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First eigenvalues and Gagliardo-Nirenberg inequalities (1)

Let H = −∆ + V in R
d , d > 1 and consider λ1(V ), its lowest

eigenvalue

λ1(V ) = inf
u ∈ H1(Rd )
u 6≡ 0 a.e.

∫

Rd |∇u|2 dx +
∫

Rd V |u|2 dx
∫

Rd |u|2 dx

Consider the variational problem

C1 = sup
V ∈ D(Rd )

V ≤ 0

|λ1(V )|γ
∫

Rd |V |γ+ d
2 dx

By density the minimization space can be extended to

Xγ :=
{

V ∈ Lγ+ d
2 (Rd) : V ≤ 0 , V 6≡ 0 a.e.

}
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R(u,V ) :=

∫

Rd |V | |u|2 dx −
∫

Rd |∇u|2 dx
∫

Rd |u|2 dx ‖V ‖1+ d
2γ

L
γ+ d

2 (Rd )

The variational problem amounts to

C1 = sup
V ∈ Xγ

V 6≡ 0 a.e.

sup
u ∈ H1(Rd )
u 6≡ 0 a.e.

R(u,V )

Invariance under scalings: ∀ λ > 0, if uλ = u(λ ·), Vλ = λ2V (λ ·)

R(uλ,Vλ) = R(u,V )

Hint: optimize first on V . With q := 2γ+d
2γ+d−2 ,

|V |γ+ d
2 −2 V = −|u|2 ⇐⇒ V = Vu = −|u| 4

2γ+d−2 = −|u|2(q−1)

R(u,V ) ≤ R(u,Vu) =

∫

Rd |u|2q dx −
∫

Rd |∇u|2 dx
∫

Rd |u|2 dx
(∫

Rd |u|2q dx
)

1
γ
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CGN(γ) = inf
u ∈ H1(Rd)
u 6≡ 0 a.e.

‖∇u‖
d

2γ+d

L2(Rd )
‖u‖

2γ

2γ+d

L2(Rd )

‖u‖L2q(Rd )

Theorem

Let d ∈ N
∗. For any γ > max(0, 1 − d

2 ),

C1 = κ1(γ)
[

CGN(γ)
]−κ2(γ)

κ1(γ) =
2γ

d

(

d

2γ + d

)1+ d
2γ

and κ2(γ) = 2 +
d

γ

Range: q := 2γ+d
2γ+d−2 . For γ > max(0, 1 − d/2), q > 1 and 2 q < 2d

d−2
Optimality:

∆u + |u|2(q−1)u − u = 0 in R
d
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First eigenvalues and Gagliardo-Nirenberg inequalities (2)

Consider now a nonnegative smooth potential V ∈ C∞(Rd ) such that

lim
|x|→+∞

V (x) = +∞

and denote by λ1(V ), λ2(V ), . . . the positive eigenvalues of
H := −∆ + V

Yγ :=
{

V
d
2 −γ ∈ L1(Rd) : V ≥ 0 , V 6≡ +∞ a.e.

}

Let

q :=
2γ − d

2(γ + 1) − d
∈ (0, 1)

Second type Gagliardo-Nirenberg inequality:

C ∗
GN(γ) = inf

u ∈ H1(Rd), u 6≡ 0 a.e.
∫

Rd |u|2q dx <∞

‖∇u‖
d

2γ

L2(Rd )

(∫

Rd |u|2q dx
)

1
2q (1− d

2γ
)

‖u‖L2(Rd )
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With

q :=
2γ − d

2(γ + 1) − d
∈ (0, 1)

Theorem

Let d ∈ N
∗. For any γ > d/2, for any V ∈ Yγ ,

[λ1(V )]
−γ ≤ C2

∫

Rd

V
d
2 −γ dx

C2 = κ1(γ)
[

C ∗
GN(γ)

]−κ2(γ)

where κ1(γ) = (2q)γ−
d
2 (d(1−q))

d
2

(d(1−q)+2q)γ and κ2(γ) = 2γ

Notice that q < 1, and 2q > 1 if and only if γ > 1 + d/2.

R(u,V ) :=

∫

Rd |u|2 dx
(

∫

Rd V
d
2 −γ dx

)
1
γ

∫

Rd |∇u|2 dx +
∫

Rd V |u|2 dx

is invariant under the transformation
( )
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First eigenvalues and Gagliardo-Nirenberg inequalities (3)

C(1)
F = sup

V

F (λ1(V ))
∫

Rd G(V (x)) dx
≤ 1

Duality condition to relate F and G ... Optimization with respect to V

κ |ϕ|2 − G ′(V ) = 0

C(1)
F = sup

ϕ ∈ H1(Rd )
∫

Rd |ϕ|2 dx = 1

F

(
∫

Rd

(

|∇ϕ|2 + |ϕ|2 (G ′)−1(κ |ϕ|2)
)

dx

)

∫

Rd (G ◦ (G ′)−1) (κ |ϕ|2) dx

κ =
(

C(1)
F

)−1

F ′

(
∫

Rd

(

|∇ϕ|2 + |ϕ|2 (G ′)−1(κ |ϕ|2)
)

dx

)
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Logarithmic Sobolev inequality

A simple case: q = 1 or F (s) = e−s , G(s) = (4π)−d/2 e−s

C(1)
F = sup

V , ϕ
∫

Rd |ϕ|2 dx = 1

e−
R

Rd (|∇ϕ|2+V |ϕ|2) dx

(4π)−d/2
∫

Rd e−V dx

The optimization with respect to V gives V = − log(|ϕ|2)
The Lagrange multiplier κ = 1 is such that
∫

Rd e−V dx =
∫

Rd |ϕ|2 dx = 1

This is equivalent to the usual logarithmic Sobolev inequality: for any
ϕ ∈ H1(Rd) such that

∫

Rd |ϕ|2 dx = 1,

∫

Rd

|ϕ|2 log(|ϕ|2) dx + log

(

(4π)d/2

C(1)
F

)

≤
∫

Rd

|∇ϕ|2 dx

Optimal functions ϕ are gaussian and C(1)
F =

(

2
e

)d
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The inequality

e−λ1(V ) ≤ (π e2)−d/2

∫

Rd

e−V dx

is equivalent to the logarithmic Sobolev inequality:
for any ϕ ∈ H1(Rd ) such that

∫

Rd |ϕ|2 dx = 1,

∫

Rd

|ϕ|2 log(|ϕ|2) dx +
d

2
log
(

π e2
)

≤
∫

Rd

|∇ϕ|2 dx

[Gross], [Carlen,Loss], [Bobkov,Götze]
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Lieb-Thirring inequalities

Given a smooth bounded nonpositive potential V on R
d , if

λ1(V ) < λ2(V ) ≤ λ3(V ) ≤ . . . λN(V ) < 0

is the finite sequence of all negative eigenvalues of

H = −∆ + V

then we have the Lieb-Thirring inequality

N
∑

i=1

|λi (V )|γ ≤ CLT(γ)

∫

Rd

|V |γ+ d
2 dx (1.1)

For γ = 1,
∑N

i=1 |λi (V )| is the complete ionization energy
[...], [Laptev-Weidl] for γ ≥ 3/2 the sharp constant is semiclassical
Lieb-Thirring conjecture: d = 1, 1/2 < γ < 3/2, CLT(γ) = C1
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A new inequality of Lieb-Thirring type

Let V be a nonnegative unbounded smooth potential on R
d : the

eigenvalues of HV are

0 < λ1(V ) < λ2(V ) ≤ λ3(V ) ≤ . . . λN(V ) . . .

Theorem

For any γ > d/2, for any nonnegative V ∈ C∞(Rd ) such that
V d/2−γ ∈ L1(Rd ),

N
∑

i=1

λi (V )−γ ≤ C(γ)

∫

Rd

V
d
2 −γ dx

C(γ) = (2π)
−d/2 Γ(γ − d/2)

Γ(γ)

Proof is based in an inequality by Golden, Thompson and Symanzik
J. Dolbeault Thermal effects in Hartree systems
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By definition of the Γ function, for any γ > 0 and λ > 0,

λ−γ =
1

Γ(γ)

∫ +∞

0

e−tλ tγ−1dt

The operator −∆ + V is essentially self-adjoint on L2(Rd ), and
positive:

tr
(

(−∆ + V )−γ
)

=
1

Γ(γ)

∫ +∞

0

tr
(

e−t(−∆+V )
)

tγ−1dt

Since V
d
2 −γ ∈ L1(Rd ), we get

tr
(

(−∆ + V )−γ
)

≤ 1

Γ(γ)

∫ +∞

0

∫

Rd

(4πt)−
d
2 e−tV (x) tγ−1dx dt

≤ Γ(γ − d
2 )

(4π)
d
2 Γ(γ)

∫

Rd

V (x)
d
2
−γdx
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Generalization: Let f be a nonnegative function on R+ such that
∫ ∞

0

f (t)
(

1 + t−d/2
) dt

t
<∞

F (s) :=

∫ ∞

0

e−t s f (t)
dt

t
and G(s) :=

∫ ∞

0

e−t s (4π t)
−d/2

f (t)
dt

t

Theorem

Let V be in L1
loc(R

d) and bounded from below. If G(V ) ∈ L1(Rd ), then

∑

i∈N∗

F (λi (V )) = tr [F (−∆ + V )] ≤
∫

Rd

G(V (x)) dx

If F (s) = s−γ , then G(s) =
Γ(γ− d

2 )

(4π)
d
2 Γ(γ)

s
d
2 −γ

If F (s) = e−s , then f (s) = δ(s − 1) and G(s) = (4π)−d/2 e−s

∑

i∈N∗

e−λi (V ) ≤ 1

(4π)d/2

∫

Rd

e−V (x) dx

J. Dolbeault Thermal effects in Hartree systems
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Stability for the linear Schrödinger equation

E [ψ] :=
∫

Rd (|∇ψ|2 + V |ψ|2) dx , eigenvalues of H := −∆ + V

λi (V ) := inf
F ⊂ L2(Rd )
dim(F ) = i

sup
ψ∈F

E [ψ]

The eigenfunction ψ̄i form an orthonormal sequence:

(ψ̄i , ψ̄j)L2(Rd ) = δij ∀ i , j ∈ N
∗

Free energy of the mixed state (ν,ψ) = ((νi )i∈N∗ , (ψi )i∈N∗):

F [ν,ψ] :=
∑

i∈N∗

β(νi ) +
∑

i∈N∗

νi E [ψi ]

Assumption (H) holds if β is a strictly convex function, β(0) = 0,

|
∑

i∈N∗

β(ν̄i )| <∞ and |
∑

i∈N∗

ν̄i λi (V )| <∞

where ν̄i := (β′)−1(−λi (V )) for any i ∈ N
∗

J. Dolbeault Thermal effects in Hartree systems
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A discrete Csiszár-Kullback inequality

Lemma

Under Assumption (H), if ψ = (ψi )i∈N∗ is an orthonormal sequence,

Fn[ν,ψ] −Fn[ν̄, ψ̄]

=
∑n

i=1

(

β(νi ) − β(ν̄i ) − β′(ν̄i )(νi − ν̄i)
)

+
∑n

i=1 νi

(

E [ψi ] − E [ψ̄i ]
)

Corollary

Assume that infs>0 β
′′(s) s2−p =: α > 0, p ∈ [1, 2]. If

∑

i∈N∗ β(νi ) and
∑

i∈N∗ νi β
′(ν̄i ) are absolutely convergent, then (νi − ν̄i )i∈N∗ ∈ ℓp and

∑

i∈N∗

(

β(νi )−β(ν̄i )−β′(ν̄i )(νi−ν̄i)
)

≥ α ‖ν − ν̄‖2
ℓp

22/p
·min

{

‖ν‖p−2
ℓp , ‖ν̄‖p−2

ℓp

}

J. Dolbeault Thermal effects in Hartree systems
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Examples

To various functions β with −F (s) = (β ◦ (β′)−1)(−s) + s (β′)−1(−s)
correspond various generalized Lieb-Thirring inequalities

Example 1. Let m > 1 and consider β(ν) := (m − 1)m−1m−m νm. With

β′(ν) = (m − 1)m−1m1−m νm−1 = −λ and m = γ
γ−1 , we get:

−(β(ν) + λ ν) = F (λ) = (−λ)γ

The case γ ∈ (0, 1) is formally covered by

β(ν) := −(1 − m)m−1|m|−m νm

with m ∈ (−∞, 0), m = γ
γ−1 again and F (s) = (−s)γ , but in this case,

β is not convex and the free energy F cannot be defined as above.

Example 2. For m ∈ (0, 1) and β(ν) := −(1 − m)m−1m−m νm, with

β′(ν) = −(1 − m)m−1m1−m νm−1 = −λ and m = γ
γ+1 , we get:

F (λ) = λ−γ

J. Dolbeault Thermal effects in Hartree systems
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Example 3. If β(ν) := ν log ν − ν, then β′(ν) = log ν = −λ

∑

i∈N∗

e−λi (V ) ≤ 1

(4π)d/2

∫

Rd

e−V (x) dx

This case can formally be seen as the limit case m → 1 in Examples 1
and 2. Here F (s) = e−s , G(s) = (4π)−d/2 e−s

Example 4. If β(ν) := ν log ν + (1 − ν) log(1 − ν), then

β′(ν) = log
(

ν
1−ν

)

= −λ and F (s) = log(1 + e−s)

∑

i∈N∗

log
(

1 + e−λi (V )
)

≤
∫

Rd

G(V (x)) dx

J. Dolbeault Thermal effects in Hartree systems
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Interpolation: Gagliardo-Nirenberg inequalities for systems

Assume that H = −∆ + V has an infinite sequence (λi (V ))i∈N∗ of
eigenvalues. Let F and G be such that

∑

i∈N∗

F (λi (V )) = tr [F (−∆ + V )] ≤
∫

Rd

G(V (x)) dx

Let λ̄ := limi→∞ λi (V ) ≤ ∞ and assume that

Spectrum(−∆ + V ) ∩ (−∞, λ̄) = {λi (V ) : i ∈ N
∗}

Define σ(s) := −F ′(s) and β(s) := −
∫ s

0
σ−1(t) dt. Notice that

F (s) =

∫ λ̄

s

σ(t) dt =

∫ λ̄

s

(β′)−1(−t) dt = −min
ν>0

[β(ν) + ν s]

J. Dolbeault Thermal effects in Hartree systems
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∑

i∈N∗

νi

∫

Rd

(

|∇ψi |2 + V |ψi |2
)

dx +
∑

i∈N∗

β(νi ) +

∫

Rd

G(V (x)) dx ≥ 0

for any sequence of nonnegative occupation numbers (νi )i∈N∗ and any
sequence (ψi )i∈N∗ of orthonormal L2(Rd ) functions
Method: For fixed ν = (νi )i∈N∗ , ψ = (ψi )i∈N∗

K [ν,ψ] :=

∫

Rd

∑

i∈N∗

νi |∇ψi |2 dx and ρ :=
∑

i∈N∗

νi |ψi |2

H(s) := −
[

G ◦ (G ′)−1(−s) + s (G ′)−1(−s)
]

Assume that G ′ is invertible and optimize on V : The optimal
potential V has to satisfy

G ′(V ) + ρ = 0

∫

Rd

V ρ dx +

∫

Rd

G(V (x)) dx = −
∫

Rd

H(ρ(x)) dx

J. Dolbeault Thermal effects in Hartree systems



Gagliardo-Nirenberg inequalities for systems
Compactness properties

The repulsive Hartree-Fock model
Gravitational Hartree systems: existence of minimizers

Gravitational Hartree systems: critical temperature for mixed states

Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

Theorem

K [ν,ψ] +
∑

i∈N∗

β(νi ) ≥
∫

Rd

H(ρ) dx

with ρ =
∑

i∈N∗

νi |ψi |2

Here (νi )i∈N∗ is any nonnegative sequence of occupation numbers and
(ψi )i∈N∗ is any sequence of orthonormal L2(Rd ) functions

J. Dolbeault Thermal effects in Hartree systems
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Example 1. Let m > 1 (standard Lieb-Thirring inequality) and

consider β(ν) := cm ν
m, cm := (m − 1)m−1m−m, m = γ

γ−1 ,

F (s) = (−s)γ and G(s) = CLT(γ)(−s)γ+d/2

q :=
2γ + d

2γ + d − 2
and K−1 := q [CLT(γ) (γ + d/2)]

q−1

Corollary

For any m ∈ (1,+∞),

K [ν,ψ] + cm

∑

i∈N∗

νm
i ≥ K

∫

Rd

ρq dx

(

K [ν,ψ]

)θ
(

∑

i∈N∗

νm
i

)(1−θ)

≥ L
∫

Rd

ρq dx , θ =
d

2(γ − 1) + d

The case m = γ
γ−1 ∈ (−∞, 0), which corresponds to γ ∈ (0, 1),

q ∈ (1 + d/2, d/(d − 2)), β(ν) := cm ν
m, is not covered

J. Dolbeault Thermal effects in Hartree systems
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Example 2. m ∈ (0, 1), β(ν) := −cm ν
m, cm := (1 − m)m−1m−m,

m = γ
γ+1 , F (λ) = λ−γ and G(s) = C(γ) sd/2−γ

q :=
2γ − d

2(γ + 1) − d
∈ (0, 1) and K−1 := q [C(γ) (γ − d/2)]

q−1

Notice that γ > d/2 ⇒ m ∈ (d/(d + 2), 1)

Corollary

For any m ∈ ( d
d+2 , 1),

K [ν,ψ] + K
∫

Rd

ρq dx ≥ cm

∑

i∈N∗

νm
i

Scale invariant version:
(

K [ν,ψ]

)θ
(
∫

Rd

ρq dx

)(1−θ)

≥ L
∑

i∈N∗

νm
i

with θ = d
2(γ+1)

Remark: ν1 = 1, νi = 0 for any i ≥ 2 ⇒ standard Gagliardo-NirenbergJ. Dolbeault Thermal effects in Hartree systems
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Scalar Gagliardo-Nirenberg inequalities
A new inequality of Lieb-Thirring type

Example 3. If β(ν) := ν log ν − ν, then β′(ν) = log ν = −λ, F (s) = e−s

and G(s) = (4π)−d/2 e−s

Corollary

K [ν,ψ] +
∑

i∈N∗

νi log νi ≥
∫

Rd

ρ log ρ dx + d/2 log(4π)

∫

Rd

ρ dx

∫

Rd

ρ log ρ dx ≤
∑

i∈N∗

νi log νi +
d

2
log

(

e

2π d

K [ν,ψ]
∫

Rd ρ dx

)
∫

Rd

ρ dx
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Trace operators and compactness properties

J. Dolbeault, P. Felmer, and J. Mayorga-Zambrano.
Compactness properties for trace-class operators and applications to
quantum mechanics. Monatshefte für Mathematik, 155 (1): 43–66,
2008
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Lieb-Thirring and Gagliardo-Nirenberg inequalities

Ω ⊂ R
d bounded domain

Let g be a non-negative function on R+ such that
∫ ∞

0

g(t)
(

1 + t−d/2
) dt

t
<∞

and consider F and G such that

F (s) =

∫ ∞

0

e−t s g(t)
dt

t
, G(s) =

∫ ∞

0

e−t s (4π t)
−d/2

g(t)
dt

t

F ,G : R → R ∪ {+∞} are convex non-increasing

Theorem

Let V ∈ L1
loc(Ω) be a potential bounded from below. Assume moreover

that G(V ) is in L1(Ω). Then we have

∑

i∈N

F (λV ,i ) = Tr [F (−∆ + V )] ≤
∫

Ω

G(V (x)) dx

J. Dolbeault Thermal effects in Hartree systems
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Example

If V ∈ L1
loc(Ω) is a non-negative potential such that V

d
2 −γ is in L1(Ω),

then

Tr
[

(−∆ + V )−γ
]

=
∑

i∈N

(λV ,i )
−γ ≤ Γ(γ − d

2 )

(4π)d/2 Γ(γ)

∫

Ω

V
d
2 −γ dx

Example

If V ∈ L1
loc(Ω) is bounded from below and such that e−V ∈ L1(Ω) and

F (s) = e−s for any s ∈ R, then G(s) = (4π)−d/2 e−s and

Tr
[

e−∆+V
]

=
∑

i∈N

e−λV ,i ≤ 1

(4π)d/2

∫

Ω

e−V dx

J. Dolbeault Thermal effects in Hartree systems
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Theorem

Let V be a potential verifying appropriate integrability conditions. Let β
be an entropy generating function, F the free energy, and G a strictly
convex function with F and G related as above, then

Tr [F (−∆ + V )] ≤
∫

Ω

G(V (x)) dx

If τ is such that G(s) = τ∗(−s) for any s ∈ R, where τ and τ∗ are
related according to a modified Legendre-Fenchel transformation, then
for any L ∈ H1

+ (trace-class with finite kinetic energy), we have

K(L) + Hβ(L) ≥
∫

Ω

τ(ρL) dx

J. Dolbeault Thermal effects in Hartree systems
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Compactness results

Theorem

Consider d ≥ 2, and assume that m ∈ (d/(d + 2), 1). Let {Ln}n∈N be a
sequence in H1

+ such that

K∞ ≡ sup
n∈N

K(Ln) <∞

Then {‖Ln‖1}n∈N is bounded and supn∈N

∑

i∈N
|νn

i |m <∞. Moreover, up
to a subsequence, limn→∞ νn

i = ν̄i , for all i ∈ N and

1 If ν̄i 6= 0 for all i ∈ N, then limn→∞

∑

i∈N
|νn

i |m =
∑

i∈N
|ν̄i |m

2 For any m′ ∈ (m, 1], limn→∞

∑

i∈N
|νn

i |m
′

=
∑

i∈N
|ν̄i |m

′

3 Up to a subsequence, {Ln}n∈N converges in trace norm ‖ · ‖1 to
some operator L̄ ∈ H1

+, whose eigenvalues are {ν̄n
i }i∈N

J. Dolbeault Thermal effects in Hartree systems
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Properties of the free energy
Euler-Lagrange equations

Orbitally stable states in generalized Hartree-Fock theory:

the repulsive case

J. Dolbeault, P. Felmer, and M. Lewin.
Orbitally stable states in generalized Hartree-Fock theory.
Mathematical Models and Methods in Applied Sciences, 19 (3):
347–367, 2009.

P.A. Markowich, G. Rein, G. Wolansky.
Existence and Nonlinear Stability of Stationary States of the
Schrödinger-Poisson System. Journal of Statistical Physics, Vol. 106,
Nos. 5/6, March 2002
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Properties of the free energy
Euler-Lagrange equations

We consider free energy functionals1 of the form

γ 7→ EHF(γ) − T S(γ)

where EHF is the Hartree-Fock energy and the entropy takes the form

S(γ) := − tr
(

β(γ)
)

for some convex function β on [0, 1] . Has the free energy a
minimizer ? The Hartree-Fock energy EHF(γ) is

tr
(

(−∆) γ
)

−Z

∫

R3

ργ(x)

|x | dx +
1

2
D(ργ , ργ)−

1

2

∫∫

R3×R3

|γ(x , y)|2
|x − y | dx dy

with D(f , g) :=
∫∫

R3×R3

f (x) g(y)
|x−y| dx dy (direct term of the interaction).

The last term is the exchange term
Evolution is described by the von Neumann equation

i
dγ

dt
= [Hγ , γ]

Here Hγ is a self-adjoint operator depending on γ but not on β.
Orbital stability of the solution obtained by minimization ?

1P.-L. Lions ’88
J. Dolbeault Thermal effects in Hartree systems
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Properties of the free energy
Euler-Lagrange equations

Assumptions on the entropy term

(A1) β is a strictly convex C 1 function on (0, 1)

(A2) β(0) = 0 and β ≥ 0 on [0, 1]

Fermions !... we introduce a modified Legendre transform of β

g(λ) := argmin
0≤ν≤1

(λ ν + β(ν))

g(λ) = sup
{

inf
{

(β′)−1(−λ), 1
}

, 0
}

Notice that g is a nonincreasing function with 0 ≤ g ≤ 1 . Also define

β∗(λ) := λ g(λ) + (β ◦ g)(λ)

(A3) β is a nonnegative C 1 function on [0, 1) and β′(0) = 0

(no loss of generality)

(A4)
∑

j≥1

j2
∣

∣ β∗
(

−Z 2/(4 T j2)
) ∣

∣ <∞

The ground state free energy is finite (the eigenvalues of −∆ − Z/|x |
are −Z 2/(4 j2), with multiplicity j2)

J. Dolbeault Thermal effects in Hartree systems
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Properties of the free energy
Euler-Lagrange equations

From well-posedness...

A typical example is
β(ν) = νm

which satisfies (A1)–(A4) as long as 1 < m < 3 . In this special case

g(λ) =











min
{

(

−λ
m

)
1

m−1 , 1
}

if λ < 0

0 otherwise

and
β∗(λ) = −(m − 1)

(

−λ
m

)
m

m−1 if − m < λ < 0

Space of operators

H :=
{

γ : L2(R3) → L2(R3) | γ = γ∗, γ ∈ S1 ,
√
−∆ |γ|

√
−∆ ∈ S1

}

J. Dolbeault Thermal effects in Hartree systems
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Properties of the free energy
Euler-Lagrange equations

...

The Banach space H is equipped with the norm

||γ||
H

= tr |γ| + tr
(
√
−∆ |γ|

√
−∆

)

K := {γ ∈ H | 0 ≤ γ ≤ 1} is a convex closed subset of H

Since β is convex and β(0) = 0 , we have 0 ≤ β(ν) ≤ β(1) ν on [0, 1]
For any γ ≥ 0 , 0 ≤ β(γ) ≤ β(1) γ =⇒ β(γ) ∈ S1 when γ ∈ S1

tr
(

(−∆) γ
)

:= tr
(√

−∆γ
√
−∆

)

∈ R ∪ {+∞}

Density of charge: ργ(x) = γ(x , x) ∈ L1(R3)
By the spectral decomposition of γ

∀ γ ∈ K ,
∣

∣

∣

∣∇√
ργ
∣

∣

∣

∣

2

L2(R3)
≤ tr

(
√
−∆ γ

√
−∆

)

Hence we have
∣

∣

∣

∣

√
ργ
∣

∣

∣

∣

2

H1(R3)
≤ ||γ||

H

and, as a consequence, ργ ∈ L1(R3) ∩ L3(R3) ⊂ L6/5(R3) ,
∫

R3

ργ(x)
|x| dx <∞ and D(ργ , ργ) <∞

J. Dolbeault Thermal effects in Hartree systems
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Properties of the free energy
Euler-Lagrange equations

... to the minimization of the free energy

By the Hardy-Littlewood-Sobolev inequality and the Cauchy-Schwarz
inequality

|γ(x , y)|2 ≤ ργ(x) ργ(y) for a.e. (x , y) ∈ R
3 × R

3

so that
∫∫

R3×R3

|γ(x , y)|2
|x − y | dx dy ≤ D(ργ , ργ) <∞ .

The free energy EβZ is well-defined on K . We are interested in
minimizing it under a constraint corresponding to the closed convex
subset

Kq := {γ ∈ K | tr γ = q}
Define

IβZ (q) := inf
{

EβZ (γ) | γ ∈ K and tr(γ) = q
}

IβZ := inf
{

EβZ (γ) | γ ∈ K
}

= inf
q≥0

Iβ(q)

J. Dolbeault Thermal effects in Hartree systems
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Properties of the free energy
Euler-Lagrange equations

Minimization of the free energy

Theorem (Minimization for the generalized HF model)

Assume that β satisfies (A1)–(A4) for some T > 0 .

1 For every q ≥ 0 , the following statements are equivalent:

(i) all minimizing sequences (γn)n∈N for IβZ (q) are
precompact in K ,

(ii) IβZ (q) < IβZ (q′) for all q , q′ such that 0 ≤ q′ < q

2 Any minimizer γ of IβZ (q) satisfies the self-consistent equation

γ = g
(

(Hγ − µ)/T
)

, Hγ = −∆ − Z

|x | + ργ ∗ | · |−1 − γ(x , y)

|x − y |

for some µ ≤ 0

3 The minimization problem IβZ (q) has no minimizer if q ≥ 2 Z + 1

4 Problem IβZ always has a minimizer γ̄ . It satisfies the self-consistent
equation

γ̄ = g(Hγ̄/T )J. Dolbeault Thermal effects in Hartree systems
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Back to the linear case

We now recall the properties of the linear case corresponding to

Fβ
Z (γ) := tr

(

(−∆) γ
)

− Z

∫

R3

ργ(x)

|x | dx + T tr
(

β(γ)
)

A straightforward minimization gives

inf
γ∈K

Fβ
Z (γ) =

∑

j≥1

j2 β∗
(λj

T

)

> −∞

where λj = − Z 2

4 j2
are the negative eigenvalues of −∆ − Z/|x | with

multiplicity j2

The trace

qlin
max(T ) := tr

(

g
(

1
T

(

− ∆ − Z
|x|

)

))

=
∑

j≥1

j2 g
(λj

T

)

∈ (0,∞]

could in principle be infinite
J. Dolbeault Thermal effects in Hartree systems
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Then the minimization problem with constraint infγ∈Kq
Fβ

Z (γ) admits
a minimizer for all q ≥ 0 if qlin

max = ∞ , whereas it has a minimizer if
and only if q ∈ [0, qlin

max] if qlin
max <∞ . In all cases, this minimizer

solves the equation

γ = g
(

1
T

(−∆ − Z
|x| − µ)

)

for some µ ≤ 0 , a Lagrange multiplier which is chosen to ensure that
the condition tr γ = q is satisfied

µ 7→ q(µ) := tr(g
(

(−∆ − Z/|x | − µ)/T
)

) is non decreasing and
satisfies q(µ) = 0 for µ < 0, |µ| large enough and q(µ) → qlin

max when
µ→ 0

J. Dolbeault Thermal effects in Hartree systems
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If β(ν) = νm, we see that qlin
max <∞ if and only if m < 5/3 , as

summarized in Table 1. For T > Z 2/(4 m) ,

qlin
max(T ) =

(

Z 2

4 T m

)

1
m−1
∑

j≥1

j2−
2

m−1 =

(

Z 2

4 T m

)

1
m−1

ζ

(

2
m − 2

m − 1

)

where ζ denotes the Riemann zeta function

1 < m < 5/3 5/3 ≤ m < 3 m ≥ 3

qlin

max(T ) < ∞ qlin

max(T ) = ∞ Linear

energy

Existence iff Existence unbounded

0 ≤ q ≤ qlin

max(T ) ∀ q ≥ 0 from

below

Linear energy bounded from below

Table: Existence and non-existence of minimizers with a finite trace for
β(ν) = νm

J. Dolbeault Thermal effects in Hartree systems
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A criterion for existence

Proposition

Assume that β satisfies (A1)–(A4) for some T > 0. Then the

minimization problem IβZ (q) has no solution if q ≥ qlin
max

Proposition

Assume that β satisfies (A1)–(A4) for some T > 0. Then for all q such
that

0 ≤ q ≤ min
{

∑

j≥1

g
(

−(Z−q)2

4 T j2

)

, Z
}

Condition IβZ (q) < IβZ (q′) in the theorem on the minimization of the free
energy is satisfied

J. Dolbeault Thermal effects in Hartree systems
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Ionization threshold

Corollary (Existence of minimizers for the generalized HF model)

Let T ≥ 0 . Assume that β satisfies (A1)–(A3), and (A4) if T is
positive. Then there exists qmax > 0 such that the nonlinear
minimization problem has a minimizer for any q ∈ [0, qmax]

Ionization threshold: How does qmax depend on T is an essentially
open question

J. Dolbeault Thermal effects in Hartree systems
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Non-zero temperature solutions of the gravitational

Hartree system

Gonca L. Aki, Jean Dolbeault and Christof Sparber.
Thermal effects in gravitational Hartree systems. To appear in
Annales Henri Pincaré
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The variational problem

We introduce the following Banach space of operators

H =
{

ρ : L2(R3) → L2(R3) : ρ∗ = ρ ≥ 0, ρ ∈ S1,
√
−∆ ρ

√
−∆ ∈ S1

}

equipped with the norm

||ρ||
H

= tr ρ+ tr
(
√
−∆ ρ

√
−∆

)

We are interested in a minimization problem under a mass constraint

iM,T := inf
ρ∈HM

FT [ρ] , FT [ρ] = tr(−∆ρ) − 1

2
tr(Vρρ) + T trβ(ρ)

on the set of the physical state

HM := {ρ ∈ H : tr ρ = M}

J. Dolbeault Thermal effects in Hartree systems
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The free energy is well-defined and bounded from below

Potential energy term: By the Hardy-Littlewood-Sobolev inequality
and Sobolev’s embedding

Epot[ρ] =
1

2

∫∫

R3×R3

nρ(x)nρ(y)

|x − y | dx dy ≤ C ||nρ||3/2L1 tr(−∆ρ)1/2

This yields

EH [ρ] ≥ tr(−∆ρ) − CM3/2 tr(−∆ρ)1/2 ≥ −1

4
C 2M3

Entropy term: S[ρ] = − trβ(ρ)

(β1): β ∈ C 1 is convex
(β2): β(0) = 0 =⇒ 0 ≤ β(ρ) ≤ β(M)ρ for all ρ ∈ H

Then β(ρ) ∈ S1, provided ρ ∈ S1

Hence, FT is well-defined and bounded on HM

J. Dolbeault Thermal effects in Hartree systems
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Sub-additivity of iM ,T w.r.t. M

(i) As a function of M, iM,T is sub-additive. In addition, for any
M > 0, m ∈ (0,M) and T > 0, we have

iM,T ≤ iM−m,T + im,T

Consider two states as “almost minimizers” ρ ∈ HM−m and σ ∈ Hm

ρ =

J
X

j=1

λj |ϕj 〉〈ϕj |, σ =

J
X

j=1

λ̄j |ϕj〉〈ϕj |

with smooth eigenfunctions (ϕj)
J
j=1 having compact support in a ball

B(0, R). Next translate one of the states so that they have disjoint

supports, observe that ρ + σ ∈ HM

(ii) The function iM,T is a decreasing function of M and an
increasing function of T

J. Dolbeault Thermal effects in Hartree systems
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Maximal temperature T ∗

Let T ∗(M) := sup{T > 0 : iM,T < 0}.

(iii) For any M > 0, T ∗(M) > 0 is positive, maybe even infinite. As a
function of M it is increasing and satisfies

T ∗(M) ≥ max
0≤m≤M

m3

β(m)
|i1,0|

If T < T ∗, we have iM,T < 0

iM,0 = M3 i1,0 by the homogeneity of zero-temp. minimal energy

By sub-additivity iM,T ≤ n iM/n,T ≤ nβ
(

M
n

)

T − M3

n2 |i1,0|

(iv) As a consequence, T ∗(M) = +∞ for any M > 0, if

lim
s→0+

β(s)

s3
= 0

J. Dolbeault Thermal effects in Hartree systems
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Euler-Lagrange equations and Lagrange multiplier

Theorem (Euler-Lagrange equations)

Let M > 0, T ∈ (0,T ∗(M)] and assume that (β1)–(β2) hold.
Consider a density matrix operator ρ ∈ HM which minimizes FT .
Then ρ satisfies the self-consistent equation

ρ = (β′)−1
(

1
T

(µ− Hρ)
)

where µ ≤ 0 denotes the Lagrange multiplier associated to the mass
constraint. Explicitly, it is given by

µ =
1

M
(tr (Hρ + T β′(ρ)) ρ)

J. Dolbeault Thermal effects in Hartree systems
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An equivalent formulation: countably many nonlinear

eigenvalue problem

The decomposition yields the following stationary problem:











∆ψj + Vψj + µj ψj = 0, j ∈ N

− ∆V = 4π
∑

j∈N

λj |ψj |2

where (µj )k∈N ∈ R− denote the energy eigenvalues of the Hamiltonian

Hρ = −∆ − Vρ where Vρ = nρ ∗
1

| · |

Here the energy eigenvalues are given in terms of the occupation
probabilities

µj = µ− Tβ′(λj ) provided µj ≤ µ

J. Dolbeault Thermal effects in Hartree systems
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The Lagrange multiplier is negative

Assume that

(β3) p(M) := supm∈(0,M)
m β′(m)
β(m) ≤ 3.

Lemma (negativity of µ)

Let M > 0 and T < T ∗(M). Assume that ρ ∈ HM is a minimizer of
FT and let µ be the corresponding Lagrange multiplier. If p(M) ≤ 3,
then M µ ≤ p(M) iM,T < 0

The proof follows from the observations:

iM,T = tr
(

−∆ ρ− 1
2 Vρ ρ+ T β(ρ)

)

M µ = tr (−∆ ρ− Vρ ρ+ T β′(ρ) ρ)

and by the fact that tr(Vρρ) = 4 tr(−∆ρ)
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A priori estimates for minimizers

A decay property of the spatial density:

Let ρ ∈ HM be a minimizer for FT . There exists a constant C > 0
such that for all R > 0 sufficiently large:

∫

|x|>R

nρ(x) dx ≤ C

R2

Binding inequality or strict sub-additivity inequality:

Let M (1) > 0 and M (2) > 0. If there are minimizers for iM(1),T and
iM(2),T , then

iM(1)+M(2),T < iM(1),T + iM(2),T
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Existence of minimizers below T ∗

Theorem (Existence of minimizers)

Assume that (β1)–(β3) hold. Let M > 0 and consider T ∗ = T ∗(M) as
the maximal temperature. For all T < T ∗, there exists an operator

ρ in HM such that FT [ρ] = iM,T

Moreover, every minimizing sequence (ρn)n∈N for iM,T is relatively
compact in H up to translations

The proof relies on the concentration-compactness method once it is
known that iM,T < 0:

Vanishing: can be ruled out by the fact that nρ ∈ L7/5

Dichotomy: splitting behaviour: iM,T = iM(1)
,T + iM−M(1)

,T contradicts
the binding inequality iM(1)+M(2)

,T < iM(1)
,T + iM(2)

,T

Compactness
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Orbital stability

A direct consequence of this variational approach is orbital stability:
Consider the set of minimizers MM ⊂ HM and denote

distMM
(ρ(t), ρ) = inf

ρ∈MM

||ρ(t) − ρ||

Here ρ(t) solves the corresponding time-dependent system

i
d

dt
ρ(t) = [Hρ(t), ρ(t)] , ρ(0) = ρin

where Hρ := −∆ − nρ ∗ 1
|·|

Corollary (Orbital stability)

For given M > 0 let T < T ∗(M). Then for any ε > 0, there exists
δ > 0 such that, for all ρin ∈ HM and ρ ∈ MM with distMM

(ρin, ρ) ≤ δ
it holds:

sup
t∈R+

distMM
(ρ(t), ρ) ≤ ε
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Pure states, mixed states and critical temperature

Let ρ0 = M |ψ0〉〈ψ0| be the (appropriately scaled) minimizer for
T = 0. Then the corresponding Hamiltonian operator

H0 := −∆ − |ψ0|2 ∗
1

| · |

admits countably many (negative) eigenvalues 2

(µ0
j )j∈N with µ0

j ր 0

Claim:

A critical temperature Tc ∈ (0,T ∗) exists, and depends on the
entropy function β such that, for T < Tc minimizers ρ ∈ MM are only
pure states

2E. H. Lieb’77
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Positivity of the critical temperature for all M > 0

Tc(M) := max{T > 0 : iM,T = iM,0 + τβ(M) ∀τ ∈ (0,T ]}
Assume that (β1)–(β3) hold. Then Tc(M) is positive for any M > 0

To see this, take Tn → 0 and consider a sequence of minimizers ρ(n)

Since ρ(n) is also a minimizing sequence for FT=0, we know

µ
(n)
j

n→∞−→ µ0
j ≤ 0

We assume by contradiction that lim infn→∞ λ
(n)
1 = ǫ > 0

Then the Euler-Lagrange equation implies µ(n) > µ
(n)
1 , yields a

contradiction:

M = λ
(0)
0 ≥ lim

n→∞
λ

(n)
0 ≥ lim

n→∞
(β′)−1

(

(µ0
1 − µ

(n)
0 )/Tn

)

= +∞

Hence ∃ [0,Tc ] with Tc > 0 s.t. µ(n) < µ
(n)
1 for any Tn ∈ [0,Tc ]. Thus

ρ(n) is of rank one
J. Dolbeault Thermal effects in Hartree systems
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Characterization of the critical temperature Tc

Corollary

Assume that (β1)–(β3) hold. There is a pure state minimizer of mass
M if and only if T ∈ [0,Tc ]

For any M > 0 the critical temperature satisfies

Tc =
µ0

1 − µ0
0

β′(M)

where µ0
0 < µ0

1 are the two lowest eigenvalues of H0

Step 1: Prove Tc ≤ (µ0
1 − µ0

0)/β
′(M) by using µ(T ) = µ0

0 + Tβ′(M) for
pure states (T ≤ Tc)
Step 2: (T > Tc)Prove the equality (approaching to Tc from above)
by using

Mµ(n) =
∑

j∈N

λ
(n)
j

(

µ
(n)
j + T (n)β′(λ

(n)
j )
)

J. Dolbeault Thermal effects in Hartree systems



Gagliardo-Nirenberg inequalities for systems
Compactness properties

The repulsive Hartree-Fock model
Gravitational Hartree systems: existence of minimizers

Gravitational Hartree systems: critical temperature for mixed states

Pure states
Existence of a critical temperature
Remarks

Remarks on the maximal temperature

A case in which T ∗ = ∞:

T ∗(M) = +∞ for any M > 0, if

lim
s→0+

β(s)

s3
= 0

A case in which T ∗ is finite:

If p ∈ (1, 7/5) given in the entropy generating function β(s) = sp,
then the maximal temperature, T ∗(M) is finite

Limit case:

Assume T ∗ < +∞. Then, limT→T∗

−

iM,T = 0 and limT→T∗

−

µ(T ) = 0

Open: If p ∈ (7/5, 3) then T ∗ is finite ?
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Thank you for your attention !

J. Dolbeault Thermal effects in Hartree systems


	Gagliardo-Nirenberg inequalities for systems
	Scalar Gagliardo-Nirenberg inequalities
	A new inequality of Lieb-Thirring type

	Compactness properties
	The repulsive Hartree-Fock model
	Properties of the free energy
	Euler-Lagrange equations

	Gravitational Hartree systems: existence of minimizers
	A-priori estimates
	Existence result
	Orbital stability

	Gravitational Hartree systems: critical temperature for mixed states
	Pure states
	Existence of a critical temperature
	Remarks


