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Fokker-Planck equations and Poincaré inequalities
If u ≥ 0 is a solution of the Fokker-Planck equation

∂u

∂t
= ∆u+∇ · (u∇V ) in Rd

with initial datum u0 ∈ L1(Rd) (of mass 1), if µ = e−V is the density
of a probability measure such that the Poincaré inequality∫

Rd
|u− ū|2 dµ ≤ 1

λ

∫
Rd
|∇u|2 dµ ∀u ∈ H1(Rd, dµ)

then u = u/µ solves the Ornstein-Uhlenbeck equation
∂u

∂t
= ∆u−∇u · ∇V

and ‖u(t, ·)‖L1(Rd,dµ) = ‖u(t, ·)‖L1(Rd,dµ) = ‖u0‖L1(Rd,dµ) = ū,
d

dt
‖u(t, ·)−ū‖2

L2(Rd,dµ) = − 2 ‖∇u(t, ·)‖2
L2(Rd,dµ) ≤ −2λ ‖u(t, ·)−ū‖2

L2(Rd,dµ)

and
∫
Rd
|u(t, ·)− ū|2 dµ ≤

∫
Rd
|u0 − ū|2 dµ e−2λ t ∀ t ≥ 0
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Proofs of Poincaré inequalities
B Compactness methods
B Direct computation of the spectral gap (e.g. when V is radial)
B Bakry-Emery or carré du champ method: prove

d

dt
‖∇u(t, ·)‖2

L2(Rd,dµ) ≤ −2λ ‖∇u(t, ·)‖2
L2(Rd,dµ)

B Equivalence between Fokker-Planck and Schrödinger spectral
estimates: with v = eV/2 u, the Poincaré inequality is equivalent to∫

Rd

(
|∇v|2 +W |v|2

)
dx ≥ λ

∫
Rd
|v|2 dx

then use Persson’s lemma

0 < inf σess(−∆ +W ) = lim
R→+∞

inf
supp(v)⊂Bc

R

∫
Rd
(
|∇v|2 +W |v|2

)
dx∫

Rd |v|2 dx

B Constructive method: the IMS truncation method
B Lyapunov criterion
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The decay rate of the heat equation

If u is a solution of the heat equation

∂u

∂t
= ∆u in Rd

with initial datum u0 ∈ L1(Rd), then

‖u(t, ·)‖L1(Rd,dx) = ‖u0‖L1(Rd,dx)

d

dt
‖u(t, ·)‖2

L2(Rd,dx) = − 2 ‖∇u(t, ·)‖2
L2(Rd,dx) ≤ −C ‖u(t, ·)‖2+ 4

d

L2(Rd,dx)

by Nash’s inequality

‖u‖2+ 4
d

2 ≤ CNash ‖u‖
4
d
1 ‖∇u‖

2
2

and so
‖u(t, ·)‖L2(Rd,dx) ≤ C ‖u0‖L2(Rd,dx) (1 + t)−d/2
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Proofs of Nash’s inequality

B Nash’s proof (Stein): use Fourier variables, optimize on R > 0

‖u‖2
2 =

∫
Rd
|û(ξ)|2 dξ ≤

∫
|ξ|<R

‖û‖2
∞ dξ︸ ︷︷ ︸

=ωd Rd ‖u‖2
1

+ 1
R2

∫
Rd
|ξ|2 |û(ξ)|2 dξ︸ ︷︷ ︸

=R−2‖∇u‖2
2

B The optimal constant is given by the spectral gap of the Laplace
operator on a ball with Neumann boundary conditions (Carlen, Loss
91)
B (Bouin, JD, Schmeiser) As a limit case of the Gagliardo-Nirenberg
inequalities

‖u‖2 ≤ CGN ‖∇u‖θ2 ‖u‖
1−θ
p

as p→ 1+. Up to normalizations, optimal functions solve
−∆u = u− up−1, are radial and have compact support if p < 2
(Pucci, Serrin, Zou 99) so that v = u− 1 solves −∆v = v with
Neumann boundary conditions on its support (a ball)
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L2 Hypocoercivity

B Abstract statement, diffusion limit

B Mode-by-mode analysis in Fourier variables

B Refined decay rates in the whole space

Collaboration with C. Mouhot and C. Schmeiser
+ E. Bouin, S. Mischler
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An abstract evolution equation
Let us consider the equation

dF

dt
+ TF = LF

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (H, 〈·, ·〉)
∗ denotes the adjoint with respect to 〈·, ·〉

Π is the orthogonal projection onto the null space of L

The estimate
1
2
d

dt
‖F‖2 = 〈LF, F 〉 ≤ −λm ‖(1−Π)F‖2

is not enough to conclude that ‖F (t, ·)‖2 decays exponentially
⇐ microscopic coercivity

J. Dolbeault L2 Hypocoercivity & inequalities



Diffusions, rates and inequalities
L2 Hypocoercivity

Kinetic equations: decay and convergence rates

An abstract hypocoercivity result
Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space

Formal macroscopic / diffusion limit
F = F (t, x, v), T = v · ∇x, L good collision operator. Scaled evolution
equation

ε
dF

dt
+ TF = 1

ε
LF

on the Hilbert space H. Fε = F0 + ε F1 + ε2 F2 + O(ε3) as ε→ 0+

ε−1 : LF0 = 0 ,
ε0 : TF0 = LF1 ,

ε1 : dF0
dt + TF1 = LF2

The first equation reads as u = F0 = ΠF0
The second equation is simply solved by F1 = − (TΠ)F0
After projection, the third equation is

d
dt (ΠF0)− ΠT (TΠ)F0 = ΠLF2 = 0

∂tu+ (TΠ)∗ (TΠ)u = 0

is such that d
dt‖u‖

2 = − 2 ‖(TΠ)u‖2 ≤ − 2λM ‖u‖2

⇐ Macroscopic coercivity
J. Dolbeault L2 Hypocoercivity & inequalities
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The macro part and the Poincaré inequality
B Free transport operator: TF = v · ∇xF
If F0(x, v) = u(x)M(v) with M(v) = (2π)−d/2 e−|v|

2/2 then
(TΠ)∗ (TΠ)F0 = (−∆xu)M

and we obtain the heat equation (e.g. on Td)

∂tu = ∆u

B With an external potential V so that TF = v · ∇xF −∇xV · ∇vF
we obtain the Fokker-Planck equation

∂tu = ∆u+∇ · (u∇V )

The operator A :=
(
1 + (TΠ)∗TΠ

)−1(TΠ)∗ is such that

〈ATΠF, F 〉 ≥ λM
1 + λM

‖ΠF‖2

if the Poincaré inequality
∫
Rd |∇u|

2 dµ ≥ λM
∫
Rd |u− ū|

2 dµ holds
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The assumptions in the compact case

λm, λM , and CM are positive constants such that, for any F ∈ H

B microscopic coercivity:

−〈LF, F 〉 ≥ λm ‖(1−Π)F‖2 (H1)

B macroscopic coercivity:

‖TΠF‖2 ≥ λM ‖ΠF‖2 (H2)

B parabolic macroscopic dynamics:

ΠTΠF = 0 (H3)

B bounded auxiliary operators:

‖AT(1−Π)F‖+ ‖ALF‖ ≤ CM ‖(1−Π)F‖ (H4)
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Equivalence and entropy decay
For some δ > 0 to be chosen, the L2 entropy / Lyapunov functional is
defined by

H[F ] := 1
2 ‖F‖

2 + δRe〈AF, F 〉
B norm equivalence of H[F ] and ‖F‖2

2− δ
4 ‖F‖

2 ≤ H[F ] ≤ 2+δ
4 ‖F‖

2

Entropy decay: d
dtH[F ] = −D[F ]

B entropy decay rate: for any δ > 0 small enough and λ = λ(δ)

D[F ] ≥ λH[F ]

Theorem
Under (H1)–(H4), for any t ≥ 0,

H[F (t, ·)] ≤ H[F0] e−λ t

‖F (t, ·)‖2 ≤ C ‖F0‖2 e−λ t with C = 2+δ
2−δ
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Basic examples

We consider the Cauchy problem

∂tf + v · ∇xf = Lf , f(0, x, v) = f0(x, v)

L is the Fokker-Planck operator L1 or the linear BGK operator L2

L1f := ∆vf +∇v · (v f) and L2f := ρf M− f

M(v) = e−
1
2 |v|

2

(2π)d/2 is the normalized Gaussian function

ρf :=
∫
Rd f dv is the spatial density

dγ := γ(v) dv where γ := 1
M

‖f‖2
L2(dx dγ) :=

∫∫
X×Rd

|f(x, v)|2 dx dγ

where either X = Rd or X = Td
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Fourier variables: mode-by-mode hypocoercivity
Let us consider the Fourier transform in x, denote by ξ ∈ Rd the
Fourier variable, so that F = f̂ solves

∂tF + TF = LF , F (0, ξ, v) = f̂0(ξ, v) , TF = i (v · ξ)F
Goal: apply the abstract method with ξ considered as a parameter

H = L2 (dγ) , ‖F‖2 =
∫
Rd
|F |2 dγ , ΠF = M

∫
Rd
F dv = M ρF

The operator A is now defined as

(AF )(v) = − i ξ
1 + |ξ|2 ·

∫
Rd
wF (w) dwM(v)

and, with X := ‖(1−Π)F‖ and Y := ‖ΠF‖, we have that

|Re〈AF, F 〉| ≤ |ξ|
1 + |ξ|2 X Y , ‖F‖2 = X2 + Y 2

1
2

(
1− δ |ξ|

1 + |ξ|2

)
(X2 + Y 2) ≤ H[F ] ≤ 1

2

(
1 + δ |ξ|

1 + |ξ|2

)
(X2 + Y 2)
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Entropy production

−〈LF, F 〉+ δ 〈ATΠF, F 〉 ≥ X2 + δ |ξ|2

1 + |ξ|2 Y
2

D[F ] = −〈LF, F 〉+ δ 〈ATΠF, F 〉+ δ (...)

≥ (λm − δ)X2 + δ λM
1 + λM

Y 2 − δ CM X Y

with λm = 1 , ΛM = |ξ|2 =: s2 , CM =
s
(
1 +
√

3 s
)

1 + s2

D[F ]− λH[F ]

≥
(

1− δ s2

1+s2 − λ
2

)
X2 − δ s

1+s2

(
1 +
√

3 s+ λ
)
X Y +

(
δ s2

1+s2 − λ
2

)
Y 2

is (for any s = |ξ| > 0) a nonnegative quadratic form of X and Y iff...
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Figure: Horizontal axis: δ, vertical axis: λ. Admissible region: grey
triangle. Negative discriminant: dark grey area, shown here for s = 5
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Comments
B Not much originality so far, cf. (JD, Mouhot, Schmeiser) and
(Bouin, JD, Mischler, Mouhot, Schmeiser)
B Last curves are part of a joint work (Arnold, JD, Schmeiser,
Wöhrer) in progress intended to compare L2 hypocoercivity methods
with a twist induced by the analysis of the diffusion limit, i.e., given
by δRe〈AF, F 〉, and results based on Lyapunov matrix inequalities:
cf. Anton’s lecture of yesterday
B The methods are very close with the Lyapunov matrix inequality
based on the deformation matrix P , the twisted Euclidean norm
|F‖2

P := 〈F, P F 〉 and the computation

d

dt
‖F‖2

P = −〈F, (C∗P + PC)F 〉 ≤ − 2µ ‖F‖2
P

Estimate even coincide in some cases (Goldstein-Taylor model)
B Orders of magnitude are ok (estimate of the rate λ)
B Estimates are compatible with diffusion limits and optimal in some
asymptotic regimes
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Decay in the whole space

If s 7→ λ(s) is a positive non-decreasing bounded function on R+, let

hλ(M,R, s) := λ(R)
(
ωdR

dM2 − s
)
, λ∗(M, s) := −min

R>0
hλ(M,R, s)

ψλ,M (s) := −
∫ s

1

dz

λ∗(M, z)

Lemma

If lims→0+ ψλ,µ(s) = +∞ and if u ∈ C(R+,L1 ∩ L2(dx))is such that

‖u(t, ·)‖L1(dx) ≤M , |û(t, ξ)|2 ≤ |û(0, ξ)|2 e− 2λ(|ξ|) t ∀ (t, ξ)

then

‖u(t, ·)‖2
L2(dx) ≤ ψ

−1
λ,M

(
2 t+ ψλ,M

(
‖u(0, ·)‖2

L2(dx)

))
∀ t ∈ R+

J. Dolbeault L2 Hypocoercivity & inequalities
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Lemma

Under the previous assumptions, if for some bounded continuous
function C with C(s) ≥ 1 for any s > 0,

|û(t, ξ)|2 ≤ C(|ξ|) |û(0, ξ)|2 e− 2λ(|ξ|) t ∀ (t, ξ)

then
‖u(t, ·)‖2

L2(dx) ≤ ΨM,Q(t)

where M := ‖u0‖L1(dx), Q := ‖u(0, ·)‖L2(dx) and ΨM,Q(t)is defined as

inf
R>0

(∫ R

0
C(s) e− 2λ(s) t sd−1 ds dωdM

2 + sup
s≥R

C(s) e− 2λ(R) tQ2

)

J. Dolbeault L2 Hypocoercivity & inequalities



Diffusions, rates and inequalities
L2 Hypocoercivity

Kinetic equations: decay and convergence rates

An abstract hypocoercivity result
Fourier variables and mode-by-mode analysis
Refined decay rates in the whole space

Theorem

Assume that f0 ∈ L2(Rd × Rd, dx dγ) ∩ L2(Rd, dγ; L1(Rd, dx)
)
and

L = L1 or L = L2, then we have the estimate

‖f(t, ·, ·)‖2
L2(Rd×Rd,dx dγ) ≤ (2π)−d ΨM,Q(t)

using C(s) = 2+δ(s)
2−δ(s)

M = ‖f0‖L2
(
Rd,dγ;L1(Rd,dx)

) and Q = ‖f0‖L2(Rd×Rd,dx dγ)

Here λ and δ are estimates arising from the hypocoercivity method
and they must satisfy some conditions (which are fulfilled in the two
examples)
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Decay and convergence rates for
kinetic equations

What can we do when at least one of the coercivity conditions is
missing ? microscopic coercivity (H1) or macroscopic coercivity (H2)

In collaboration with Emeric Bouin, Stéphane Mischler, Clément
Mouhot, Christian Schmeiser + Laurent Lafleche
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The global picture: from diffusive to kinetic
Depending on the local equilibria and on the external potential

(H1) and (H2) (which are Poincaré type inequalities) can be replaced
by other functional inequalities:
B microscopic coercivity (H1)

−〈LF, F 〉 ≥ λm ‖(1−Π)F‖2

=⇒ weak Poincaré inequalities or
Hardy-Poincaré inequalities

B macroscopic coercivity (H2)

‖TΠF‖2 ≥ λM ‖ΠF‖2

=⇒ Nash inequality, weighted Nash or
Caffarelli-Kohn-Nirenberg inequalities

This can be done at the level of the diffusion equation
(homogeneous case) or at the level of the kinetic equation
(non-homogeneous case)

J. Dolbeault L2 Hypocoercivity & inequalities
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Diffusion (Fokker-Planck) equations

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1

Inequality Nash
Ca↵arelli-Kohn

-Nirenberg

Weak Poincaré
or

Weighted Poincaré
Poincaré

Asymptotic
behavior

t�d/2

decay
t�(d��)/2

decay
t�µ or t

� k
2 (1�↵)

convergence

e�� t

convergence

Table 1: @tu = �u + r · (urV )

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1

Inequality Nash
Ca↵arelli-Kohn

-Nirenberg

Weak Poincaré
or

Weighted Poincaré
Poincaré

Asymptotic
behavior

t�d/2

decay
t�(d��)/2

decay
t�µ or t

� k
2 (1�↵)

convergence

e�� t

convergence

Table 2: @tu = �u + r · (urV )

1
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Kinetic Fokker-Planck equations
B = Bouin, L = Lafleche, M = Mouhot, MM = Mischler, Mouhot
S = Schmeiser

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1, or Td

Macro Poincaré

Micro Poincaré
F (v) = e�hvi� , � � 1

BDMMS:
t�d/2

decay

BDS: t�(d��)/2

decay

Cao: e�tb ,
b < 1, � = 2
convergence

DMS,
Mischler-
Mouhot

e��t

convergence

F (v) = e�hvi� ,
� 2 (0, 1)

BDLS: t�⇣ ,
⇣ =

min
�

d
2 , k

�}
decay

F (v) = hvi�d��
BDLS,

fractional
in progress

Table 1: @tf + v · rxf = F rv

�
F�1 rvf

�
. Notation: hvi =

p
1 + |v|2

1
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A result based on Nash’s inequality
∂tf + v · ∇xf = Lf , (t, x, v) ∈ R+ × Rd × Rd

D[f ] = − d

dt
H[f ] ≥ a

(
‖(1− Π)f‖2 + 2 〈ATΠf, f〉

)
We observe that

A∗f = TΠ (1 + (TΠ)∗TΠ)−1
f

= T (1 + (TΠ)∗TΠ)−1 Πf = M Tuf = vM · ∇xuf

if uf is the solution in H1(Rd) of uf − Θ ∆uf = ρf , and

‖uf (t, ·)‖L1(dx) = ‖ρf (t, ·)‖L1(dx) = ‖f0‖L1(dx dv)

‖uf‖2
L2(dx) ≤ ‖ρf‖

2
L2(dx) , ‖∇xuf‖2

L2(dx) ≤
1
Θ 〈ATΠf, f〉

‖ρf‖2
L2(dx) = ‖Πf‖2 ≤ ‖uf‖2

L2(dx) + 2 〈ATΠf, f〉

J. Dolbeault L2 Hypocoercivity & inequalities
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Nash’s inequality

‖u‖2
L2(dx) ≤ CNash ‖u‖

4
d+2
L1(dx) ‖∇u‖

2 d
d+2
L2(dx) ∀u ∈ L1 ∩H1(Rd)

Use ‖Πf‖2 ≤ Φ−1(2 〈ATΠf, f〉
)
with Φ−1(y) := y +

(
y
c
) d
d+2 to get

‖(1− Π)f‖2 + 2 〈ATΠf, f〉 ≥ Φ(‖f‖2) ≥ Φ
( 2

1+δ H[f ]
)

D[f(t, ·)] = − d

dt
H[f(t, ·)] ≥ a Φ

( 2
1+δ H[f(t, ·)]

)
As s→ 0+, Φ(s) ∼ s1+ d

2 + Grönwall: H[f(t, ·)] ∼ t−d/2 as t→ +∞

H[f ] := 1
2 ‖f‖

2
L2(dx dγ) + δ 〈Af, f〉dx dγ

Theorem
There exists a constant C > 0 such that, for any t ≥ 0

‖f(t, ·, ·)‖2
L2(dx dγ) ≤ C

(
‖f0‖2

L2(dx dγ) + ‖f0‖2
L2(dγ; L1(dx))

)
(1 + t)− d2
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Sub-exponential local equilibria

Very weak confinement: Caffarelli-Kohn-Nirenberg

∂u

∂t
= ∆xu+∇x · (∇xV u) = ∇x

(
e−V ∇x

(
eV u

))
Here x ∈ Rd, d ≥ 3, and V is a potential such that e−V 6∈ L1(Rd)
corresponding to a very weak confinement

Two examples

V1(x) = γ log |x| and V2(x) = γ log〈x〉

with γ < d and 〈x〉 :=
√

1 + |x|2 for any x ∈ Rd

In collaboration with Emeric Bouin and Christian Schmeiser
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Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1

Inequality Nash
Ca↵arelli-Kohn

-Nirenberg

Weak Poincaré
or

Weighted Poincaré
Poincaré

Asymptotic
behavior

t�d/2

decay
t�(d��)/2

decay
t�µ or t

� k
2 (1�↵)

convergence

e�� t

convergence

Table 1: @tu = �u + r · (urV )

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1

Inequality Nash
Ca↵arelli-Kohn

-Nirenberg

Weak Poincaré
or

Weighted Poincaré
Poincaré

Asymptotic
behavior

t�d/2

decay
t�(d��)/2

decay
t�µ or t

� k
2 (1�↵)

convergence

e�� t

convergence

Table 2: @tu = �u + r · (urV )

1

Actually, this is more complicated, because the rate depends on the
functional space (and of the range of the parameters)...
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Using moments

Theorem

Let d ≥ 1, 0 < γ < d, V = V1 or V = V2, and u0 ∈ L1
+ ∩ L2(eV )

with
∥∥|x|ku0

∥∥
1 <∞ for some k ≥ max{2, γ/2}

∀ t ≥ 0 , ‖u(t, ·)‖2
L2(eV dx) ≤ ‖u0‖2

L2(eV dx) (1 + c t)−
d−γ

2

for some c depending on d, γ, k, ‖u0‖L2(eV dx), ‖u0‖1, and
∥∥|x|ku0

∥∥
1
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Proof

Growth of the moment

Mk(t) :=
∫
Rd
|x|ku dx

From the equation

M ′k = k
(
d+ k − 2− γ

) ∫
Rd
u |x|k−2 dx ≤ k

(
d+ k − 2− γ

)
M

2
k

0 M
1− 2

k

k

then use the Caffarelli-Kohn-Nirenberg inequality∫
Rd
|x|γ u2 dx ≤ C

(∫
Rd
|x|−γ |∇ (|x|γu)|2 dx

)a(∫
Rd
|x|k |u| dx

)2(1−a)
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Sub-exponential local equilibria

Kinetic Fokker-Planck equation, very weak
confinement

Let us consider the kinetic equation

∂tf + v · ∇xf −∇xV · ∇vf = Lf

where Lf is one of the two following collision operators
(a) a Fokker-Planck operator

Lf = ∇v ·
(
F ∇v

(
F−1 f

) )
(b) a scattering collision operator

Lf =
∫
Rd
σ(·, v′)

(
f(v′)F (·)− f(·)F (v′)

)
dv′

V (x) ∼ γ log |x| , γ ∈ (0, d)
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Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1, or Td

Macro Poincaré

Micro Poincaré
F (v) = e�hvi� , � � 1

BDMMS:
t�d/2

decay

BDS: t�(d��)/2

decay

Cao: e�tb ,
b < 1, � = 2
convergence

DMS,
Mischler-
Mouhot

e��t

convergence

F (v) = e�hvi� ,
� 2 (0, 1)

BDLS: t�⇣ ,
⇣ =

min
�

d
2 , k

�}
decay

F (v) = hvi�d��
BDLS,

fractional
in progress

Table 2: @tf + v · rxf = F rv

�
F�1 rvf

�
. Notation: hvi =

p
1 + |v|2

2
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Decay rates

∀ (x, v) ∈ Rd×Rd , F(x, v) = M(v) e−V (x) , M(v) = (2π)− d2 e− 1
2 |v|

2

(H1) 1 ≤ σ(v, v′) ≤ σ , ∀ v , v′ ∈ Rd , for some σ ≥ 1

(H2)
∫
Rd

(
σ(v, v′)− σ(v′, v)

)
M(v′) dv′ = 0 ∀ v ∈ Rd

+ Caffarelli-Kohn-Nirenberg inequalities

Theorem

Let d ≥ 1, V = V2 with γ ∈ [0, d), k > max {2, γ/2} and
f0 ∈ L2(M−1dx dv) such that∫∫

Rd×Rd〈x〉
k f0 dx dv +

∫∫
Rd×Rd |v|

k f0 dx dv < +∞

If (H1)–(H2) hold, then there exists C > 0 such that

∀ t ≥ 0 , ‖f(t, ·, ·)‖2
L2(M−1dx dv) ≤ C (1 + t)−

d−γ
2
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Sub-exponential equilibria

B We consider the homogeneous Fokker-Planck equation

∂tg = ∇v ·
(
M∇v

(
M−1 g

))
associated with sub-exponential equilibria

M(v) = Cα e
−〈v〉α , α ∈ (0, 1)

or the corresponding Ornstein-Uhlenbeck equation for h = g/M
– decay rates based on the weak Poincaré inequality (Kavian,
Mischler)
– decay rates based on a weighted Poincaré / Hardy-Poincaré
inequality

In collaboration with Emeric Bouin, Laurent Lafleche and Christian
Schmeiser
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Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1

Inequality Nash
Ca↵arelli-Kohn

-Nirenberg

Weak Poincaré
or

Weighted Poincaré
Poincaré

Asymptotic
behavior

t�d/2

decay
t�(d��)/2

decay
t�µ or t

� k
2 (1�↵)

convergence

e�� t

convergence

Table 3: @tu = �u + r · (urV )

Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1

Inequality Nash
Ca↵arelli-Kohn

-Nirenberg

Weak Poincaré
or

Weighted Poincaré
Poincaré

Asymptotic
behavior

t�d/2

decay
t�(d��)/2

decay
t�µ or t

� k
2 (1�↵)

convergence

e�� t

convergence

2
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Weak Poincaré inequality∫
Rd

∣∣∣h− h̃∣∣∣2 dξ ≤ Cα,τ

(∫
Rd
|∇h|2 dξ

) τ
1+τ ∥∥∥h− h̃∥∥∥ 2

1+τ

L∞(Rd)

for some explicit positive constant Cα,τ , h̃ :=
∫
Rd hdξ. Using

d

dt

∫
Rd

∣∣∣h(t, ·)− h̃
∣∣∣2 dξ = − 2

∫
Rd
|∇vh|2 dξ

where h = g/M and dξ = M dv + Hölder’s inequality

∫
Rd

∣∣∣h− h̃∣∣∣2 dξ ≤
(∫

Rd

∣∣∣h− h̃∣∣∣2 〈v〉−β dξ
) τ
τ+1

(∫
Rd

∥∥∥h− h̃∥∥∥2

L∞(Rd)
〈v〉β τ dξ

) 1
1+τ

with (τ + 1)/τ = β/η, then for with M = sups∈(0,t)

∥∥∥h(s, ·)− h̃
∥∥∥2/τ

L∞(Rd)∫
Rd

∣∣∣h(t, ·)− h̃
∣∣∣2 dξ ≤

((∫
Rd

∣∣∣h(0, ·)− h̃
∣∣∣2 dξ

)− 1
τ

+ 2 τ−1

C
1+1/τ
α,τ M

t

)−τ
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Weighted Poincaré inequality

There exists a constant C > 0 such that∫
Rd
|∇h|2 F dv ≥ C

∫
Rd

∣∣∣h− h̃∣∣∣2 〈v〉−β F dv

with β = 2 (1− α), h̃ :=
∫
Rd hF dv and F (v) = Cα e

−〈v〉α and
α ∈ (0, 1)

Written in terms of g = hM, the inequality becomes∫
Rd

∣∣∇v(M−1 g
)∣∣2 M2 dµ ≥ C

∫
Rd
|g − g|2 〈v〉−2 (1−α) dµ

where dµ = M dv and g :=
(∫

Rd g dv
)
M
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d

dt

∫
Rd
|h(t, v)|2 〈v〉kM dv + 2

∫
Rd
|∇vh|2 〈v〉kM dv

= −
∫
Rd
∇v(h2) ·

(
∇v〈v〉k

)
Mdv

With ` = 2− α, a ∈ R, b ∈ (0,+∞)

∇v ·
(
M∇v〈v〉k

)
= k

〈v〉4
(
d+ (k + d− 2) |v|2 − α 〈v〉α |v|2

)
≤ a−b 〈v〉−`

Proposition (Weighted L2 norm)

There exists a constant Kk > 0 such that, if h solves the
Ornstein-Uhlenbeck equation, then

∀ t ≥ 0 ‖h(t, ·)‖L2(〈v〉k dξ) ≤ Kk

∥∥hin∥∥
L2(〈v〉k dξ)
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d

dt

∫
Rd

∣∣∣h(t, ·)− h̃
∣∣∣2 dξ = − 2

∫
Rd
|∇vh|2 dξ ≤ − 2C

∫
Rd

∣∣∣h− h̃∣∣∣2 〈v〉−β dξ

+ Hölder

Theorem

Assume that α ∈ (0, 1). Let gin ∈ L1
+(dµ) ∩ L2(〈v〉kdµ) for some k > 0

and consider the solution g to the homogeneous Fokker-Planck
equation with initial datum gin. If g =

(∫
Rd g dv

)
M, then

∫
Rd
|g(t, ·)− g|2 dµ ≤

((∫
Rd

∣∣gin − g
∣∣2 dµ

)−β/k
+ 2β C
kKβ/k

t

)−k/β

with β = 2 (1− α) and K := K2
k

∥∥gin
∥∥2

L2(〈v〉k dµ) + Θk

(∫
Rd g

in dv
)2
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Kinetic Fokker-Planck, no confinement and
sub-exponential local equilibria

the Fokker-Planck operator

L1f = ∇v ·
(
M∇v

(
M−1 f

))
the scattering collision operator

L2f =
∫
Rd
σ(·, v′)

(
f(v′)M(·)− f(·)M(v′)

)
dv′

under assumptions (H1)–(H2)
V = 0 F (v) = e−〈v〉

β

β ∈ (0, 1)
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Potential V = 0
V (x) = � log |x|
� < d

V (x) = |x|↵
↵ 2 (0, 1)

V (x) = |x|↵
↵ � 1, or Td

Macro Poincaré

Micro Poincaré
F (v) = e�hvi� , � � 1

BDMMS:
t�d/2

decay

BDS: t�(d��)/2

decay

Cao: e�tb ,
b < 1, � = 2
convergence

DMS,
Mischler-
Mouhot

e��t

convergence

F (v) = e�hvi� ,
� 2 (0, 1)

BDLS: t�⇣ ,
⇣ =

min
�

d
2 , k

�}
decay

F (v) = hvi�d��
BDLS,

fractional
in progress

Table 3: @tf + v · rxf = F rv

�
F�1 rvf

�
. Notation: hvi =

p
1 + |v|2

3
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The decay rate with sub-exponential local equilibria

Theorem

Let α ∈ (0, 1), β > 0, k > 0 and let M(v) = Cα e
−〈v〉α . Assume that

either L = L1 and β = 2 (1− α), or L = L2 + Assumptions. There
exists a numerical constant C > 0 such that any solution f of

∂tf + v · ∇xf = Lf , f(0, ·, ·) = f in ∈ L2(〈v〉kdxdµ) ∩ L1
+(dx dv)

satisfies

∀ t ≥ 0 , ‖f(t, ·, ·)‖2 =
∫∫

Rd×Rd

∣∣f(t, x, v)
∣∣2 dx dµ ≤ C

∥∥f in
∥∥2

(1 + κ t) ζ

with rate ζ = min {d/2, k/β}, for some positive κ which is an explicit
function of the two quotients,

∥∥f in
∥∥ / ∥∥f in

∥∥
k
and

∥∥f in
∥∥

L1(dx dv) /
∥∥f in

∥∥
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Proof (1/2)

D[f ] :=− 〈Lf, f〉+ δ 〈ATΠf,Πf〉
+ δ 〈AT(Id− Π)f,Πf〉 − δ 〈TA(Id− Π)f, (Id− Π)f〉
− δ 〈AL(Id− Π)f,Πf〉

microscopic coercivity. If L = L1, we rely on the weighted
Poincaré inequality

〈Lf, f〉 ≤ −C ‖(Id−Π)f‖2
−β

If L = L2, we assume that there exists a constant C > 0 such that∫
Rd

∣∣h− h̃∣∣2 〈v〉−βMdv ≤ C

∫∫
Rd×Rd

σ(v, v′)
∣∣h′ − h∣∣2 MM′ dv dv′

Weighted L2 norms. Let k > 0, f in ∈ L2(〈v〉k dxdµ) a solution
∃Kk > 1 such that

∀ t ≥ 0 , ‖f(t, ·, ·)‖L2(〈v〉k dx dµ) ≤ Kk

∥∥f in∥∥
L2(〈v〉k dx dµ)
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Proof (2/2)

Hδ[f ] := 1
2 ‖f‖

2 + δ 〈Af, f〉 , d

dt
Hδ[f ] = −D[f ]

There exists κ > 0 such that ∀ f ∈ L2 (〈v〉−β dxdµ
)
∩ L1(dxdv),

D[f ] ≥ κ
(
‖(Id−Π)f‖2

−β + 〈ATΠf,Πf〉
)

For any f ∈ L1(dxdµ) ∩ L2(dxdv),

〈ATΠf,Πf〉 ≥ Φ
(
‖Πf‖2)

Φ−1(y) := 2 y +
(y

c

) d
d+2

, c = ΘC
− d+2

d

Nash ‖f‖
− 4
d

L1(dx dv)

For any f ∈ L2(〈v〉kdxdµ) ∩ L1(dxdv),

‖(Id−Π)f‖2
−β ≥ Ψ

(
‖(Id−Π)f‖2

)
Ψ(y) := C0 y

1+β/k , C0 :=
(
Kk

(
1 + Θk

)
‖f in‖k

)− 2 β
k
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