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Gagliardo-Nirenberg inequalities for systems

Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

First eigenvalues and Gagliardo-Nirenberg inequalities (1)

Let H=—~A+ V in R d > 1 and consider \;(V), its lowest
eigenvalue

A1(V) = inf fRd |Vu|2 dx + fRd v |u|2 dx
u € HY(RY) Jpa |uf? dx
uz£0ae.

Consider the variational problem

A Y
=  sup A (V)|
Ve D(RY) Jra |VITE dx
V<0

By density the minimization space can be extended to
X, = {v e LRI V<0, V£0 a.e.}
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Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

Jao IV ul? dx — [o [Vul? dx

2 1455
ol o VI

R(u, V) :=

The variational problem amounts to

G = sup sup R(u, V)
VeX, ueH(RY)
V#0ae u#0ae.

Invariance under scalings: V A > 0, if uy = u(\+), VA = A2V(X+)
R(U)\, VA) = R(u, V)

Hint: optimize first on V. With q := 231—?12,

VP2 = [y = V=V, =—|umiz = [y
oo [U9 dx =[5 [Vu]? dx
S 162 e (fo |02 ci)™
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Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

Con(v)

||Vu||L;’(]Rd) ||u||Lg(Rd)
||U||L2‘7(Rd)

in
u € HY(RY)
u=£0a.e.

Theorem

Let d € N*. For any v > max(0,1 — g)

G = r1(7) [CGN(V)

(

_d
2y+d

2y

k1(y) = d

}—Hz(v)

145 d
> and /@2(7):24—;

ey _29+d
Range. q = m

Optimality:

For v > max(0,1—d/2), g >1and 2q < 2%

Au+|uP9Dy—u=0 in RY
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Gagliardo-Nirenberg inequalities for systems

Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

First eigenvalues and Gagliardo-Nirenberg inequalities (2)

Consider now a nonnegative smooth potential V € C*°(R9) such that

lim V(x) =+

[x| =400

and denote by A1(V), A\2(V), ...the positive eigenvalues of
H=-A+V

V= {viTe iRy vz0, VE+oae]
Let

2y —d

2(v+1)—d
Second type Gagliardo-Nirenberg inequality:

q:= €(0,1)

IVl e (Jo 620 o) )
* . L2(RY Rd
Cinly) = inf &9

ue HYRY), u#0ae. |ull c2qre)
Jro ul?7 dx < o0
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With oy
. v

T2+ -d

Let d € N*. For any v > d/2, forany V € Y.,

€(0,1)

M7 < G / VET dx
Rd

G =) [Cann]

_d 4
where k1(7) = —(2"’()1(1:(;;5_12;;73)2 and rp(y) =2y

Notice that g < 1, and 2g > 1 if and only if v > 14 d/2.

1
fRd |u|? dx (f]Rd Vi dx) K
- fRd [Vul? dx + fRd V |ul? dx
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Gagliardo-Nirenberg inequalities for systems

Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

First eigenvalues and Gagliardo-Nirenberg inequalities (3)

F ()\1(\/))
V fRd dX -
Duality condition to relate F and G... Optlmization with respect to V

cW =

kel = G'(V)=0

) F </Rd (|V<P|2 +1el? (6") |s0|2)) dx)
o p € S/"l;{o(Rd) Jra (G o (G")71) (k]p]?) dx

f]Rd |50| dx =1

o= () F ([ (19 167 (6) M mlo) o)
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Gagliardo-Nirenberg inequalities for systems

Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

Logarithmic Sobolev inequality

A simple case: g=1or F(s) =e°, G(s) = (471-)*‘1/2 e—s

o= Jra(IVeP+VIgl?) dx

cp) = sup /2 %
V. o (4m)=9/2 [ eV dx
fRd |50| dx =1
@ The optimization with respect to V gives V = — log(|¢|?)

@ The Lagrange multiplier x = 1 is such that
Jpee™Vdx = [pololPdx =1
This is equivalent to the usual logarithmic Sobolev inequality: for any
¢ € HY(RY) such that [5,[¢]? dx =1,

2 d/2 2
/ o2 log(ll?) dx + log / Vel dx

Optimal functions ¢ are gaussian and C,(El) = (%)d
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The inequality

e MMV < (7 ez)’d/2/ eV dx
< »

is equivalent to the logarithmic Sobolev inequality:
for any ¢ € HY(RY) such that [p, |¢]* dx =1,

d
[ lefPtog(lol?) dx+ 5 tog (e?) < [ [Tl o
Rd R4

[Gross], [Carlen,Loss], [Bobkov,Gotze]
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Gagliardo-Nirenberg inequalities for systems

Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

Lieb-Thirring inequalities

Given a smooth bounded nonpositive potential V on R, if
A(V) < Xa(V) < A3(V) <. Aw(V) <0
is the finite sequence of all negative eigenvalues of
H=-A+V

then we have the Lieb-Thirring inequality
N d
SN < G [ VP e (1)
i—1 Rd

For v =1, Zf\lzl [Ai(V)] is the complete ionization energy
[...], [Laptev-Weid]] for v > 3/2 the sharp constant is semiclassical
Lieb-Thirring conjecture: d =1,1/2 <~y <3/2, Cur(y) = G
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Gagliardo-Nirenberg inequalities for systems
“ompactness properties

. Scalar Gagliardo-Nirenberg inequalities
The repulsive Hartree-Fock model A e Nty & (Lo ity e
Gravitational Hartree systems: existence of minimizers GRElfisy & typ
Gravitational Hartree systems: critical temperature for mixed states

A new inequality of Lieb-Thirring type

Let V be a nonnegative unbounded smooth potential on R?: the
eigenvalues of Hy are

0< M(V) < X(V)<As(V) <. aw(V). ..

Theorem

For any v > d/2, for any nonnegative V € C>(R9) such that
Vd/2—'y c Ll(Rd),

N

ZA;(V)Jf <C(y) /Rd Vi dx

(=1

_ (o2 Ty = d/2)

Proof is based in an inequality by Golden, Thompson and Symanzik
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Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

ce of minimizers

Gravitational Hartree systems: ¢ e
for mixed states

Gravitational Hartree systems: critical tempel

By definition of the I' function, for any v > 0 and A > 0,

1 +oo
AT = —/ e 714t
r(V) 0

The operator —A + V is essentially self-adjoint on L2(R9), and
positive:

tr((—A+V)™) = ﬁ /0+°° tr (e_t(_AH/)) t7dt

Since V£~ € [}(RY), we get

IA

1 Hoo d
tr (A +V)™7) W/o /Rd(47rt)_5 etV 1o dt

r(V‘%) d_
—_— V(x)2 7dx
(4m) () fve
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Gagliardo-Nirenberg inequalities for systems

ompactness properties 5 A 5 .
f ProF Scalar Gagliardo-Nirenberg inequalities

VLG G D LIRSS (e B A new inequality of Lieb-Thirring type

Gravitational Hartree systems: existence of minimizers
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Generalization: Let f be a nonnegative function on R such that

/ODQ f(t) (1+ t_d/2> % <00

Flo) = /0°° eitsf(t)% and  G(s) := /OOO e ts (4w t) 9 £(1)

Let V be in L}

loc

(R?) and bounded from below. If G(V) € L1(RY), then

> F(V) =tr[F(-A+ V)] < g G(V(x)) dx

ieN*

If F(s) =s77, then G(s) = 477?)5%
7r 2 ’y

If F(s) = e~*, then f(s) = §(s — 1) and G(s) = (4m)~9/2 e~

T By G
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Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

Stablllty for the linear Schrodinger equation

E[Y] = [a(IVY]? + V[¢[?) dx, eigenvalues of H := —A + V

AN(V) = inf E
(V) Fo w2 [¥]
dim(F) = i

The eigenfunction ; form an orthonormal sequence:
(IZHIZ])B(]R") = 5,J Vi, je€ N~
Free energy of the mixed state (v, 1) = ((Vi)ien, (¥i)ien+):
Flo.g]:= > Bi)+ Y viEl]
ieN= jeN~

Assumption (H) holds if 3 is a strictly convex function, 5(0)
|Zﬁ(17,-)|<oo and ZI/, (V)] <
jeN* ieN-

where 7; := (3')1(=\;(V)) for any i € N*

J. Dolbeault Thermal effects in Hartree systems
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A discrete Csiszar-Kullback inequality

Under Assumption (H), if 1) = (v;)ien~ is an orthonormal sequence,

.7:,7[1/71/)]—?”[17,12)]

Assume that infsso 37(s) s> P =t >0, p € [1,2]. If Y, .. B(vi) and
> ien= Vi B'(7;) are absolutely convergent, then (v; — Ui )ien~ € P and

o2
3 (800808 ) wi—5) = L i L2,
iEN*
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Gagliardo-Nirenberg inequalities for systems

Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

Examples

To various functions 8 with —F(s) = (B0 (3)71)(—s) +s(8)"1(~s)
correspond various generalized Lieb-Thirring inequalities

Example 1. Let m > 1 and consider 3(v) := (m —1)""*m~"v™. With

B'(v)=(m—-1)""tm'=mymt = —Xand m= 13, we get:
~(B) + Av) = F() = (-2
The case v € (0,1) is formally covered by
) = —(1—=m)™ L m|=mpm
with m € (—00,0), m = 25 again and F(s) = (—s)?, but in this case,

[ is not convex and the ?ree energy F cannot be defined as above.
Example 2. For m € (0,1) and B(v) := —(1 — m)™ tm~"v™ with
Bw)y=—-1-—mmtm=mym=1l = _Xand m= we get:

F(A) = A

O
y+1?

J. Dolbeault Thermal effects in Hartree systems



Gagliardo-Nirenberg inequalities for systems

ompactness properties

The repulsive | e-Fock model

Gravitational Hartree systems ce of minimizers
Gravitational Hartree systems: critical temperature for mixed states

Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

Example 3. If 3(v) := vlogr — v, then 3'(v) = logr = -\

1
E =i(V) —V(x)
: = @an)7 /]R ©

This case can formally be seen as the limit case m — 1 in Examples 1
and 2. Here F(s) = e*, G(s) = (4m)~9/%2 e~

Example 4. If B(v) := vlogr + (1 — v)log(1 — v), then
B'(v) =log (%) = —X and F(s) = log(1 + e™)

Y log (1 + e—*f(V)) < | G(V(x)) dx

d
iEN* R
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Gagliardo-Nirenberg inequalities for systems

Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

Interpolation: Gagliardo-Nirenberg inequalities for systems

Assume that H = —A + V has an infinite sequence (A;(V));en- of
eigenvalues. Let F and G be such that

S TFQ(V) =t [F(-A+ V)] < /R G(V(x)) dx

iEN*
Let X := lim;_ o A\i(V) < oo and assume that
Spectrum(—A 4 V) N (=00, A) = {\i(V) : i € N*}

Define o(s) :== —F'(s) and B(s) := — [, o~ *(t) dt. Notice that

Fe) = [ oty de— / (&) (1) dt = — min[3(+) + v

J. Dolbeault Thermal effects in Hartree systems



Scalar Gagliardo-Nirenberg inequalities

U A new inequality of Lieb-Thirring type

Gravitational Hartree
vitational Hartree systems: cri

Sowi [ (Vi VInR) der 3 )+ [ 6(v() dx 20

ieN* ieN
for any sequence of nonnegative occupation numbers (v;);en+ and any

sequence (¢;)ien~ of orthonormal L?(R9) functions
Method: For fixed v = (v;)ien+, ¥ = (¥i)ien-

Klv,¢] = /Rd Z vi|[Vipil>dx and p:i= Z v [0il?

ieEN* ieN*

H(s) := — [Go (G') (=s) +s(G) }(—s)]
Assume that G’ is invertible and optimize on V: The optimal
potential V has to satisfy

G'(V)+p=0

/Rd Vpder [ G(V() de = —/Rd H(p(x)) dx

J. Dolbeault Thermal effects in Hartree systems
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Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

K, ¥l + 3 Bw) > / Hip) dx

ieN® RS
with p= > v; i
ieN~
Here (v;)ien+ s any nonnegative sequence of occupation numbers and
(¥i)ien~ is any sequence of orthonormal L?(R?) functions

J. Dolbeault Thermal effects in Hartree systems



Gagliardo-Nirenberg inequalities for systems

ompactness properties q q g f
f ProF Scalar Gagliardo-Nirenberg inequalities

The repulsive Hartree-Fock model A new inequality of Lieb-Thirring type

Gravitational Hartree systems: existence of minimizers
Gravitational Hartree systems: critical temperature for mixed states

Example 1. Let m > 1 (standard Lieb-Thirring inequality) and

consider 3(v) == cp V™, Cpi= (M —=1)""Im™™ m= 2

F(s) = (—s)” and G(s) = Cur(y)(—s)"t9/2 =
7 2721% and K= q[Cur(y) (v + d/2)1"

For any m € (1, +00),

K i m>K 9d
[V7¢]+C ZVI = /de X

ieN*

o
) \ . d
(K[u,¢]> (Z%‘) =L pPdx, e—m

ieN RY
The case m = % € (—0o0,0), which corresponds to v € (0, 1),
ge(1+d/2,d/(d—2)), B(v) := cmv™, is not covered

J. Dolbeault Thermal effects in Hartree systems
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Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

Example 2. m € (0,1), B(v) := —cm ™, Cm = (L — m)™" Im™™

F(\) = A" and G(s) = C(y) s¥/?~7

. 2y—d
T 2v+1)—d

Notice that v > d/2 = me (d/(d + 2),1)

m_7+1’

€(0,1) and K= qlC(r) (v - d/2)"

For any m € (di+27 1),

K[V1/)]—|—IC/ qu>CmZI/

ieN*

Scale invariant version:
(1-0)
K 9d > L m
vt (L) 2o

Wlth 9 2(7“)
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Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

Example 3. If B(v) := vlogv — v, then §'(v) = logr = =\, F(s) =e~*
and G(s) = (47)~9/%2e*

Klv,¥] + Z vilogv; > /delogp dx + d/2 log(4m) /de dx
ieN

D d e Kv. 9] /
I dx < il i — | _ d.
/Rd’”’gp X—I,EN*V o8Vt 5 108\ 5 g Teapdx) Jos” ™
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Trace operators and compactness properties

@.J. Dolbeault, P. Felmer, and J. Mayorga-Zambrano.
Compactness properties for trace-class operators and applications to

quantum mechanics. Monatshefte fiir Mathematik, 155 (1): 4366,
2008
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Lieb-Thirring and Gagliardo-Nirenberg inequalities

Q C R? bounded domain
Let g be a non-negative function on R such that

.

and consider F and G such that
ﬂ
t

F,G:R — RU{+o0} are convex non-increasing

Let V € L{ () be a potential bounded from below. Assume moreover

that G(V) is in L}(Q). Then we have

> F(v.i) =Tr[F (A + V)] g/QG(V(x))dx

ieN

J. Dolbeault Thermal effects in Hartree systems
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Gravitational Hartree systems: critical temperature for mixed states

If V € LL (Q) is a non-negative potential such that V=7 is in L}(),
then
T8+ )] = SO0 < il [ v
’ (4m)a72T(7) r 7)

ieN

v

If V € LL () is bounded from below and such that e~V € L}(Q) and
F(s) = e~* for any s € R, then G(s) = (47)~9/2 e~ and

Tr [ —A+V Z e—)xv, 471_:;(1/2 / -V dx

i€eN
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The repulsive Hartree-Fock model

Gravitational Hartree systems: existence of minimizers
Gravitational Hartree systems: critical temperature for mixed states

Let V' be a potential verifying appropriate integrability conditions. Let (3
be an entropy generating function, F the free energy, and G a strictly
convex function with F and G related as above, then

Tr[F(-A+ V)] < / G(V(x)) dx
Q
If T is such that G(s) = 7*(—s) for any s € R, where T and 7* are

related according to a modified Legendre-Fenchel transformation, then
for any L € Hﬁr (trace-class with finite kinetic energy), we have

K(L) + Hp(L) > /Q )

J. Dolbeault Thermal effects in Hartree systems
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Compactness results

Theorem

Consider d > 2, and assume that m € (d/(d +2),1). Let {Ln}nen be a
sequence in H. such that

Ko = sup K(L,) < 00
neN

Then {||Ln||1} nen is bounded and sup,c > iy [V]'|™ < 00. Moreover, up
to a subsequence, lim,_.o v = ;, for all i € N and

Q If5; #0 forall i €N, then limp_o X en V7] = X 171"

Q For any m/ € (m7 1], Iimn—>oo ZieN |Vin|ml = ZieN |Di|ml
Q Up to a subsequence, {L,}nen converges in trace norm || - [|1 to

some operator L € HL, whose eigenvalues are {7} ;cn

J. Dolbeault Thermal effects in Hartree systems



Properties of the free energy

The repulsive Hartree-Fock model A
Euler-Lagrange equations

Orbitally stable states in generalized Hartree-Fock theory:
the repulsive case

@ J. Dolbeault, P. Felmer, and M. Lewin.

Orbitally stable states in generalized Hartree-Fock theory.
Mathematical Models and Methods in Applied Sciences, 19 (3):
347-367, 2009.

@ P.A. Markowich, G. Rein, G. Wolansky.

Exzxistence and Nonlinear Stability of Stationary States of the
Schrddinger-Poisson System. Journal of Statistical Physics, Vol. 106,
Nos. 5/6, March 2002
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Properties of the free energy

The repulsive Hartree-Fock model A
Euler-Lagrange equations

@ We consider free energy functionals' of the form
= M () = T S()

is the Hartree-Fock energy and the entropy takes the form
S(7) =~ tr (B(7))

for some convex function 8 on [0,1]. Has the free energy a
minimizer ? The Hartree-Fock energy £HF () is

tr((—A)fy)—Z/ (X)) 1 > Doy py __//]R3><]R3 hxn)P dx dy

r |X x =yl

where EHF

with D(f,g) == [[os, ps C() gy‘ dx dy (direct term of the interaction).
The last term is the exchange term

@ Evolution is described by the von Neumann equation

4y
i = [H,,7]

Here H, is a self-adjoint operator depending on « but not on f.
Orbital stability of the solution obtained by minimization ?

1p.-L. Lions '88

J. Dolbeault Thermal effects in Hartree systems



Properties of the free energy

The repulsive Hartree-Fock model A
Euler-Lagrange equations

Assumptions on the entropy term

(3 is a strictly convex C! function on (0, 1)
B(0)=0and 8> 0on [0,1]

Fermions !... we introduce a modified Legendre transform of 3

g(}\) := argmin (Av + 3(v))
0<v<1

g()\) = sup { inf {(3)"1(=\), 1}, o}

Notice that g is a nonincreasing function with 0 < g < 1. Also define

FT(A) = Ag(A) + (Beog)(N)
3 is a nonnegative C! function on [0,1) and 3'(0) =0
(no loss of generality)
Z J |6 /(4 TJ ‘ < 00
j>1
The ground state free energy is finite (the eigenvalues of —A — Z/|x|
e —Z2/(4,°), with multiplicity j2)

J. Dolbeault Thermal effects in Hartree systems



Properties of the free energy

The repulsive Hartree-Fock model A
Euler-Lagrange equations

From well-posedness...

A typical example is
plv) =v"
which satisfies (A1)—(A4) as long as 1 < m < 3. In this special case
1
min{(%)""l,l} if A<0
g(N) =
0 otherwise

and "
BEA)=—-(m—1)(=2)"" if —-m<A<0

Space of operators

H = {’y PR3 = PR3 |y =%, v€61, V-Aly|V-Ac€ 61}

J. Dolbeault Thermal effects in Hartree systems



Properties of the free energy

The repulsive Hartree-Fock model A
Euler-Lagrange equations

The Banach space $) is equipped with the norm

My = tr 7] +tr (V=A]|V-2)

K:={y€$H|0<v<1}is a convex closed subset of $
Since (3 is convex and $(0) = 0, we have 0 < G(v) < (1) v on [0, 1]
For any v >0, 0 < 3(y) < (1) = B(7) € 61 when vy € &;

tr ((—A)v) ==tr (\/j’y \/1) € RU {+o0}

Density of charge: p,(x) = v(x, x) € L}(R?)
By the spectral decomposition of ~y

Vyek. VAl <t (V=AY VEA)

2

Hence we have “\/p’YHHl(]R3) < Il

and, as a consequence, p, € LY(R3) N L3(R3) C L5/5(R3),
Jrs 2209 gy < 00 and D(p, py) < 00

x|
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Properties of the free energy

The repulsive Hartree-Fock model A
Euler-Lagrange equations

. to the minimization of the free energy

By the Hardy-Littlewood-Sobolev inequality and the Cauchy-Schwarz
inequality

V(6 Y)IP < py(x) py(y)  for ae. (x,y) € R® x R?

Y Y
//R3 R3||X_ dxdy < D(p,py) < 0
X

The free energy P > is well-defined on K. We are interested in
minimizing it under a constraint corresponding to the closed convex
subset

so that

Kg:={yveK|try=q}
Define
Izﬁ() |nf{ 2(v) | v € K and tr(y) = q}

17 = inf {55(7) |y e ’C} = inf 1(q)
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The repulsive Hartree-Fock model A
rock. Euler-Lagrange equations

Gravitational Hartree systems: existence of minimizers
Gravitational Hartree systems: critical temperature for mixed states

Minimization of the free energy

Theorem (Minimization for the generalized HF model)

Assume that [ satisfies (A1)—(A4) for some T > 0.
Q@ For every g > 0, the following statements are equivalent:

(1) all minimizing sequences (Vn)nen for Izﬁ(q) are
precompact in IC,
(i) Izﬂ(q) < Ig(q’) forall q, q' such that0 < q' < g

Q Any minimizer v of Ig (q) satisfies the self-consistent equation

—_ — Z —1 W(Xv}/)
’y_g((H’Y /J’)/T)7 H’Y_ A |X|+p’Y*| | |X—y|

for some u <0
Q The minimization problem Izﬁ(q) has no minimizer if g > 27 + 1

@ Problem Ig always has a minimizer 7 . It satisfies the self-consistent
equation
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Properties of the free energy

The repulsive Hartree-Fock model A
Euler-Lagrange equations

Back to the linear case

We now recall the properties of the linear case corresponding to

f?(’y) = tr ((—A) 'y) - Z/ M dx+ T tr (ﬂ('y))

rs x|

A straightforward minimization gives

;i
T =3 70 (3) > e

j>1
where \; = —% are the negative eigenvalues of —A — Z/|x| with
multiplicity j2
The trace
. 2 (N
Iiax(T) = tr(g (% (-a- Vﬂ))) => J2g(7’) € (0,0q]
jz1

could in principle be infinite
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Properties of the free energy

The repulsive Hartree-Fock model A
Euler-Lagrange equations

Then the minimization problem with constraint inf,ex, .7-'5 (v) admits

a minimizer for all ¢ > 0 if ¢" = oo, whereas it has a minimizer if
and only if g € [0, ghin ] if ¢ < oo. In all cases, this minimizer

solves the equation
z
vzg(%(—A—m —u))
for some p < 0, a Lagrange multiplier which is chosen to ensure that

the condition try = g is satisfied
p— q(p) = tr(g((—A — Z/|x| — 1)/ T)) is non decreasing and

lin

satisfies g(u) = 0 for u < 0, || large enough and g(u) — gpn, when
pn—0
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Properties of the free energy

The repulsive Hartree-Fock model A
Euler-Lagrange equations

If B(v) = v™, we see that ¢! < oo if and only if m < 5/3, as

max

summarized in Table 1. For T > Z2/(4 m),

1 1
. 72 \ ™1 2 72 \ "1 m—2
lin — E 2= w1 — S
Tunax(T) = (4 Tm) J 1 <4Tm> C(2m—1)

jz1

where ¢ denotes the Riemann zeta function

| 1<m<5/3 | 53<m<3 | m>3 |
qiril';x(T) < o0 qirif;x(T) =00 Linear
energy
Existence iff Existence unbounded
0<qg< g (T Vg>0 from
below
Linear energy bounded from below

Existence and non-existence of minimizers with a finite trace for

B(v) = v
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A criterion for existence

Assume that (3 satisfies (A1)—(A4) for some T > 0. Then the

minimization problem Ig (g) has no solution if g > gin

Proposition

| A\

Assume that (3 satisfies (A1)—(A4) for some T > 0. Then for all q such
that .
Oéquin{Zg<%> ,Z}
j>1

Condition IZB (9) < Ig (q') in the theorem on the minimization of the free
energy is satisfied
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“ompactness properties

The repulsive Hartree-Fock model

Gravitational Hartree systems: existence of minimizers
Gravitational Hartree systems: critical temperature for mixed states

lonization threshold

Properties of the free energy
Euler-Lagrange equations

Corollary (Existence of minimizers for the generalized HF model)

Let T > 0. Assume that 3 satisfies (A1)—(A3), and (A4) if T is
positive. Then there exists qmax > 0 such that the nonlinear
minimization problem has a minimizer for any q € [0, Gmax]

Q@ Ionization threshold: How does gmax depend on T is an essentially
open question
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Properties of the free energy

Euler-Lagrange equations

Gravitational Hartree systems: existe of minimizers

Gravitational Hartree systems: critical temperz

Non-zero temperature solutions of the gravitational
Hartree system

re for mixed states

@ Gonca L. Aki, Jean Dolbeault and Christof Sparber.
Thermal effects in gravitational Hartree systems. To appear in
Annales Henri Pincaré
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Properties of the free energy

The repulsive Hartree-Fock model A
Euler-Lagrange equations

The variational problem

We introduce the following Banach space of operators
H = {p AR = PR3 pf=p>0, peB, V-ApV-Ac 61}
equipped with the norm
Iolg =trp+tr (V-DpvV-4)
We are interested in a minimization problem under a mass constraint
. . 1
im7 = inf Frlp],  Frlp] = tr(=Ap) — 5 tr(V,pp) + T tr 5(p)
PENM 2
on the set of the physical state

Ou={peH : trp=M}
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Properties of the free energy

The repulsive Hartree-Fock model q
Euler-Lagrange equations

The free energy is well-defined and bounded from below

@ Potential energy term: By the Hardy-Littlewood-Sobolev inequality
and Sobolev’s embedding

n
Eaalil =3 [ " dxdy < (-0
R3 xR3 X
This yields
Enlp] > tr(=Ap) — CMP2 tr(=Dp)/? > —% M

@ Entropy term: S[p] = — tr 8(p)

(B1): B € Clis convex
(82): B(0) =0 = 0 < B(p) < B(M)p for all pe 5
Then ((p) € &1, provided p € &;

Hence, F7 is well-defined and bounded on $y

J. Dolbeault Thermal effects in Hartree systems



Properties of the free energy

Gravitational Hartree systems: existe i g e

Gravitational Hartree systems: critical temperature for mixed states

Sub-additivity of iy 7 w.r.t. M

(i) As a function of M, iy 1 is sub-additive. In addition, for any
M >0, me (0, M) and T >0, we have

IMT < iM—m, T + im, T

Consider two states as “almost minimizers” p € Hy—m and o € Hm,

P—Z)‘|% )il U—Z)‘|SOJ )il

with smooth eigenfunctions (<pj) __; having compact support in a ball
B(0, R). Next translate one of the states so that they have disjoint
supports, observe that p+ o € Hum

(if) The function iy, 7 is a decreasing function of M and an
increasing function of T
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Properties of the free energy
Euler-Lagrange equations

Gravitational Hartree systems: existence of minimizers
Gravitational Hartree systems: critical temperature for mixed states

Maximal temperature T*

Let T*(M) :=sup{T >0 : iy <O0}.

(iif) For any M >0, T*(M) > 0 is positive, maybe even infinite. As a
function of M it is increasing and satisfies

3

(M) > B(m) |1,0]

>  max
0<m<M

If T < T*, we have iy, 7 <0

@ imo = M3 i1 o by the homogeneity of zero-temp. minimal energy
Q By sub—additivity iM,T <n iM/n,T < nﬁ (%) T— A:—; |I'170|

(iv) As a consequence, T*(M) = +oo for any M > 0, if
B(s)

lim —= =0
s—04 s3
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Gravitational Hartree systems: critical temperature for mixed states

Euler-Lagrange equations and Lagrange multiplier

Theorem (Euler-Lagrange equations)

Let M >0, T € (0, T*(M)] and assume that (81)—(82) hold.
Consider a density matrixz operator p € Hp which minimizes Fr.
Then p satisfies the self-consistent equation

p=(3)"(F (- H))

where p < 0 denotes the Lagrange multiplier associated to the mass
constraint. Explicitly, it is given by

p= 37 (o (Hy+ TH(2)0)
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Properties of the free energy

The repulsive Hartree-Fock model A
Euler-Lagrange equations

An equivalent formulation: countably many nonlinear
eigenvalue problem

The decomposition yields the following stationary problem:

A+ Vi +pjp; =0, jEN
— AV =47y Nj|u?

JjeN
where (41j)ken € R_ denote the energy eigenvalues of the Hamiltonian

1
H,=—-A—-V, where Vp:np*ﬁ
Here the energy eigenvalues are given in terms of the occupation
probabilities

i =p— TB(N) provided p; < p
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Gravitational Hartree systems: existence of minimizers
Gravitational Hartree systems: critical temperature for mixed states

The Lagrange multiplier is negative

Assume that

Lemma (negativity of u)

Let M >0 and T < T*(M). Assume that p € Hu is a minimizer of
Fr and let p be the corresponding Lagrange multiplier. If p(M) < 3,
then M < p(M)ipm, 7 <0

The proof follows from the observations:

imT=tr(~Ap—35V,p+ TpB(p))
Mp=tr(=Dp—V,p+ T3 (p)p)

and by the fact that tr(V,p) = 4 tr(—Ap)
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A priori estimates for minimizers

Q@ A decay property of the spatial density:

Let p € Hp be a minimizer for Fr. There exists a constant C > 0
such that for all R > 0 sufficiently large:

Q Binding inequality or strict sub-additivity inequality:

Let MO > 0 and M® > 0. If there are minimizers for ivw, T and
iM(2),T! then
Imo+me, 7 < iyo 7+ ive, T
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Gravitational Hartree systems: critical temperature for mixed states

Existence of minimizers below T*

Theorem (Existence of minimizers)

Assume that (81)-(83) hold. Let M > 0 and consider T* = T*(M) as
the maximal temperature. For all T < T*, there exists an operator

p in Hum  such that Frlp] = imT

Moreover, every minimizing sequence (pn)nen for im 1 is relatively
compact in $ up to translations

The proof relies on the concentration-compactness method once it is
known that iy, 7 < 0:

@ Vanishing: can be ruled out by the fact that n, € L7/®

@ Dichotomy: splitting behaviour: im, 7 = iy 7 + iy_yw 5 contradicts
the binding inequality iy ye r < iyw 7+ ive r

@ Compactness
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Orbital stability

A direct consequence of this variational approach is orbital stability:
Consider the set of minimizers 9ty C $Hy and denote

distan,, (p(t), p) = inf lo(t) = pl

Here p(t) solves the corresponding time-dependent system
.d
i7P() = [Hyw, ()], p(0) = pin

— A — 1
where H, := —A Np * 11

Corollary (Orbital stability)

For given M >0 let T < T*(M). Then for any € > 0, there exists
d > 0 such that, for all pin € Hm and p € My with diston,, (pin, p) < 9
it holds:

sup diston,, (p(t),p) <€
teR,
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Pure states, mixed states and critical temperature

Let pg = M|1o)(wo| be the (appropriately scaled) minimizer for
T = 0. Then the corresponding Hamiltonian operator

1
|-

admits countably many (negative) eigenvalues 2

Hy := —A — |1/)0|2 *

(4)iens  with pf /0

A critical temperature T, € (0, T*) exists, and depends on the

entropy function 8 such that, for T < T, minimizers p € 9y are only
pure states

2E. H. Lieb'77
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Gravitational Hartree systems: critical temperature for mixed states

Positivity of the critical temperature for all M > 0

Te(M) :=max{T >0: im7 = imo+78(M) V7 € (0, T]}
Assume that (81)-(83) hold. Then T.(M) is positive for any M > 0 )

To see this, take T, — 0 and consider a sequence of minimizers p(")
Since p(" is also a minimizing sequence for Fr—q, we know

(n) n—oo

—>,u<0

We assume by contradiction that liminf,_ /\(") =e>0

Then the Euler-Lagrange equation implies ;1,(”) > ,u(l , yields a
contradiction:
M = )\(0) > lim )\( " > lim (8)7 ((u(l’ —ug"))/T,,) = +00
n—oo n—oo

Hence 3[0, T] with T, > 0 s.t. (" < u{") for any T, € [0, T]. Thus
p" is of rank one

J. Dolbeault Thermal effects in Hartree systems



Gagliardo-Nirenberg inequalities for systems

ompacmcss properties Pure states
The repulsive Hartree-Fock model Existence of a critical temperature
Gravitational Hartree systems: existence of minimizers Remarks

Gravitational Hartree systems: critical temperature for mixed states

Characterization of the critical temperature T,

Corollary
Assume that (81)-(83) hold. There is a pure state minimizer of mass
M if and only if T € [0, T¢]
For any M > 0 the critical temperature satisfies

T _ M-

L=
p'(M)

where pd < 9 are the two lowest eigenvalues of Ho

Step 1: Prove T, < (u? — u3)/B' (M) by using u(T) = ud + T/ (M) for
pure states (T < T¢)
Step 2: (T > T.)Prove the equality (approaching to T, from above)

by using
Mp(n) = E:A”( '+ TOF ("))
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Remarks on the maximal temperature

@ A case in which T* = co:
T*(M) = 400 for any M > 0, if
im 20

s—04 53

=0

@ A case in which T* is finite:

If p € (1,7/5) given in the entropy generating function ((s) = sP,
then the mazimal temperature, T*(M) is finite

Q@ Limit case:

Assume T* < +o00. Then, limr_7+ im,7 =0 and limr_ 7= u(T) =0 J

@ Open: If p € (7/5,3) then T* is finite ?
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Thank you for your attention !

PLN G4
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