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> Abstract statement

> A toy model
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An abstract hypocoercivity result

An abstract evolution equation

Let us consider the equation

dF
— +TF=LF 1
pras (1)

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (X, (-, -))

A= (1+ (TI)*TI) ™ (TTD)*
* denotes the adjoint with respect to (-, )

II is the orthogonal projection onto the null space of L
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An abstract hypocoercivity result

The assumptions

Am, Au, and Cyy are positive constants such that, for any F' € H
> microscopic coercivity:

—(LE,F) 2 A (1 = IDF| (H1)
B> macroscopic coercivity:
ITILE|* > Ay (1L (H2)
> parabolic macroscopic dynamics:
ITIIF =0 (H3)
> bounded auziliary operators:

[AT(1 —IDF[ + [[ALF| < Cu [[(1 = ID F| (H4)
The estimate

F||> = (LE,F) < =\, ||(1 = ID F||?
thll == ) (1 —TI0)F

is not enough to conclude that || F(t,-)||? decays exponentially
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An abstract hypocoercivity result

Equivalence and entropy decay

For some J > 0 to be determined later, the L? entropy / Lyapunov
functional is defined by

H[F] := 1 | F|* + 6 Re(AF, F)
as in (Dolbeault-Mouhot-Schmeiser) so that (ATILF, F) ~ ||ILF||?> and

d

— ZHIF) = : D[F]

= — (LF,F) + 6 (ATIIF, F)
— §Re(TAF, F) + § Re(AT(1 — IN)F, F) — § Re(ALF, F)

> for any § > 0 small enough and A = A(9)
AH[F] < DIF]
> norm equivalence of H[F] and || F||?

2—-9 2446
LRI < HIF) < SR
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An abstract hypocoercivity result

Exponential decay of the entropy

_ Am : Am Am [ Am AM
A= T min {1, A [(ESynren }, 0 = 5 min {1, A T €2

h(8.0) = (3Car)? — 4 (Am— a—“%) ( o M —M)\>

4 1+ Ay 4

Theorem

Let L and T be closed linear operators (respectively Hermitian and
anti-Hermitian) on 3. Under (H1)—(H4), for any t >0

H[F(t,-)] < H[Fple ™1

where A\, is characterized by

Ae=sup{A>0:36>0st hi(5,N)=0, Ay — 6 — 1 (2+6) A >0}
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An abstract hypocoercivity result

Sketch of the proof

@ Since ATII = (1 + (TH)*TH)f1 (TID)*TII, from (H1) and (H2)
VY

—(LF, F) 4 6 (ATIIF, F) > A\, ||(1 = I F||> + ——=—
1+ A

[TLF?

@ By (H4), we know that
IRe(AT(1 — II)F, F) + Re(ALF, F)| < Oy |[TIF||[|(1 — IT) F|
@ The equation G = AF is equivalent to (TII)*F = G + (TI)* TII G
(TAF, F) = (G, (TI)* F) = |G||* + | THG|* = |AF|* + | TAF|*
By the Cauchy-Schwarz inequality, for any p > 0

* 1 I
(G, (TI)" F) < [[TAF| |1 - F| < 2 ITAE(? + 5 = mF|?*

1
IAF] < S 10 =TOF|, | TAF| < [[(1 = IDF||, |(TAF, F)| < [|(1 - I F|?
@ With X := ||(1 - I)F| and Y := ||IIF
D[F]=AH[F] > (A —0) x24 OMM 2 6CMXY—L§A(X2+Y2)
14+ Ay
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An abstract hypocoercivity result

Hypocoercivity

For any ¢ € (0,2),
which Ay, — 6 — 2 (2+6) X > 0, then for any solution F of (1)

if N(0) is the largest positive Toot of h1(d,\) =0 for

o 2—1-56_

IO < 25

XOIFQO) vtz 0

From the norm equivalence of H[F] and ||F||?

20 mP < HiF) <

244

2T WEI?
I

We use 252 || Fp||? < H[Fp] so that A, > SUPse(0,2) AM9)
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An abstract hypocoercivity result

A toy problem

du (0 0 (0 —k 9
— = (L-T)u, L_(O _1>, T—(k 0 ) E*>A>0

Non-monotone decay, a well known picture:
see for instance (Filbet, Mouhot, Pareschi, 2006)

Lodp2 2
o H-theorem: J|u|* = —2u3
@ macroscopic limit: % =—k%u

e generalized entropy: H(u) = |u|? — % Uj U

- 2—76]€2 uj — ok uf + ok UL u
at 1+k2) 2 1+k2 1T 1Rz
oA

< —(2—6)u§—1+Au%+§u1u2
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Plots for the toy problem
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Mode-by-mode hypocoercivity

> Fokker-Planck equation and scattering collision operators
> A mode-by-mode hypocoercivity result
> Enlargement of the space by factorization

> Application to the torus

(Bouin, J.D., Mischler, Mouhot, Schmeiser)
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Mode-by-mode hypocoercivity

Fokker-Planck equation with general equilibria

We consider the Cauchy problem
8tf+Uva:Lf7 f(O,J,‘,’U):fo(x,U) (2)

for a distribution function f(¢,z,v), with position variable x € R% or
x € T the flat d-dimensional torus

Fokker-Planck collision operator with a general equilibrium M
Lf = Vo [MV, (M7 )]

Notation and assumptions: an admissible local equilibrium M is
positive, radially symmetric and

dv
» M (v) dv , dy=~(v)dv M)

~ is an exponential weight if

m i: lim M(v)|v|* =0 VEk e (d,o0)
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Definitions

@:é/ﬂw |v|2M(U)dv:/ (v- &) M(v) dv

R4

for an arbitrary e € S41
/ v@uvMw)dv=061d
Rd

Then ) A
2 2
0= q HVUMHI}(dV) = /Rd |VU\/]\7} dv < oo

v|?

IfM(v)—& then©® =1land =1

- (@mrz
1
o= 5\/0/@

Microscopic coercivity property (Poincaré inequality): for all
u=M"1tF e HY(M dv)

2
/ |Vu|2Mdv2>\m/ (u—/ uMdv) M dv
R4 R4 R4
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Scattering collision operators

Scattering collision operator
L = [ o) (1) M0 = £ M) df
R
Main assumption on the scattering rate o: for some positive, finite &
1<o(v,v) <7 Vv, v €R?

Example: linear BGK operator

L =Mpy =1 oty = [ ptade

Local mass conservation

/ Lfdv=0
]Rd

[Py <aa® [ jatps - gt

and we have
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Mode-by-mode hypocoercivity

The symmetry condition
/ (o(v,0') =o', v)) M(v))dv' =0 Vv eR
Rd

implies the local mass conservation fRd Lfdv=0
Micro-reversibility, i.e., the symmetry of ¢, is not required

The null space of L is spanned by the local equilibrium M and L only
acts on the velocity variable

Microscopic coercivity property: for some \,, > 0

. ! ! NV
5//Rd><Rd o(v,v") M(v) M(v") (u(v) —u(v"))” dv’ dv

> A | (u—purs)® Mdv
Rd

holds according to Proposition 2.2 of (Degond, Goudon, Poupaud,
2000) for all u = M ' F € L2(M dv). If o = 1, then \,,, = 1
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Mode-by-mode hypocoercivity

Fourier modes

In order to perform a mode-by-mode hypocoercivity analysis, we
introduce the Fourier representation with respect to x,

flta) = [ Ft60 e € dute)

du(€) = (2m)~%d¢ and d¢ is the Lesbesgue measure if x € R?
du(€) = (2m) =% Y2, ca 6(€ — 2) is discrete for z € T¢

Parseval’s identity if £ € Z¢ and Plancherel’s formula if 2 € R read

10y = [ 80

L2(dp(§))

The Cauchy problem is now decoupled in the £-direction
o0f +Tf=LF, F(0,60) = fol&v)
Tf=i(w-&f
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Mode-by-mode hypocoercivity

For any fixed ¢ € R?, let us apply the abstract result with

R LG T I 2

and Tf =i(v-&) f, TIF =i (v-&) pp M,

ITIF|? = \pFlz/Rd [v- & M(v)dv = O ¢ |pr[* = © [ |TLF]|?
(H2) Macroscopic coercivity ||TILF||? > Ay [ILF||? : Ay = O |€?
(H3) [qavM(v)dv=0
The operator A is given by

i [pa v F(V) dv

AF = M
14+0(¢32
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A mode-by-mode hypocoercivity result

IAF|| = [A(L - T F|| < —— /]R (A=IDF] e /A dv

T ORP Jou VAT
1 , 1/2
< e l0-FI ([ w92 ara)
VBl
- o -

@ Scattering operator ||[LF||? < 452 ||(1 —II)F||?
@ Fokker-Planck (FP) operator

2 Vo
arl < i [ D ew,virar < 2L - m

In both cases with & = v/ (FP) or k = 25 v/© we obtain

IALF] < o - mF|
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An abstract hy o ity result
Mode- by [nod(_ hypococrc]v]ty
Computation of the con imp

_ (’U g)M ! ! !
TAF(U) = —H——C—')|€|2 Rd(’l} . €) (1 — H)F(’U )dv
is estimated by
e ¢

(H4) holds with Cpy = ﬁ‘g—@‘g\é\z

Two elementary estimates

o . o g
T+ O[EF = max(1,0) 1+ [

A _0(01+61EP) e
(1+xu)C3 (k+0¢))? ~ w2 +6
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Mode-by-mode hypocoercivity

Theorem

Let us consider an admissible M and a collision operator L satisfying
Assumption (H), and take € € RY. If f is a solution such that
fo(€,-) € L2(dy), then for any t > 0, we have

<seret | fute, )
Hf & ‘LQ(dy) e Jo&,- L2(dv)
where
Af¢)? S) . Am ©
P T ™ 3max{1,0} """ k210

with k = 27 V© for scattering operators
and k =0 for (FP) operators
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Mode-by-mode hypocoercivity

Enlargement of the space by factorization

A simple case (factorization of order 1) of the factorization method
of (Gualdani, Mischler, Mouhot)

Theorem

Let B1, By be Banach spaces and let Bo be continuously imbedded in
By, e, |||l <cll - |l2- Let B and A+ B be the generators of the
strongly continuous semigroups e®t and eA+t®)t on By. If for all
t>0,

He(er‘B)tuzag < e ei&ta ||€£BtH1—>1 <cs e M t, ||Ql||1—>2 <o

where || - ||;—; denotes the operator norm for linear mappings from B;
to B;. Then there exists a positive constant C = C(cy, ¢, c3,c4) such
that, for allt > 0,

“e(m+%)t“ - C (]. + A1 — )\2|*1) e~ min{A1, 2}t for A # A
151 C (1 + 1) gt for Ay = X
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Mode-by-mode hypocoercivity

Computation of the constants, improvement

Integrating the identity % (e(m"’%) s B (t_s)) = (A+B) s 9 B (t—3)
with respect to s € [0, ] gives

t
e(QH—%)t — e%t _|_/ B(QH_%)SQLF/% (t—s) ds
0

The proof is completed by the straightforward computation

¢
||e(m+%)tH1—>1 Sege M o / ||e(91+%) e ) ||1—>2 ds
0

t
<cge ™Mb 4bcieacsey e_Alt/ eMi—A2)s gg
0
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Mode-by-mode hypocoercivity

Weights with polynomial growth

Let us consider the measure

dy = (V) dv  where ~(v) = 7Y/? % (1+ [v]

2)k/2
for an arbitrary k € (d, +o0)
We choose By = L%(dv;,) and By = L2(dv)

Theorem

Let A = m min{l,iﬂ%} and k € (d,00]. For any ¢ € R if

f is a solution with initial datum fo(ﬁ, -) € L2(dvi), then there eists
a constant C' = C(k,d, @) such that

< Ce Het
L2 (dvk)

e

fole. )

Vt>0
L2 (dvk)
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Mode-by-mode hypocoercivity

@ Fokker-Planck: JAF = N xgF and BF = —i(v-&) F+LF —AF
N and R are two positive constants, y is a smooth cut-off function
and xr = x(-/R)

For any R and N large enough, according to Lemma 3.8 of (Mischler,
Mouhot, 2016)

[ =@ ras-x [ P
R4 R4

for some A\ > 0if k > d, and Ay = pe/2 <1/4

Q@ Scattering operator:
AF(v) = M(v)/ a(v,v") F(v') dv'
Rd
BF(v) = - [z (v-€) +/ o(v,v") M) dv'| F(v)
Rd
_ _ 1/2
Boundedness: [|AF||r2(4y) <7 ([ga 7 " dv) / 1 2 (dv)

)\1 =1 and /\2 Z/,l,g/Q S 1/4
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Mode-by-mode hypocoercivity

Exponential convergence to equilibrium in T¢

The unique global equilibrium in the case 2 € T¢ is given by

1
foo(®,0) = poo M(v)  With po = v // fodz dv
‘T | Td xR

Theorem

Assume that k € (d, 00] and v has an exponential growth if k < co.
We consider an admissible M, a collision operator L satisfying
Assumption (H), and A given by (3). There exists a positive constant
Cy, such that the solution f of (2) on T x R? with initial datum

fo € L3(dz dy,) satisfies

Hf(tu K ) - fOOHLQ(dxdfyk) < Cr ”fO - foo”LZ(dzd’Yk) e 1At vVt >0
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Mode-by-mode hypocoercivity

If we represent the flat torus T¢ by the box [0,27)? with periodic
boundary conditions, the Fourier variable satisfies £ € Z¢. For £ = 0,
the microscopic coercivity implies

—t

Hf(t’07 ) - foo(oa )‘

< ||£o(0.) = fict0.)|

e
L2(dv) L2(dv)
Otherwise p¢ > A/2 for any £ # 0

Parseval’s identity applies, with measure dy(v) and Co = /3
The result with weight 4 follows from the factorization result for
some Ci > 0
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Computation of the constants

> A more numerical point of view

Two simple examples: L denotes either the Fokker-Planck operator
Llf = Avf+vv . (’Uf)
or the linear BGK operator

Lof:=Nf—f

MNf = py M is the projection operator on the normalized Gaussian
function

6_ % "U|2

(2 m)d/2
and py := [pa fdv is the spatial density

M(v) =
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Where do we have space for improvements ?
@ With X :=||(1 —I)F|| and Y := ||IIF||, we wrote

D[F] — AH[F]
2 5>‘M 2 A 2 2
> A — ) X2+ ——Y2 - 6Cu XY - (X2+Y24+0XY)
1+ Ay 2
246
z(,\m—5)X2+M7MY2—5CMXY—LA(X2+Y2)

1+ Ay

@ We can directly study the positivity condition for the quadratic
form

0 Am 2 A 2 2
Y - 46Cy XY — = (X Y 0XY
1+ My M g (Y24 )

Am =1, A = [€]? and O = €] (1 + [€])/(1 + |€]?)

A — 6) X2 +
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With A, = 1, Ay = [€]? and Car = [€] (1 + [€]) /(1 + |€]2), we
optimize A under the condition that the quadratic form

SAM <o A
o YR SO XY =3

(Am — 6) X%+ (X*+Y?+6XY)
is positive, thus getting a A(£)

@ By taking also § = 0(&) where £ is seen as a parameter, we get a
better estimate of A(§)
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04+
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By taking § = §(&), for each value of £ we build a different Lyapunov
function, namely

He[F] = 5 | F|” + 6(€) Re(AF, F)
where the operator A is given by

AP — —i&- fpa V' F(V') dv
1+ ¢

@ We can consider
—i& [pa V' F(v") dv'

A F =
: e+ ¢

M

and look for the optimal value of ...
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05+

041

0.3}

0.2+

0.1}
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The dependence of X in € is monotone, and the limit as € — 04 gives

the optimal estimate of A\. The operator

—i&- f]Rd v F(v')dv'
IqE

is not bounded anymore, but estimates still make sense
and limg_,9 (&) = 0 (see below)

AoF = M
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04+

03

02+

0.1
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Theorem (Hypocoercivity on T¢ with exponential weight
a O, S

Assume that L =11 or L =Ly. If f is a solution, then
1) = FoollF2(dmary < Cx lfollF2(deary € " VE>0
with foo(x,v) = M () [[1ayga fo(z,v) dz dv

C,. ~ 1.75863 and A« = (5 — 2V/3) ~ 0.236292.

Warning: work in progress
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These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Lectures/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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