq \|u_{f}\|_{\mathrm{L}^{2}(dx)}^{2} + 2 \left\langle \mathsf{AT}\Pi f, f \right\rangle \end{aligned}$$

 $\begin{array}{c} {\rm Diffusions,\ rates,\ and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Q

Nash's inequality

$$\begin{split} \left\| \|u\|_{\mathrm{L}^{2}(dx)}^{2} &\leq \mathbb{C}_{\mathrm{Nash}} \|u\|_{\mathrm{L}^{1}(dx)}^{\frac{d}{d+2}} \|\nabla u\|_{\mathrm{L}^{2}(dx)}^{\frac{2d}{d+2}} \quad \forall u \in \mathrm{L}^{1} \cap \mathrm{H}^{1}(\mathbb{R}^{d}) \right\| \\ \mathrm{Use} \|\Pi f\|^{2} &\leq \Phi^{-1} \big(2 \left\langle \mathsf{A}\mathsf{T}\Pi f, f \right\rangle \big) \text{ with } \Phi^{-1}(y) := y + \left(\frac{y}{\mathsf{c}} \right)^{\frac{d}{d+2}} \text{ to get} \\ \|(1 - \Pi)f\|^{2} + 2 \left\langle \mathsf{A}\mathsf{T}\Pi f, f \right\rangle \geq \Phi(\|f\|^{2}) \geq \Phi\left(\frac{2}{1+\delta} \operatorname{H}[f] \right) \\ \mathrm{D}[f(t, \cdot)] &= -\frac{d}{dt} \mathrm{H}[f(t, \cdot)] \geq \mathsf{a} \Phi\left(\frac{2}{1+\delta} \operatorname{H}[f(t, \cdot)] \right) \\ \mathrm{As} \ s \to 0_{+}, \ \Phi(s) \sim s^{1+\frac{d}{2}} + \operatorname{Grönwall:} \ \mathrm{H}[f(t, \cdot)] \sim t^{-d/2} \text{ as } t \to +\infty \\ \mathrm{H}[f] := \frac{1}{2} \|f\|_{\mathrm{L}^{2}(dx \, d\gamma)}^{2} + \delta \left\langle \mathrm{A}f, f \right\rangle_{dx \, d\gamma} \end{split}$$

Theorem

There exists a constant C > 0 such that, for any $t \ge 0$

$$\|f(t,\cdot,\cdot)\|_{\mathrm{L}^{2}(dx\,d\gamma)}^{2} \leq C\left(\|f_{0}\|_{\mathrm{L}^{2}(dx\,d\gamma)}^{2} + \|f_{0}\|_{\mathrm{L}^{2}(d\gamma;\,\mathrm{L}^{1}(dx))}^{2}\right)(1+t)^{-\frac{d}{2}}$$

 $\begin{array}{c} {\rm Diffusions,\ rates\ and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ○○○

Very weak confinement: Caffarelli-Kohn-Nirenberg

$$\frac{\partial u}{\partial t} = \Delta_x u + \nabla_x \cdot (\nabla_x V \, u) = \nabla_x \left(e^{-V} \, \nabla_x \left(e^V \, u \right) \right)$$

Here $x \in \mathbb{R}^d$, $d \geq 3$, and V is a potential such that $e^{-V} \notin L^1(\mathbb{R}^d)$ corresponding to a *very weak confinement*

Two examples

 $V_1(x) = \gamma \log |x|$ and $V_2(x) = \gamma \log \langle x \rangle$

with $\gamma < d$ and $\langle x \rangle := \sqrt{1+|x|^2}$ for any $x \in \mathbb{R}^d$

In collaboration with Emeric Bouin and Christian Schmeiser

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0, 1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$
Inequality	Nash	Caffarelli-Kohn -Nirenberg	Weak Poincaré or Weighted Poincaré	Poincaré
Asymptotic behavior	$t^{-d/2}$ decay	$t^{-(d-\gamma)/2}$ decay	$t^{-\mu}$ or $t^{-\frac{k}{2(1-\alpha)}}$ convergence	$e^{-\lambda t}$ convergence

Table 2: $\partial_t u = \Delta u + \nabla \cdot (u \nabla V)$

Actually, this is more complicated, because the rate depends on the functional space (and of the range of the parameters)...

 $\begin{array}{c} {\rm Diffusions,\ rates,\ and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Using moments

Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

э

Theorem

Let
$$d \ge 1$$
, $0 < \gamma < d$, $V = V_1$ or $V = V_2$, and $u_0 \in L^1_+ \cap L^2(e^V)$
with $\||x|^k u_0\|_1 < \infty$ for some $k \ge \max\{2, \gamma/2\}$

$$\forall t \ge 0, \quad \|u(t, \cdot)\|^2_{\mathrm{L}^2(e^V dx)} \le \|u_0\|^2_{\mathrm{L}^2(e^V dx)} \ (1+c t)^{-\frac{d-\gamma}{2}}$$

for some c depending on d, γ , k, $\|u_0\|_{L^2(e^V dx)}$, $\|u_0\|_1$, and $\||x|^k u_0\|_1$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

Proof

Growth of the moment

$$M_k(t) := \int_{\mathbb{R}^d} |x|^k u \, dx$$

From the equation

$$M'_{k} = k \left(d + k - 2 - \gamma \right) \int_{\mathbb{R}^{d}} u \left| x \right|^{k-2} dx \le k \left(d + k - 2 - \gamma \right) M_{0}^{\frac{2}{k}} M_{k}^{1 - \frac{2}{k}}$$

then use the Caffarelli-Kohn-Nirenberg inequality

$$\int_{\mathbb{R}^d} |x|^{\gamma} \, u^2 \, dx \leq \mathcal{C} \left(\int_{\mathbb{R}^d} |x|^{-\gamma} \, \left| \nabla \left(|x|^{\gamma} u \right) \right|^2 dx \right)^a \left(\int_{\mathbb{R}^d} |x|^k \, |u| \, dx \right)^{2(1-a)}$$

Kinetic equations: decay and convergence rates

Very weak confinement: Caffarelli-Kohn-Nirenberg

∃ ⊳

• Kinetic Fokker-Planck equation, very weak confinement

Let us consider the kinetic equation

$$\partial_t f + v \cdot \nabla_x f - \nabla_x V \cdot \nabla_v f = \mathsf{L} f$$

where Lf is one of the two following collision operators (a) a Fokker-Planck operator

J. Dolbeault

$$\mathsf{L}f = \nabla_v \cdot \left(F \,\nabla_v \left(F^{-1} \, f \right) \right)$$

(b) a scattering collision operator

$$\mathsf{L}f = \int_{\mathbb{R}^d} \sigma(\cdot, v') \left(f(v') F(\cdot) - f(\cdot) F(v') \right) dv'$$

$$V(x) \sim \gamma \log |x|, \quad \gamma \in (0, d)$$

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0, 1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$, or \mathbb{T}^d Macro Poincaré
Micro Poincaré $F(v) = e^{-\langle v \rangle^{\beta}}, \beta \geq 1$	BDMMS: $t^{-d/2}$ decay	BDS: $t^{-(d-\gamma)/2}$ decay	Cao: e^{-t^b} , $b < 1, \beta = 2$ convergence	DMS, Mischler- Mouhot $e^{-\lambda t}$ convergence
$egin{aligned} F(v) &= e^{-\langle v angle^eta}, \ eta &\in (0,1) \end{aligned}$	BDLS: $t^{-\zeta}$, $\zeta = \min\left\{\frac{d}{2}, \frac{k}{\beta}\right\}$ decay			
$F(v) = \langle v \rangle^{-d-\beta}$	BDLS, fractional in progress			

Table 2: $\partial_t f + v \cdot \nabla_x f = F \nabla_v (F^{-1} \nabla_v f)$. Notation: $\langle v \rangle = \sqrt{1 + |v|^2}$

J. Dolbeault

 L^2 Hypocoercivity & inequalities

▲□▶ ▲圖▶ ▲国▶ ▲国▶

э

 $\begin{array}{c} {\rm Diffusions,\ rates,\ and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

• Decay rates

$$\forall (x,v) \in \mathbb{R}^d \times \mathbb{R}^d, \quad \mathcal{F}(x,v) = M(v) e^{-V(x)}, \quad M(v) = (2\pi)^{-\frac{d}{2}} e^{-\frac{1}{2} |v|^2}$$

(H1)
$$1 \le \sigma(v, v') \le \overline{\sigma}, \quad \forall v, v' \in \mathbb{R}^d, \text{ for some } \overline{\sigma} \ge 1$$

(H2) $\int_{\mathbb{R}^d} (\sigma(v, v') - \sigma(v', v)) M(v') dv' = 0 \quad \forall v \in \mathbb{R}^d$

+ Caffarelli-Kohn-Nirenberg inequalities

Theorem

Let $d \ge 1$, $V = V_2$ with $\gamma \in [0, d)$, $k > \max \{2, \gamma/2\}$ and $f_0 \in L^2(\mathcal{M}^{-1}dx \, dv)$ such that

$$\iint_{\mathbb{R}^d \times \mathbb{R}^d} \langle x \rangle^k f_0 \, dx \, dv + \iint_{\mathbb{R}^d \times \mathbb{R}^d} |v|^k f_0 \, dx \, dv < +\infty$$

If (H1)–(H2) hold, then there exists C > 0 such that

$$\forall t \ge 0, \quad \|f(t, \cdot, \cdot)\|^2_{L^2(\mathcal{M}^{-1}dx \, dv)} \le C \, (1+t)^{-\frac{d-\gamma}{2}}$$

 $\begin{array}{c} {\rm Diffusions,\ rates, and\ inequalities}\\ {\rm L}^2 \ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

Sub-exponential equilibria

 \triangleright We consider the *homogeneous Fokker-Planck equation*

$$\partial_t g = \nabla_v \cdot \left(\mathcal{M} \, \nabla_v \big(\mathcal{M}^{-1} \, g \big) \right)$$

associated with sub-exponential equilibria

$$\mathfrak{M}(v) = C_{\alpha} e^{-\langle v \rangle^{\alpha}}, \quad \alpha \in (0,1)$$

or the corresponding Ornstein-Uhlenbeck equation for $h = g/\mathcal{M}$ – decay rates based on the weak Poincaré inequality (Kavian, Mischler)

– decay rates based on a weighted Poincaré / Hardy-Poincaré inequality

In collaboration with Emeric Bouin, Laurent Lafleche and Christian Schmeiser

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0, 1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$
Inequality	Nash	Caffarelli-Kohn -Nirenberg	Weak Poincaré or Weighted Poincaré	Poincaré
Asymptotic behavior	$t^{-d/2}$ decay	$t^{-(d-\gamma)/2}$ decay	$t^{-\mu}$ or $t^{-\frac{k}{2(1-\alpha)}}$ convergence	$e^{-\lambda t}$ convergence

Table 3: $\partial_t u = \Delta u + \nabla \cdot (u \nabla V)$

イロト イヨト イヨト イヨト

æ

Diffusions, rates and inequalities L² Hypocoercivity Kinetic equations: decay and convergence rates Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

Weak Poincaré inequality

$$\int_{\mathbb{R}^d} \left| h - \widetilde{h} \right|^2 \mathrm{d}\xi \le \mathfrak{C}_{\alpha,\tau} \left(\int_{\mathbb{R}^d} |\nabla h|^2 \, \mathrm{d}\xi \right)^{\frac{\tau}{1+\tau}} \left\| h - \widetilde{h} \right\|_{\mathrm{L}^{\infty}(\mathbb{R}^d)}^{\frac{2}{1+\tau}}$$

for some explicit positive constant $\mathcal{C}_{\alpha,\tau}, \widetilde{h} := \int_{\mathbb{R}^d} h \, \mathrm{d}\xi$. Using

$$\frac{d}{dt} \int_{\mathbb{R}^d} \left| h(t, \cdot) - \widetilde{h} \right|^2 \mathrm{d}\xi = -2 \int_{\mathbb{R}^d} |\nabla_v h|^2 \,\mathrm{d}\xi$$

where $h = g/\mathcal{M}$ and $d\xi = \mathcal{M} dv + H\ddot{o}$ lder's inequality

$$\int_{\mathbb{R}^d} \left| h - \widetilde{h} \right|^2 \mathrm{d}\xi \le \left(\int_{\mathbb{R}^d} \left| h - \widetilde{h} \right|^2 \langle v \rangle^{-\beta} \, \mathrm{d}\xi \right)^{\frac{\tau}{\tau+1}} \left(\int_{\mathbb{R}^d} \left\| h - \widetilde{h} \right\|_{\mathrm{L}^{\infty}(\mathbb{R}^d)}^2 \langle v \rangle^{\beta \tau} \, \mathrm{d}\xi \right)^{\frac{1}{1+\tau}}$$

with $(\tau + 1)/\tau = \beta/\eta$, then for with $\mathcal{M} = \sup_{s \in (0,t)} \left\| h(s, \cdot) - \tilde{h} \right\|_{L^{\infty}(\mathbb{R}^d)}^{2/\tau}$

$$\int_{\mathbb{R}^d} \left| h(t,\cdot) - \widetilde{h} \right|^2 \mathrm{d}\xi \le \left(\left(\int_{\mathbb{R}^d} \left| h(0,\cdot) - \widetilde{h} \right|^2 \mathrm{d}\xi \right)^{-\frac{1}{\tau}} + \frac{2\tau^{-1}}{\mathcal{C}_{\alpha,\tau}^{1+1/\tau} \mathcal{M}} t \right)^{-\tau}$$

 $\begin{array}{c} {\rm Diffusions,\ rates,\ and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

э

Weighted Poincaré inequality

There exists a constant $\mathcal{C} > 0$ such that

with
$$\beta = 2 (1 - \alpha)$$
, $\tilde{h} := \int_{\mathbb{R}^d} h F \, \mathrm{d}v = \mathcal{C} \int_{\mathbb{R}^d} \left| h - \tilde{h} \right|^2 \langle v \rangle^{-\beta} F \, \mathrm{d}v \right|$
 $\alpha \in (0, 1)$ and $F(v) = C_{\alpha} e^{-\langle v \rangle^{\alpha}}$ and

Written in terms of $g = h \mathcal{M}$, the inequality becomes

$$\frac{\left|\int_{\mathbb{R}^d} \left|\nabla_v \left(\mathcal{M}^{-1} g\right)\right|^2 \,\mathcal{M}^2 \,\mathrm{d}\mu \ge \mathfrak{C} \int_{\mathbb{R}^d} \left|g - \overline{g}\right|^2 \,\langle v \rangle^{-2\,(1-\alpha)} \,\mathrm{d}\mu}{\mathrm{d}\mu = \mathcal{M} \,\mathrm{d}v \text{ and } \overline{g} := \left(\int_{\mathbb{R}^d} g \,\mathrm{d}v\right) \mathcal{M}}$$

イロト イポト イヨト イヨト

$$\begin{aligned} \frac{d}{dt} \int_{\mathbb{R}^d} |h(t,v)|^2 \langle v \rangle^k \,\mathcal{M} \,\mathrm{d}v + 2 \int_{\mathbb{R}^d} |\nabla_v h|^2 \langle v \rangle^k \,\mathcal{M} \,\mathrm{d}v \\ &= -\int_{\mathbb{R}^d} \nabla_v (h^2) \cdot \left(\nabla_v \langle v \rangle^k \right) \mathcal{M} \,\mathrm{d}v \end{aligned}$$

With $\ell = 2 - \alpha$, $a \in \mathbb{R}$, $b \in (0, +\infty)$

$$\nabla_{v} \cdot \left(\mathfrak{M} \, \nabla_{v} \langle v \rangle^{k} \right) = \frac{k}{\langle v \rangle^{4}} \left(d + (k + d - 2) \, |v|^{2} - \alpha \, \langle v \rangle^{\alpha} \, |v|^{2} \right) \le a - b \, \langle v \rangle^{-\ell}$$

Proposition (Weighted L^2 norm)

There exists a constant $\mathcal{K}_k > 0$ such that, if h solves the Ornstein-Uhlenbeck equation, then

$$\forall t \ge 0 \quad \|h(t, \cdot)\|_{\mathrm{L}^{2}(\langle v \rangle^{k} \mathrm{d}\xi)} \le \mathfrak{K}_{k} \|h^{\mathrm{in}}\|_{\mathrm{L}^{2}(\langle v \rangle^{k} \mathrm{d}\xi)}$$

$$\frac{d}{dt} \int_{\mathbb{R}^d} \left| h(t, \cdot) - \widetilde{h} \right|^2 \mathrm{d}\xi = -2 \int_{\mathbb{R}^d} |\nabla_v h|^2 \, \mathrm{d}\xi \le -2 \, \mathfrak{C} \int_{\mathbb{R}^d} \left| h - \widetilde{h} \right|^2 \, \langle v \rangle^{-\beta} \, \mathrm{d}\xi$$

+ Hölder

Theorem

Assume that $\alpha \in (0,1)$. Let $g^{\mathrm{in}} \in L^1_+(\mathrm{d}\mu) \cap L^2(\langle v \rangle^k \mathrm{d}\mu)$ for some k > 0and consider the solution g to the homogeneous Fokker-Planck equation with initial datum g^{in} . If $\overline{g} = (\int_{\mathbb{R}^d} g \, \mathrm{d}v) \mathcal{M}$, then

$$\int_{\mathbb{R}^d} |g(t,\cdot) - \overline{g}|^2 \,\mathrm{d}\mu \le \left(\left(\int_{\mathbb{R}^d} \left| g^{\mathrm{in}} - \overline{g} \right|^2 \mathrm{d}\mu \right)^{-\beta/k} + \frac{2\beta \,\mathcal{C}}{k \,\mathcal{K}^{\beta/k}} \, t \right)^{-k/\beta}$$
with $\beta = 2 \,(1-\alpha)$ and $\mathcal{K} := \mathcal{K}_k^2 \, \left\| g^{\mathrm{in}} \right\|_{\mathrm{L}^2(\langle v \rangle^k \,\mathrm{d}\mu)}^2 + \Theta_k \left(\int_{\mathbb{R}^d} g^{\mathrm{in}} \,\mathrm{d}v \right)^2$

イロト イポト イヨト イヨト

 $\begin{array}{c} {\rm Diffusions,\ rates,\ and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

(日)

• Kinetic Fokker-Planck, no confinement and sub-exponential local equilibria

• the *Fokker-Planck* operator

$$\mathsf{L}_1 f = \nabla_v \cdot \left(\mathfrak{M} \, \nabla_v \big(\mathfrak{M}^{-1} \, f \big) \right)$$

• the *scattering* collision operator

$$\mathsf{L}_{2}f = \int_{\mathbb{R}^{d}} \sigma(\cdot, v') \left(f(v') \,\mathcal{M}(\cdot) - f(\cdot) \,\mathcal{M}(v') \right) \mathrm{d}v'$$

under assumptions (H1)–(H2) $V=0 \quad F(v)=e^{-\langle v\rangle^\beta} \quad \beta\in(0,1)$

Q		

Potential	V = 0	$V(x) = \gamma \log x $ $\gamma < d$	$V(x) = x ^{\alpha}$ $\alpha \in (0, 1)$	$V(x) = x ^{\alpha}$ $\alpha \ge 1$, or \mathbb{T}^d Macro Poincaré
Micro Poincaré $F(v) = e^{-\langle v \rangle^{\beta}}, \beta \geq 1$	BDMMS: $t^{-d/2}$ decay	BDS: $t^{-(d-\gamma)/2}$ decay	Cao: e^{-t^b} , $b < 1, \beta = 2$ convergence	DMS, Mischler- Mouhot $e^{-\lambda t}$ convergence
$\begin{split} F(v) &= e^{-\langle v \rangle^{\beta}}, \\ \beta &\in (0,1) \end{split}$	BDLS: $t^{-\zeta}$, $\zeta = \min\left\{\frac{d}{2}, \frac{k}{\beta}\right\}$ decay			
$F(v) = \langle v \rangle^{-d-\beta}$	BDLS, fractional in progress			

Table 3: $\partial_t f + v \cdot \nabla_x f = F \nabla_v (F^{-1} \nabla_v f)$. Notation: $\langle v \rangle = \sqrt{1 + |v|^2}$

J. Dolbeault

 L^2 Hypocoercivity & inequalities

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\begin{array}{c} {\rm Diffusions,\ rates, and\ inequalities}\\ {\rm L}^2\ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

・ロト ・四ト ・ヨト ・

• The decay rate with sub-exponential local equilibria

Theorem

Let $\alpha \in (0,1)$, $\beta > 0$, k > 0 and let $\mathfrak{M}(v) = C_{\alpha} e^{-\langle v \rangle^{\alpha}}$. Assume that either $\mathsf{L} = \mathsf{L}_1$ and $\beta = 2(1-\alpha)$, or $\mathsf{L} = \mathsf{L}_2$ + Assumptions. There exists a numerical constant $\mathfrak{C} > 0$ such that any solution f of

$$\partial_t f + v \cdot \nabla_x f = \mathsf{L}f, \quad f(0, \cdot, \cdot) = f^{\mathrm{in}} \in \mathrm{L}^2(\langle v \rangle^k \mathrm{d}x \, \mathrm{d}\mu) \cap \mathrm{L}^1_+(\mathrm{d}x \, \mathrm{d}v)$$

satisfies

$$\forall t \ge 0, \quad \|f(t, \cdot, \cdot)\|^2 = \iint_{\mathbb{R}^d \times \mathbb{R}^d} \left| f(t, x, v) \right|^2 \mathrm{d}x \,\mathrm{d}\mu \le \mathfrak{C} \,\frac{\|f^{\mathrm{in}}\|^2}{(1 + \kappa \, t)^{\zeta}}$$

with rate $\zeta = \min \{d/2, k/\beta\}$, for some positive κ which is an explicit function of the two quotients, $\|f^{\text{in}}\| / \|f^{\text{in}}\|_k$ and $\|f^{\text{in}}\|_{L^1(\mathrm{d}x\,\mathrm{d}v)} / \|f^{\text{in}}\|$

 $\begin{array}{c} {\rm Diffusions,\ rates \ and\ inequalities}\\ {\rm L}^2 \ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

• Proof (1/2)

$$\begin{split} \mathsf{D}[f] &:= - \langle \mathsf{L}f, f \rangle + \delta \langle \mathsf{A}\mathsf{T}\mathsf{\Pi}f, \mathsf{\Pi}f \rangle \\ &+ \delta \langle \mathsf{A}\mathsf{T}(\mathrm{Id} - \mathsf{\Pi})f, \mathsf{\Pi}f \rangle - \delta \langle \mathsf{T}\mathsf{A}(\mathrm{Id} - \mathsf{\Pi})f, (\mathrm{Id} - \mathsf{\Pi})f \rangle \\ &- \delta \langle \mathsf{A}\mathsf{L}(\mathrm{Id} - \mathsf{\Pi})f, \mathsf{\Pi}f \rangle \end{split}$$

• microscopic coercivity. If $L = L_1$, we rely on the weighted Poincaré inequality

$$\left| \langle \mathsf{L}f, f \rangle \leq - \mathfrak{C} \| (\mathrm{Id} - \Pi)f \|_{-\beta}^{2} \right|$$

If $L = L_2$, we assume that there exists a constant $\mathcal{C} > 0$ such that

$$\int_{\mathbb{R}^d} \left| h - \widetilde{h} \right|^2 \langle v \rangle^{-\beta} \, \mathfrak{M} \, \mathrm{d} v \leq \mathfrak{C} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \sigma(v, v') \left| h' - h \right|^2 \mathfrak{M} \, \mathfrak{M}' \, \mathrm{d} v \, \mathrm{d} v'$$

• Weighted L² norms. Let k > 0, $f^{in} \in L^2(\langle v \rangle^k \, dx \, d\mu)$ a solution $\exists \mathcal{K}_k > 1$ such that

$$\forall t \ge 0, \quad \|f(t, \cdot, \cdot)\|_{\mathrm{L}^2(\langle v \rangle^k \, \mathrm{d}x \, \mathrm{d}\mu)} \le \mathcal{K}_k \, \left\|f^{\mathrm{in}}\right\|_{\mathrm{L}^2(\langle v \rangle^k \, \mathrm{d}x \, \mathrm{d}\mu)}$$

 $\begin{array}{c} {\rm Diffusions,\ rates, and\ inequalities}\\ {\rm L}^2 \ {\rm Hypocoercivity}\\ {\rm Kinetic\ equations:\ decay\ and\ convergence\ rates} \end{array}$

Without confinement: Nash inequality Very weak confinement: Caffarelli-Kohn-Nirenberg Sub-exponential local equilibria

• Proof (2/2)

$$\mathsf{H}_{\delta}[f] := \frac{1}{2} \|f\|^2 + \delta \langle \mathsf{A}f, f \rangle, \quad \frac{d}{dt} \mathsf{H}_{\delta}[f] = -\mathsf{D}[f]$$

• There exists $\kappa > 0$ such that $\forall f \in L^2 \left(\langle v \rangle^{-\beta} \, \mathrm{d}x \, \mathrm{d}\mu \right) \cap L^1(\mathrm{d}x \, \mathrm{d}v),$ $\mathsf{D}[f] \ge \kappa \left(\| (\mathrm{Id} - \Pi)f \|_{-\beta}^2 + \langle \mathsf{AT}\Pi f, \Pi f \rangle \right)$

• For any $f \in L^1(dx d\mu) \cap L^2(dx dv)$,

 $\langle \mathsf{AT\Pi}f, \mathsf{\Pi}f \rangle \ge \Phi\left(\|\mathsf{\Pi}f\|^2\right)$

$$\Phi^{-1}(y) := 2y + \left(\frac{y}{\mathsf{c}}\right)^{\frac{d}{d+2}}, \quad \mathsf{c} = \Theta \, \mathcal{C}_{\mathrm{Nash}}^{-\frac{d+2}{d}} \, \|f\|_{\mathrm{L}^{1}(\mathrm{d}x \, \mathrm{d}v)}^{-\frac{4}{d}}$$

 $\ \, {\rm L} \ \, {\rm For \ any} \ \, f\in {\rm L}^2(\langle v\rangle^k{\rm d} x\,{\rm d} \mu)\cap {\rm L}^1({\rm d} x\,{\rm d} v),$

$$\begin{aligned} \left\| (\mathrm{Id} - \Pi) f \right\|_{-\beta}^{2} &\geq \Psi \left(\left\| (\mathrm{Id} - \Pi) f \right\|^{2} \right) \\ \Psi(y) &:= C_{0} y^{1+\beta/k}, \quad C_{0} := \left(\mathcal{K}_{k} \left(1 + \Theta_{k} \right) \left\| f^{\mathrm{in}} \right\|_{k} \right)^{-\frac{2\beta}{k}} \\ &\leq 0 > \langle \mathfrak{S} \rangle \leq 2 > \langle \mathfrak{S} \rangle > \langle$$

J. Dolbeault

L² Hypocoercivity & inequalities

3

More references

• E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot, and C. Schmeiser. Hypocoercivity without confinement. Pure and Applied Analysis, 2 (2): 203-232, May 2020. Nash

• E. Bouin, J. Dolbeault, and C. Schmeiser. Diffusion and kinetic transport with very weak confinement. Kinetic & Related Models, 13 (2): 345-371, 2020. Weighted Nash / Caffarelli-Kohn-Nirenberg inequalities

• E. Bouin, J. Dolbeault, and C. Schmeiser. A variational proof of Nash's inequality. Atti della Accademia Nazionale dei Lincei. Rendiconti Lincei. Matematica e Applicazioni, 31: 211-223, April 2020. Nash

• E. Bouin, J. Dolbeault, L. Lafleche, and C. Schmeiser.

Hypocoercivity and sub-exponential local equilibria. Monatshefte für Mathematik, November 2020. Weighted Poincaré inequalities

• E. Bouin, J. Dolbeault, L. Lafleche, and C. Schmeiser. Fractional hypocoercivity. arXiv: 1911.11020 Weighted fractional Poincaré inequalities

These slides can be found at

 $\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Lectures/ $$ $$ $$ $$ $$ $$ $$ $$ Lectures $$$

The papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Preprints/ > Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !