Inégalités fonctionnelles optimales, diffusions non linéaires et brisure de symétrie

Jean Dolbeault

http://www.ceremade.dauphine.fr/~dolbeaul

Ceremade, Université Paris-Dauphine

8 décembre 2015

Nancy

Outline

- An introduction to symmetry and symmetry breaking results in weighted elliptic PDEs
- Caffarelli-Kohn-Nirenberg inequalities
 - \triangleright The symmetry issue
 - \triangleright The result
- The proof
 - ▷ a change of variables and a Sobolev type inequality
 - > the fast diffusion flow and the nonlinear Fisher information
 - > regularity, decay and integrations by parts
- Concavity of the Rényi entropy powers: role of the nonlinear flow
- The Bakry-Emery method: curvature, linear and nonlinear flows
- Conclusion

In collaboration with M.J. Esteban and M. Loss

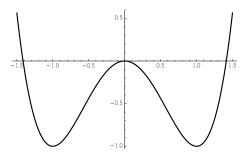
An introduction to symmetry and symmetry breaking results in weighted elliptic PDEs

ightharpoonup The typical issue is the competition between a potential or a weight and a nonlinearity

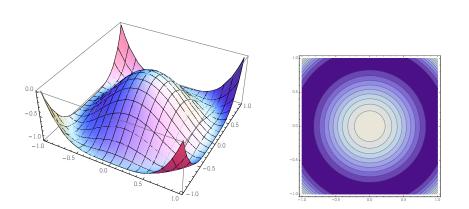
The mexican hat potential

Let us consider a nonlinear Schrödinger equation in presence of a radial external potential with a minimum which is not at the origin

$$-\Delta u + V(x) u - f(u) = 0$$

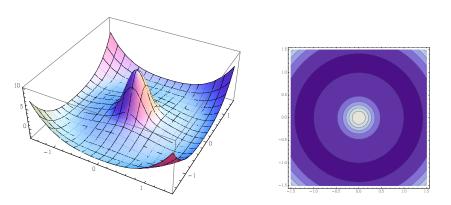


A one-dimensional potential V(x)



A two-dimensional potential V(x) with mexican hat shape

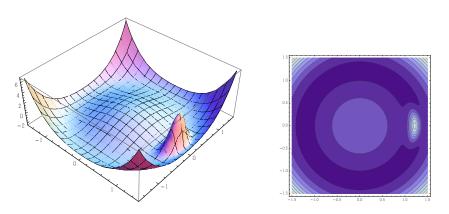
Radial solutions to $-\Delta u + V(x)u - F'(u) = 0$



... give rise to a radial density of energy $x \mapsto V |u|^2 + F(u)$

symmetry breaking

... but in some cases minimal energy solutions



... give rise to a non-radial density of energy $x\mapsto V\,|u|^2+F(u)$

Symmetry and symmetry breaking

Proving symmetry breaking

The most classical method is by perturbation of a radial solution and energy descent

... but there are other methods, like direct energy estimates

Methods for proving symmetry

Classical methods (a non exhaustive list)

 Alexandrov moving planes and the result of [B. Gidas, W. Ni, L. Nirenberg (1979, 1980)]

$$-\Delta u = f(|x|, u)$$
 in $\mathbb{R}^d d \ge 3$

If f is of class C^1 , $\frac{\partial f}{\partial r} < 0$, $u \ge 0$ is of class C^2 and sufficiently decaying at infinity, then u is a radial function and $\frac{\partial u}{\partial r} < 0$.

- Reflexion with respect planes and unique continuation [O. Lopes]
- Symmetrization methods: Schwarz, Steiner, etc.
- A priori estimates, direct energy estimates
- Uniqueness or rigidity: [B. Gidas, J. Spruck],
 [M.-F. Bidault-Véron, L. Véron, 1991]
- ... probabilistic methods and carré du champ methods [D. Bakry, M. Emery, 1984]

 \triangleright A new method based on entropy functionals and evolution under the action of a nonlinear flow: flow interpretation, non-compact case.

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Caffarelli-Kohn-Nirenberg inequalities

> Nonlinear flows (fast diffusion equation) can be used as a tool for the investigation of sharp functional inequalities

Caffarelli-Kohn-Nirenberg inequalities and the symmetry breaking issue

$$\operatorname{Let} \mathcal{D}_{a,b} := \left\{ v \in \operatorname{L}^{p} \left(\mathbb{R}^{d}, |x|^{-b} \, dx \right) : |x|^{-a} |\nabla v| \in \operatorname{L}^{2} \left(\mathbb{R}^{d}, dx \right) \right\}$$
$$\left(\int_{\mathbb{R}^{d}} \frac{|v|^{p}}{|x|^{b}p} \, dx \right)^{2/p} \leq \operatorname{C}_{a,b} \int_{\mathbb{R}^{d}} \frac{|\nabla v|^{2}}{|x|^{2}} \, dx \quad \forall \, v \in \mathcal{D}_{a,b}$$

hold under the conditions that $a \le b \le a+1$ if $d \ge 3$, $a < b \le a+1$ if d = 2, $a + 1/2 < b \le a+1$ if d = 1, and $a < a_c := (d-2)/2$

$$p = \frac{2d}{d-2+2(b-a)}$$

 \triangleright With

$$v_{\star}(x) = \left(1 + |x|^{(p-2)(a_c - a)}\right)^{-\frac{2}{p-2}} \quad and \quad \mathsf{C}^{\star}_{\mathsf{a}, \mathsf{b}} = \frac{\|\,|x|^{-b} \, v_{\star} \,\|_p^2}{\|\,|x|^{-a} \, \nabla v_{\star} \,\|_2^2}$$

do we have $C_{a,b} = C_{a,b}^*$ (symmetry) or $C_{a,b} > C_{a,b}^*$ (symmetry breaking)?

CKN: range of the parameters

Figure:
$$d = 3$$

$$\left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{b\,p}} \, dx\right)^{2/p} \le C_{a,b} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2\,a}} \, dx$$

$$a < b < a+1 \text{ if } d > 3$$

$$a < b \le a + 1$$
 if $d = 2$, $a + 1/2 < b \le a + 1$ if $d = 1$ and $a < a_c := (d - 2)/2$

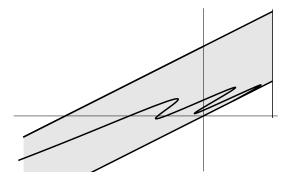
$$p = \frac{2d}{d-2+2(b-a)}$$

[1. Catilia, 2.-Q. Wang (2001)]

Symmetry and symmetry breaking

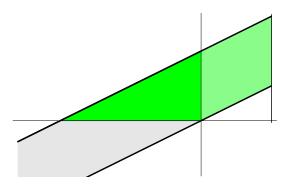
Proving symmetry breaking

[F. Catrina, Z.-Q. Wang], [V. Felli, M. Schneider (2003)]



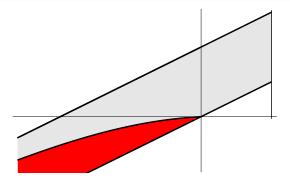
[J.D., Esteban, Loss, Tarantello, 2009] There is a curve which separates the symmetry region from the symmetry breaking region, which is parametrized by a function $p\mapsto a+b$

Moving planes and symmetrization techniques



[Chou, Chu], [Horiuchi]
[Betta, Brock, Mercaldo, Posteraro]
+ Perturbation results: [CS Lin, ZQ Wang], [Smets, Willem], [JD, Esteban, Tarantello 2007], [J.D., Esteban, Loss, Tarantello, 2009]

Linear instability of radial minimizers: the Felli-Schneider curve

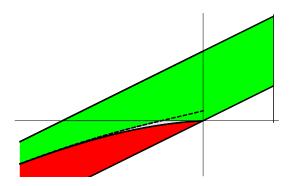


[Catrina, Wang], [Felli, Schneider] The functional

$$C_{a,b}^{\star} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2a}} dx - \left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{bp}} dx \right)^{2/p}$$

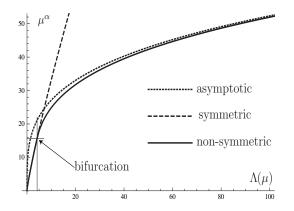
is linearly instable at $v = v_{\star}$

Direct spectral estimates



[J.D., Esteban, Loss, 2011]: sharp interpolation on the sphere and a Keller-Lieb-Thirring spectral estimate on the line

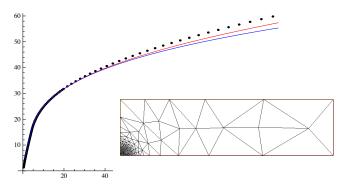
Numerical results



Parametric plot of the branch of optimal functions for p=2.8, d=5. Non-symmetric solutions bifurcate from symmetric ones at a bifurcation point computed by V. Felli and M. Schneider. The branch behaves for large values of Λ as predicted by F. Catrina and Z.-Q. Wang

Other evidences

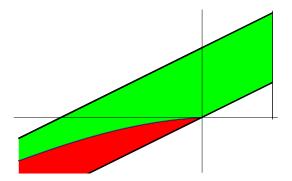
• Further numerical results [J.D., Esteban, 2012] (coarse / refined / self-adaptive grids)



- Formal commutation of the non-symmetric branch near the bifurcation point [J.D., Esteban, 2013]
- Asymptotic energy estimates [J.D., Esteban, 2013]

Symmetry *versus* symmetry breaking: the sharp result

A result based on entropies and nonlinear flows



[J.D., Esteban, Loss, 2015]: http://arxiv.org/abs/1506.03664

The symmetry result

The Felli & Schneider curve is defined by

$$b_{\text{FS}}(a) := \frac{d(a_c - a)}{2\sqrt{(a_c - a)^2 + d - 1}} + a - a_c$$

Theorem

Let $d \geq 2$ and $p < 2^*$. If either $a \in [0, a_c)$ and b > 0, or a < 0 and $b \geq b_{\rm FS}(a)$, then the optimal functions for the Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

The Emden-Fowler transformation and the cylinder

▶ With an Emden-Fowler transformation, Caffarelli-Kohn-Nirenberg inequalities on the Euclidean space are equivalent to Gagliardo-Nirenberg inequalities on a cylinder

$$v(r,\omega) = r^{a-a_c} \varphi(s,\omega)$$
 with $r = |x|$, $s = -\log r$ and $\omega = \frac{x}{r}$

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities can be rewritten as

$$\|\partial_s \varphi\|_{\mathrm{L}^2(\mathcal{C})}^2 + \|\nabla_\omega \varphi\|_{\mathrm{L}^2(\mathcal{C})}^2 + \Lambda \|\varphi\|_{\mathrm{L}^2(\mathcal{C})}^2 \geq \mu(\Lambda) \|\varphi\|_{\mathrm{L}^p(\mathcal{C})}^2 \quad \forall \, \varphi \in \mathrm{H}^1(\mathcal{C})$$

where $\Lambda := (a_c - a)^2$, $C = \mathbb{R} \times \mathbb{S}^{d-1}$ and the optimal constant $\mu(\Lambda)$ is

$$\mu(\Lambda) = \frac{1}{\mathsf{C}_{a,b}} \quad \text{with} \quad a = a_c \pm \sqrt{\Lambda} \quad \text{and} \quad b = \frac{d}{p} \pm \sqrt{\Lambda}$$

Results on CKN inequalities Symmetry and symmetry breaking The sharp result Generalizations and comments

Generalizations and comments

Generalized Caffarelli-Kohn-Nirenberg inequalities (CKN)

Let $2^* = \infty$ if d = 1 or d = 2, $2^* = 2d/(d-2)$ if $d \ge 3$ and define

$$\vartheta(p,d):=\frac{d(p-2)}{2p}$$

[Caffarelli-Kohn-Nirenberg-84] Let $d \geq 1$. For any $\theta \in [\vartheta(p,d),1]$, with $p = \frac{2d}{d-2+2(b-a)}$, there exists a positive constant $C_{CKN}(\theta,p,a)$ such that

$$\left(\int_{\mathbb{R}^d} \frac{|u|^p}{|x|^{bp}} dx\right)^{\frac{2}{p}} \leq \mathsf{C}_{\mathrm{CKN}}(\theta, p, a) \left(\int_{\mathbb{R}^d} \frac{|\nabla u|^2}{|x|^{2a}} dx\right)^{\theta} \left(\int_{\mathbb{R}^d} \frac{|u|^2}{|x|^{2(a+1)}} dx\right)^{1-\theta}$$

In the radial case, with $\Lambda = (a - a_c)^2$, the best constant when the inequality is restricted to radial functions is $C_{\text{CKN}}^*(\theta, p, a)$ and

$$\mathsf{C}_{\mathrm{CKN}}(\theta, p, a) \geq \mathsf{C}^*_{\mathrm{CKN}}(\theta, p, a) = \mathsf{C}^*_{\mathrm{CKN}}(\theta, p) \Lambda^{\frac{p-2}{2p} - \theta}$$

$$\mathsf{C}^*_{\mathrm{CKN}}(\theta, p) = \left[\frac{2 \, \pi^{d/2}}{\Gamma(d/2)}\right]^{2 \, \frac{p-1}{p}} \left[\frac{(p-2)^2}{2 + (2 \, \theta - 1) \, p}\right]^{\frac{p-2}{2 \, p}} \left[\frac{2 + (2 \, \theta - 1) \, p}{2 \, p \, \theta}\right]^{\theta} \left[\frac{4}{p+2}\right]^{\frac{6-p}{2 \, p}} \left[\frac{\Gamma\left(\frac{2}{p-2} + \frac{1}{2}\right)}{\sqrt{\pi} \, \Gamma\left(\frac{2}{p-2}\right)}\right]^{\frac{p-2}{2 \, p}}$$

Implementing the method of Catrina-Wang / Felli-Schneider

Among functions $w \in H^1(\mathcal{C})$ which depend only on s, the minimum of

$$\mathcal{J}[w] := \int_{\mathcal{C}} \left(|\nabla w|^2 + \frac{1}{4} \left(d - 2 - 2 a \right)^2 |w|^2 \right) \ dx - \left[C^*(\theta, p, a) \right]^{-\frac{1}{\theta}} \ \frac{\left(\int_{\mathcal{C}} |w|^p \ dx \right)^{\frac{2}{p \cdot \theta}}}{\left(\int_{\mathcal{C}} |w|^2 \ dx \right)^{\frac{1-\theta}{\theta}}}$$

is achieved by
$$\overline{w}(y) := \left[\cosh(\lambda s)\right]^{-\frac{2}{p-2}}, y = (s, \omega) \in \mathbb{R} \times \mathbb{S} = \mathcal{C}$$
 with $\lambda := \frac{1}{4} (d-2-2a)(p-2) \sqrt{\frac{p+2}{2p\theta-(p-2)}}$ as a solution of

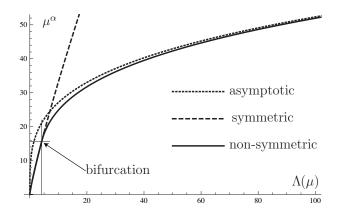
$$\lambda^{2} (p-2)^{2} w'' - 4 w + 2 p |w|^{p-2} w = 0$$

Spectrum of
$$\mathcal{L} := -\Delta + \kappa \, \overline{w}^{p-2} + \mu$$
 is given for $\sqrt{1 + 4 \, \kappa / \lambda^2} \ge 2j + 1$

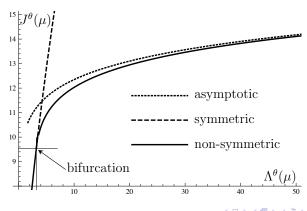
by
$$\lambda_{i,j} = \mu + i(d+i-2) - \frac{\lambda^2}{4} \left(\sqrt{1 + 4\kappa/\lambda^2} - (1+2j) \right)^2 \quad \forall \ i, \ j \in \mathbb{N}$$

- lacktriangle The eigenspace of $\mathcal L$ corresponding to $\lambda_{0,0}$ is generated by \overline{w}
- **②** The eigenfunction $\phi_{(1,0)}$ associated to $\lambda_{1,0}$ is not radially symmetric and such that $\int_{\mathcal{C}} \overline{w} \, \phi_{(1,0)} \, dx = 0$ and $\int_{\mathcal{C}} \overline{w}^{p-1} \, \phi_{(1,0)} \, dx = 0$
- \bigcirc If $\lambda_{1,0} < 0$, optimal functions for (CKN) cannot be radially symmetric and $C(\theta, p, a) > C^*(\theta, p, a)$

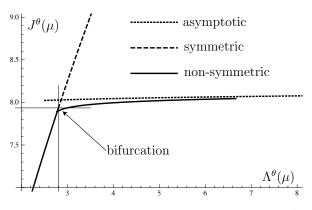
Parametric plot of $\mu \mapsto (\Lambda^{\theta}(\mu), J^{\theta}(\mu))$ for p = 2.8, d = 5, $\theta = 1$



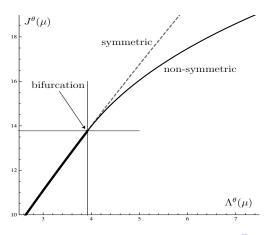
Parametric plot of $\mu \mapsto (\Lambda^{\theta}(\mu), J^{\theta}(\mu))$ for p = 2.8, d = 5, $\theta = 0.8$



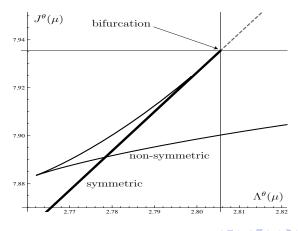
Parametric plot of $\mu \mapsto (\Lambda^{\theta}(\mu), J^{\theta}(\mu))$ for p = 2.8, d = 5, $\theta = 0.72$



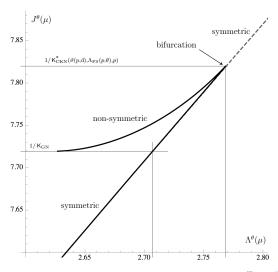
Enlargement for p = 2.8, d = 5, $\theta = 0.95$



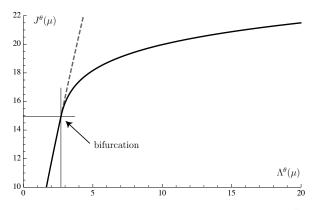
Enlargement for p = 2.8, d = 5, $\theta = 0.72$



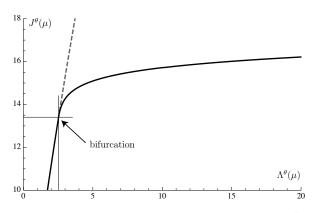
Critical case $\theta = \vartheta(p, d)$



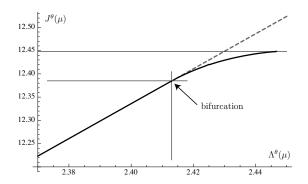
Parametric plot of $\mu \mapsto (\Lambda^{\theta}(\mu), J^{\theta}(\mu))$ for p = 3.15, d = 5. $\theta = 1$



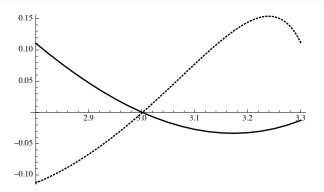
Parametric plot of $\mu \mapsto (\Lambda^{\theta}(\mu), J^{\theta}(\mu))$ for p = 3.15, d = 5, $\theta = 0.95$



Case
$$p = 3.15$$
, $d = 5$, $\theta = \vartheta(3.15, 5) \approx 0.9127$



Local and asymptotic criteria for $\theta = \vartheta(p, d)$



• Local criterion: based on an expansion of the solutions near the bifurcation point, it decides whether the branch goes to the right to to the left.

lacktriangledown Asymptotic criterion: based on the energy of the branch as $\Lambda \to +\infty$ and an analysis in a semi-classical regime

The main steps of the proof

- A change of variables: an equivalent inequality of Sobolev type
- The fast diffusion flow and the nonlinear Fisher information
- Proving the decay along the flow
- The justification of the integration by parts: decay estimates on the cylinder

A change of variables

With $(r = |x|, \omega = x/r) \in \mathbb{R}^+ \times \mathbb{S}^{d-1}$, the Caffarelli-Kohn-Nirenberg inequality is

$$\left(\int_0^\infty \int_{\mathbb{S}^{d-1}} |v|^p \ r^{d-b\,p} \, \frac{dr}{r} \ d\omega \right)^{\frac{2}{p}} \leq \mathsf{C}_{\mathsf{a},\mathsf{b}} \int_0^\infty \int_{\mathbb{S}^{d-1}} |\nabla v|^2 \ r^{d-2\,\mathsf{a}} \, \frac{dr}{r} \ d\omega$$

Change of variables $r \mapsto r^{\alpha}$, $v(r, \omega) = w(r^{\alpha}, \omega)$

$$\alpha^{1-\frac{2}{p}} \left(\int_{0}^{\infty} \int_{\mathbb{S}^{d-1}} |w|^{p} r^{\frac{d-bp}{\alpha}} \frac{dr}{r} d\omega \right)^{\frac{2}{p}}$$

$$\leq \mathsf{C}_{\mathsf{a},\mathsf{b}} \int_{0}^{\infty} \int_{\mathbb{S}^{d-1}} \left(\alpha^{2} \left| \frac{\partial w}{\partial r} \right|^{2} + \frac{1}{r^{2}} \left| \nabla_{\omega} w \right|^{2} \right) r^{\frac{d-2s-2}{\alpha} + 2} \frac{dr}{r} d\omega$$

Choice of α

$$n = \frac{d - bp}{\alpha} = \frac{d - 2a - 2}{\alpha} + 2$$

Then $p = \frac{2n}{n-2}$ is the critical Sobolev exponent associated with n

A Sobolev type inequality

The parameters α and n vary in the ranges $0 < \alpha < \infty$ and $d < n < \infty$ and the Felli-Schneider curve in the (α, n) variables is given by

$$\alpha = \sqrt{\frac{d-1}{n-1}} =: \alpha_{\text{FS}}$$

With

$$\mathsf{D} w = \left(\alpha \frac{\partial w}{\partial r}, \frac{1}{r} \nabla_{\omega} w\right) \,, \quad d\mu := r^{n-1} \, dr \, d\omega$$

the inequality becomes

$$\alpha^{1-\frac{2}{p}} \left(\int_{\mathbb{R}^d} |w|^p \, d\mu \right)^{\frac{2}{p}} \le \mathsf{C}_{a,b} \int_{\mathbb{R}^d} |\mathsf{D} w|^2 \, d\mu$$

Proposition

Let $d \geq 2$. Optimality is achieved by radial functions and $C_{a,b} = C_{a,b}^{\star}$ if $\alpha \leq \alpha_{\rm FS}$

Gagliardo-Nirenberg inequalities on general cylinders; similar

Notations

When there is no ambiguity, we will omit the index ω and from now on write that $\nabla = \nabla_{\omega}$ denotes the gradient with respect to the angular variable $\omega \in \mathbb{S}^{d-1}$ and that Δ is the Laplace-Beltrami operator on \mathbb{S}^{d-1} . We define the self-adjoint operator \mathcal{L} by

$$\mathcal{L} w := -D^* D w = \alpha^2 w'' + \alpha^2 \frac{n-1}{r} w' + \frac{\Delta w}{r^2}$$

The fundamental property of \mathcal{L} is the fact that

$$\int_{\mathbb{R}^d} w_1 \, \mathcal{L} \, w_2 \, d\mu = -\int_{\mathbb{R}^d} \mathsf{D} w_1 \cdot \mathsf{D} w_2 \, d\mu \quad \forall \, w_1, \, w_2 \in \mathcal{D}(\mathbb{R}^d)$$

 \triangleright Heuristics: we look for a monotonicity formula along a well chosen nonlinear flow, based on the analogy with the decay of the Fisher information along the fast diffusion flow in \mathbb{R}^d

Fisher information

Let
$$u^{\frac{1}{2} - \frac{1}{n}} = |w| \iff u = |w|^p, \ p = \frac{2n}{n-2}$$

$$\mathcal{I}[u] := \int_{\mathbb{R}^d} u \, |\mathsf{Dp}|^2 \, d\mu \,, \quad \mathsf{p} = \frac{m}{1-m} \, u^{m-1} \quad \text{and} \quad m = 1 - \frac{1}{n}$$

Here \mathcal{I} is the Fisher information and p is the pressure function

Proposition

With $\Lambda = 4 \alpha^2/(p-2)^2$ and for some explicit numerical constant κ , we have

$$\kappa \, \mu(\Lambda) = \inf \left\{ \mathcal{I}[u] \, : \, \|u\|_{\mathrm{L}^1(\mathbb{R}^d, d\mu)} = 1 \right\}$$

 \rhd Optimal solutions solutions of the elliptic PDE) are (constrained) critical point of $\mathcal I$

The fast diffusion equation

$$\frac{\partial u}{\partial t} = \mathcal{L} u^m, \quad m = 1 - \frac{1}{n}$$

Barenblatt self-similar solutions

$$u_{\star}(t, r, \omega) = t^{-n} \left(c_{\star} + \frac{r^2}{2(n-1)\alpha^2 t^2} \right)^{-n}$$

Lemma

Barenblatt solutions realize the minimum of $\mathcal I$ among radial functions:

$$\kappa \, \mu_{\star}(\Lambda) = \mathcal{I}[u_{\star}(t,\cdot)] \quad \forall \, t > 0$$

- \triangleright Strategy:
- 1) prove that $\frac{d}{dt}\mathcal{I}[u(t,\cdot)] \leq 0$,
- 2) prove that $\frac{d}{dt}\mathcal{I}[u(t,\cdot)]=0$ means that $u=u_*$ up to a time shift

Decay of the Fisher information along the flow?

The pressure function
$$p = \frac{m}{1-m} u^{m-1}$$
 satisfies
$$\frac{\partial p}{\partial t} = \frac{1}{n} p \mathcal{L} p - |Dp|^2$$

$$\mathcal{Q}[p] := \frac{1}{2} \mathcal{L} |Dp|^2 - Dp \cdot D\mathcal{L} p$$

$$\mathcal{K}[p] := \int_{\mathbb{R}^d} \left(\mathcal{Q}[p] - \frac{1}{n} (\mathcal{L} p)^2 \right) p^{1-n} d\mu$$

Lemma

If u solves the weighted fast diffusion equation, then

$$\frac{d}{dt}\mathcal{I}[u(t,\cdot)] = -2(n-1)^{n-1}\mathcal{K}[p]$$

If u is a critical point, then $\mathcal{K}[p] = 0$ \triangleright Boundary terms! Regularity!

Proving decay (1/2)

$$\begin{split} \mathsf{k}[\mathsf{p}] &:= \mathcal{Q}(\mathsf{p}) - \frac{1}{n} \, (\mathcal{L} \, \mathsf{p})^2 = \frac{1}{2} \, \mathcal{L} \, |\mathsf{D}\mathsf{p}|^2 - \mathsf{D}\mathsf{p} \cdot \mathsf{D} \, \mathcal{L} \, \mathsf{p} - \frac{1}{n} \, (\mathcal{L} \, \mathsf{p})^2 \\ \mathsf{k}_{\mathfrak{M}}[\mathsf{p}] &:= \frac{1}{2} \, \Delta \, |\nabla \mathsf{p}|^2 - \nabla \mathsf{p} \cdot \nabla \Delta \, \mathsf{p} - \frac{1}{n-1} \, (\Delta \, \mathsf{p})^2 - (n-2) \, \alpha^2 \, |\nabla \mathsf{p}|^2 \end{split}$$

Lemma

Let $n \neq 1$ be any real number, $d \in \mathbb{N}$, $d \geq 2$, and consider a function $p \in C^3((0,\infty) \times \mathfrak{M})$, where (\mathfrak{M},g) is a smooth, compact Riemannian manifold. Then we have

$$k[p] = \alpha^4 \left(1 - \frac{1}{n} \right) \left[p'' - \frac{p'}{r} - \frac{\Delta p}{\alpha^2 (n-1) r^2} \right]^2$$

$$+ 2 \alpha^2 \frac{1}{r^2} \left| \nabla p' - \frac{\nabla p}{r} \right|^2 + \frac{1}{r^4} k_{\mathfrak{M}}[p]$$

Proving decay (2/2)

Lemma

Assume that $d \geq 3$, n > d and $\mathfrak{M} = \mathbb{S}^{d-1}$. For some $\zeta_{\star} > 0$ we have $\int_{\mathbb{S}^{d-1}} \mathsf{k}_{\mathfrak{M}}[\mathsf{p}] \, \mathsf{p}^{1-n} \, d\omega \geq \left(\lambda_{\star} - (n-2) \, \alpha^2\right) \int_{\mathbb{S}^{d-1}} |\nabla \mathsf{p}|^2 \, \mathsf{p}^{1-n} \, d\omega \\ + \zeta_{\star} \, (n-d) \int_{\mathbb{S}^{d-1}} |\nabla \mathsf{p}|^4 \, \mathsf{p}^{1-n} \, d\omega$

Proof based on the Bochner-Lichnerowicz-Weitzenböck formula

Corollary

Let $d \geq 2$ and assume that $\alpha \leq \alpha_{FS}$. Then for any nonnegative function $u \in L^1(\mathbb{R}^d)$ with $\mathcal{I}[u] < +\infty$ and $\int_{\mathbb{R}^d} u \, d\mu = 1$, we have

$$\mathcal{I}[u] \geq \mathcal{I}_{\star}$$

When
$$\mathfrak{M} = \mathbb{S}^{d-1}$$
, $\lambda_{\star} = (n-2) \frac{d-1}{n-1}$

A perturbation argument

Q If u is a critical point of \mathcal{I} under the mass constraint $\int_{\mathbb{R}^d} u \, d\mu = 1$, then

$$o(\varepsilon) = \mathcal{I}[u + \varepsilon \mathcal{L} u^m] - \mathcal{I}[u] = -2(n-1)^{n-1} \varepsilon \mathcal{K}[p] + o(\varepsilon)$$

because $\varepsilon \mathcal{L} u^m$ is an admissible perturbation (formal). Indeed, we know that

$$\int_{\mathbb{R}^d} \left(u + arepsilon \, \mathcal{L} \, u^m
ight) \, d\mu = \int_{\mathbb{R}^d} u \, d\mu = 1$$

but positivity of $u + \varepsilon \mathcal{L} u^m$ is an issue: compute

$$0 = D\mathcal{I}[u] \cdot \mathcal{L} u^m = -\mathcal{K}[p]$$

• Regularity issues (uniform decay of various derivatives up to order 3) and boundary terms

• If $\alpha \leq \alpha_{FS}$, then $\mathcal{K}[p] = 0$ implies that $u = u_{\star}$

The justification of the integration by parts: decay estimates on the cylinder

After then Emden-Fowler transformation, a critical point satisfies the Euler-Lagrange equation

$$-\partial_s^2 \varphi - \Delta_\omega \varphi + \Lambda \varphi = \varphi^{p-1}$$
 in $\mathcal{C} = \mathbb{R} \times \mathcal{M}$

(up to a multiplication by a constant; $\mathcal{M} = \mathbb{S}^{d-1}$ e.g.)

Proposition

For all
$$(s,\omega) \in \mathcal{C}$$
, we have $C_1 e^{-\sqrt{\Lambda} |s|} \leq \varphi(s,\omega) \leq C_2 e^{-\sqrt{\Lambda} |s|}$
$$|\varphi'(s,\omega)|, \ |\varphi''(s,\omega)|, \ |\nabla \varphi(s,\omega)|, \ |\Delta \varphi(s,\omega)| \leq C_2 e^{-\sqrt{\Lambda} |s|}$$

$$\int_{\mathfrak{M}} |p'(r,\omega)|^2 \, dv_g \leq O(1), \ \int_{\mathfrak{M}} |\nabla p(r,\omega)|^2 \, dv_g \leq O(r^2),$$

$$\int_{\mathfrak{M}} |p''(r,\omega)|^2 \, dv_g \leq O(1/r^2)$$

$$\int_{\mathfrak{M}} |\nabla p'(r,\omega)|^2 \, dv_g \leq O(1/r^2)$$

$$\int_{\mathfrak{M}} |\Delta p(r,\omega)|^2 \, dv_g \leq O(1/r^2)$$

A change of variables and a Sobolev type inequality Fisher information and fast diffusion flow Decay along the flow Decay estimates on the cylinder

Some comments on the method

The flow interpretation is very useful to organize the computations. It unifies rigidity methods and $carr\acute{e}$ du champ (or Γ_2) techniques in a common framework which has a clear variational interpretation and opens a door for improvements

However, the proof is done at a purely variational level: we consider a critical point and test it against a special test function built on top of the solution, in order to obtain another identity involving sum of squares: each of these square has to be equal to zero, which provides additional equations and allow to identify the critical point with a known one (uniqueness result)

In a sense, this method relates with similar estimates:

- \triangleright Nehari manifolds: one tests the equation with the function u itself. At variational level, this amounts to test the homogeneity of the energy (if any).
- \triangleright Pohozaev's method: one tests the equation with $x \cdot \nabla u$, which corresponds to a local dilation. At variational level, this amounts to test the energy under scalings (eventually localized) and remarkably, this is a method to produce uniqueness results [Schmitt], [Schaeffer]
- \triangleright Here we test the equation with Δu^m , which has to do with *convexity* (displacement convexity) and produces uniqueness (rigidity) results.

Two ingredients for the proof

- ▷ Rényi entropy powers and fast diffusion
- ${\,\vartriangleright\,}$ Flows on the sphere

Rényi entropy powers and fast diffusion

⊳ Rényi entropy powers, the entropy approach without rescaling: [Savaré, Toscani]: scalings, nonlinearity and a concavity property inspired by information theory

⊳ faster rates of convergence: [Carrillo, Toscani], [JD, Toscani]

The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in \mathbb{R}^d , $d \geq 1$

$$\frac{\partial u}{\partial t} = \Delta u^m$$

with initial datum $u(x, t = 0) = u_0(x) \ge 0$ such that $\int_{\mathbb{R}^d} u_0 \, dx = 1$ and $\int_{\mathbb{R}^d} |x|^2 \, u_0 \, dx < +\infty$. The large time behavior of the solutions is governed by the source-type Barenblatt solutions

$$\mathcal{U}_\star(t, x) := rac{1}{\left(\kappa \, t^{1/\mu}
ight)^d} \, \mathcal{B}_\star \Big(rac{x}{\kappa \, t^{1/\mu}}\Big)$$

where

$$\mu := 2 + d(m-1), \quad \kappa := \left|\frac{2 \mu m}{m-1}\right|^{1/\mu}$$

and \mathcal{B}_{\star} is the Barenblatt profile

$$\mathcal{B}_{\star}(x) := egin{cases} \left(C_{\star} - |x|^2
ight)_+^{1/(m-1)} & ext{if } m > 1 \\ \left(C_{\star} + |x|^2
ight)^{1/(m-1)} & ext{if } m < 1 \end{cases}$$

The Rényi entropy power F

The entropy is defined by

$$\mathsf{E} := \int_{\mathbb{R}^d} u^m \, dx$$

and the Fisher information by

$$I := \int_{\mathbb{R}^d} u |\nabla p|^2 dx$$
 with $p = \frac{m}{m-1} u^{m-1}$

If u solves the fast diffusion equation, then

$$E' = (1 - m)I$$

To compute I', we will use the fact that

$$\frac{\partial \mathsf{p}}{\partial t} = (m-1)\,\mathsf{p}\,\Delta\mathsf{p} + |\nabla\mathsf{p}|^2$$

$$\mathsf{F} := \mathsf{E}^{\sigma} \quad \text{with} \quad \sigma = \frac{\mu}{d\left(1-m\right)} = 1 + \frac{2}{1-m} \left(\frac{1}{d} + m - 1\right) = \frac{2}{d} \, \frac{1}{1-m} - 1$$

has a linear growth asymptotically as $t \to +\infty$

The concavity property

Theorem

[Toscani-Savaré] Assume that $m \ge 1 - \frac{1}{d}$ if d > 1 and m > 0 if d = 1. Then F(t) is increasing, $(1 - m)F''(t) \le 0$ and

$$\lim_{t \to +\infty} \frac{1}{t} \mathsf{F}(t) = (1-m) \sigma \lim_{t \to +\infty} \mathsf{E}^{\sigma-1} \mathsf{I} = (1-m) \sigma \mathsf{E}_{\star}^{\sigma-1} \mathsf{I}_{\star}$$

[Dolbeault-Toscani] The inequality

$$\mathsf{E}^{\sigma-1}\mathsf{I} \geq \mathsf{E}_{\star}^{\sigma-1}\mathsf{I}_{\star}$$

is equivalent to the Gagliardo-Nirenberg inequality

$$\|\nabla w\|_{\mathrm{L}^2(\mathbb{R}^d)}^{\theta}\,\|w\|_{\mathrm{L}^{q+1}(\mathbb{R}^d)}^{1-\theta}\geq C_{\mathrm{GN}}\,\|w\|_{\mathrm{L}^{2q}(\mathbb{R}^d)}$$

if
$$1 - \frac{1}{d} \le m < 1$$
. Hint: $u^{m-1/2} = \frac{w}{\|w\|_{\mathrm{L}^{2q}(\mathbb{R}^d)}}, \ q = \frac{1}{2 \, m - 1}$

Symmetry breaking and sharp functional inequalities

The proof

Lemma

If u solves
$$\frac{\partial u}{\partial t} = \Delta u^m$$
 with $\frac{1}{d} \leq m < 1$, then

$$\mathsf{I}' = \frac{d}{dt} \int_{\mathbb{R}^d} u \, |\nabla \mathsf{p}|^2 \, dx = -2 \int_{\mathbb{R}^d} u^m \left(\|\mathsf{D}^2 \mathsf{p}\|^2 + (m-1) \, (\Delta \mathsf{p})^2 \right) \, dx$$

$$\|\mathbf{D}^{2}\mathbf{p}\|^{2} = \frac{1}{d} (\Delta \mathbf{p})^{2} + \|\mathbf{D}^{2}\mathbf{p} - \frac{1}{d} \Delta \mathbf{p} \operatorname{Id} \|^{2}$$

$$\frac{1}{\sigma (1 - m)} \mathsf{E}^{2 - \sigma} (\mathsf{E}^{\sigma})'' = (1 - m) (\sigma - 1) \left(\int_{\mathbb{R}^{d}} u |\nabla \mathbf{p}|^{2} dx \right)^{2}$$

$$- 2 \left(\frac{1}{d} + m - 1 \right) \int_{\mathbb{R}^{d}} u^{m} dx \int_{\mathbb{R}^{d}} u^{m} (\Delta \mathbf{p})^{2} dx$$

$$- 2 \int_{\mathbb{R}^{d}} u^{m} dx \int_{\mathbb{R}^{d}} u^{m} \left\| \mathbf{D}^{2}\mathbf{p} - \frac{1}{\sigma} \frac{1}{d} \Delta \mathbf{p} \operatorname{Id} \right\|^{2} dx$$

J. Dolbeault

Flows on the sphere

 \triangleright The heat flow introduced by D. Bakry and M. Emery (*carré du champ* method) does not cover all exponents up to the critical one

```
[Bakry, Emery, 1984]
[Bidault-Véron, Véron, 1991], [Bakry, Ledoux, 1996]
[Demange, 2008][JD, Esteban, Loss, 2014 & 2015]
```

The interpolation inequalities

On the d-dimensional sphere, let us consider the interpolation inequality

$$\|\nabla u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + \frac{d}{p-2} \|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \geq \frac{d}{p-2} \|u\|_{\mathrm{L}^{p}(\mathbb{S}^{d})}^{2} \quad \forall \, u \in \mathrm{H}^{1}(\mathbb{S}^{d}, d\mu)$$

where the measure $d\mu$ is the uniform probability measure on $\mathbb{S}^d \subset \mathbb{R}^{d+1}$ corresponding to the measure induced by the Lebesgue measure on \mathbb{R}^{d+1} , and the exposant $p \geq 1$, $p \neq 2$, is such that

$$p \leq 2^* := \frac{2d}{d-2}$$

if $d \ge 3$. We adopt the convention that $2^* = \infty$ if d = 1 or d = 2. The case p = 2 corresponds to the logarithmic Sobolev inequality

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \geq \frac{d}{2} \, \int_{\mathbb{S}^d} |u|^2 \, \log\left(\frac{|u|^2}{\|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2}\right) \, d \, v_g \quad \forall \, u \in \mathrm{H}^1(\mathbb{S}^d, d\mu) \setminus \{0\}$$

The Bakry-Emery method

Entropy functional

$$\mathcal{E}_{p}[\rho] := \frac{1}{p-2} \left[\int_{\mathbb{S}^{d}} \rho^{\frac{2}{p}} dv_{g} - \left(\int_{\mathbb{S}^{d}} \rho dv_{g} \right)^{\frac{2}{p}} \right] \quad \text{if} \quad p \neq 2$$

$$\mathcal{E}_{2}[\rho] := \int_{\mathbb{S}^{d}} \rho \log \left(\frac{\rho}{\|\rho\|_{L^{1}(\mathbb{S}^{d})}} \right) dv_{g}$$

Fisher information functional

$$\mathcal{I}_p[
ho] := \int_{\mathbb{S}^d} |
abla
ho^{rac{1}{p}}|^2 dv_g$$

Bakry-Emery (carré du champ): use the heat flow $\frac{\partial \rho}{\partial t} = \Delta \rho$ where Δ denotes the Laplace-Beltrami operator on \mathbb{S}^d , and compute

$$\frac{d}{dt}\mathcal{E}_{p}[\rho] = -\mathcal{I}_{p}[\rho] \quad \text{and} \quad \frac{d}{dt}\mathcal{I}_{p}[\rho] \leq -d\,\mathcal{I}_{p}[\rho]$$

$$\frac{d}{dt} \left(\mathcal{I}_p[\rho] - d \, \mathcal{E}_p[\rho] \right) \le 0 \Longrightarrow \mathcal{I}_p[\rho] \ge d \, \mathcal{E}_p[\rho] \text{ with } \rho = |u|^p, \text{ if } p \le 2^\# := \frac{2 \, d^2 + 1}{(d-1)^2}$$

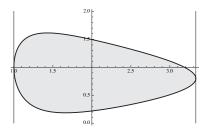
The evolution under the fast diffusion flow

To overcome the limitation $p \le 2^{\#}$, one can consider a nonlinear diffusion of fast diffusion / porous medium type

$$\frac{\partial \rho}{\partial t} = \Delta \rho^m \,. \tag{1}$$

[Demange], [JD, Esteban, Kowalczyk, Loss]: for any $p \in [1,2^*]$

$$\mathcal{K}_p[\rho] := \frac{d}{dt} \Big(\mathcal{I}_p[\rho] - d \, \mathcal{E}_p[\rho] \Big) \leq 0 \,,$$



$$(p, m)$$
 admissible region, $d = 5$

Sobolev's inequality

The stereographic projection of $\mathbb{S}^d \subset \mathbb{R}^d \times \mathbb{R} \ni (\rho \phi, z)$ onto \mathbb{R}^d : to $\rho^2 + z^2 = 1$, $z \in [-1, 1]$, $\rho \geq 0$, $\phi \in \mathbb{S}^{d-1}$ we associate $x \in \mathbb{R}^d$ such that r = |x|, $\phi = \frac{x}{|x|}$

$$z = \frac{r^2 - 1}{r^2 + 1} = 1 - \frac{2}{r^2 + 1}$$
, $\rho = \frac{2r}{r^2 + 1}$

and transform any function u on \mathbb{S}^d into a function v on \mathbb{R}^d using

$$u(y) = \left(\frac{r}{\rho}\right)^{\frac{d-2}{2}} v(x) = \left(\frac{r^2+1}{2}\right)^{\frac{d-2}{2}} v(x) = (1-z)^{-\frac{d-2}{2}} v(x)$$

$$\int_{\mathbb{D}^d} |\nabla v|^2 \ dx \ge \mathsf{S}_d \left[\int_{\mathbb{D}^d} |v|^{\frac{2d}{d-2}} \ dx \right]^{\frac{d-2}{d}} \quad \forall \ v \in \mathcal{D}^{1,2}(\mathbb{R}^d)$$

Schwarz symmetrization and the ultraspherical setting

$$(\xi_0, \, \xi_1, \dots \xi_d) \in \mathbb{S}^d, \, \xi_d = z, \, \sum_{i=0}^d |\xi_i|^2 = 1 \, [\text{Smets-Willem}]$$

Lemma

Up to a rotation, any minimizer of Q depends only on $\xi_d = z$

• Let
$$d\sigma(\theta) := \frac{(\sin \theta)^{d-1}}{Z_d} d\theta$$
, $Z_d := \sqrt{\pi} \frac{\Gamma(\frac{d}{2})}{\Gamma(\frac{d+1}{2})}$: $\forall v \in H^1([0,\pi], d\sigma)$

$$\frac{p-2}{d}\int_0^{\pi}|v'(\theta)|^2\ d\sigma+\int_0^{\pi}|v(\theta)|^2\ d\sigma\geq \left(\int_0^{\pi}|v(\theta)|^p\ d\sigma\right)^{\frac{2}{p}}$$

• Change of variables $z = \cos \theta$, $v(\theta) = f(z)$

$$\frac{p-2}{d} \int_{-1}^{1} |f'|^2 \nu \ d\nu_d + \int_{-1}^{1} |f|^2 \ d\nu_d \ge \left(\int_{-1}^{1} |f|^p \ d\nu_d \right)^{\frac{2}{p}}$$

where
$$\nu_d(z) dz = d\nu_d(z) := Z_d^{-1} \nu^{\frac{d}{2}-1} dz$$
, $\nu(z) := 1 - z^2$



The ultraspherical operator

With $d\nu_d = Z_d^{-1} \nu^{\frac{d}{2}-1} dz$, $\nu(z) := 1 - z^2$, consider the space $L^2((-1,1), d\nu_d)$ with scalar product

$$\langle f_1, f_2 \rangle = \int_{-1}^1 f_1 f_2 d\nu_d, \quad \|f\|_{\mathrm{L}^p(\mathbb{S}^d)} = \left(\int_{-1}^1 f^p d\nu_d\right)^{\frac{1}{p}}$$

The self-adjoint *ultraspherical* operator is

$$\mathcal{L} f := (1 - z^2) f'' - d z f' = \nu f'' + \frac{d}{2} \nu' f'$$

which satisfies $\langle f_1, \mathcal{L} f_2 \rangle = -\int_{-1}^1 f_1' f_2' \nu \ d\nu_d$

Proposition

Let
$$p \in [1,2) \cup (2,2^*]$$
, $d \ge 1$. For any $f \in H^1([-1,1], d\nu_d)$,

$$-\langle f, \mathcal{L} f \rangle = \int_{-1}^{1} |f'|^2 \ \nu \ d\nu_d \ge d \ \frac{\|f\|_{L^p(\mathbb{S}^d)}^2 - \|f\|_{L^2(\mathbb{S}^d)}^2}{p-2}$$

Heat flow and the Bakry-Emery method

With $g = f^p$, i.e. $f = g^{\alpha}$ with $\alpha = 1/p$

$$(\text{Ineq.}) \quad -\langle f, \mathcal{L}f \rangle = -\langle g^{\alpha}, \mathcal{L}g^{\alpha} \rangle =: \mathcal{I}[g] \geq d \frac{\|g\|_{\mathrm{L}^{1}(\mathbb{S}^{d})}^{2\alpha} - \|g^{2\alpha}\|_{\mathrm{L}^{1}(\mathbb{S}^{d})}}{p-2} =: \mathcal{F}[g]$$

Heat flow

$$\frac{\partial g}{\partial t} = \mathcal{L} g$$

$$\frac{d}{dt} \|g\|_{L^{1}(\mathbb{S}^{d})} = 0, \quad \frac{d}{dt} \|g^{2\alpha}\|_{L^{1}(\mathbb{S}^{d})} = -2(p-2)\langle f, \mathcal{L} f \rangle = 2(p-2)\int_{-1}^{1} |f'|^{2} \nu \ d\nu_{d} dt$$

which finally gives

$$\frac{d}{dt}\mathcal{F}[g(t,\cdot)] = -\frac{d}{p-2}\frac{d}{dt}\|g^{2\alpha}\|_{\mathrm{L}^1(\mathbb{S}^d)} = -2\,d\,\mathcal{I}[g(t,\cdot)]$$

Ineq.
$$\iff \frac{d}{dt}\mathcal{F}[g(t,\cdot)] \leq -2\,d\,\mathcal{F}[g(t,\cdot)] \iff \frac{d}{dt}\mathcal{I}[g(t,\cdot)] \leq -2\,d\,\mathcal{I}[g(t,\cdot)]$$

The equation for $g = f^p$ can be rewritten in terms of f as

$$\frac{\partial f}{\partial t} = \mathcal{L} f + (p-1) \frac{|f'|^2}{f} \nu$$

$$-\frac{1}{2} \frac{d}{dt} \int_{-1}^{1} |f'|^2 \nu \ d\nu_d = \frac{1}{2} \frac{d}{dt} \langle f, \mathcal{L} f \rangle = \langle \mathcal{L} f, \mathcal{L} f \rangle + (p-1) \langle \frac{|f'|^2}{f} \nu, \mathcal{L} f \rangle$$

$$\frac{d}{dt}\mathcal{I}[g(t,\cdot)] + 2d\mathcal{I}[g(t,\cdot)] = \frac{d}{dt}\int_{-1}^{1} |f'|^{2} \nu \, d\nu_{d} + 2d\int_{-1}^{1} |f'|^{2} \nu \, d\nu_{d}$$

$$= -2\int_{-1}^{1} \left(|f''|^{2} + (p-1)\frac{d}{d+2}\frac{|f'|^{4}}{f^{2}} - 2(p-1)\frac{d-1}{d+2}\frac{|f'|^{2}f''}{f} \right) \nu^{2} \, d\nu_{d}$$

is nonpositive if

$$|f''|^2 + (p-1)\frac{d}{d+2}\frac{|f'|^4}{f^2} - 2(p-1)\frac{d-1}{d+2}\frac{|f'|^2f''}{f}$$

is pointwise nonnegative, which is granted if

$$\left[(p-1)\frac{d-1}{d+2} \right]^2 \le (p-1)\frac{d}{d+2} \iff p \le \frac{2d^2+1}{(d-1)^2} = 2^\# < \frac{2d}{d-2} = 2^*$$

... up to the critical exponent: a proof in two slides

$$\left[\frac{d}{dz},\mathcal{L}\right] u = (\mathcal{L} u)' - \mathcal{L} u' = -2 z u'' - d u'$$

$$\int_{-1}^{1} (\mathcal{L} u)^{2} d\nu_{d} = \int_{-1}^{1} |u''|^{2} \nu^{2} d\nu_{d} + d \int_{-1}^{1} |u'|^{2} \nu d\nu_{d}$$

$$\int_{-1}^{1} (\mathcal{L} u) \frac{|u'|^{2}}{u} \nu d\nu_{d} = \frac{d}{d+2} \int_{-1}^{1} \frac{|u'|^{4}}{u^{2}} \nu^{2} d\nu_{d} - 2 \frac{d-1}{d+2} \int_{-1}^{1} \frac{|u'|^{2} u''}{u} \nu^{2} d\nu_{d}$$

On (-1,1), let us consider the *porous medium (fast diffusion)* flow

$$u_t = u^{2-2\beta} \left(\mathcal{L} u + \kappa \frac{|u'|^2}{u} \nu \right)$$

If $\kappa = \beta (p-2) + 1$, the L^p norm is conserved

$$\frac{d}{dt} \int_{-1}^{1} u^{\beta p} d\nu_{d} = \beta p (\kappa - \beta (p - 2) - 1) \int_{-1}^{1} u^{\beta (p - 2)} |u'|^{2} \nu d\nu_{d} = 0$$

$$f = u^{\beta}, \, \|f'\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 + \frac{d}{p-2} \, \left(\|f\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 - \|f\|_{\mathrm{L}^p(\mathbb{S}^d)}^2 \right) \ge 0 \, ?$$

$$\mathcal{A} := \int_{-1}^{1} |u''|^{2} \nu^{2} d\nu_{d} - 2 \frac{d-1}{d+2} (\kappa + \beta - 1) \int_{-1}^{1} u'' \frac{|u'|^{2}}{u} \nu^{2} d\nu_{d}
+ \left[\kappa (\beta - 1) + \frac{d}{d+2} (\kappa + \beta - 1) \right] \int_{-1}^{1} \frac{|u'|^{4}}{u^{2}} \nu^{2} d\nu_{d}$$

 \mathcal{A} is nonnegative for some β if

$$\frac{8 d^2}{(d+2)^2} (p-1) (2^*-p) \ge 0$$

 \mathcal{A} is a sum of squares if $p \in (2, 2^*)$ for an arbitrary choice of β in a certain interval (depending on p and d)

$$\mathcal{A} = \int_{-1}^{1} \left| u'' - \frac{p+2}{6-p} \frac{|u'|^2}{u} \right|^2 \nu^2 \ d\nu_d \ge 0 \quad \text{if } p = 2^* \text{ and } \beta = \frac{4}{6-p}$$

The rigidity point of view

Which computation have we done ? $u_t = u^{2-2\beta} \left(\mathcal{L} u + \kappa \frac{|u'|^2}{u} \nu \right)$

$$-\mathcal{L} u - (\beta - 1) \frac{|u'|^2}{u} \nu + \frac{\lambda}{p - 2} u = \frac{\lambda}{p - 2} u^{\kappa}$$

Multiply by $\mathcal{L} u$ and integrate

$$\ldots \int_{-1}^1 \mathcal{L} \, u \, u^\kappa \, d\nu_d = - \kappa \int_{-1}^1 u^\kappa \, \frac{|u'|^2}{u} \, d\nu_d$$

Multiply by $\kappa \frac{|u'|^2}{u}$ and integrate

$$\dots = +\kappa \int_{-1}^{1} u^{\kappa} \frac{|u'|^2}{u} d\nu_d$$

The two terms cancel and we are left only with the two-homogenous terms

Constraints and improvements

Integral constraints

Proposition

For any $p \in (2, 2^{\#})$, the inequality

$$\int_{-1}^{1} |f'|^{2} \nu \ d\nu_{d} + \frac{\lambda}{p-2} \|f\|_{2}^{2} \ge \frac{\lambda}{p-2} \|f\|_{p}^{2}$$

$$\forall f \in H^{1}((-1,1), d\nu_{d}) \text{ s.t. } \int_{-1}^{1} z |f|^{p} \ d\nu_{d} = 0$$

holds with

$$\lambda \ge d + \frac{(d-1)^2}{d(d+2)} (2^\# - p) (\lambda^* - d)$$

Antipodal symmetry

With the additional restriction of antipodal symmetry, that is

$$u(-x) = u(x) \quad \forall x \in \mathbb{S}^d$$

Theorem

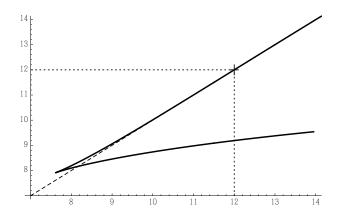
If $p \in (1,2) \cup (2,2^*)$, we have

$$\int_{\mathbb{S}^d} |\nabla u|^2 \ d\nu_g \geq \frac{d}{p-2} \left[1 + \frac{\left(d^2-4\right) \left(2^*-p\right)}{d \left(d+2\right) + p-1} \right] \left(\|u\|_{\mathrm{L}^p(\mathbb{S}^d)}^2 - \|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \right)$$

for any $u \in H^1(\mathbb{S}^d, d\mu)$ with antipodal symmetry. The limit case p=2 corresponds to the improved logarithmic Sobolev inequality

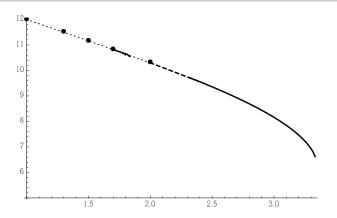
$$\int_{\mathbb{S}^d} |\nabla u|^2 \ dv_g \ge \frac{d}{2} \frac{(d+3)^2}{(d+1)^2} \int_{\mathbb{S}^d} |u|^2 \log \left(\frac{|u|^2}{\|u\|_{\mathrm{L}^2(\mathbb{S}^d)}^2} \right) dv_g$$

The larger picture: branches of antipodal solutions



Case d = 5, p = 3: values of the shooting parameter a as a function of λ

The optimal constant in the antipodal framework



Numerical computation of the optimal constant when d=5 and $1\leq p\leq 10/3\approx 3.33.$ The limiting value of the constant is numerically found to be equal to $\lambda_\star=2^{1-2/p}\,d\approx 6.59754$ with d=5 and p=10/3

Conclusion

- ▷ The flow interpretation is a powerful method to organize computations which are otherwise nasty
- > Outcomes of the method: various improvements. We are able to deal with non-compact cases and weights but the price to pay for controlling the boundary terms is high
- ⊳ A better understanding of the variational structure of the problem opens a new direction for research on constrained inequalities, but generic difficulties (non-monotone branches) have to be understood

These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/

Thank you for your attention!