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@ Entropy in non-dissipative kinetic theory
@ Vlasov-Poisson system with injection boundary conditions
the electrostatic case (coll. Naoufel)
¢ Dynamical stability
o [Gravitational Vlasov-Poisson (Newton) system)]
o Relative equilibria in gravitation

o [Diffusive limits, parabolic equations]
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Entropy in non-dissipative
kinetic theory

@ Vlasov-Poisson system with injection boundary conditions
the electrostatic case (coll. Naoufel)

@ Dynamical stability

@ Gravitational Vlasov-Poisson (Newton) system:
Variational methods and functional inequalities

@ Relative equilibria

J. Dolbeault Entropy in kinetic, parabolic and quantum theory



Entropy in non-dissipative kinetic theory Vlasov-Poisson system with injection boundary conditions
Diffusive limits, parabolic equations Gravitational Vlasov-Poisson system and functional inequalities
Entropy for quantum models Relative equilibria

Vlasov-Poisson system

with injection boundary conditions:
the electrostatic case
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Vlasov-Poisson system
with injection boundary conditions

w is a bounded domain in RY, dw is of class C!
Q=wxRyand I =90 = 0Q x R? are the phase space and its
boundary (incoming and outgoing boundary )

YE(x)={veR? : £v y(x) >0}
M ={(x,v) el : vexXr*f(x)}
Vlasov-Poisson system with injection boundary conditions

Otf + v - Vif — (Vep + Vigpo) - Vo f =0
ﬁt:O = an ﬁr*XRJr(Xa v, t) = 7(%|V|2 + (pO(X))

—Ap=p= dfdv,(x,t)ewaJr
R

and @(x,t)=0,(x,t) € 9Q x R*
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Assumptions

The initial condition fy is a nonnegative bounded function

The external electrostatic potential is nonnegative and smooth

The function =y is defined on (minxey, @o(x), +00), bounded, smooth,
strictly decreasing with values in (0, 00), and

+o0
sup/ s924(s 4 po(x)) ds < 400
0

XEw

~v is strictly decreasing: 3 = — fog v~Y(z) dz is strictly convex
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Stationary solution: the nonlinear Poisson equation

Let U: LY(Q) — Wol’d/(d_l)(w): Ulg] = u the unique solution in
WL/ 81

w) of
—Au :/ g(x,v) dv
R
M(x,v) =7 (3|v]* + U[M](x) + ¢o(x)) is a stationary solution:
V- VM — (Vo + Vi U[M]) - V,M = 0

It is the unique critical point in H(w) of the strictly convex coercive
functional

UH%/|VU|2dx—/G(U+800)dx

where G'(u) = g(u) = [pav (3|V[* +u) dv
= 2d/2-1)gd—1 -f0+°° s9/2-1y(s + u) ds
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Relative entropy

Flglh = / (Blg) — B(h) — (g — h) B'()) dxdv + 1 / VUlg — HIP? d
Q w
g
where [ is the real function defined by §(g) = —/ y7(z) dz
0

/ f(% |v|2—|- % U[f] +<po> dx dv
Q

:/ [ (f = M)U[f — M] — 3 M UIM] — £3'(M)] dx dv
Q

Flf] = /Q (ﬁ(f) + (% [vI* + 3 UIf] +wo> f) dx dv
_/Q (ﬂ(M)+ (% v|* + 3 U[M]+<po> M) dx dv
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Relative entropy and irreversibility

Assume that fy € L' N L° is such that F[fy|M] < 400
d +
7 (0)IM] = —FIf ()| M]
FT is the boundary relative entropy flux

Flelhl = [ (3e) = A(h) ~ (e = W5 () do

Proof. Integration by parts, like in [Darrozes, Guiraud]
i,
— f)dxdv = F B(f) do
i Lo axar =3 [ o

% fQ f (% |V|2 + % U[f] + 900) dx dv = Ej: :tfrx f (% |V|2 + (PO) do
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The large time limit

FIF(OIM] + [y FHIf(s)IM]ds < Flfo|M]
(F"(x, v, t),"(x, 1)) = (F(x, v, t + tn), o(x, t + tn))
lim /R FHF(s)|M] ds = 0
sug}'[f"(t)“\/l] <C.

+ Dunford-Pettis criterion: (7, ") — (f*°, ¢>°) weakly in
L (dt, L1(Q)) x L} (dt, H}(w))

loc loc

fe=MonTl
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Is £°° stationary 7

fP=MonTl: f*°=MonQ? A partial answer for d = 1.

Consider a solution (f°°,p°°) such that f* = M on I on the interval
w=(0,1). If ¢ is analytic in x with C* (in time) coefficients and if g

2
is analytic with — ddfz” > 0 onw, then (f, ) is the unique stationary

solution, given by: f = M, ¢ = U[M]

Proof. Let o(0) = 0, wo(1) > 0: ¢3(0) > 0. Characteristics

oX ov dp dpo
P _v 97— Pix, ) - x
ot ’ ot 8X( 1) dx (%)
X(s;x,v,8) = x, V(six,v,s) =v
are defined on (Zis(s; x, v), Te(s; x, v)) : either Ti,(s; x,v) = —oo or

(Xins Vin)(s; x, v) € [7; either Ze(s; x,v) = +00 or
(Xe, Ve)(six,v) e TT.
Step 1: the electric field is repulsive at x = 0.
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Step 2 : Analysis of the characteristics in a neighborhood of (0,0, t).

f(Xin, Vins Tin) = 7 (3 |Vin[?)
f(XE7 VeyT =7 (% |Ve|2)

The function + is strictly decreasing:
| Vin(t07 X0, O)| = | Ve(t07 X0, O)|
Characteristics are parametrized by

dtt 1 dv 100

_— = — v — 3, o =
K=V ax v )
Let ex(X) = 1V2(X)
X
dY
+ X):to:F/ Ty Xl
o 2ei(Y)
de:t - oo + _
= X)), eslx) =0

Rescaling: xo = €2, X =¢2(1—x) and ex(X) := %2 e (x)
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def X d
dj :2% (52(1—X),t02|25f0 ﬁ)

with the condition e (1) = e (1) for any £ > 0 small enough
+o00
ef = Z e"et
n=0

Lemma

With the above notations, for all n € N, we have the following identities:
dei 2(1—x)" i
20 () — Ta" (0, to)
(i) dezjf,H (x) = +2(1 —x)" X dy
(n+1)! o Veoly)
815 8g+1¢(0, to),
(iii) 0, 071 (0, o) = 0
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Stability

Q[ M. J. Céceres, J. A. Carrillo, and J. Dolbeault. Nonlinear stability in
Lp for a confined system of charged particles. STAM J. Math. Anal., 34 :
478-494, 2002 |

Theorem

Let o be s.t. (x,5) > 53/271y(s + po(x)) € L1 N L=(R3, LX(R)). If f is
a weak solution of Vlasov-Poisson with fy in L1 N LP,

po = (12 +3+/5)/11, s.t. B(h), (|l¢o| + |v|?)fo € L1(R®) and if for some
p € [1,2], infse(o,400) B7(5)/sP~2 > 0, then

IF = folly < § [ 900 = poo)l o
+C [ [8(6) = 8(£x) = B () — fc )l

where (foo(x, v) = ¥(3Iv[? + @0(x) + Poo(X)), o). Here y ™t = —f
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Stability

Value of pp [Horst and Hunze] (weak solutions). Renormalization [DiPerna
and Lions, Mischler|. [Braasch, Rein and Vukadinovié¢, 1998].
Csiszér-Kullback inequality: [AMTU, 2000]

po =2 and ((s) = slogs — s. There exists a convex functional F
2
reaching its minimum at f(x, v) = % Poo(X) s.t.

I1£(t,-) = fisllZ2 < FIfo]

To be compared with the standard Csiszar-Kullback results !
de la Vallée - Poussin type of approach
Here p=1,v(s)=e*

e_(ﬂaoo+<P0)

—DPoo = poo = ||f0||le
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(Newton) system:
Variational methods
and functional inequalities
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Gravitational VIasov—Poisson (Newton) system:

Consider solutions of the gravitational Vlasov-Poisson system
atf+V'VXf_VX§0'va:0

p=—"—xp, p= f dv
471'|| R?

By minimizing the free energy functional

1 1
j—'[f]:// B(f) dxdv+—// |v|2fdxdv——/ |Vgp|2 dx
R3 xR3 2 ) Jrexmre 2 Jrs

stationary solutions can be found, s.t.
F(x,v) = v(A+ 3 [V + ¢(x))

where v = (3')~1. With g(s) := [os 7(s + 3 [v|?) dv, the potential is
given by the nonhnear P01sson equation:

Np =g (A + ¢(x))
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Variational methods and functional inequalities and
dynamical stability

@ Use concentration-compactness methods (for instance) + a priori
estimates and minimize F[f] under a mass constraint [p, f dv =M
@ Power law (polytropic cases) case: §(f) = ¢ wg~' f9, g € (9/7,00)

@ Minimization of F is exactly equivalent to build explicit
interpolation inequalities of Hardy-Littlewood-Sobolev type, with
optimal constants explicitly related to inf F

@ Stability is a consequence of the conservation of the free energy
(resp. free energy bound) for classical solutions (resp. weak solutions)
of the Vlasov-Poisson system
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Relative equilibria
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Relative equilibria

Q@[ J. Campos, M. del Pino, and J. Dolbeault. Relative equilibria in

continuous stellar dynamics. Communications in Mathematical Physics,
300:765-788, 2010 ]

Consider solutions of the gravitational Vlasov-Poisson system
Of + v -Vif =Vyp-V,f=0

_ 1 _
C= =g P p_/RSfdv

which are rotating at constant angular velocity w:
x=(x',x¥) = (e/“tx' x3) and v = (V/,v3) = (iwx' + e @t v/ v3)

Oif + v -Vyf =V -Vf —?x -V f+2wiv -V, f=0,

p=—garr*p, p=[ fadv,
47 || R?

A relative equilibrium of (2) is a stationary solution of (2) and can be
obtained as a critical point of the free energy functional

1 1
f[f]:// B(f) dxdv+—// (> =2 X f dxdv——/ |Vl|? dx
R3xR3 2 R3xR3 2 Jgs
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Critical points

If w # 0, F is not bounded from below

The polytropic gas model: (f) = %ﬂg’l f9 for some g € (9/7,00)

Fx,v) =7 (A+ 3 v +o(x) = 3% [X?)

1+/ (@=1) Nonlinear Poisson equation:

where v(s) = 531 (—s)
Dy =g(A+¢(x) =3 XP)  ifx € supp(p)

with g(p) = (—p)} and p = ﬁ + 2. With u = —¢,
—Au = ij" inR3, p¥= (u—Xi+ %wz |x'|2)ix,-

under the asymptotic boundary condition lim| . u(x) =0

1
m;:/ pj-”dxandf}":—/ x pf dx
R3 mj Jgr3
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A result

Theorem

Let N> 2 and p € (3/2,3) U (3,5). For almost any m;, i =1,...N, and
for any sufficiently small w > 0, there exist at least
[2N=Y(N —2) + 1] (N — 2) ! distinct stationary solutions f,, of (2) s.t.

Jos fodv =N ¥ + 0(1) asw— 0,
where o(1) means that the remainder term uniformly converges to 0
Vi=1,...N, pf(x—&) =3 p.(\P7D25) + o(1)

where p, is non-negative, radially symmetric, non-increasing, compactly
supported function. m; = )\§3_p)/2 Jzs P dx + o(1) and
£ = w2/3(¢¥,0) are s.t. (¥ € R? converges to a critical point of

1 < m
V(Cl»“'CN) = % Z |én m I = Zm:|C:|2
i#j=1
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[J.I. Palmore]: classification of relative equilibria for the N-body
problems + find critical points of

1
J[u]:i/ |Vu|2dx——Z/ (u—Xi+3 oJ2|X|)p++ Xi d

by using the solution of
—Aw, = (w, —1)F =p. in R3

as “building brick” on each of the connected components. With
We = S wi, wilx) = A\ wa (AP (x = &) and € = (&, &n),
we want to solve the problem

N
1
Ap+Y p(We — A+ 30 X)) xie = —E—N[y]
i=1

with lim ¢(x) =0, WhereE—AWg—i—Z, L (We=Xi+3 w2|x|) Xi

|x|— 00
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N
JWe =Y AP el — WPV ) + O
i=1

where e, = 3 [os |[Vw[? dx — p_—lu Jos(w = 1)2 dx and ¢ = w?/3 ¢! if
the points &; are such that, for a large, fixed g > 0, and all small

w >0, we have |¢| < pw=?/3 and |& — &| > p~t w™?/3. To localize
each K; in a neighborhood of &;, we impose the orthogonality
conditions

/ pOwixidx=0 Vi=12...N,j=12,3
]RB

to the price of Lagrange multipliers and solve the problem by fixed
point methods

Since & — J [We] is a finite dimensional function, if & = ({;,0) is such
that (C1,...Cn) is in a neighborhood of a non-degenerate critical point
of V, we can find a critical point ¢ for which the Lagrange multipliers
are all equal to zero
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Diffusive limits, parabolic equations
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Some references

@ Diffusive limits

Q@ [ J. Dolbeault, P. Markowich, D. Oelz, and C. Schmeiser. Non linear
diffusions as limit of kinetic equations with relaxation collision kernels.
Archive for Rational Mechanics and Analysis, 186(1): 133-158, 2007 ]

@ Fast diffusion equations
Q@ [ M. Bonforte, J. Dolbeault, G. Grillo, and J. L. Vdzquez. Sharp rates of
decay of solutions to the nonlinear fast diffusion equation via functional

inequalities. Proceedings of the National Academy of Sciences, 107 :
16459-16464, 2010 |

@ Hypocoercivity

Q@ [ J. Dolbeault, C. Mouhot, and C. Schmeiser. Hypocoercivity for linear
kinetic equations conserving mass. Preprint |

Q@ [ J. Dolbeault, C. Mouhot, and C. Schmeiser. Hypocoercivity for kinetic

equations with linear relaxation terms. Comptes Rendus Mathématique,
347 : 511-516, 2009 |
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Entropy for quantum models
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Q@ [ J. Dolbeault, P. Felmer, M. Loss, and E. Paturel. Lieb-Thirring type
inequalities and Gagliardo-Nirenberg inequalities for systems. J. Funct.
Anal., 238: 193-220, 2006 |

Q@[ J. Dolbeault, P. Felmer, and J. Mayorga-Zambrano. Compactness
properties for trace-class operators and applications to quantum mechanics.
Monatshefte fiir Mathematik, 155: 43-66, 2008 |

Q[ J. Dolbeault, P. Felmer, and M. Lewin. Orbitally stable states in
generalized Hartree-Fock theory. Mathematical Models and Methods in
Applied Sciences, 19: 347-367, 2009 ]

Q@[ G. L. Aki, J. Dolbeault, and C. Sparber. Thermal effects in
gravitational Hartree systems. To appear in Annales Henri Poincaré |
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Lieb-Thirring type inequalities
and Gagliardo-Nirenberg inequalities

for systems
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A little bit of functional analysis

Q@[ J. Dolbeault, P. Felmer, M. Loss, and E. Paturel.
Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for

systems. J. Funct. Anal., 238 (1): 193-220, 2006 |
Let H=—A+V in R d > 1 with lowest A\;(V) and consider
A (W)Y
(- ap MOIT
VED(RY) [pa | V|72 dx

IVull 5 Nl 5,

n
ue H(RY)\ {0} (|l 20 (o)

Let d € N*. For any v > max(0,1 — %)

G =mo [caxtn] "7 m) =2 (5

14+
2’y+d) ! , ka(y) = 2"‘%
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How to relate the two inequalities ?

The estimate on the first eigenvalue amounts to the inequality
M) <G [ v e
Rd
while the second inequality is a Gagliardo-Nirenberg inequality
1 2'y+d 27+d
||U||L2‘7(Rd) < Cc,i() ”vu”/_z(Rd ” ||[_2(Rd
To relate the two inequalities, consider the free energy
u— |Vu|2dx—|—/ V|u|2dx—C1/ IV_[7HE dx
Rd Rd Rd

and optimize either on u such that ||u||f2(Rd) =loronV

J. Dolbeault Entropy in kinetic, parabolic and quantum theory
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Lieb-Thirring inequalities

Given a smooth bounded nonpositive potential V on R, if
A(V) < Xa(V) < A3(V) <. Aw(V) <0
is the finite sequence of all negative eigenvalues of
H=-A+V

then we have the Lieb-Thirring inequality

N

SOV < Gr() / V[
R3

i=1

For v =1, Z,N:1 [Ai(V)]| is the complete ionization energy |...],
[Laptev-Weidl] for v > 3/2 the sharp constant is semiclassical

Lieb-Thirring conjecture: d =1,1/2 <~y < 3/2, Cur(vy) = G

J. Dolbeault Entropy in kinetic, parabolic and quantum theory
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Interpolation inequalities for systems

Let m > 1 and consider B(v) := ¢ V™, €m = (m—1)"7

2y +d
T vd-2

and K~ ':=q[Cur(y)(y+d/2)7 "

For any m € (1, +00),

K N um > ad
v, ¥] + ¢ ZV, _IC/RE;;) X

ieN*

0
(K[V,¢]> (Zu?)(1_0)2543pqu, ezm

ieN*
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A second type of Lieb-Thirring inequality

Let V be a nonnegative unbounded smooth potential on R?: the
eigenvalues of Hy are

0< M(V) < X(V)<As(V) <. aw(V). ..

Theorem

For any v > d/2, for any nonnegative V € C>(R?) such that
Vd/2—'y c Ll(Rd),

N
SM(V) T < C(y)/ VI dx
= R3

_pmy-a2 T = d/2)

J. Dolbeault Entropy in kinetic, parabolic and quantum theory
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Let f be a nonnegative function on R such that

f(t) (L+¢792) —
/0 (t) ( +t ) NS
dt

F(s) = /ODO effo(t)$ and  G(s) = /OOO et (am ) 2 f(1)

Let V be in L% (R9) and bounded from below. If G(V) € L}(RY), then

S FM(V)) = tr [F(—A + V)] < /R G(V(x)) dx

ieN*

If F(s) =s7, then G(s) = 09 3
©) &)= e
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The exponential case -

If F(s) = e*, then f(s) = §(s — 1) and G(s) = (4n)"9/2e~*

J. Dolbeault Entropy in kinetic, parabolic and quantum theory
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Interpolation: Gagliardo-Nirenberg inequalities for systems

> B+ v /Rz (IV9i? + V [wil?) dx + /R3 G(V(x)) dx =0

i€EN* ieN*

for any sequence of nonnegative occupation numbers (v;)ien+ and any
sequence (¢;)ien~ of orthonormal L?(R9) functions

Method: For fixed v = (v;)ien+, ¥ = (¥i)ien+

Klv,¢] = /Rd Z vi V2 dx  and p:= Z v |9l

H(s):= =[G o (G')}(=s)+5(G") }(-s)]

Assume that G’ is invertible and optimize on V: the optimal potential
V has to satisfy
G'(V)+p=0

/}R3 Vo dx—l—/]R3 G(V(x)) dx = —/R3 H(p(x)) dx
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Theorem

Klv, ¥] + Z B(vi) > / H(p) dx

ieN~ R:
: 2
with p = Z i il
ieN*
Here (v;)ien+ is any nonnegative sequence of occupation numbers and
(¥i)ien- is any sequence of orthonormal L?(R?) functions

If B(v) :=vlogr — v, then B'(v) =logr = =\, F(s) = e~ %,
G(s) = (47)~9/2 e=* and H(p) = p log p, and we get a logarithmic
Sobolev inequality for systems

plog p dx + d log(4) / p dx
3 2 R3

Klv,v] + Zu;logu; 2/

iEN* R
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Stability for the linear Schrodinger equation

E[Y] = [a(IVY]? + V[4[?) dx, eigenvalues of H := —A + V

Ai(V) = inf E
V) F CIE2(Rd) zii ]
dim(F) =i

The eigenfunction t; form an orthonormal sequence:
(IZJ;,IZJJ)Lz(Rd) = 5,J Vi, je€ N*
Free energy of the mixed state (v, 1) = ((vi)ien=, (¥i)ien+):
Flo.g]:= > Bi)+ Y viEl]
ieN- ieN~
Assumption (H) holds if 3 is a strictly convex function, 5(0) =
|Zﬁ(z7,-)|<oo and Zl/,, )| < o0
jeN~ ieN=

where 7; := (3')71(=\;(V)) for any i € N*
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A discrete Csiszar-Kullback inequality

Under Assumption (H), if 1) = (1;)ien~ is an orthonormal sequence,

.7:,7[1/71/)]—?”[17,12)]

=2 (ﬂ(Vi) = B(@i) — B' (@) (vi — Di)) + 3 vi (E[w,-] - E[J;,-])

| A\

Corollary

Assume that infsso 3"(s) s> P =t >0, p € [1,2]. If Y, .. B(vi) and
> ien= Vi B'(7;) are absolutely convergent, then (v; — Ui)jen~ € £P and

5 (B0 -8~ i wi=5)) > Sl i {2, 5)272)

ieN*
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Stability for the Hartree-Fock

system with temperature
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Orbitally stable states in generalized Hartree-Fock theory:
the repulsive case

@ J. Dolbeault, P. Felmer, and M. Lewin.

Orbitally stable states in generalized Hartree-Fock theory.
Mathematical Models and Methods in Applied Sciences, 19 (3):
347-367, 2009.

@ P.A. Markowich, G. Rein, G. Wolansky.

Exzxistence and Nonlinear Stability of Stationary States of the
Schrddinger-Poisson System. Journal of Statistical Physics, Vol. 106,
Nos. 5/6, March 2002
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Q@ We consider free energy functionals of the form
= £ () = T S(v)
where EHF is the Hartree-Fock energy and the entropy takes the form

5(7) == —tr (8(7))

for some convex function § on [0,1]. Has the free energy a
minimizer ? The Hartree-Fock energy £HF(y) is

tr ((—A)*y)—Z/ pr(x) dx—|— D(p~, py)— // dxdy
R3 xR3 |X—Y|

rs x|

with D(f,g) == [[as, ps |Xx)—gy‘ dx dy (direct term of the interaction).

The last term is the exchange term
@ Evolution is described by the von Neumann equation

4y
i = [H,.7]

Here H, is a self-adjoint operator depending on « but not on S.
Orbital stability of the solution obtained by minimization ?
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Assumptions on the entropy term

3 is a strictly convex C! function on (0,1)

B(0) =0and 8 >0 on [0,1]

Fermions !... we introduce a modified Legendre transform of 3

g(}\) := argmin (Av + 3(v))
0<v<1

g()) = sup { inf {(3) (=), 1}, o}

Notice that g is a nonincreasing function with 0 < g < 1. Also define

B(A) = rg(A) + (Bog)N)
3 is a nonnegative C! function on [0,1) and 3'(0) =0
(no loss of generality)
Z J |ﬂ J(4 T2 ) } < 00
j>1
The ground state free energy is finite (the eigenvalues of —A — Z/|x|
e —Z2/(4,°), with multiplicity j2)
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Minimization of the free energy

Theorem (Minimization for the generalized HF model)

Assume that [ satisfies (A1)—(A4) for some T > 0.
Q@ For every q > 0, the following statements are equivalent:

i) all minimizing sequences (,)nen for are

(1) all minimizing sequences (Ya)nen for 17(q)
precompact in K

(i) Izﬂ(q) < Ig(q’) forall q, q' such that0 < q' < g

Q Any minimizer v of Ig (q) satisfies the self-consistent equation

— — A -1 W(Xv}/)
V_g((H’Y_M)/T)v H’Y__A_|X|+p’v*| | _|X—y|

for some u <0
Q The minimization problem Izﬁ(q) has no minimizer if g > 27 + 1

@ Problem Ig always has a minimizer 7 . It satisfies the self-consistent
equation

Y =g(H5/T)
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The Hartree model of boson stars
with temperature
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Non-zero temperature solutions o
Hartree system

Q@ [ Gonca L. Aki, Jean Dolbeault and Christof Sparber
Thermal effects in gravitational Hartree systems
To appear in Annales Henri Poincaré |

J. Dolbeault Entropy in kinetic, parabolic and quantum theory



Lieb-Thirring and Gagliardo-Nirenberg inequalities
Stability for the Hartree-Fock with temperature
Entropy for quantum models Hartree with temperature for boson stars

The free energy is well-defined and bounded from below

Q@ Potential energy term: By the Hardy-Littlewood-Sobolev inequality
and Sobolev’s embedding

n
Epot[p] = // ”| - )dxdy< Cllnp |3 tr(—Ap)t/?
R3xR3 X
This yields
Enlp] > tr(—Ap) — CMP2 tr(—Dp)/? > _% M

@ Entropy term: S[p] = — tr 8(p)

B is convex and 3(0) =0 = 0 < 3(p) < f(M)pfor all pe $H
Then B(p) € &1, provided p € &1

@ The free energy Fr(p] := Frlp] = tr(—Ap) — 3 tr(V,p) + T tr B(p) is
well defined
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Sub-additivity of iy 7 w.r.t. M

(i) As a function of M, iy 1 is sub-additive. In addition, for any
M >0, me (0, M) and T >0, we have

IMT < iM—m, T + im, T

Consider two states as “almost minimizers” p € Hy—m and o € Hm,

P—Z)‘JWJ @il U—Z)‘J|% ®jl

with smooth eigenfunctions (<pj) _, having compact support in a ball
B(0, R). Next translate one of the states so that they have disjoint
supports, observe that p+ o € Hum

(if) The function iy, 7 is a decreasing function of M and an
increasing function of T
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Maximal temperature T*

Let T*(M) :=sup{T >0 : iy <O0}.

(iii) For any M >0, T*(M) > 0 is positive, maybe even infinite. As a
function of M it is increasing and satisfies

3

T (M) > W |10l

>  max
0<m<M

If T < T*, we have iy,7 <0

Q iy = M3 i1o by the homogeneity of zero-temp. minimal energy
@ By sub-additivity im,7 < nin/nr < nB (%) T — M |jp o]

n2

(iv) As a consequence, T*(M) = +oo for any M > 0, if
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Euler-Lagrange equations and Lagrange multiplier

Theorem (Euler-Lagrange equations)

Let M >0, T € (0, T*(M)] and assume that (81)—(82) hold.
Consider a density matrixz operator p € Hp which minimizes Fr.
Then p satisfies the self-consistent equation

p=(3)"(F (- Hy))

where p < 0 denotes the Lagrange multiplier associated to the mass
constraint. Explicitly, it is given by

b= 3 (o (Hy+ TH(0)0)
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Existence of minimizers below T*

Theorem (Existence of minimizers)

Assume that (81)-(83) hold. Let M > 0 and consider T* = T*(M) as
the maximal temperature. For all T < T*, there exists an operator

p in Hum  such that Frlp] = imT

Moreover, every minimizing sequence (pn)nen for im 1 is relatively
compact in $ up to translations

The proof relies on the concentration-compactness method once it is
known that iy, 7 < 0:

@ Vanishing: can be ruled out by the fact that n, € L7/5

@ Dichotomy: splitting behaviour: im, 7 = iy 7 + iy_y 5 contradicts
the binding inequality iyw)  ye r < iyw 1+ ive r

@ Compactness
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Orbital stability

A direct consequence of this variational approach is orbital stability:
Consider the set of minimizers 9ty C Hp and denote

dist t = inf t) —
iston, (p(t), p) = inf 1p(t) = ol

Here p(t) solves the corresponding time-dependent system

Sp(6) = My o)) p(0) = pi

= A — 1
where H, := —A Np * 1]

Corollary (Orbital stability)

For given M >0 let T < T*(M). Then for any € > 0, there exists
d > 0 such that, for all pi, € Hm and p € My with disteon,, (pin, p) < d
it holds:

sup diston,, (p(t),p) < e
teR,
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Pure states, mixed states and critical temperature

Let pg = M|1o)(wo| be the (appropriately scaled) minimizer for
T = 0. Then the corresponding Hamiltonian operator

1
|-

admits countably many (negative) eigenvalues

Ho = —A — |@[Jo|2 *

(1))jen  with 70

A critical temperature T, € (0, T*) exists, and depends on the
entropy function 8 such that, for T < T, minimizers p € 9y, are only
pure states
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Positivity of the critical temperature for all M > 0

Te(M):=max{T >0: im7 =imo+78(M) V7 € (0, T]}
Assume that (31)—(88) hold. Then T.(M) is positive for any M > 0 J

To see this, take T,, — 0 and consider a sequence of minimizers p(”)
Since p(" is also a minimizing sequence for Fr—_g, we know

WO 10 <

We assume by contradiction that liminf,_ /\(1") =e>0
Then the Euler-Lagrange equation implies (" > u(ln), yields a
contradiction:
M =20 > lim A > lim (5) ((u‘l’ —ug"))/rn) - too
n—oo n—oo
Hence 3[0, T] with T, > 0 s.t. (" < u{") for any T, € [0, T]. Thus
p" is of rank one
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Characterization of the critical temperature T,

Corollary
Assume that (81)-(83) hold. There is a pure state minimizer of mass
M if and only if T € [0, T¢]
For any M > 0 the critical temperature satisfies
_ M-
M)
where pd < pud are the two lowest eigenvalues of Ho

Step 1: Prove T, < (19 — ul)/B8 (M) by using u(T) = pd + TS (M)
for pure states (T < T,)
Step 2: (T > T.) Prove the equality (approaching to T, from above)

by using
JeN
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Remarks on the maximal temperature

@ A case in which T* = co:
T*(M) = 400 for any M > 0, if
B(s)

s—0, S

@ A case in which T* is finite:

If p € (1,7/5) given in the entropy generating function ((s) = sP,
then the mazimal temperature, T*(M) is finite

@ Limit case:

Assume T* < +00. Then, limr_7+ im,7 =0 and limr_ 71+ u(T) =0 J

@ Open: If p € (7/5,3) then T* is finite ?
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Thank you for your attention !
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