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(FAUSSIAN MEASURES

[W. Beckner, 1989]: a family of generalized Poincaré inequalities (GPI)
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2 N 2 1
2= ([ rPan) < [ ViRan vE e HYdw) (D)
where p(z) denotes the normal centered Gaussian distribution on R

1
(z) = (27) " H2 ez lol

For p = 1. the Poincaré inequality

/Rde dps — (/Rdfdﬂ)z < /RdIVfIQdM Vi e HY(dw)

In the limit p — 2: the logarithmic Sobolev inequality (LSI) [L. Gross
1975]
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/]Rd f2 109 (fRd];Q du) du/Rd VF2duy ¥ fe HY(dp)



Generalizations of (1) to other probability measures...
Quest for ‘'sharpest” constants in such inequalities...
. best (worst 7) decay rates

[AMTU]: for strictly log-concave distribution functions v(x)

1 RdedV_ (/Rd|f|pdy>2/p :

- <—/ Vi2dv Vfe HY(dv
g <~ | IV f e H (dv)
where k is the uniform convexity bound of —logv(x)...
...the Bakry-Emery criterion

[Latata and Oleszkiewicz]: under the weaker assumption that v(x)
satisfies a LSI with constant 0 < C < oo

2
/Rdleog (fRd];%u) dv < 2(?/Rd|Vf|2du v feHY(d)  (2)

they proved for 1 < p < 2:

. 2 5, p 2/p i g_l 2
Rdf dv </Rd|f| dl/) ]§€m|n{p,2_p}/Rd|Vf| dv
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Proof. 1) The function ¢ — a(q) := glog (fRd |f|2/q du) iS convex since

(fRd £12/9 (log | £1)? dv) ( fa | £1?/2 dz/) — (Jralf1?/710g | f] dv)’
(fRd |f|%/4 d’/)

IS nonnegative. Thus ¢q +— e®(9) is also convex and

ca(1) _ ga(q)

q— ¢(q) 1= 1 N

o (q) =

f2
(q) < lim, ©(q1) = (1f2|09 ( ) dv

q1_> ||f||L2(d,u)
T his proves that

q—% [ Rdedu— (/Rd|f|2/qdy>q] < 2(?/Rd|Vf|2dy

2 (P10 = 24 [ 2 (el )
if p=2/q: Cp < 2€/p.



2) Linearization f =1+ ¢eg with Jpagdvy =0, limit ¢ — 0

/RdedV— (/Rdfdu>2§(?/Rd|Vf|2du

Holder’'s inequality, (fRdfdy)Q < (fRd|f\2/q du)q

[P ([ rPra) < [ r2av- (/Rdfdu)z <e | Vi



GENERALIZED POINCARE INEQUALITIES FOR THE (GAUSSIAN MEASURFE

1) proof of (1)

2) improve upon (1) for functions f that are in the
orthogonal of the first eigenspaces of N

3) generalize to other measures

The spectrum of the Ornstein-Uhlenbeck operator N := —A + 2 -V is
made of all nonnegative integers k£ € N, the corresponding eigenfunc-
tions are the Hermite polynomials. Observe that

L VIRPdu= [ f-Nfdu ¥ feH dp)

Strategy of Beckner (improved): consider the L2(du)-orthogonal de-
composition of f on the eigenspaces of N, i.e.

f:kaa

keN
where N f. = k f.. If we denote by ;. the orthogonal projection on the
eigenspace of N associated to the eigenvalue k € N, then fi. = m.[f].
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. 2
ap = il T4 ||f||i2(dﬂ)=k§jNak and /Rdlvfl du=k§N:kak
< <

The solution of the evolution equation associated to N
ut = —Nu=Au—x-Vu
with initial data f is given by
u(z,t) = (N @) = 3 e ()

keN

—tN ,||2 . oy
He fHLQ(d,u) - Z © Ok
keN

Lemma 1 Let f € HY(du). If f1 = fo = ... = fy,—1 = O for some
ko > 1, then
kot
2 —tN |2 1 —e om0 2
Lo lPdu—= [ e N g du < - [V ap

The component fg of f does not contribute to the inequality.



Proof. We use the decomposition on the eigenspaces of N

_ 2 _
LoltePan— [ e N pf" dp= (1 -2 g

For any fixed t > O, the function

1 — —2kt
ki °
k
IS monotone decreasing: if k£ > kg, then
- e_th . 1 — e—2kot 5
ko
Thus we get
—2kot
2, —tN |2 1—e "0 / 2
LaltPdu—= [ e g™ du < oo VAl

which proves the result by summation



The second preliminary result is Nelson’'s hypercontractive estimates,
equivalent to the logarithmic Sobolev estimates, [Gross 1975]

Lemma 2 For any f € LP(du), p € (1,2), it holds

He_thHLQ(du) < Hf”Lp(dm Vt> —% log(p — 1)

Proof. We set

F(t) = </Rd|u(t)|q(t) dﬂ) 1/q(t)

with ¢(¢) to be chosen later and u(z,t) = (e_th> (z). A direct com-
putation gives

F'(t '(t q q 4 q—1 2
F(t) ¢2(t) JrRd F4 F4 Fa g2 JRrd
We set v := |u|?/2, use the LSI (2) with v = and € = 1, and choose g

such that 4 (¢g—1) = 2¢’, ¢(0) = p and ¢(t) = 2. This implies F'(t) <0
and ends the proof with 2 =¢q(t) =1+ (p — 1) e?t O
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[Arnold, Bartier, J.D.] First result, for the Gaussian distribution u(x):
a generalization of Beckner's estimates.

Theorem 3 Let f € H(dw). If fy = fo = ... = fx,_1 = O for some
ko > 1, then
1 2/p 1 —(p—1)ko
| [P n = ([P dn) | < V11 d
2 —p |/Rd Rd ko (2 —p) JRd

holds for 1 < p < 2.

In the special case kg = 1 this is exactly the GPI (1) due to Beckner,
and for kg > 1 it is a strict improvement for any p € [1,2).
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OTHER MEASURES: GENERALIZATION

Generalization to probability measures with densities with respect to
Lebesgue’s measure given by

v(z) = e V(@)

on R%, that give rise to a LSI (2) with a positive constant €. The
operator N := —A + VV -V, considered on L2(R< dv), has a pure
point spectrum made of nonnegative eigenvalues by A., k € N.

Ao = 0 is non-degenerate. The spectral gap \; yields the sharp
Poincaré constant 1/)\q, and it satisfies

1
A1
This is easily recovered by taking f =1+ g in (2) and letting € — 0.

<C
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Same as in the Gaussian case: with ay := ||fk||%2(dy),

||f||%2(dy): Z Ak ||vf||%2(dy): Z Ak O ||€_tN f“%ﬁ(du): Z e 2 Aktak
keN keN keN

Using the monotonicity of A, we get

2Nt
2 1 — ko
[P — [ JetNp aw <=5 — [ [viRav
Rd Rd Ak Rd
if f € Hl(dv) is such that f; = fo = ... = fg,_1 = 0 for some kg > 1

_ C
le t'\'fHLQ(dV) <N flloeay Yt=—7logp—1) Vpe(1,2)

Theorem 4 [Arnold, Bartier, J.D.] Let v satisfy the LSI (2). If f €
HY(dv) is such that f1 = fo = ... = fy,—1 = 0 for some ko > 1, then

[ f2av (], |f|pdv)2/p] <G [ ViR (3)

holds for 1 < p < 2, with Cj 1= i;(fgz—_lgg“, ai= A, C>1
0

1
2—p
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1) “alarge” 7 Even in the special case kg = 1, the measure dv satisfies
in many cases a=X\1 C>1: v(z) ;= ccexp(—|z| — ez?) with ¢ — 0.

2) Optimal case: € = 1/A1 (i.e. a=1), kg = 1: Cp = €, for any
p € [1,2] is optimal [generalizes the situation for gaussian measures].

3) For kg > 1, o > 1 is always true.

4) For fixed a > 1, C, takes the sharp limiting values for the Poincaré
inequality (p = 1) and the LSI (p =2): ¢1 =1/X; and lim,_.»Cp = C.

5) For a > 1, Cp is monotone increasing in p. Hence, Cp < C for p < 2
and o« > 1, and Theorem 4 strictly improves upon known constants.
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A REFINED INTERPOLATION INEQUALITY

Theorem 5 [Arnold, J.D.] for all p € [1,2)

(2 —1p)2 Rdfzd’/_ (/Rdﬂpdl/)Q(;_l) ( Rdedu)p_l < %/Rﬂvflzd’/

' (4)

for any f € H1(dv), where k is the uniform convexity bound of — log v(z)

(GPI) is a consequence of (4): use Holder's inequality,

2
(Ja |11 @) *'? < Jpa £2
and the inequality (1 —t2"P)/(2—p) > 1—t for any t € [0,1], p € (1,2)
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Entropy-entropy production method [Bakry, Emery, 1984]
[Toscani 1996], [Arnold, Markowich, Toscani, Unterreiter, 2001]

Relative entropy of u = u(x) w.r.t. uco(x)

> [ufuse] 1= /

R
Yv(w) > 0for w >0, convex

(1) = (1) =0

dw (L> Uoo dx > 0

Uoco

Admissibility condition ()2 < Z¢/p!V

Examples

V1 =wlnw —w+ 1, 1 (ujuse) = [uln (&) dx ... “physical entropy
Yp=wP —plw—1)—1,1<p<2, Zo(uuse) = fpa(u — tco)?usldz
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Exponential decay of entropy production

ut = ADAu—+ V- (uVV)

T (u(®) oo = %Z[u(t)moo] — —/w” (i) lv (i) ‘2 too dz < O

-~

=

0%V
V(z) = — 109 uco ... unif. convex: 52 > \Id, A1 >0
\x,_/

_ Hessian
Entropy production rate

02V
~I' = 2/¢”<i)vT. -vuoodac—|—2/Tr(XY)uoodx
Uoo o2 \ g §

>0

'V

+2 AT

18



Positivity of Tr(XY) 7

em (565 ) s

w///( 1;0) 2¢IV (uoo>

Oviy2 T . 0
Y:(sz(v) 82}3@)20

)
T 8_:11):'1] |,U|4

= I(t) < e 2Mt](t =0) Vt>0

YV ug with I(t = 0) = I'(uglucc) < 0o
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Exponential decay of relative entropy

. /
Known: —I"> 2\ \I/

=3/
2.t =3/ =]< -2\%

Theorem 6 [Bakry, Emery] [Arnold, Markowich, Toscani, Unterreiter]
Under the “Bakry—Emery condition”

82V

if Z[upglusc] < 0o, then

S [w(t) |use] < E[ugluse] e 2 M1 V>0
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Convex Sobolev inequalities

Entropy—entropy production estimate for V(z) = — Inuco
1
> [ufuos] < = [I(ufuos)) (5)
2\

Example 1 logarithmic entropy ¢¥1(w) = wlnw —w + 1
1 2
/uln(u)dx<— 'vm(u)‘ da
Vu, uOOEL (Rd) [udr = [uscdz =1

Example 2 power law entropies

Yp(w) = wP —p(w —1) — 1, 1<p<?2
2 M2
L [ Pduco— ([ 1117 dusc) | <5 [ 1V4Pduse
p—1 A1
2 2
from (5) with [“ = " 7 e Lh (R, uood)

f|f|ﬁduoo
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Refined convex Sobolev inequalities

Estimate of entropy production rate / entropy production

I n( W T 82 A
I' = 2 [y (—)u" - —5 - uuccdz + 2 | Tr(XY)ucodz
UQO axz . 4

>0

> —2)\{]
[Arnold, J.D.] Observe that ¢p(w) = wP —p(w — 1) — 1,

l<p<?2
¢//<UL) ¢///(UL> )
X: oo o0 O
(w’" () 3 Gs) )

22



12
e Assume %VQ > M\ld = 3" > -2\ —|—/<;|1§_|Z, K= % <1

= |k(Z[ufusc]) < 232151 = 57 [ () IV Pduco

Refined convex Sobolev inequality with z < k(z) = 1+x1(_1,:—x)m

2 2
e Set u/uco = |f|P/[|f|Pducc = Refined Beckner inequality [Arnold,
J.D.]

3 (522)" [ e (i ([ )

2 2 2 d
< )\—/|Vf| duse  Vf € L (R duso)
1
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Back to the method of Beckner... First extension: for all v € (0,2)

1 J i
52 | a2 = (ol aw)” ([ s2av) * | < Ko [, 1V 512 a
- _ 1-(p—1)™/?
with K,(vy) 1= A/{f@—p)z

J
2
N = 117200~ e N Lo g 1717200, = Z ap— (Z ake”kt) (Z k)

k>kq k>kq

for any t > —% log(p — 1). By Ho&lder's inequality

Z ar. e—fy)\kt — Z <ak 6—2)\kt)% 25 (Z ar, €2>\kt> (Z ak)z

k>ko k>ko k>ko k>ko

1 — e kot 1 — e kot

N< Y ap (1—e ) < > Aay =
( ) Ako k>kg Ak

[ 1V ay

0
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1 ; . 2%
a7 | o T8~ (fealsP )" (s )

Optimize w.r.t. v € (0,2). After dividing the I.h.s. by Kp(vy) we have
to find the maximum of the function

< Kp(v)/Rd\VfIQdV

1 — a7
a with g — HfHLp(dl/)

) 17 b:(p_l)a/zgl
1 =07 1l r2¢any —

v = h(y) =

on ~ € [0, 2].

Theorem 7 Let v satisfy the LSI (2) with the positive constant C. If

f € HY(dv) is such that f1 = fo = ... = fy,_1 = O for some kg > 1,
then
||f||L2(d ) ||f||Lp(dy) ||f||L2(d ) ||f||Lp(d )
AL Max Y : v |Og v S \V4 2
. { -1 o1 P\ [F2s,,) | = 2w
(6)

holds for 1 < p <2, with o := Ako(? > 1.
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1) limiting cases of (6): the sharp Poincaré inequality (p = 1) and the
LSI (p = 2). The previous result corresponds to the refined convex
Sobolev inequality (4) for v = 2(2 — p), but with a different constant

Kp(v)
2) the refined convex Sobolev inequality (4) holds under the Bakry-

Emery condition, while the new estimate (6) holds under the weaker
assumption that v(z) satisfies the (LSI) inequality

3) 1 a2 >3 (1 —a) with x = [[f1Z54,)/11f1 724 < 1

1122000y = 1y M2y = 2 1512200y~ 112 0gay] ¥ € (0,2)

(BPI) is a consequence with 1/k = 2(2 — p) Kp(vy)/7v:
2 2/ _2(2—p) 2
o 2= (fipa) ™| <22 w0 [ 95

1—(p—1)* _ 2(2—p) _21-(p—1)*/?
Notice that C) = Mg (2= p) S Kp(y) = Y g )

1

1
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4) Concavity of the map = — /2. if x = ||f|| p(dy)/”f“LQ(dy)
(p—1)“

1
= py 6, 122 =1 )

1 2 Y 2—y
< 2Ry M) W a7 1320)

The new inequality is stronger than Inequality (3)...

Assume o« = 1 and € = 1/k, where k is the uniform convexity bound
on —logr and define

Hf”LQ(dV)
eplf
||f||Lp(dy)
which is related to the entropy > by
2
_ _ u [P
dv = uco dx ep[f] = (2 —p)Z[u|uoo] y T = 2

too J |f|§duoo

28



The corresponding entropy production is
2(2 - p)

||f||%p(dy)
(GPI) gives a lower bound for Ip[f]:

Ip[f] := IV £17 200

1
eplf] < Q—Ip[f]
K
while (4) and (6) are nonlinear refinements:

1
— P

b1(eplf) < - Tlfl, ki(e) = ool 1 - (e+ 1P Y >

and

1
ko(eplf]) < 2—Ip[f]7
K
2—p
" |log(p — 1)
We remark that for the logarithmic entropy similar nonlinear estimates
are discussed in §51.3, 4.3 of [L].

ko(e) := max {e (e+1)log(e+ 1)} > e

29



ki(e)/e, ka(e)/e

0.9

p=15




HOLLEY-STROOCK TYPE PERTURBATIONS RESULTS

Assume that the inequality

k([ (12) doso) < 2 [, 120" (2) DIVS dp

holds with Hf||L2(d = 1, y(w)=wP—-1—-pw—-1), 1 <p<?2

Theorem 8 [Arnold, J.D.] Let us(z) = e V@) ao(z) = e V(@) ¢

LY (RY) with [patco dz = fpatico dz = M and

V() V(x) + v(x)
0 <a < e_v(x)§b<oo

Then a convex Sobolev inequality also holds for dux

L 2=\ 27 f? 2 =
ki | — duco | < D\V f|© duco
1(b Rd‘b( 2) ‘ )—AlfRd|f||4 v (nfniz) v

ap—l ||f||L2

Here kq(e) := 2—3}9[6 +1—(e4+1)P 1
31



ANOTHER PERTURBATION RESULT

"1 is a operturbation of v..."”

[ ul?dp — (f Jul?/P dp)P
C — 8
pl) = D T = 1) [VulPdp (8)

Theorem 9 [Bartier, J.D.] Letpe [1,2) andp' = (1—-1/p)~Lifp>1,
p =00 ifp=1.

Let duy = e Vdzr and v = e Wdz be two probability measures such
that Cp(v) and Cy(u) are finite. Let Z := 5(V — W) and assume that

Zy e LV (v),
m = inj(|VZ|2 —AZ+VZ - VW) > —oc0
R
Then we have

2 2
Cp(p) < Cp 1= ;CQ(M) + (; - 1)C,

with Cp i= | Cp(v) + C2(1) N1 Z 4l g,y =™ Cp(¥)) 4



Lemma 10

2 . 2/p p
Sup J v dp (fl’vl2 dy) <e
veH (1), 5=0 (p—1) [[Vv|=dpu

Proof. p > 1. Take v in H1(u) with v = 0,
[ 0P du ([ 107 duy|

AW = 1IN IT2 ) = =1y 6,0

A() = (1) 4+ (I 4 (III) with
D=1 —1t)[|Vv|?dp

(1) =t [ |Vo|? dp

(D) = oogyemy | 101 du— (f [o]?/P dp)?).

Define g such that v = ge?:

[ |v|? dp = [g|? dv
[IV|2dp = [|Vg|2dv 4+ [§]g|°dv, where § :==|VZ|2 - AZ+VZ - VW
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Poincaré for u

1—1¢ 1—1¢
(1) > [ 1P = [ g1 av

— Co(p) Co(u)
Cp(v) < o0
¢ 2 vV — 2/ 14 2 14
(0> oy ([ loPav = ( [loPPany) +1 [ 516 d
and
Bt
M= D60

with B := ([ [v|2/Pdu)P — ( [|g]|?/P dv)P. Collecting these estimates, we
have

Bt
(p—1)Cp(v)

Let dr :=|g|?/P/[|g|?/Pdv. By Jensen’s inequality applied to the con-
vex function t — e~ ¢, we get

_ (1_1)2
[ [P/ dps _J 9|%/Pe 57 q [ —2(1-YHz 1
Foiray = e = e P anzen-20-) [ zax

1-—1¢
)—I-t5)|g|2du+

A(t)>/(

33



(..) B>-2(p-1) AR | lg|2 dv. Altogether, we get

1—¢ 2|24 ot (a0

+t|m-— Y 2d
Co(u) (m Gy |1
This proves that A(t) > 0 for any t € (0, t*]

with ¢*:= [1 4+ G (2 24 1 gy = M Cp()) 4177

Cp(v)
Conclusion: Cp = Cp(v)/t*.

At) >

Case p =1 : take the limit
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The unrestricted case follows from the restricted case

Lemma 11 [Wang, Barthe-Roberto] Let g € [1,2]. For any function
we LN L), ifu:= [udy, then

([ 1ul?du)? > @2 + (g = 1) ( [ lu—al?du)?/.

Proof. Let v :=u —a, ¢(t) := ([ |a+tv|7du)?/?, so that #(0) = |u|?,
¢'(0) =0, ¢(1) = ([ |u|9dp)?/9 and 5 ¢"(t) > (¢—1) (J|v|?dp)?/9. This
proves that ¢(1) > ¢(0) + (g — 1) ([ |v[?dp)?/4. O

Proof of Theorem 9. Let v := uw — uw and apply Lemma 11 with
qg=2/pe[l1,2). Since [|ul?dy—|u|? = [|u—a|?dp = [ |v|?du, we can
write

[ 1l du—( [ [ulP/P dpyr < 22== / |v|2du+— [ [oPdu—( [ |v\2/pdu>p]
Cp=2C2(w) + (5 - G m
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