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Weighted nonlinear flows and CKN inequalities

Background references (partial)

@ Rigidity methods, uniqueness in nonlinear elliptic PDE’s: (B. Gidas,

J. Spruck, 1981), (M.-F. Bidaut-Véron, L. Véron, 1991)

@ Probabilistic methods (Markov processes), semi-group theory and

carré du champ methods (I, theory): (D. Bakry, M. Emery, 1984),
(Bentaleb), (Bakry, Ledoux, 1996), (Demange, 2008), (JD, Esteban,
Kolwalczyk, Loss, 2014 & 2015) — D. Bakry, I. Gentil, and M.
Ledouz. Analysis and geometry of Markov diffusion operators (2014)

Entropy methods in PDEs

> Entropy-entropy production inequalities: Arnold, Carrillo,
Desvillettes, JD, Jiingel, Lederman, Markowich, Toscani, Unterreiter,
Villani..., (del Pino, JD, 2001), (Blanchet, Bonforte, JD, Grillo,
Véazquez) — A. Jingel, Entropy Methods for Diffusive Partial
Differential Equations (2016)

> Mass transportation: (Otto) — C. Villani, Optimal transport. Old
and new (2009)

> Rényi entropy powers (information theory) (Savaré, Toscani, 2014),
(Dolbeault, Toscani)
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Symmetry and symmetry breaking
results

> The critical Caffarelli-Kohn-Nirenberg inequality
> A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities

> Linearization and spectrum
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Critical Caffarelli-Kohn-Nirenberg inequality

Let D, p = { veLP(RY, [x|Pdx) : |x|7?|Vv| € L? (RY, dx) }

VP O\ [vv[?
<Ad |X‘bp dx < Ca,b |X‘2 dx VYve Da,b

holds under conditions on a and b

2d
d—2+2(b—a)

p= (critical case)

> An optimal function among radial functions:

[xI2 v I3

2
_ (p—2) (2c—2)) 72 -
Vi (x) (1 + |x] ) and Cj, v 2

Question: Cyp = Cj ) (symmetry) or C;p > Cj , (symmetry breaking) ¢
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Critical CKN: range of the parameters

Figure: d =3 b b—at
v NP %
5 dx < Cap 52 dx
e |X| re |X| 1 )
g T
/ 0 o
b=a

a<b<a+lifd>3
a<b<a+lifd=2a+1/2<b<a+lifd=1
and a < ac := (d — 2)/2
B 2d (Glaser, Martin, Grosse, Thirring (1976))
P= d—2+2(b—a) (Caffarelli, Kohn, Nirenberg (1984))
[F. Catrina, Z.-Q. Wang (2001)]
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Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve b
d(a. — a)

brs(a) = +a—a
rs(2) 2/(ac—aR +d—1 ‘

/ 0

[Smets|, [Smets, Willem], [Catrina, Wang], [Felli, Schneider]

The functional
2 p 2/p
;_b/ \V\;| dx — / |VL dx
" Jra |x]22 Rra |x[PP

is linearly instable at v = v,
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aking and linearization Critical Caffarelli-Kohn-Nirenberg inequality
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Weighted nonlinear flows and CKN inequalities Linearization and spectrum

Symmetry versus symmetry breaking:
the sharp result in the critical case

[JD, Esteban, Loss (Inventiones 2016)]

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and
b > bgs(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

J. Dolbeault Symétrisation, entropie, flots non-linéaires


http://doi.org/10.1007/s00222-016-0656-6

aking and linearization Critical Caffarelli-Kohn-Nirenberg inequality
thods without we H

Subcritical Caffarelli-Kohn-Nirenberg inequalities
s and CKN inequalitie Linearization and spectrum

The Emden-Fowler transformation and the cylinder

Weighted nonlinear

> With an Emden-Fowler transformation, critical the
Caffarelli-Kohn-Nirenberg inequality on the Fuclidean space are
equivalent to Gagliardo-Nirenberg inequalities on a cylinder
X
v(r,w)=r""*y¢(s,w) with r=|x|, s=—logr and w=-—
With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as the subcritical interpolation inequality

100112y + Vel ey + MellEaey = 1A 2llEsey Vo € HY(C)

where A := (a — a)?, C = R x S?~! and the optimal constant u(A) is

d
uN) = c— with a=a.+ VA and b:Ei\/K
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Linearization around symmetric critical points

Up to a normalization and a scaling

1

©«(s,w) = (coshs)™ 72
is a critical point of
HY(C) 5 ¢ = [0s0l22c) + I Vuplliaie) + Mellize
under a constraint on ||<p\|ip(c)

4 is not optimal for (CKN) if the Péschl-Teller operator
1

—R A+ NP =R A+ A — .
(cosh s)

has a negative eigenvalue
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Subcritical Caffarelli-Kohn-Nirenberg inequalities

_ 1
Norms: [|wl|Len (ge) = (fpo [W|7|X[77 dx) /e, [wllparay = [Iw(lLaoe)
(some) Caffarelli-Kohn-Nirenberg interpolation inequalities (1984)

1Wllzne ety < Coimop VWl Py WIS e (CKN)

Here Cg,,, denotes the optimal constant, the parameters satisfy

d>2, 7=2<fB< 92y, ye(—o0,d), pe(lp] withp, =357
and the exponent ¢ is determined by the scaling invariance, i.e.,

9 = (d=) (p—1)
p (d+ﬁ+2—2’Y—P(d—5—2))

@ Is the equality case achieved by the Barenblatt / Aubin-Talenti
type function

wi(x) = (1+ \x|2+ﬂ_7)_1/(p_1) VxeRY 7

@ Do we know (symmetry) that the equality case is achieved among
radial functions ?
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Symmetry breaking and linearization Critical Caffarelli-Kohn-Nirenberg inequality

Suberi

itical Caffarelli-Kohn-Nirenberg inequalities

Linearization and spectrum

Range of the parameters

Here p is given 4
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e Symmetry and symmetry breaking

(M. Bonforte, J.D., M. Muratori and B. Nazaret, 2016) Let us define
Brs(7) i=d —2—/(d —7)> —4(d - 1)

Symmetry breaking holds in (CKN) if

d—2
~v<0 and ﬂps('y)<,6’<T’y

Tn the range Brs(7) < 8 < 9527, w,(x) = (1 + [x[27-7) /D

not optimal

(JD, Esteban, Loss, Muratori, 2016)

Symmetry holds in (CKN) if

¥>0, o y<0 and v—2<p<frs(v)
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The green area is the region of symmetry, while the red area is the
region of symmetry breaking. The threshold is determined by the
hyperbola

(d—7)?—(B—d+2)°—4(d-1)=0
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A useful change of variables

With
d—~

B+2—7’
(CKN) can be rewritten for a function v(|x|*~ x) = w(x) as

and n=2

B—"
=1
« + — 5

1—9

HV”LQPvd*"(Rd) < Ka,n,p|

)

with the notations s = |x|, Dav = (a a;, AN ) Parameters are in
the range
n
d>2, a>0, n>d and pe(l,p, px:= 5
n—

By our change of variables, w, is changed into
ve(x) == (14 |x?) 7" V¥YxeR?
The symmetry breaking condition (Felli-Schneider) now reads

. d—1
a< aps with apg =4/ ——
n—1
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The second variation

j[v] =9 |Og (||DaV||L2,d—n(Rd)) + (]. — 19) |Og (HV||Lp+1,d—n(Rd))
+ log Ka’,,’P — log (||V||L2p,d—n(Rd))

Let us define dyus := ps(x) dx, where us(x) := (1 + |x|?)~°. Since v, is
a critical point of 7, a Taylor expansion at order 2 shows that

IDa Vil 2.s-n(gay T [vs + € s j2 f] = 3 €29 Q[f] + o(e?)

. 2
with 6 = p—_”l and

' _ 4pa? .
Qlf] :/ \Daf\z\x|" ddu(;f P / |f|2 x| ddu(;_,_l
R4 p—1 Jpd

We assume that [5, f [x|"" dpusi1 = 0 (mass conservation)
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a Symmetry breaking: the proof

Proposition (Hardy-Poincaré inequality)

Letd >2, a € (0,+00), n>d and § > n. If f has O average, then
[ 1PafR X" dus = A [ 1" das s
RY R

with optimal constant A = min{2a? (26 — n),2a?&n} where 1 is the
unique positive solution ton (n+n—2) = (d —1)/a?. The corresponding
(d—1)6°

eigenfunction is not radially symmetric if o2 >

Q > 0 iff 42 012 < A and symmetry breaking occurs in (CKN) if

P
4 2

2020 < P n<l1
p—1
= 04_2 =n(n+n-2)<n—-1 < «a>aps
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Inequalities without weights and fast
diffusion equations

> The Bakry-Emery method for a Fokker-Planck equation on a
domain of the Euclidean space, on the sphere and its extension by
non-linear diffusion flows

> [Rényi entropy powers]
> Self-similar variables and relative entropies

> The role of the spectral gap
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The Bakry-Emery method, the sphere
Entropy methods without weights Self-similar variables and relative entropies
The role of the spectral gap

The Fokker-Planck equation: (-entropies and
Bakry-Emery method

The linear Fokker-Planck (FP) equation
% =Au+V - (uVe)

on a domain Q C RY, with no-flux boundary conditions
(Vu+uVe) - v=0 on 09

is equivalent to the Ornstein-Uhlenbeck (OU) equation

0

v
E—AV—V(ZS'VV—.,CV

(Bakry, Emery, 1985), (Arnold, Markowich, Toscani, Unterreiter,
2001)
The unique stationary solution of (FP) (with mass normalized to 1) is

e ®
Joe?dx
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Entropy methods without weights Self-similar variables and relative entropies
The role of the spectral gap

The Bakry-Emery method

With v such that [, vdy =1, g € (1,2], the g-entropy is defined by

ell= =5 [ -1-a(v-1)ar

Under the action of (OU), with w = v4/2, Zo[v] := 2 [ [Vw|* d,

d
9 (T - 22 &) <0
Jo (2 % |[Hess w||? + Hess ¢ : Vw ® VW) dvy

in
weH(Q,dy)\ {0} Jo Iw|?dy

d
JCalv(t, )] = —Zolv(t, )] and

with A\ :=

Proposition

(Bakry, Emery, 1984) (JD, Nazaret, Savaré, 2008) Let Q be convex.
If X >0 and v is a solution of (OU), then T,[v(t,-)] < Z4[v(0,-)] e~2**
and Egv(t,-)] < E[v(0,-)] =2t for any t > 0 and, as a consequence,

vl > 20 &[v] Vv e HY(Q,dy)
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The role of the spectral gap

The interpolation inequalities

On the d-dimensional sphere, let us consider the interpolation
inequality

d d
IVullfagey + b2 lullfasey = b2 |ullZpey VueHY(S, dp)

where the measure dy is the uniform probability measure on
S? ¢ RY*! corresponding to the measure induced by the Lebesgue
measure on R and the exposant p > 1, p # 2, is such that

2d
<2 = ——
P= d—2
if d > 3. We adopt the convention that 2* = cc if d =1 or d = 2.
The case p = 2 corresponds to the logarithmic Sobolev inequality

ul?

d u
IVulfn = 5 [l log (o | dn Vue IS, di)\ (o)
2 Jsd HUHLZ(Sd)
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The role of the spectral gap

The Bakry-Emery method

Entropy functional
2
Eplo) = 55 {fsd p> dip— (g p du)"] if p#2

52[/)] = fgd p log (Hp\lfl@d)) du
Fisher information functional
1
Lolp) = Jsa VPP ? dp
Bakry-Emery (carré du champ) method: use the heat flow
dp
LA
ot
and compute £&,[p] = —I,[p] and LT,[p] < — d Z,[p] to get
d
dt (Zolpl —d&lp]) <0 = Iplp] = d &l

. . 2
with p = |u|P, if p < 27 := %
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The evolution under the fast diffusion flow

To overcome the limitation p < 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

dp m
5 = B (1)

(Demange), (JD, Esteban, Kowalczyk, Loss): for any p € [1,2*]

Kolel = 5 (Tole] -~ d&50al) <0

L L
25 30

(p, m) admissible region, d =5
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The rigidity point of view (elliptic PDEs)

In cylindrical coordinates with z € [—1,1], let

L f::(1—z2)f”—dzf’:uf”—i—gy’f’

be the ultraspherical operator and consider

—Lu—(B-1) |u,|21/—|— A u= A u”
u p—2  p—2

Multiply by £ u and integrate

1 | /|2
/ Euu“dud:—ﬁ/ dvy
-1 1 u

v
Multiply by % and integrate

w U ’|2
..:—|—I{/ u” dvy
-1

, pt2|uP|
6—p u

4
Vdug=0 ifp=2"and f= ——
6—p

1
/|
-1
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Consequences, improvements, related problems

> Improved inequalities in the subcritical range

> Improved constants under orthogonality constraints for p < 2%
> Improved constants under antipodal symmetry for p < 2*

> The extension to Riemannian manifolds

> Onofri inequality (JD, Esteban, Jankowiak, 2015)

> Lin-Ni problems (JD, Kowalczyk)

> Keller-Lieb-Thirring inequalities on manifolds: estimates for
Schrodinger operator that (really) differ from the semi-classical
estimates (JD, Esteban, Laptev, Loss)

J. Dolbeault Symétrisation, entropie, flots non-linéaires
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Rényi entropy powers and fast diffusion

> Rényi entropy powers, the entropy approach without rescaling:
(Savaré, Toscani): scalings, nonlinearity and a concavity property
inspired by information theory

> Faster rates of convergence: (Carrillo, Toscani), (JD, Toscani)
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The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in RY. d>1

v

— =AvT"

ot
with initial datum v(x, t = 0) = vp(x) > 0 such that [, vo dx =1 and
Jge X[ vo dx < +00. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

U (t,x) = 1 B( x )

(s tt/m)? N tt/n
where ) Y
pom Lk
= 2 d — l = |—
a Fd(m=1), =« m—1

and B, is the Barenblatt profile
(Co— xRV itm>1
B.(x) = n1/(m=1) .
(G + |x?) ifm<1
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The role of the spectral gap

The Rényi entropy power F

The entropy is defined by

E::/ v dx
Rd

and the Fisher information by

I ::/ v|Vpl? dx with p= ym—1
RY m-—1
If v solves the fast diffusion equation, then
E=(1-ml

To compute I, we will use the fact that

Ip 2

—=(m-1)pA

5 = (m—1)pAp+|Vpl

. " 2 1
F:=E° with o= =1 S tm—1)=
e d(l—m) +1—m<d+m )

has a linear growth asymptotically as t — +oo
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The concavity property

[Toscani-Savaré| Assume that m>1— 2 ifd >1and m>0ifd =1.
Then F(t) is increasing, (1 — m)F"(t) <0 and

) 1 o 2 o—1] __ o—1
lim ;F(t)—(l—m)at_llTooE I=(1-m)oE{ "I,

t—+o0o

[Dolbeault-Toscani] The inequality
EO- I > ETI,
is equivalent to the Gagliardo-Nirenberg inequality
IV W12y WIS ey = Coon W g

if1-2<m<1 Hint: v?1/2=__¥* g=_1

= Twieewe,’ 97 2m—1
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The proof

If v solves % = Av™ with % < m< 1, then

(=2 [ VP ox= —2/ v (IID2pI? + (m — 1) (4p)?) o
R R4

Explicit arithmetic geometric inequality

1 1 2
%2 - 3 (80 = | D% - § o1

There are no boundary terms in the integrations by parts
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Remainder terms

F’ = —o (1 — m)R[v]. The pressure variable is P = {7 v™~1
f]Rd v |VPJ? dx 2
Jra v dx

+ 2E"*1/ v™ | D?P — L APTd || dx
Rd

Glv] := U(E[Z]m) = (/Rd v dx>01 /]Rd v|VPJ? dx

The Gagliardo-Nirenberg inequality is equivalent to G[vg] > G[v,]

Rlv] =(c —=1)(1 — m) ngl/ v™ AP —

Rd

Let

Proposition

Glvo] > Glw] + /Ooo R[v(t, )] dt
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Self-similar variables and relative entropies

The large time behavior of the solution of % = Av™ is governed by
the source-type Barenblatt solutions

1 X
valtx) 1= K (p t)d/m B*(;@(M t)l/u) where i :=2+d(m—1)

where B, is the Barenblatt profile (with appropriate mass)

m—1)

B.(x) == (1+ |x])"¢

A time-dependent rescaling: self-similar variables

1 X dR 1— R(t)
V(t, X) = W U(T, /{7,"—\’) where E =R M, T(t) = % |0g (RO
Then the function u solves a Fokker-Planck type equation

%—I—V- [U(Vum_l—Zx)} =0
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Free energy and Fisher information

Weighted nonlinear flows and CKN inequalities

@ The function u solves a Fokker-Planck type equation
8“ m—1
S+ V- [u (Ve - 2x) | =0

@ (Ralston, Newman, 1984) Lyapunov functional:
Generalized entropy or Free energy

E[ul ;:/ (—u+x|2u> dx — &
Rd m

@_ Entropy production is measured by the Generalized Fisher
information
d m—1 2
—Eu]l = -I[u], I[u]:= ulVu™ 4 2|7 dx
dt RY
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Without weights: relative entropy, entropy production

Q. Stationary solution: choose C such that ||us |1 = [Juljpr =M >0

1/(1—m)

oo (x) := (€ + [x[2)

Relative entropy: Fix & so that E[us] =0
@ Entropy — entropy production inequality (del Pino, J.D.)

Theorem

d23,m€[%,+oo),m>%,m;é1

Tlu] > 4&[u]

Corollary

| \

(del Pino, J.D.) A solution u with initial data ug € L} (R?) such that
Ix|2 up € LYRY), uf’ € L1(RY) satisfies

Elu(t, )] < E[ug) e **
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Entropy methods without weights Self-similar variables and relative entropies
The role of the spectral gap

A computation on a large ball, with boundary terms

ou

E+V'[U(Vum*1—2x)}:0 >0, x€Bg

where Bg is a centered ball in RY with radius R > 0, and assume that
u satisfies zero-flux boundary conditions

(Vumfl - 2X) S

|x|

With z(7, x) := VQ(7, x) := Vu™ ! — 2x, the relative Fisher
information is such that

d
— u|z\2dx+4/ ulz|? dx
dT Br Br

=0 7>0, xecdBg.

vaize [ um (D) - (- m) (A0)7) ox
Br
= / u™ (w- V|z|?) do < 0 (by Grisvard’s lemma)
9B
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The Bakry-Emery method, the sphere
Entropy methods without weights Self-similar variables and relative entropies
The role of the spectral gap

Another improvement of the GN inequalities

Let us define the relative entropy

Elu] == 1 (u™ — B — mBy ' (u— B,)) dx

Rd

the relative Fisher information

Z[u] ::/ u\z|2 dx :/ u ’Vum_l — 2x|2 dx
Rd Rd

and R[u] = 27 / (ID?Q)]* - (1 — m) (2Q)?) dx

Proposition

If1—1/d <m<1andd?>2, then

Tluo] — 4 EJuo] > /000 Rlu(r,-)] dr
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Entropy methods without weights Self-similar variables and relative entropies
The role of the spectral gap

Entropy — entropy production, Gagliardo-Nirenberg ineq.

4&u] < Iu]

— 2 m _ +1
Rewrite it Wlthp—m, u=w<P, um=wPT as

1/ 2m \° ) 1 -
= [Vw|dx + | —— —d |w|*™Pdx — K >0
2\2m -1 Rd 1-m Rd

o for some v, K = Ko ([po udx = [, w? dx)AY
1/2p

@ W =W, = V5 is optimal

Theorem

[Del Pino, J.D.] With 1 < p < 4% (fast diffusion case) and d > 3

GN
||W||L2P(Rd < C ||VW||L2 R9) ||W||1_p+1 (RY)

CON _ (y(p—nz)% (n—d)ﬂ (2 )% g— __dp-1) _ el
p.d 2rd 2y ro-9)) pdr2—(d-2)p)’ Y = p-
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The Bakry-Emery method, the sphere
Entropy methods without weights Self-similar variables and relative entropies
The role of the spectral gap

Sharp asymptotic rates of convergence

Assumptions on the initial datum vy
(H1) Vp, < v < Vp, for some Dy > Dy >0

(H2) if d > 3 and m < m,, (vy — V) is integrable for a suitable
D € [D1, Dy

Theorem

(Blanchet, Bonforte, J.D., Grillo, Vazquez) Under Assumptions
(H1)-(H2), if m < 1 and m # m, := 9=%, the entropy decays according
to

Elv(t,))] < Ce2=mAadt >0

where Ny ,g > 0 is the best constant in the Hardy—Poincaré inequality

/\a,d/ 1F1? dpta—1 S/ |VFf2du, Y feH(dus)
R4 Rd

with a := 1/(m — 1) < 0, dpg 1= hy dx, ho(x) := (1 + |x|?)®
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Symmetry breaking and linearization
Entropy methods without weights
Weighted nonlinear flows and CKN inequalities

The Bakry-Emery method, the sphere

Self-similar variables and relative entropies

The role of the spectral gap

Spectral gaps and best constants

J. Dolbeault

Symétrisation, entropie, flots non-linéaires

y(m)
my = 41
drd
d+6
e Case 1
— Cage 2
e Case 3
1




The Bakry-Emery method, the sphere
Entropy methods without weights Self-similar variables and relative entropies
The role of the spectral gap

Comments

@ The spectral gap corresponding to the red curves relies on a
refined notion of relative entropy with respect to best matching
Barenblatt profiles (J.D., Toscani)

o A result by (Denzler, Koch, McCann) Higher order time
asymptotics of fast diffusion in Euclidean space: a dynamical
systems approach

@ The constant C in
E[v(t, )] < Ce 2Mt >0

can be made explicit, under additional restrictions on the initial
data (Bonforte, J.D., Grillo, Vézquez)
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Symmetry breaking and linearization The strategy of the proof
Entropy methods without weights Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

Weighted nonlinear flows:
Caffarelli-Kohn-Nirenberg

inequalities
> A parabolic proof ?
> Entropy and Caffarelli-Kohn-Nirenberg inequalities
> Large time asymptotics and spectral gaps

> Optimality cases
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Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

CKN and entropy — entropy production inequalities

When symmetry holds, (CKN) can be written as an entropy — entropy
production inequality

Lm @24 8-y €&Vl <I[v]

_1
and equality is achieved by Bz ,(x) := (1 + [x[>HF~7) "
Here the free energy and the relative Fisher information are defined by

R 1 m m m—1 dx
g[V] = m oo (V — %IB’,Y — m%ﬁﬁ (V — %ﬁ,7)> W
2 dx
— m—1 m—1
I[V] = /Rdv’Vv _V%Bv’)’ ’ W

If v solves the Fokker-Planck type equation

Ve + X[ V- [|x\_ﬂ vV (vt - |x|2+ﬂ—W)} —0  (WFDE-FP)

then %E[v(t, N == Tt )
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Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

Proposition

Let m= ’;—J;l and consider a solution to (WFDE-FP) with nonnegative

initial datum ug € L7(RY) such that ||uf'|[11.~re) and
Jge to [x|*TP727 dx are finite. Then

E[v(t, )] < Elug] e Gt v >0
if one of the following two conditions is satisfied:

(i) either ug is a.e. radially symmetric
(ii) or symmetry holds in (CKN)
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Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

Proof of symmetry (1/3: changing the dimension)

We rephrase our problem in a space of higher, artificial dimension

n > d (here n is a dimension at least from the point of view of the
scaling properties), or to be precise we consider a weight |x|"~¢ which
is the same in all norms. With

_ d—
) =) a=1e Pt =2 S

we claim that Inequality (CKN) can be rewritten for a function
v(|x|*1 x) = w(x) as

HV||LQP="*"(IR") < Kanp ||Dch||E2-dfn(ugd) ||V|‘i;f?,d—n(ugd) Vve Hzfn,dfn(Rd)
with the notations s = |x|, Dav = (a %, 1V,v) and

d>2, a>0, n>d and pe(l,p].
By our change of variables, w, is changed into

vi(x) == (1+ |X|2)71/(p71) Vx € RY
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The strategy of the proof (2/3: Rényi entropy)

The derivative of the generalized Rényi entropy power functional is

o—1
Glu] = (/ u™ du) / u|DPJ? du
RY RY

where o = 2 21— — 1. Here dp = |x|"~? dx and the pressure is

m
Pi= — ym!
1—mu

Looking for an optimal function in (CKN) is equivalent to minimize G
under a mass constraint
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Entropy methods without weights Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

With L, = ~ D3, D, = o (o' + 252 )

+ s% A, u, we consider the fast
diffusion equation

=L,u

ot

in the subcritical range 1 —1/n < m < 1. The key computation is the
proof that

2 G[u(t, )] (fpo u™ dpr)"
2 2
LaP _ f]Rd u|DaP|*dp

2 (1 - m) (U - 1) f]Rd u™ Jod umdp
/ 2 2
#2 fou (@t (1= D[P = = e+ 28 (VP = %) um o

+2 [pa ((" —2) (agg — @®) [VuPP + ¢(n, m, d) %) um dp = H[u]

du

for some numerical constant c(n, m,d) > 0. Hence if a < afg, the
r.h.s. H[u] vanishes if and only if P is an affine function of |x|?, which

proves the symmetry result. A quantifier elimination problem (Tarski,
1951) ¢
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Large time asymptotics and spectral gaps
Weighted nonlinear flows and CKN inequalities Linearization and optimality

(3/3: elliptic regularity, boundary terms) [...]

This method has a hidden difficulty: integrations by parts ! Hints:

Q@ use elliptic regularity: Moser iteration scheme, Sobolev regularity,
local Holder regularity, Harnack inequality, and get global regularity
using scalings

Q@ use the Emden-Fowler transformation, work on a cylinder,
truncate, evaluate boundary terms of high order derivatives using
Poincaré inequalities on the sphere

Summary: if u solves the Euler-Lagrange equation, we test by L,u™
0= / dGlu] - Lou™ dp > Hlu] > 0
Rd

H[u] is the integral of a sum of squares (with nonnegative constants in
front of each term)... or test by |x|7 div (|x|=# Vw!*P) the equation

(p—1)°

1-3p 3: —B..2p 1—p 1—p|2 — 1—p
w div (|x w C w -+ C w —+|x aw —C) = 0
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Towards a parabolic proof

For any a > 1,let D, W = (a oW, r-1v, W) so that

Do :V—F(a—l)@(x-V):V+(a—1)w3,
and define the diffusion operator L, by

1 A,
LQZD;;DQ:OF<33+" a,>+2
r r

where A, denotes the Laplace-Beltrami operator on S9~1
% = L,g"™ is changed into

%:DZ(UZ)’ z:=Daq, qZ:Um_l_B&n_la Ba(x) == <1+2

by the change of variables

dR _ pl- _
(t,x) 1 ( X) h % =R, R(0)=Ro
g(t,x) = ult,— where
KM RN KR 7(t) =1 log (%?)
J. Dolbeault
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[..]

If the weight does not introduce any singularity at x = 0...

m d 5
- = du,
1—mdr BRU|Z| a

= / u™ (w- Do lz?) Ix|""?do (<0 by Grisvard’s lemma)
9Bk

—2Lm(m_1+1) / u™ [Laq|? dpin
Br

2 2
4 / A, 202 Vo
_/B Um<a my qll—%—w_i),z +%‘qul_fq )dﬂn
R
Vq2
_(n—2)(a§3—a2)/ Vodl g,
B I

A formal computation that still needs to be justified

(singularity at x =0 ?)

@ Other potential application: the computation of Bakry, Gentil and
Ledoux (chapter 6) for non-integer dimensions; weights on manifolds
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Fast diffusion equations with
weights: large time asymptotics

@ Relative uniform convergence
e Asymptotic rates of convergence

e From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

Ve + X[ V- [|x\—ﬂ vV (vt - |x|2+ﬁ—7)} =0  (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret
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Relative uniform convergence

¢= 1— (1— g (1= 50)

= m) (2+8—7) . -
b=a m) S Gra) s is in the range 0 < 0 < 3= <1

Theorem

For “good” initial data, there exist positive constants KC and ty such that,
for all g € [3=2,cc], the function w = v /B satisfies

HW(t) - 1||L‘7«"r(]Rd) < Ke 2 = AC(t ) vyt >t

in the case v € (0,d), and

”W(t) - 1||Lq,w(Rd) < K:e_2 2 m A(t ) Vit>ty

in the case v < 0
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Essential spectrum

Essential spectrum

The spectrum of £ as a function of § = ﬁ, with n =5. The
essential spectrum corresponds to the grey area, and its bottom is
determined by the parabola ¢ — Aess(6). The two eigenvalues Ag 1 and
A1,0 are given by the plain, half-lines, away from the essential
spectrum. The spectral gap determines the asymptotic rate of
convergence to the Barenblatt functions
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Main steps of the proof:

@ Existence of weak solutions, L7 contraction, Comparison
Principle, conservation of relative mass

Q@ Self-similar variables and the Ornstein-Uhlenbeck equation in
relative variables: the ratio w(t,x) := v(t, x)/B(x) solves

X we = — LV (|x\*/3 BwV (w1l - 1)Bm1) ) in R+ x RY
w(0,-) = wp 1= vo/B in R?

Q@ Regularity: (Chiarenza, Serapioni), Harnack inequalities; relative
uniform convergence (without rates) and asymptotic rates
(linearization)

Q@ The relative free energy and the relative Fisher information:
linearized free energy and linearized Fisher information

@ A Duhamel formula and a bootstrap
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Asymptotic rates of convergence

n—4

Assume that m € (0,1), with m # m, := ——>. Under the relative mass
condition, for any ‘good solution” v there exists a positive constant C
such that

Elv(t)] <Ce 20-mAt y¢ >0,

@ With Csiszar-Kullback-Pinsker inequalities, these estimates provide
a rate of convergence in L17(RY)

Q@ Improved estimates can be obtained using “best matching
techniques”
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From asymptotic to global estimates

When symmetry holds (CKN) can be written as an entropy — entropy
production inequality

m

2+8 -7 eV < I[v]

1—-m
so that

(2+8-7)°

Elv(t)] < E[v(0)] e 2A-mAt vt >0 with A, = 20—

Let us consider again the entropy — entropy production inequality
K(M)EV] < Z[v] Vv eLM(RY) such that ||v|iimge =M,
where K(M) is the best constant: with A(M) := 2 (1 — m)=2 K(M)

E[v(t)] < E[v(0)] e~ 2A=mAM) ¢

<

t>0
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a Symmetry breaking and global entropy — entropy
production inequalities

e In the symmetry breaking range of (CKN), for any M > 0, we have
0<K(M) < 2(1—m)?Nos

o If symmetry holds in (CKN) then
K(M) > 122 (24 8 —7)?

Corollary

| A

Assume that m € [my,1)
(i) For any M > 0, if A(M) = A, then 8 = Brs(7)
(i) If B > Brs(y) then N1 < A and A(M) € (0, Ao 1] for any M > 0

(iii) For any M > 0, if B < Brs(7y) and if symmetry holds in (CKN), then
A(M) > A,

v
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Linearization and optimality

Linearization and optimality

Joint work with M.J. Esteban and M. Loss

J. Dolbeault
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Linearization and scalar products

With u. such that

u. = B, (1 +e fBi_m) and u. dx = M,
Rd
at first order in ¢ — 0 we obtain that f solves
f
% =Lf where Lf:=(1-m)BI ?|x|"D} (|x|"?B.Daf)

Using the scalar products

(fi, ) :/ fihBI™|x|""dx and (A, f) :/ Do fi - Do fo By x| 77 dx
Rd Rd

we compute

1
1d (Ffy=(FLFf)= [ F(LFB|x|7 dx = — / Do f1? B x| 77 dx -
2 dt R4 RY

for any f smooth enough:

GUEA) = [ Daf DL RB X de =~ (£.1)

[

2
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Linearization of the flow, eigenvalues and spectral gap

Now let us consider an eigenfunction associated with the smallest
positive eigenvalue \; of L

—LA=Mh
so that fi realizes the equality case in the Hardy-Poincaré inequality
(g.8) =~ (g.Lg) = Mllg—2l*, &:=(g1)/(1,1)

—(g.Lg) > (g 8)

Proof: expansion of the square :
~((e-2).L(e-8N=(L(e—58)L(g-&)=L(g-8)
@ Key observation:

d—1
n—1
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Symmetry breaking in CKN inequalities

@ Symmetry holds in (CKN) if J[w] > J[w,] with
T(w] = 9 10g (D Wil sz +(1—9) Tog (Wl sey) —1og (1]l pans sy
with 0 ;== d — n and
Jws +eg] = Qlg] + o(£?)
where
2 1D W 25y ]
= [|Da glf2snze) + EEEF [d =y —p(d —2 - / gl 'ﬁimz

_ (2+ﬁ w 2 _Ix"?
(2P ]- / |g| (1+|x|? )2

is a nonnegative quadratic form if and only if a < apg

@ Symmetry breaking holds if a > apg
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Information — production of information inequality

Let K[u] be such that
d
d—I[u(T7 )] = — Klu(r, )] = — (sum of squares)
-

If o« < apg, then A1 > 4 and

Kld]

g

ur—

is a nonnegative functional
With u. = B, (1+¢fB:~™), we observe that

K Klw) L (RLF) (AR
b= T S I Y T T ) T (RA)

@ if Ay =4, that is, if « = apg, then inf £/Z = 4 is achieved in the
asymptotic regime as u — B, and determined by the spectral gap of £
@ if A\; > 4, that is, if @ < aFg, then K/Z > 4
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Symmetry in Caffarelli-Kohn-Nirenberg inequalities

If & < apg, the fact that X/Z > 4 has an important consequence.
Indeed we know that
d
o7 Elu(r )] = 4&lu(r,)]) <0
so that
Tlu] — 4&[u] > Z[B,] — 4€[B,] =0

This inequality is equivalent to J[w] > J[ws], which establishes that
optimality in (CKN) is achieved among symmetric functions. In other
words, the linearized problem shows that for a < agg, the function

7= Z[u(r, )] — 4&[u(r, )]

is monotone decreasing

@ This explains why the method based on nonlinear flows provides

the optimal range for symmetry
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Entropy — production of entropy inequality

Using < (Z[u(r,-)] = C2&[u(r,-)]) < 0, we know that
Tlul — C2E[u] = Z[Bs] — CE[BL] =0
As a consequence, we have that

E 1) N0
ST e =T T

With u, = B, (1 +e fBi”"), we observe that

o Tu] L (FLLF) (A LA)
< = = = =
R P R AR R A S ]

@ If lim._qinff I[”E] = (p, then C; = Cr = \;

This happens if @ = apg and in particular in the case without weights
(Gagliardo-Nirenberg inequalities)
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These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Conferences/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list /
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !

J. Dolbeault Symétrisation, entropie, flots non-linéaires


https://www.ceremade.dauphine.fr/~dolbeaul/Conferences/
https://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/

	Symmetry breaking and linearization
	Critical Caffarelli-Kohn-Nirenberg inequality
	Subcritical Caffarelli-Kohn-Nirenberg inequalities
	Linearization and spectrum

	Entropy methods without weights
	The Bakry-Emery method, the sphere
	Self-similar variables and relative entropies
	The role of the spectral gap

	Weighted nonlinear flows and CKN inequalities
	The strategy of the proof
	Large time asymptotics and spectral gaps
	Linearization and optimality


