
Functional inequalities: nonlinear flows and
entropy methods as a tool for obtaining sharp and

constructive results

Jean Dolbeault

http://www.ceremade.dauphine.fr/∼dolbeaul

Ceremade, Université Paris-Dauphine

July 6, 2021

Seminario Matematico e Fisico di Milano

http://www.ceremade.dauphine.fr/~dolbeaul


Inequalities, entropies, flows
Entropy methods and the fast diffusion equation

Symmetry and symmetry breaking
Conclusion

Outline

A brief historical perspective
B Sobolev and some other interpolation inequalities
B Branches of solutions
B Entropies and carré du champ methods

Entropy methods and the fast diffusion equation on Rd

B Rényi entropy powers
B Relative entropy and relative Fisher information
B Linearized entropy methods and Hardy-Poincaré inequalities
B A stability result for Gagliardo-Nirenberg-Sobolev inequalities

Symmetry and symmetry breaking
B Caffarelli-Kohn-Nirenberg inequalities
B A proof in 4 steps
B Optimality by entropy methods

with Matteo Bonforte, Bruno Nazaret, Nikita Simonov
with Maria J. Esteban, Michael Loss, Matteo Muratori

J. Dolbeault Functional inequalities and entropy methods



Inequalities, entropies, flows
Entropy methods and the fast diffusion equation

Symmetry and symmetry breaking
Conclusion

Sobolev and an abstract stability result
Gagliardo-Nirenberg-Sobolev inequalities
Flows on the sphere, constraints and improvements
The elliptic point of view, improvements

Inequalities, entropies, flows

J. Dolbeault Functional inequalities and entropy methods



Inequalities, entropies, flows
Entropy methods and the fast diffusion equation

Symmetry and symmetry breaking
Conclusion

Sobolev and an abstract stability result
Gagliardo-Nirenberg-Sobolev inequalities
Flows on the sphere, constraints and improvements
The elliptic point of view, improvements

A little bit of history

Sobolev’s inequality

‖∇f ‖2
L2(Rd )

≥ Sd ‖f ‖2L2∗ (Rd )

B [Lane, 1870], [Emden, Fowler], [Bliss, 1930]
B [Sobolev, 1938]
B [Aubin, 1976], [Talenti, 1976], [Rodemich, 1966], [Lieb, 1983]
B [Brézis, Nirenberg, 1983], [Brézis, Lieb, 1985], [Bianchi, Egnell, 1991]

Entropy

S =
∫
Rd

f log f dx

B [Clausius, 1865], [Boltzmann, 1872]
B [Shannon, 1948], [Blackman, Stam, 1959]
B [Gross, 1975]
B [Bakry, Emery, 1985], [Jordan, Kinderlehrer, Otto, 1998]
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Two (apocryphal ?) jokes

The Arnold Principle. If a notion bears a personal name, then this name is
not the name of the discoverer.

The Berry Principle. The Arnold Principle is applicable to itself.

About entropy. When Shannon first derived his famous formula for
information, he asked von Neumann what he should call it and von
Neumann replied: You should call it entropy for two reasons: first because
that is what the formula is in statistical mechanics but second and more
important, as nobody knows what entropy is, whenever you use the term
you will always be at an advantage !
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The stability result of G. Bianchi and H. Egnell

In Sobolev’s inequality (with optimal constant Sd ),

‖∇f ‖2
L2(Rd )

−Sd ‖f ‖2L2∗ (Rd ) ≥ 0

is there a natural way to bound the l.h.s. from below in terms of a “distance”
to the set of optimal [Aubin-Talenti] functions when d ≥ 3 ?
A question raised in [Brezis, Lieb (1985)]

B [Bianchi, Egnell (1991)] There is a positive constant α such that

‖∇f ‖2
L2(Rd )

−Sd ‖f ‖2L2∗ (Rd ) ≥α inf
ϕ∈M

‖∇f −∇ϕ‖2
L2(Rd )

B Various improvements, e.g., [Cianchi, Fusco, Maggi, Pratelli (2009)]
there are constants α and κ and f 7→λ(f ) such that

‖∇f ‖2
L2(Rd )

≥ (
1+κλ(f )α)

Sd ‖f ‖2L2∗ (Rd )

However, the question of constructive estimates is still widely open

J. Dolbeault Functional inequalities and entropy methods
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From the carré du champ method to stability results

Carré du champ method (adapted from D. Bakry and M. Emery)

∂u

∂t
=∆um ,

dF

dt
=−I ,

dI

dt
≤−ΛI

deduce that I − ΛF is monotone non-increasing with limit 0

I [u]≥ ΛF [u]

B Improved entropy – entropy production inequality (weaker form)

I ≥ Λψ(F )

for some ψ such that ψ(0)= 0, ψ′(0)= 1 and ψ′′ > 0

I −ΛF ≥ Λ(ψ(F )−F )≥ 0

B Improved constant means stability
Under some restrictions on the functions, there is some Λ? >Λ such that

I −ΛF ≥ (Λ?−Λ)F ≥ 0 or I −ΛF ≥
(
1− Λ

Λ?

)
I ≥ 0

J. Dolbeault Functional inequalities and entropy methods
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Gagliardo-Nirenberg-Sobolev inequalities

We consider the inequalities

‖∇f ‖θ2 ‖f ‖1−θp+1 ≥CGNS(p) ‖f ‖2p (GNS)

θ = d (p−1)
(d+2−p (d−2))p , p ∈ (1,+∞) if d = 1 or 2 , p ∈ (1,p∗] if d ≥ 3 , p∗ = d

d−2

Theorem (del Pino, JD)

Equality case in (GNS) is achieved if and only if

f ∈M :=
{
gλ,µ,y : (λ,µ,y) ∈ (0,+∞)×R×Rd

}
Aubin-Talenti functions: gλ,µ,y (x) :=µg((x −y)/λ), g(x)= (

1+|x |2)− 1
p−1

[del Pino, JD, 2002], [Gunson, 1987, 1991]
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Related inequalities

‖∇f ‖θ2 ‖f ‖1−θp+1 ≥CGNS(p) ‖f ‖2p (GNS)

B Sobolev’s inequality : d ≥ 3, p = p∗ = d/(d −2)

‖∇f ‖22 ≥ Sd ‖f ‖22p∗

B Euclidean Onofri inequality∫
R2

eh−h dx

π(1+|x |2)2
≤ e

1
16π

∫
R2 |∇h|2dx

d = 2, p→+∞ with fp(x) := g(x)
(
1+ 1

2p (h(x)−h)
)
, h= ∫

R2 h(x) dx

π(1+|x |2)2
B Euclidean logarithmic Sobolev inequality in scale invariant form

d

2
log

(
2

πd e

∫
Rd

|∇f |2 dx

)
≥

∫
Rd

|f |2 log |f |2 dx

or
∫
Rd |∇f |2 dx ≥ 1

2
∫
Rd |f |2 log

(
|f |2
‖f ‖22

)
dx + d

4 log
(
2πe2) ∫

Rd |f |2 dx

J. Dolbeault Functional inequalities and entropy methods
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Interpolation inequalities on the sphere

On the d-dimensional sphere, let us consider the interpolation inequality

‖∇u‖2
L2(Sd )

+ d

p−2
‖u‖2

L2(Sd )
≥ d

p−2
‖u‖2

Lp(Sd )
∀u ∈ H1(Sd ,dµ)

where the measure dµ is the uniform probability measure on Sd ⊂Rd+1

corresponding to the measure induced by the Lebesgue measure on Rd+1,
and the exposant p ≥ 1, p 6= 2, is such that

p ≤ 2∗ := 2d
d −2

if d ≥ 3. We adopt the convention that 2∗ =∞ if d = 1 or d = 2. The case
p = 2 corresponds to the logarithmic Sobolev inequality

‖∇u‖2
L2(Sd )

≥ d

2

∫
Sd

|u|2 log

 |u|2
‖u‖2

L2(Sd )

dµ ∀u ∈ H1(Sd ,dµ)\ {0}

J. Dolbeault Functional inequalities and entropy methods
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The Bakry-Emery method

Entropy functional

Ep[ρ] := 1
p−2

[∫
Sd ρ

2
p dµ− (

∫
Sd ρdµ)

2
p

]
if p 6= 2

E2[ρ] :=
∫
Sd
ρ log

(
ρ

‖ρ‖
L1(Sd )

)
dµ

Fisher information functional

Ip[ρ] :=
∫
Sd

|∇ρ
1
p |2dµ

Bakry-Emery (carré du champ): use the heat flow ∂ρ
∂t =∆ρ where ∆

denotes the Laplace-Beltrami operator on Sd , and compute

d

dt
Ep[ρ]=−Ip[ρ] and

d

dt
Ip[ρ]≤−dIp[ρ]

d
dt (Ip[ρ]−d Ep[ρ])≤ 0 =⇒ Ip[ρ]≥ d Ep[ρ] with ρ = |u|p , if

p ≤ 2# := 2d2+1
(d−1)2

J. Dolbeault Functional inequalities and entropy methods
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The evolution under the fast diffusion flow

To overcome the limitation p ≤ 2#, one can consider a nonlinear diffusion
of fast diffusion / porous medium type

∂ρ

∂t
=∆ρm . (1)

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any p ∈ [1,2∗]

Kp[ρ] :=
d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0 ,

1.0 1.5 2.5 3.0

0.0

0.5

1.5

2.0

(p,m) admissible region, d = 5
J. Dolbeault Functional inequalities and entropy methods
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Sobolev’s inequality

The stereographic projection of Sd ⊂Rd ×R 3 (ρφ,z) onto Rd :
to ρ2+z2 = 1, z ∈ [−1,1], ρ ≥ 0, φ ∈Sd−1 we associate x ∈Rd such that
r = |x |, φ= x

|x |

z = r2−1
r2+1

= 1− 2
r2+1

, ρ = 2r
r2+1

and transform any function u on Sd into a function v on Rd using

u(y)= ( r
ρ

) d−2
2 v(x)= ( r2+1

2
) d−2

2 v(x)= (1−z)−
d−2
2 v(x)

p = 2∗, Sd = 1
4 d (d −2) |Sd |2/d : Euclidean Sobolev inequality

∫
Rd

|∇v |2dx ≥ Sd
[∫

Rd
|v | 2d

d−2 dx

] d−2
d

∀v ∈D1,2(Rd )

J. Dolbeault Functional inequalities and entropy methods
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Schwarz symmetrization and the ultraspherical setting

(ξ0, ξ1, . . .ξd ) ∈Sd , ξd = z ,
∑d

i=0 |ξi |2 = 1
Schwarz foliated symmetrization: [Smets-Willem]

Lemma

Up to a rotation, any minimizer of Q depends only on ξd = z

• Let dσ(θ) := (sinθ)d−1

Zd
dθ, Zd :=

p
π

Γ(d2 )

Γ(d+1
2 )

: ∀v ∈ H1([0,π],dσ)

p−2
d

∫ π

0
|v ′(θ)|2 dσ+

∫ π

0
|v(θ)|2 dσ≥

(∫ π

0
|v(θ)|p dσ

) 2
p

• Change of variables z = cosθ, v(θ)= f (z)

p−2
d

∫ 1

−1
|f ′|2 ν dνd +

∫ 1

−1
|f |2dνd ≥

(∫ 1

−1
|f |p dνd

) 2
p

where νd (z)dz = dνd (z) :=Z−1
d ν

d
2−1dz , ν(z) := 1−z2

J. Dolbeault Functional inequalities and entropy methods
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The ultraspherical operator

With dνd =Z−1
d ν

d
2−1dz , ν(z) := 1−z2, consider the space

L2((−1,1),dνd ) with scalar product

〈f1, f2〉 =
∫ 1

−1
f1 f2dνd , ‖f ‖Lp(Sd ) =

(∫ 1

−1
f p dνd

) 1
p

The self-adjoint ultraspherical operator is

L f := (1−z2) f ′′−d z f ′ = ν f ′′+ d

2
ν′ f ′

which satisfies 〈f1,L f2〉 =−∫ 1
−1 f

′
1 f

′
2 νdνd

Proposition

Let p ∈ [1,2)∪ (2,2∗], d ≥ 1. For any f ∈ H1([−1,1],dνd ),

−〈f ,L f 〉 =
∫ 1

−1
|f ′|2 νdνd ≥ d

‖f ‖2
Lp(Sd )

−‖f ‖2
L2(Sd )

p−2

J. Dolbeault Functional inequalities and entropy methods
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Heat flow and the Bakry-Emery method

With g = f p , i.e. f = gα with α= 1/p

(Ineq.) −〈f ,L f 〉=−〈
gα,L gα

〉=:I [g ]≥ d
‖g‖2α

L1(Sd )
−‖g2α‖L1(Sd )

p−2
=:F [g ]

Heat flow
∂g

∂t
=L g

d

dt
‖g‖L1(Sd )= 0 ,

d

dt
‖g2α‖L1(Sd )=−2(p−2) 〈f ,L f 〉= 2(p−2)

∫ 1

−1
|f ′|2 νdνd

which finally gives

d

dt
F [g(t, ·)]=− d

p−2
d

dt
‖g2α‖L1(Sd ) =−2dI [g(t, ·)]

Ineq. ⇐⇒ d

dt
F [g(t, ·)]≤−2dF [g(t, ·)] ⇐= d

dt
I [g(t, ·)]≤−2dI [g(t, ·)]

J. Dolbeault Functional inequalities and entropy methods
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The equation for g = f p can be rewritten in terms of f as

∂f

∂t
=L f + (p−1)

|f ′|2
f

ν

−1
2

d

dt

∫ 1

−1
|f ′|2 νdνd = 1

2
d

dt
〈f ,L f 〉 = 〈L f ,L f 〉+ (p−1)

〈
|f ′|2
f

ν,L f

〉

d

dt
I [g(t, ·)]+ 2dI [g(t, ·)]= d

dt

∫ 1

−1
|f ′|2 νdνd + 2d

∫ 1

−1
|f ′|2 νdνd

=−2
∫ 1

−1

(
|f ′′|2+ (p−1)

d

d +2
|f ′|4
f 2 − 2(p−1)

d −1
d +2

|f ′|2 f ′′
f

)
ν2dνd

is nonpositive if

|f ′′|2+ (p−1) d
d+2

|f ′|4
f 2 − 2(p−1) d−1

d+2
|f ′|2 f ′′

f ≥ 0 a.e.[
(p−1) d−1

d+2

]2
≤ (p−1) d

d+2 ⇐⇒ p ≤ 2d2+1
(d−1)2 = 2# < 2d

d−2 = 2∗

J. Dolbeault Functional inequalities and entropy methods
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... up to the critical exponent: a proof in two slides

[
d

dz
,L

]
u = (L u)′−L u′ =−2z u′′−d u′

∫ 1

−1
(L u)2dνd =

∫ 1

−1
|u′′|2 ν2dνd +d

∫ 1

−1
|u′|2 νdνd∫ 1

−1
(L u)

|u′|2
u

νdνd = d

d +2

∫ 1

−1

|u′|4
u2 ν2dνd − 2

d −1
d +2

∫ 1

−1

|u′|2u′′
u

ν2dνd

On (−1,1), let us consider the porous medium (fast diffusion) flow

ut = u2−2β
(
L u+κ |u′|2

u
ν

)
, β= 1

2−p (1−m)

If κ=β(p−2)+1, the Lp norm is conserved

d

dt

∫ 1

−1
uβp dνd =βp (κ−β(p−2)−1)

∫ 1

−1
uβ(p−2) |u′|2νdνd = 0

J. Dolbeault Functional inequalities and entropy methods
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f = uβ, ‖f ′‖2
L2(Sd )

+ d
p−2

(
‖f ‖2

L2(Sd )
−‖f ‖2

Lp(Sd )

)
≥ 0 ?

A :=
∫ 1

−1
|u′′|2ν2dνd −2

d −1
d +2

(κ+β−1)
∫ 1

−1
u′′

|u′|2
u

ν2dνd

+
[
κ(β−1)+ d

d +2
(κ+β−1)

]∫ 1

−1

|u′|4
u2 ν2dνd

A is nonnegative for some β if

8d2

(d +2)2
(p−1)(2∗−p)≥ 0

A is a sum of squares if p ∈ (2,2∗) for an arbitrary choice of β in a certain
interval (depending on p and d)

A =
∫ 1

−1

∣∣∣∣∣u′′− p+2
6−p

|u′|2
u

∣∣∣∣∣
2

ν2dνd ≥ 0 if p = 2∗ andβ= 4
6−p

J. Dolbeault Functional inequalities and entropy methods
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The rigidity point of view

Which computation have we done ? ut = u2−2β
(
L u+κ |u′|2

u ν
)

−L u− (β−1)
|u′|2
u

ν+ λ

p−2
u = λ

p−2
uκ

Multiply by L u and integrate

...
∫ 1

−1
L uuκdνd =−κ

∫ 1

−1
uκ

|u′|2
u

dνd

Multiply by κ |u′|2
u and integrate

... =+κ
∫ 1

−1
uκ

|u′|2
u

dνd

The two terms cancel and we are left only with the two-homogenous
terms

J. Dolbeault Functional inequalities and entropy methods
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Integral constraints

Proposition

For any p ∈ (2,2#), the inequality

∫ 1

−1
|f ′|2 νdνd +

λ

p−2
‖f ‖22 ≥ λ

p−2
‖f ‖2p

∀ f ∈ H1((−1,1),dνd ) s.t.
∫ 1

−1
z |f |p dνd = 0

holds for some λ? > d with

λ≥ d + (d −1)2

d (d +2)
(2#−p)(λ?−d)

J. Dolbeault Functional inequalities and entropy methods
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Antipodal symmetry

With the additional restriction of antipodal symmetry, that is

u(−x)= u(x) ∀x ∈Sd

Theorem

If p ∈ (1,2)∪ (2,2∗), we have∫
Sd

|∇u|2dµ≥ d

p−2

[
1+ (d2−4)(2∗−p)

d (d +2)+p−1

](
‖u‖2

Lp(Sd )
−‖u‖2

L2(Sd )

)
for any u ∈ H1(Sd ,dµ) with antipodal symmetry. The limit case p = 2
corresponds to the improved logarithmic Sobolev inequality

∫
Sd

|∇u|2dµ≥ d

2
(d +3)2

(d +1)2

∫
Sd

|u|2 log

 |u|2
‖u‖2

L2(Sd )

dµ
J. Dolbeault Functional inequalities and entropy methods
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The larger picture: branches of antipodal solutions

8 9 10 11 12 13 14

8

9

10

11

12

13

14

Case d = 5, p = 3: values of the shooting parameter a as a function of λ

J. Dolbeault Functional inequalities and entropy methods
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The optimal constant in the antipodal framework

æ

æ
æ

æ

æ

1.5 2.0 2.5 3.0

6

7

8

9

10

11

12

Numerical computation of the optimal constant when d = 5 and
1≤ p ≤ 10/3≈ 3.33. The limiting value of the constant is numerically found

to be equal to λ? = 21−2/p d ≈ 6.59754 with d = 5 and p = 10/3
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Entropy methods and the fast
diffusion equation on the

Euclidean space

∂u

∂t
=∆um

The Rényi entropy powers and the Gagliardo-Nirenberg inequalities

Self-similar solutions and the entropy-entropy production method

Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)
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The fast diffusion equation in original variables

Consider the fast diffusion equation in Rd , d ≥ 1, m ∈ [m1,1),
m1 := (d −1)/d

∂u

∂t
=∆um (2)

with initial datum u(t = 0,x)= u0(x)≥ 0 such that∫
Rd

u0 dx =M > 0 and
∫
Rd

|x |2u0 dx <+∞

The large time behavior is governed by the self-similar Barenblatt
solutions

B(t,x) := 1(
κt1/µ

)d B

(
x

κt1/µ

)

where µ := 2+d (m−1), κ :=
∣∣∣2µmm−1

∣∣∣1/µ and B is the Barenblatt profile

B(x) := (
C +|x |2)− 1

1−m
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Entropy growth rate and Rényi entropy powers

With p = 1
2m−1 ⇐⇒m= p+1

2p , let us consider f such that u = f 2p

um = f p+1 and u |∇m−1u|2 = (p−1)2 |∇f |2

M = ‖f ‖2p2p , E[u] :=
∫
Rd

um dx = ‖f ‖p+1
p+1 and I[u] := (p+1)2 ‖∇f ‖22

By (GNS), if u solves (2), then

E′ = p−1
2p

I= p−1
2p

(p+1)2
∫
Rd

|∇f |2 dx

≥ p−1
2p

(p+1)2
(
CGNS(p)

) 2
θ ‖f ‖

2
θ

2p ‖f ‖−
2(1−θ)

θ

p+1 ≥C0E1− m−mc
1−m

with C0 := p−1
2p (p+1)2 (CGNS(p))

2
θ M

(d+2)m−d
d (1−m)

∫
Rd

um(t,x)dx ≥
(∫
Rd

um0 dx + (1−m)C0
m−mc

t

) 1−m
m−mc ∀t ≥ 0
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Inequalities, entropies, flows
Entropy methods and the fast diffusion equation

Symmetry and symmetry breaking
Conclusion

Entropies, self-similar variables, spectral gap and asymptotics
Initial and asymptotic time layers
Regularity and stability
Stability results

The entropy is defined by

E :=
∫
Rd

um dx

and the Fisher information by

I :=
∫
Rd

u |∇P|2 dx with P= m

m−1
um−1 is the pressure variable

If u solves the fast diffusion equation, then

E′ = (1−m) I

The Rényi entropy power F :=Eσ = (
∫
Rd u

m dx)σ with σ= 2
d

1
1−m −1

applied to self-similar Barenblatt solutions has a linear growth in t

[Toscani, Savaré, 2014], [JD, Toscani, 2016]
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Nonlinear carré du champ method

I′ =
∫
Rd
∆(um) |∇P|2 dx + 2

∫
Rd

u∇P ·∇
(
(m−1)P∆P+|∇P|2

)
dx

If u is a smooth and rapidly decaying function on Rd , then∫
Rd
∆(um) |∇P|2 dx + 2

∫
Rd

u∇P ·∇
(
(m−1)P∆P+|∇P|2

)
dx

=−2
∫
Rd

um
∥∥∥D2P− 1

d ∆P Id
∥∥∥2

dx − 2(m−m1)

∫
Rd

um (∆P)2 dx

Lemma

Let d ≥ 1 and assume that m ∈ (m1,1). If u solves (2) with initial datum
u0 ∈ L1

+(R
d ) such that

∫
Rd |x |2u0 dx <+∞ and if, for any t ≥ 0, u(t, ·) is a

smooth and rapidly decaying function on Rd , then for any t ≥ 0 we have

− d
dt log

(
I
1
2 E

1−θ
θ(p+1)

)
= ∫

Rd u
m

∥∥D2P− 1
d ∆P Id

∥∥2
dx+(m−m1)

∫
Rd u

m
∣∣∆P+ I

E
∣∣2dx
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Self-similar variables: entropy-entropy production
inequality

With a time-dependent rescaling based on self-similar variables

u(t,x)= 1
κd Rd

v
(
τ,

x

κR

)
where

dR

dt
=R1−µ , τ(t) := 1

2 logR(t)

∂u
∂t =∆um is changed into a Fokker-Planck type equation

∂v

∂τ
+∇·

[
v

(
∇um−1− 2x

)]
= 0 (3)

Generalized entropy (free energy) andFisher information

F [v ] :=− 1
m

∫
Rd

(
vm−Bm−mBm−1 (v −B)

)
dx

I [v ] :=
∫
Rd

v
∣∣∣∇vm−1+ 2x

∣∣∣2 dx

are such that I [v ]≥ 4F [v ] by (GNS) [del Pino, JD, 2002] so that

F [v(t, ·)]≤F [v0]e
−4t

J. Dolbeault Functional inequalities and entropy methods
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Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vázquez, 2009]

(
C0+|x |2)− 1

1−m ≤ v0 ≤ (
C1+|x |2)− 1

1−m (H)

F [v(t, ·)]≤C e−2γ(m)t ∀ t ≥ 0 , γ(m) := (1−m)Λα,d , α := 1
m−1

< 0

where Λα,d > 0 is the best constant in the Hardy–Poincaré inequality

Λα,d

∫
Rd

f 2

1+|x |2
(
1+|x |2)α

dx ≤
∫
Rd

|∇f |2 (
1+|x |2)α

dx ,
∫
Rd

f
(
1+|x |2)α−1

dx = 0

Lemma

Under assumption (H), I [v ]≥ (4−η)F [v ] for some η ∈ (0,2(γ(m)−2))

Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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Spectral gap and the asymptotic time layer

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

F [v(t, ·)]≤C e−2γ(m)t ∀ t ≥ 0
[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2015]
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The asymptotic time layer improvement

Linearized free energy and linearized Fisher information

F[g ] := m

2

∫
Rd

g2 B2−m dx and I[g ] :=m(1−m)

∫
Rd

|∇g |2 B dx

Hardy-Poincaré inequality. Let d ≥ 1, m ∈ (m1,1) and g ∈ L2(Rd ,B2−m dx)
such that ∇g ∈ L2(Rd ,Bdx),

∫
Rd g B2−m dx = 0 and

∫
Rd x g B2−m dx = 0

I[g ]≥ 4αF[g ] where α= 2−d (1−m)

Proposition (already a stability result)

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/3,1) if d = 1, η= 2d (m−m1) and
χ=m/(266+56m). If

∫
Rd v dx =M ,

∫
Rd x v dx = 0 and

(1−ε)B ≤ v ≤ (1+ε)B

for some ε ∈ (0,χη), then

Q[v ] := I [v ]

F [v ]
≥ 4+η

J. Dolbeault Functional inequalities and entropy methods
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The initial time layer improvement: backward estimate

[Bonforte, JD, Nazaret, Simonov, 2020]

Rephrasing the carré du champ method, Q[v ] := I [v ]
F [v ]

is such that

dQ

dt
≤Q (Q−4)

Lemma

Assume that m>m1 and v is a solution to (3) with nonnegative initial
datum v0. If for some η> 0 and T > 0, we have Q[v(T , ·)]≥ 4+η, then

Q[v(t, ·)]≥ 4+ 4ηe−4T

4+η−ηe−4T ∀t ∈ [0,T ]

J. Dolbeault Functional inequalities and entropy methods
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Regularity and stability

Our strategy

Regularity and stability

Our strategy

Choose "> 0, small enough

Get a threshold time t?(")

0 t?(") t
Backward estimate

by entropy methods

Forward estimate

based on a spectral gap

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

E
s

⇐
#↳

Initial time layer Asymptotic time layer

J. Dolbeault Functional inequalities and entropy methods



Inequalities, entropies, flows
Entropy methods and the fast diffusion equation

Symmetry and symmetry breaking
Conclusion

Entropies, self-similar variables, spectral gap and asymptotics
Initial and asymptotic time layers
Regularity and stability
Stability results

Uniform convergence in relative error

Theorem

Assume that m ∈ (m1,1) if d ≥ 2, m ∈ (1/3,1) if d = 1 and let ε ∈ (0,1/2),
small enough, A> 0, and G > 0 be given. There exists an explicit time
t? ≥ 0 such that, if u is a solution of

∂u

∂t
=∆um (2)

with nonnegative initial datum u0 ∈ L1(Rd ) satisfying

sup
r>0

r
d (m−mc )
(1−m)

∫
|x |>r

u0dx ≤A<∞ (HA)

∫
Rd u0 dx = ∫

Rd B dx =M and F [u0]≤G , then

sup
x∈Rd

∣∣∣∣ u(t,x)

B(t,x)
−1

∣∣∣∣≤ ε ∀t ≥ t?

J. Dolbeault Functional inequalities and entropy methods
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The threshold time

Proposition

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/3,1) if d = 1, ε ∈ (0,εm,d ), A> 0 and G > 0

t? = c?
1+A1−m+G

α
2

εa

where a= α
ϑ

2−m
1−m and ϑ= ν/(d +ν)

c? = c?(m,d)= sup
ε∈(0,εm,d )

max
{
εκ1(ε,m), εaκ2(ε,m), εκ3(ε,m)

}

κ1(ε,m) :=max
{ 8c
(1+ε)1−m−1

,
23−mκ?

1− (1−ε)1−m
}

κ2(ε,m) := (4α)α−1 K
α
ϑ

ε
2−m
1−m

α
ϑ

and κ3(ε,m) := 8α−1

1− (1−ε)1−m
J. Dolbeault Functional inequalities and entropy methods
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Improved entropy-entropy production inequality

Theorem

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/2,1) if d = 1, A> 0 and G > 0. Then
there is a positive number ζ such that

I [v ]≥ (4+ζ)F [v ]

for any nonnegative function v ∈ L1(Rd ) such that F [v ]=G ,∫
Rd v dx =M ,

∫
Rd x v dx = 0 and v satisfies (HA)

We have the asymptotic time layer estimate

ε ∈ (0, 2ε?) , ε? :=
1
2

min
{
εm,d , χη

}
with T = 1

2
logR(t?)

(1−ε)B ≤ v(t, ·)≤ (1+ε)B ∀t ≥T

and, as a consequence, the initial time layer estimate

I [v(t, .)]≥ (4+ζ)F [v(t, .)] ∀t ∈ [0,T ] , where ζ= 4ηe−4T

4+η−ηe−4T
J. Dolbeault Functional inequalities and entropy methods
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Two consequences

ζ=Z
(
A,F [u0]

)
, Z(A,G ) := ζ?

1+A(1−m) 2
α +G

, ζ? :=
4η

4+η

(
εa?

2αc?

) 2
α

cα

B Improved decay rate for the fast diffusion equation in rescaled variables

Corollary

Let m ∈ (m1,1) if d ≥ 2, m ∈ (1/2,1) if d = 1, A> 0 and G > 0. If v is a
solution of (3) with nonnegative initial datum v0 ∈ L1(Rd ) such that
F [v0]=G ,

∫
Rd v0 dx =M ,

∫
Rd x v0 dx = 0 and v0 satisfies (HA), then

F [v(t, .)]≤F [v0]e
−(4+ζ)t ∀t ≥ 0

B The stability in the entropy - entropy production estimate
I [v ]−4F [v ]≥ ζF [v ] also holds in a stronger sense

I [v ]− 4F [v ]≥ ζ

4+ζI [v ]

J. Dolbeault Functional inequalities and entropy methods
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An abstract stability result

Relative entropy

F [f ] := 2p
1−p

∫
Rd

(
f p+1−gp+1− 1+p

2p g1−p (
f 2p −g2p))

dx

Deficit functional

δ[f ] := a ‖∇f ‖22+b ‖f ‖p+1
p+1−KGN ‖f ‖2pγ2p ≥ 0

Theorem

Let d ≥ 1 and p ∈ (1,p∗). There is a C > 0 such that

δ[f ]≥C F [f ]

for any f ∈W := {
f ∈ L1(Rd ,(1+|x |)2 dx) : ∇f ∈ L2(Rd , dx)

}
such that∫

Rd
f 2p (1,x)dx =

∫
Rd

|g|2p (1,x)dx

J. Dolbeault Functional inequalities and entropy methods
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A constructive result

The relative entropy

F [f ] := 2p
1−p

∫
Rd

(
f p+1−gp+1− 1+p

2p g1−p (
f 2p −g2p))

dx

The deficit functional

δ[f ] := a ‖∇f ‖22+b ‖f ‖p+1
p+1−KGN ‖f ‖2pγ2p ≥ 0

Theorem

Let d ≥ 1, p ∈ (1,p∗), A> 0 and G > 0. There is a C > 0 such that

δ[f ]≥C F [f ]

for any f ∈W := {
f ∈ L1(Rd ,(1+|x |)2 dx) : ∇f ∈ L2(Rd , dx)

}
such that∫

Rd
f 2p dx =

∫
Rd

|g|2p dx ,
∫
Rd

x f 2p dx = 0

sup
r>0

r
d−p (d−4)

p−1

∫
|x |>r

f 2p dx ≤A and F [f ]≤G

J. Dolbeault Functional inequalities and entropy methods
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Symmetry and symmetry breaking
in Caffarelli-Kohn-Nirenberg

inequalities
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Caffarelli-Kohn-Nirenberg inequalities

Let Da,b :=
{
v ∈ Lp

(
Rd , |x |−b dx)

: |x |−a |∇v | ∈ L2 (
Rd ,dx

)}
(∫
Rd

|v |p
|x |bp dx

)2/p
≤ Ca,b

∫
Rd

|∇v |2
|x |2a dx ∀v ∈Da,b

hold under the conditions that a≤ b ≤ a+1 if d ≥ 3, a< b ≤ a+1 if d = 2,
a+1/2< b ≤ a+1 if d = 1, and a< ac := (d −2)/2

p = 2d
d −2+2(b−a)

B An optimal function among radial functions:

v?(x)=
(
1+|x |(p−2)(ac−a)

)− 2
p−2

and C?a,b =
‖|x |−b v? ‖2p
‖|x |−a∇v? ‖22

Question: Ca,b =C?a,b (symmetry) or Ca,b >C?a,b (symmetry breaking) ?

J. Dolbeault Functional inequalities and entropy methods
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CKN: range of the parameters

Figure: d = 3(∫
Rd

|v |p
|x |bp dx

)2/p
≤ Ca,b

∫
Rd

|∇v |2
|x |2a dx

a

b

0

1

−1

b = a

b = a + 1

a = d−2
2

a≤ b ≤ a+1 if d ≥ 3
a< b ≤ a+1 if d = 2, a+1/2< b ≤ a+1 if d = 1
and a< ac := (d −2)/2

p = 2d
d −2+2(b−a)

[Glaser, Martin, Grosse, Thirring (1976)]
[F. Catrina, Z.-Q. Wang (2001)]
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B Proving symmetry breaking
[F. Catrina, Z.-Q. Wang], [V. Felli, M. Schneider (2003)]
[J.D., Esteban, Loss, Tarantello, 2009] There is a curve...

B Moving planes and symmetrization techniques
[Chou, Chu], [Horiuchi]
[Betta, Brock, Mercaldo, Posteraro]
+ Perturbation results: [CS Lin, ZQ Wang], [Smets, Willem], [JD, Esteban,
Tarantello 2007], [J.D., Esteban, Loss, Tarantello, 2009]

B Linear instability of radial minimizers: the Felli-Schneider curve
[Catrina, Wang], [Felli, Schneider]

B Direct spectral estimates
[J.D., Esteban, Loss, 2011]: sharp interpolation on the sphere and a
Keller-Lieb-Thirring spectral estimate on the line

J. Dolbeault Functional inequalities and entropy methods
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Symmetry versus symmetry breaking

A result based on entropies and nonlinear flows

a

b

0

[J.D., Esteban, Loss, 2015]
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The symmetry result

The Felli & Schneider curve is defined by

bFS(a) :=
d (ac −a)

2
√
(ac −a)2+d −1

+a−ac

Theorem

Let d ≥ 2 and p < 2∗. If either a ∈ [0,ac) and b > 0, or a< 0 and
b ≥ bFS(a), then the optimal functions for the Caffarelli-Kohn-Nirenberg
inequalities are radially symmetric

J. Dolbeault Functional inequalities and entropy methods
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A change of variables (1/4)

With (r = |x |,ω= x/r) ∈R+×Sd−1, the Caffarelli-Kohn-Nirenberg
inequality is

(∫ ∞

0

∫
Sd−1

|v |p r d−bp dr
r
dω

) 2
p

≤Ca,b

∫ ∞

0

∫
Sd−1

|∇v |2 r d−2a dr

r
dω

Change of variables r 7→ rα, v(r ,ω)=w(rα,ω)

α
1− 2

p

(∫ ∞

0

∫
Sd−1

|w |p r
d−bp
α

dr

r
dω

) 2
p

≤Ca,b

∫ ∞

0

∫
Sd−1

(
α2

∣∣∣ ∂w∂r ∣∣∣2+ 1
r2

|∇ωw |2
)
r

d−2a−2
α +2 dr

r
dω

Choice of α

n= d −bp

α
= d −2a−2

α
+2

Then p = 2n
n−2 is the critical Sobolev exponent associated with n

J. Dolbeault Functional inequalities and entropy methods
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A Sobolev type inequality

The parameters α and n vary in the ranges 0<α<∞ and d < n<∞ and
the Felli-Schneider curve in the (α,n) variables is given by

α=
√

d−1
n−1 =:αFS

With
Dw =

(
α ∂w

∂r , 1
r ∇ωw

)
, dµ := rn−1dr dω

the inequality becomes

α
1− 2

p

(∫
Rd

|w |p dµ
) 2
p

≤Ca,b

∫
Rd

|Dw |2dµ

Proposition

Let d ≥ 2. Optimality is achieved by radial functions and Ca,b =C?a,b if
α≤αFS

Gagliardo-Nirenberg inequalities on general cylinders: similar results
[J.D., Esteban, Loss, Muratori, 2016]
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Notations

When there is no ambiguity, we will omit the index ω and from now on
write that ∇=∇ω denotes the gradient with respect to the angular variable
ω ∈Sd−1 and that ∆ is the Laplace-Beltrami operator on Sd−1. We define
the self-adjoint operator L by

L w :=−D∗Dw =α2w ′′+α2 n−1
r

w ′+ ∆w

r2

The fundamental property of L is the fact that∫
Rd

w1 L w2dµ=−
∫
Rd

Dw1 ·Dw2dµ ∀w1, w2 ∈D(Rd )

B Heuristics: we look for a monotonicity formula along a well chosen
nonlinear flow, based on the analogy with the decay of the Fisher
information along the fast diffusion flow in Rd
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Fisher information (2/4)

Let u
1
2− 1

n = |w | ⇐⇒ u = |w |p , p = 2n
n−2

I [u] :=
∫
Rd

u |DP|2dµ , P= m

1−m
um−1 and m= 1− 1

n

Here I is the Fisher information and P is the pressure function

Proposition

With Λ= 4α2/(p−2)2 and for some explicit numerical constant κ, we
have

κµ(Λ)= inf
{
I [u] : ‖u‖L1(Rd ,dµ) = 1

}
B Optimal solutions solutions of the elliptic PDE) are (constrained)
critical point of I

J. Dolbeault Functional inequalities and entropy methods
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The fast diffusion equation

∂u

∂t
=L um , m= 1− 1

n

Barenblatt self-similar solutions

u?(t,r ,ω)= t−n
(
c?+

r2

2(n−1)α2 t2

)−n

Lemma

Barenblatt solutions realize the minimum of I among radial functions:

κµ?(Λ)=I [u?(t, ·)] ∀t > 0

B Strategy:
1) prove that d

dt I [u(t, ·)]≤ 0,

2) prove that d
dt I [u(t, ·)]= 0 means that u = u? up to a time shift
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Decay of the Fisher information along the flow ? (3/4)

The pressure function P= m
1−m um−1 satisfies

∂P
∂t

= 1
n

PL P−|DP|2

Q[P] := 1
2

L |DP|2−DP ·DL P

K [P] :=
∫
Rd

k[P]P1−n dµ=
∫
Rd

(
Q[P]− 1

n
(L P)2

)
P1−n dµ

Lemma

If u solves the weighted fast diffusion equation, then

d

dt
I [u(t, ·)]=−2(n−1)n−1 K [P]

If u is a critical point, then K [P]= 0
B Boundary terms ! Regularity !
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Proving decay 1

k[P] :=Q(P)− 1
n
(L P)2 = 1

2
L |DP|2−DP ·D L P− 1

n
(L P)2

kM[P] := 1
2
∆ |∇P|2−∇P ·∇∆P− 1

n−1 (∆P)2− (n−2)α2 |∇P|2

Lemma

Let n 6= 1 be any real number, d ∈N, d ≥ 2, and consider a function
P ∈C3((0,∞)×M), where (M,g) is a smooth, compact Riemannian
manifold. Then we have

k[P]=α4
(
1− 1

n

)[
P′′− P′

r
− ∆P
α2 (n−1)r2

]2

+2α2 1
r2

∣∣∣∣∇P′− ∇P
r

∣∣∣∣2+ 1
r4

kM[P]

J. Dolbeault Functional inequalities and entropy methods



Inequalities, entropies, flows
Entropy methods and the fast diffusion equation

Symmetry and symmetry breaking
Conclusion

Caffarelli-Kohn-Nirenberg inequalities
Symmetry vs. symmetry breaking
The proof of the symmetry result in 4 steps

Proving decay 2

Lemma

Assume that d ≥ 3, n> d and M=Sd−1. For some ζ? > 0 we have∫
Sd−1

kM[P]P1−n dω≥ (
λ?− (n−2)α2)∫

Sd−1
|∇P|2P1−n dω

+ζ? (n−d)

∫
Sd−1

|∇P|4P1−n dω

Proof based on the Bochner-Lichnerowicz-Weitzenböck formula

Corollary

Let d ≥ 2 and assume that α≤αFS. Then for any nonnegative function
u ∈ L1(Rd ) with I [u]<+∞ and

∫
Rd udµ= 1, we have

I [u]≥I?

When M=Sd−1, λ? = (n−2) d−1
n−1
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A perturbation argument, regularity issues (4/4)

If u is a critical point of I under the mass constraint
∫
Rd udµ= 1, then

o(ε)=I [u+εL um]−I [u]=−2(n−1)n−1 εK [P]+o(ε)

because εL um is an admissible perturbation (formal). Indeed, we know
that ∫

Rd
(u+εL um)dµ=

∫
Rd

udµ= 1

but positivity of u+εL um is an issue: compute

0=DI [u] ·L um =−K [P]

Regularity issues (uniform decay of various derivatives up to order 3)
and boundary terms

If α≤αFS, then K [P]= 0 implies that u = u?
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Some concluding remarks

Entropy methods provide a framework
B for interpreting the terms
B for computing
B for understanding optimality cases

Flows
B parabolic equations provide extra-regularity
B relate nonlinear problems with asymptotic (linear) problems
B bypass symmetrization techniques (useful for some problems with
magnetic fields, open for systems)

Extensions
B non-homogeneous non-linearity or weights
B nonlinear non-local equations (Poisson couplings)
B kinetic equations and defective parabolic equations
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/
B Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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