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Scope (1/4): rigidity results

Rigidity results for semilinear elliptic PDEs on manifolds...

Let (90, g) be a smooth compact Riemannian manifold
of dimension d > 2, no boundary, A, is the Laplace-Beltrami operator
the Ricci tensor SR has good properties (which ones ?7)

Let p € (2,2%), with 2* = 2% if d > 3,2* = oo if d =2

For which values of A > 0 the equation

—Agv—I—)\v:v”*1

has a unique positive solution v € C2(I): v = Ap2 ?

A typical rigidity result is: there exists \g > 0 such that

VE)\ﬁifAE(O,)\o] ,
Assumptions ?

Optimal Mg ?
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Scope (2/4): interpolation inequalities

Still on a smooth compact Riemannian manifold (91, g)
we assume that volg(907) =1
For any p € (1,2) U (2,2*) or p = 2* if d > 3, consider the
interpolation inequality
A
19V ey > 5= [IVIEsm) ~ 1vIemy| Vv € )
What is the largest possible value of X ¢

Q using u =1+ ey as a test function pI‘OVBb that A < A\
@ the minimum of v = [Vv|aon — 525 [||v||L,,(9ﬁ V122 0my

under the constraint ||v||pe@on) = 1 is negative if X is above the rigidity
threshold
Q@ the threshold case p = 2 is the logarithmic Sobolev inequality

2
IV ullf2(omy > )\/ u? log <“7> dvg Yue HY(M)
m

HUHLz (om)
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Scope (3/4): flows

We shall consider a flow of porous media / fast diffusion type

2
ut—u“B(Agumﬂ), k=145 (p—2)
u

If v = u?, then Z||v|1»@n) = 0 and the functional

Flu] := /gﬁW(uﬁ)deg—i— ﬁ [/m 2P dv, — (/m Udevg>2/p]

is monotone decaying as long as A is not too big. Hence, if the limit
as t — oo is 0 (convergence to the constants), we know that F[u] > 0

Structure ? Link with computations in the rigidity approach

A collaboration mostly with M. Esteban and M. Loss
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Scope (4/4): spectral estimates

@ Sharp interpolation inequalities are equivalent, by duality, to
sharp estimates on the lowest eigenvalues of Schrédinger
operators, the so-called Keller-Lieb-Thirring inequalities

© These spectral estimate differ from semi-classical inequalities
because they take into account finite volume effects. The
semi-classical regime is recovered only in the limit of large
potentials

A collaboration mostly with M. Esteban, A. Laptev, and M. Loss
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The Moser-Trudinger-On
Sobolev and Hardy-Littlewood-Sobolev inequalities

Some references (1/2)

Some references (incomplete) and goals

Q rigidity results and elliptic PDEs: [Gidas-Spruck 1981],
[Bidaut-Véron & Véron 1991}, [Licois & Véron 1995]
— systematize and clarify the strategy

Q semi-group approach and 'y or carré du champ method:
[Bakry-Emery 1985], [Bakry & Ledoux 1996], [Bentaleb et al.,
1993-2010], [Fontenas 1997], [Brouttelande 2003], [Demange, 2005
& 2008]

— emphasize the role of the flow, get various improvements
— get rid of pointwise constraints on the curvature, discuss
optimality

© harmonic analysis, duality and spectral theory: [Lieb 1983],
[Beckner 1993]

— apply results to get new spectral estimates
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Outline

@ The case of the sphere
@ Inequalities on the sphere
@ Flows on the sphere
Q@ Spectral consequences
@ Improved inequalities
© The case of Riemannian manifolds
@ Flows
Q@ Spectral consequences
@ Inequalities on the line
Q@ Variational approaches
@ Mass transportation
@ Flows
@ The Moser-Trudinger-Onofri inequality... 4+ another flow

Joint work with:
M.J. Esteban, G. Jankowiak, M. Kowalczyk, A. Laptev and M. Loss
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The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

The sphere

Q@ The case of the sphere as a simple example

[m] = - =
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The sphere
Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Inequalities on the sphere

J. Dolbeault
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The sphere

A family of interpolation inequalities on the sphere

The following interpolation inequality holds on the sphere:

_9 2/p
pT/ |Vul? dvg—i—/ lul> dvg > </ lulP dvg> Y u e HY(S?, dvg)
S S S

@ for any p € (2,2*] with 2* = 2% if d >3
@ for any p € (2,00) if d =2

Here dv, is the uniform probability measure: v,(S?) =1

Q@ 1 is the optimal constant, equality achieved by constants
Q p = 2* corresponds to Sobolev’s inequality...
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The sphere

Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality
vood-Sobolev inequalities: duality, flows

Sobolev and Hardy-Li

Stereographic projection
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The sphere

Sobolev inequality

The stereographic projection of SY C R? x R 3 (p ¢, z) onto R:
top?+22=1,z€[-1,1],p>0, ¢ € S9! we associate x € R? such
that r = |x|, ¢ = =

TxT

- r’r—1 _q 2 2r
o241 r2+1"’
and transform any function u on S? into a function v on R? using

d—2 d—2 g2
2

uy) = (5) 7 V00 = (1) T v = (1-2)7F vx)

@ p=2"S,=1d(d—2)[S??4: Euclidean Sobolev inequality

1
4
d—2
—d
/ |Vv[? dx > Sy [/ Mk dx} Vv € DM (RY)
R4 R4
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The sphere

Extended inequality

d 2/p
|Vul? dv, > —— [(/ |u|pdvg) —/ |u|2dvg1 Y ueHY(SY, dp)
Sd p—2 sd Sd

is valid
@ for any p € (1,
@ for any p € (1,

2)U(2,00)ifd =1, 2
2)U(2,2]ifd >3

Q@ Case p = 2: Logarithmic Sobolev inequality
|ul?
|Vu|2 dvg > / |u|? log (de| Zdv, dvg, YV ueHSY du)

@ Case p = 1: Poincaré inequality

/Sd|Vu|2dvg2d/Sd|u—E|2dvg with U::/Sdudvg Vue HY(SY, du)
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The sphere

A spectral approach when p € (1,2) — 1% step

[Dolbeault-Esteban-Kowalczyk-Loss] adapted from [Beckner] (case of
Gaussian measures).

Nelson’s hypercontractivity result. Consider the heat equation
of
ot

with initial datum f(t = 0,-) = u € L?/P(S9), for some p € (1,2], and

let F(t) := [[f(t, )|l e (g9)- The key computation goes as follows.

! / 2
L = 2p [/ v2 log (vf) dvg
F p?FpP|Jse de vidvg

with v := |f|P()/2, With 4 ";1 =2 and t, > 0 e such that p(t,) = 2,
we have

= A f

d vg]

. 1
||f(l'*7 -)”LZ(Sd) < ||u||L2/p(Sd) if m — 2dt
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The sphere

A spectral approach when p € (1,2) — 2"¢ step

Spectral decomposition. Let u =), ux be a spherical harmonics
decomposition, Ay = k(d + k — 1), ax = ||uk||i2(§d) so that

lullfagey = Ehen a and [[Vullzsey = Fhen M ak
1ty MR aggry = > axe 28
keN

lullfee) — ||“||Lp (69 lullf2(se ||f(t*,-)||i2(sd)

2 — - 2 —
1 _ e72 Ak te

S Y na e
P en

1— e—2 A1t 1— e—2 A1t

_— Z Meak = ————~— || Vull3, (s)

2-p) M e -p)M

The conclusion easily follows if we notice that A\; = d, and
Aq ts
e 2Mt = p_1 50 that L =Y ;);\1 =1
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The sphere

Optimality: a perturbation argument

Q@ The optimality of the constant can be checked by a Taylor
expansion of u =1+ e v at order two in terms of £ > 0, small
@ Forany pe (1,2*]if d >3,any p>1lifd=1or 2, itis
remarkable that

(p—2) ||VU||L2 59)

” ”LP(Sd ||u||L2(Sd) - ueHl(Sd dp)

Olu] == Ou] =

is achieved by Q[1 +ev] as ¢ — 0 and v is an eigenfunction associated
with the first nonzero eigenvalue of A,

Q@ p > 2: no simple proof based on spectral analysis is available:
[Beckner], an approach based on Lieb’s duality, the Funk-Hecke
formula and some (non-trivial) computations

@ elliptic methods / ', formalism of Bakry-Emery / flow... they are
the same (main contribution) and can be simplified (!) As a side
result, you can go beyond these approaches and discuss optimality
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The sphere

Schwarz symmetry and the ultraspherical setting

(0, €1---€a) €59, &4 =2, 31, &]% = 1 [Smets- Willem]

Up to a rotation, any minimizer of Q depends only on {4 = z

d

o Let do(f) = ©0° " g, 7z, = /7 r(r(

/|v |2da+/| |2da></| |Pda>

e Change of variables z = cosf, v(0) = f(z)

p_2 ! /12 ' 2 ' P ’
— |f'|“ v dvg + |f|© dvg > [P dvg
~1 ~1 ~1

where v4(z) dz = dvgy(z) = Zd_1 ys-1 dz, v(z) :==1— 22

: Vv e HY([0, 7], do)
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The sphere

The ultraspherical operator

With dvy = Z; ! vi1ldz, v(z) := 1 — 22, consider the space
L2((—1,1), dvy) with scalar product

1 1 H
wh)= [ Ak, ||f||p—(/ fpdud>
-1 -1

The self-adjoint ultraspherical operator is
d
Lf:= (1—22)7(”—deI:I/fH-I-EI/If/

which satisfies (f, L) = f i vdyg

Proposition

Let pe[1,2)U(2,2"], d > 1

1115 — I3
p—2

1
—(f,Lf):/ If'1? v dvg > d Ve HY([-1,1], dvg)
-1
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The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Flows on the sphere

Q@ Heat flow and the Bakry-Emery method

@ Fast diffusion (porous media) flow and the choice of the exponents
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The sphere

Heat flow and the Bakry-Emery method

With g =P, ie. f=g*witha=1/p

1 — llg® Il

(eq) (L) = —(g" Lg") = 7lg] > o E1 I8 g
Heat flow 9

g

ot Le

d d . 5a !
Gleli=0. S1gl=—2(-2)(F,L) =2(p-2) [ |FPv v

-1
which finally gives
d

STl =~ S =~ 2dTlg(r. )

eq. = < Fla(t,)] < ~2d Fla(t, )] <= S7lg(t )] < —2dTlg(r.)
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The sphere

The equation for g = P can be rewritten in terms of 7 as

of Lis

ﬁfﬁf—k(p—l) v
1 d 1 112 71 d — |f/|2
—5gi | Py dva =5 G F L0 = (LFLA+(p-1) (S v, L)

d 1 1
—T[g(t, )]+ 2dI[g(t,-)]:i/ |f’|2ydud+ 2d/ |f’|2udud
dt dt 1 1

1 /14 12 £11
d |f| d—1|f| f
_ 2 o v _ _ fg—rrc 2
= 2/1<|f| +(p-1) 2 2 2(p—1) > f v° duy

is nonpositive if

d f’ 4 d—1 f/ 2 f”
R
d+2 f d+2 f
is pointwise nonnegative, which is granted if

F"P+(p—1)

2
d 2211 2d
—1)—| <(p—-1)—— < p< =2"
{(p )d+2](p )32 P=d—12"d—2
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The sphere

. up to the critical exponent: a proof on two slides

[i,ﬁ] u=(Lu) —Lu =-2zu" —d

dz
1 1 1
/ (Lu)? dvg = / % dVd+d/ /)2 v dug
-1 -1 -1
1 112 1 114 1 12 0
|| d LA d—l/ Wt
L d = — dvg — 2 d
/,1( u) =~ v dv d+2) @ VT a2 ), U

On (—1,1), let us consider the porous medium (fast diffusion) flow

2-2 |U/|2
=P (Lu+k v

u

If k = B(p—2)+ 1, the LP norm is conserved

d [ 1
E/ uPP dVd:5p(li—ﬁ(p—2)—1)/ PP |12y dug =0
—1 -1
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The sphere

f =, 1 ey + 525 (IF122se) = [ F1aeey ) 207
1 d [t ) d 28 28
A::_2—52E/_1 <|(u6)’| y—l—j (v —1u )) dvg

—/_11(£u+(5 )'“|2 )(cum'“;'Qy) dvg

/12
2 7 |u'|v dvg
/1|//|2 2d 2d—1( +ﬁ 1)/1 //|/|2 d
= vodrvy — 2 —— — v,
71u d d+2l€ 71u U d
d 1|/|4
—|—{l€(ﬁ—l)—|—d 2(/{+ﬁ—1)}/ V2 dug
-1
4

y o pt2 PP
6—p u

1
:/ u V2 dvg > 0 ifp:2*andﬁ:6—
-1
A is nonnegative for some f if —— 8d2 (p—1)(2*=p)>0
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The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

the rigidity point of view

v
Which computation have we done ? uy = u?~2# (L’ u+k % V)

u'|? A A
e, .

v u= u
u p—2 p—2

—Lu—(B-1)

Multiply by £ u and integrate

VP
/L’uu dVd——K/ . dvy

Multiply by k12E and integrate

o P
..:—l—n/ u® duvg
-1 u

The two terms cancel and we are left only with the two-homogenous
terms
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The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Spectral consequences

@ A quantitative deviation with respect to the semi-classical regime

J. Dolbeault

[m] = -
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The sphere
nnian manifolds

line
The Moser-Trud o i

Vloser inger ofri inequality
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

°

Some references (2/2)

Consider the Schrédinger operator H = —A — V on RY and denote by
(Ak)k>1 its eigenvalues

@ Euclidean case [Keller, 1961]

PULES e
Rd
[Lieb-Thirring, 1976]
S <L |
k>1 R

v>1/2ifd=1,v>0if d =2 and v > 0 if d > 3 [Weid]], [Cwikel],
[Rosenbljum], [Aizenman]|, [Laptev-Weidl], [Helffer], [Robert],
[Dolbeault-Felmer-Loss-Paturel]... [Dolbeault-Laptev-Loss 2008]

v+
Vi
d

@ Compact manifolds: log Sobolev case: [Federbusch], [Rothaus];
case v = 0 (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak];
[Lieb], [Levin], [Ouabaz-Poupaud]... [Ilyin]
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The sphere

An interpolation inequality (I)

Lemma (Dolbeault-Esteban-Laptev)

Let g € (2,2*). Then there exists a concave increasing function
u: RY — Rt with the following properties

pa)=a Yae[0,:4] and pla)<a VYae (2, +x)

Kq,d

(@) = pasymp(@) (L+0(1)) as a— +00, flasymp(a) = —2% «

Kq,d

such that
IVullfassy + allullZagey > p(@) ullfagey VueHY(ST)

If d > 3 and q = 2*, the inequality holds with p(a) = min {a, a. },
o =1d(d-2)

1-v
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The sphere

Q flasymp(@) = i:d 1=9 9 .= di= correspondb to the

semi-classical regime and Kq,d is the optimal constant in the
Euclidean Gagliardo-Nirenberg-Sobolev inequality

Kq.d ||V||iq(Rd) < ||VV||i2(Rd) + ||V||iz(]Rd) Vv e H'(RY)

@ Let ¢ be a non-trivial eigenfunction of the Laplace-Beltrami
operator corresponding the first nonzero eigenvalue

Consider u =1+ € as € — 0 Taylor expand Q, around u =1
W) < Qull +egl=at [d+a(2—q) /|¢| dvg + o(<?)

By taking € small enough, we get pu(a) < o for all @ > d/(q — 2)
Optimizing on the value of € > 0 (not necessarily small) provides an
interesting test function...
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The sphere

A
141 —
 —— u=nl)
12? _ - n= /LaSymp(O‘)
[ e 0= px (@)
10
| ———— n=a«
8l
6l __.-.......------"
WL
3 7~
L //
21
L/
«
P TS S TSRS N \“‘\“‘\“‘\‘;
2 4 6 8 10 12 14
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The sphere

Consider the Schrédinger operator —A — V and the energy

Elu] ::/ |Vu|2—/ V |ul?
Sd Sd

2 [d Vul? = ||U||iq(sd) > —a(p) ||U||i2(sd) if o= ||V llose)
S

Theorem (Dolbeault-Esteban-Laptev)

Let d > 1, p € (max{1,d/2},+00). Then there exists a convex
increasing function o s.t. a(p) = p if p € [0, % (p— 1)] and ap) > p if
€ (§(p—1),+c0)

Mi(=A = V)| < a(lIV]ey) ¥V eLP(S?)

For large values of 11, we have a(p)P~% = Lilj_4 4 (Bg.a )P (1 +o(1))
29
and the above estimate is optimal

If p=4d/2 and d > 3, the inequality holds with a(p) = p iff pu € [0, ]
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The sphere

A Keller-Lieb-Thirring inequality

Corollary (Dolbeault-Esteban-Laptev)

Letd >1y=p—d/2

Ma(-A- V)P St [V e us oo
S

IVl et
if either -y > max{O 1-d/2} ory=1/2andd =1

However, if i = || V|| Ld(2y+d—2), then we have

L"H-d (s9) — 4
a(-a- V)t < [ v

Sd
for any v > max{0,1 — d/2} and this estimate is optimal

L} ; is the optimal constant in the Euclidean one bound state ineq.

M(-A— @) <L /ww
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The sphere

Another interpolation inequality (I1)

Let d > 1 and v > d/2 and assume that Llimd is the optimal
constant in

M(-A+¢)T <LE /qsz—’vdx

9. 27=d 4 p= 9 9
9= a2 P= 2—q’7 2
Theorem (Dolbeault-Esteban-Laptev)
T <l w11
(u(-a+ W) T SIL,, [ W as B Wl o
However, ify > 2 + 1 and 8 = |W~1|} <id(2y-d+2)

L% (s9)

277 d
(M(—a+WwW)) 7 < / Wi
sd
and this estimate is optimal
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The sphere

K54 is the optimal constant in the Gagliardo-Nirenberg-Sobolev
inequality

Koo IVIEame) < IVVIRame) + VT Vv € HI(RY)

Ll \T 2y-d s 2
and L2, 4= (Kq,d) with ¢ =257255, 0= 554 (=9

Lemma (Dolbeault-Esteban-Laptev)

Let g € (0,2) and d > 1. There exists a concave increasing function v
v(B)<B VB>0 and v(B)<B VBE (3%, +x)

v(B)=5 VBe[0,5%] if qelL,2)

v(B) = Ki g (kg B)’ (L+0(1)) as B — +oo
such that

”quiZ(Sd) +5 ||U||iq(sd) > v(p) ||U||i2(sd) Vu e HY(SY)
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The sphere

The threshold case: g = 2

Lemma (Dolbeault-Esteban-Laptev)

Let p > max{1,d/2}. There exists a concave nondecreasing function &
f(a)=a Yae(0,a0) and E(a)<a Va>ag

for some g € [ (p—1), 4 pl, and &() ~ o™ as o — +oo

such that, for any u € H'(S) with ||ul|pzse) = 1

/ |u|? log |u]? dvg +p |og( e )) < p log (1‘*‘%HVUH%2(SC/))

Corollary (Dolbeault-Esteban-Laptev)

e M(—2-w)/ « w/ sl
1 aﬁf{)(/ep advg>

J. Dolbeault Nonlinear flows, functional inequalities and applications



The sphere

Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Improvements of the inequalities
(subcritical range)

@ as long as the exponent is either in the range (1,2) or in the range
(2,2*), on can establish improved inequalities

[Dolbeault-Esteban-Kowalczyk-Loss]

J. Dolbeault Nonlinear flows, functional inequalities and applications



The sphere

What does “improvement” mean ?

An improved inequality is

dlullf2 e ¢<m> <i VueH!|(S)

for some function ® such that ®(0) =0, ¢’(0) =1, ¢’ > 0 and
®(s) > s for any s. With W(s) :=s— d71(s)

i~ de > dlultg (Vo o)

Lemma (Generalized Csiszar-Kullback inequalities)
d
nvwéwy—;jzﬂMﬁw@—nwéwﬂ

flul?¢) _
Z d ”u”i?(Sd) (\U o d>) (C I ”g (s9) Huf _ ur”%ﬂ(S“’)) Yue Hl(Sd)

s(p) := max{2,p} and p € (1,2): q(p) :=2/p, r(p) :=p; p € (2,4):
qg=p/2,r=2p>4 q=p/(p—2),r=p—2

J. Dolbeault Nonlinear flows, functional inequalities and applications



The sphere

Linear flow: improved Bakry-Emery method

Cf. [Arnold, JD]

wi=Lw+kK

: . 2d*+1

|w'?

v
w

-1

d—1\° 4 . p .
"= (p=1)(27—=p) if d>1, mi=—— if d=1

d+2

3

If p € [1,2) U (2,2%] and w is a solution, then

d 1 |W/|4 |e/|2
—(i—de) < — dvg< —y4 —M———
dt(l e) < 71[1 2 Vg < 711_(p_2)e
Recalling that ¢’ = — i, we get a differential inequality
/|2
" d / > |e |
e +de >m 1= (p—2e (p—2)e

After integration: d ®(e(0)) < i(0)

J. Dolbeault
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The sphere

Nonlinear flow: the Holder estimate

112
we = w228 (,CW+/£|W| )
w

Forall p€[1,2*], sk =B(p—2)+1, & = 11 whP dud:O

1
—2—2)2 % f_l (|(WB)’|2V—|— 55 (WQB - Wzﬁ)) dvg > '\/f V2 duy

For all w € H! ((—1, 1), dyd), such that f_ll wPP dyy =1

/1 |w'|* 2 du 1 f Vdudf 1|W v dvy
Z 5 5
1w 5 (f—ll w28 dVd)

.. but there are conditions on

J. Dolbeault Nonlinear flows, functional inequalities and applications



The sphere
Riemannian manifolds

The line

Sobolev and Hardy-Lits ood-Sobolev

Admissible (p, 3) for d =1, 2

inequalities: duality, flows

\y
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The sphere

Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality
vood-Sobolev inequalities: duality, flows

Sobolev and Hardy-Lits

Admissible (p, 3) for d = 3, 4

-

©
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The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality
ittlewood-Sobolev inequalities: duality, flows

Sobolev and Hardy-

Admissible (p, 8) for d =5, 10

J. Dolbeault Nonlinear flows, functional inequalities and applications



The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Riemannian manifolds

Q@ no sign is required on the Ricci tensor and an improved integral
criterion is established

Q@ the flow explores the energy landscape... and shows the
non-optimality of the improved criterion
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Riemannian manifolds

Riemannian manifolds with positive curvature

(91, g) is a smooth compact connected Riemannian manifold
dimension d, no boundary, A, is the Laplace-Beltrami operator
vol() = 1, R is the Ricci tensor, A1 = A1(—Ag)

pi= |9r}tfgelgj_liﬁ(f7f)

Theorem (Licois-Véron, Bakry-Ledoux)

Assume d > 2 and p > 0. If

dp (d—1)(p-1)
A<(1-0)M+0— h 0=
<( )AL+ gq "here d(d+2)—|—p—1>0

then for any p € (2,2*), the equation
A _
—Agv—i—m (v—vP 1) =0

has a unique positive solution v € C3(9M): v=1

J. Dolbeault Nonlinear flows, functional inequalities and applications




Riemannian manifolds

Riemannian manifolds: first improvement

Theorem (Dolbeault-Esteban-Loss)

For any p € (1,2) U (2,2%)

0d
/m |:(]. — 9) (Agu)2 —|— m SR(VU,VU)} dVg
O< A< A = inf

uEH? (9) Jon IV ul? d v,

there is a unique positive solution in C2(OM): u =1

limp1, 0(p) =0 = limp—1, Ac(p) = A1 if p is bounded
AM=A=dp/(d—1)=dif M =S since p=d — 1

(1—9)A1+9%§A*§A1
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Riemannian manifolds

Riemannian manifolds: second improvement

(d-17(p-1)
dd+2)+p-1

Hgu denotes Hessian of v and 0 =

g (d-=1)(p—-1) [Vu®dVu g |Vuf?
= Hyu— & Agu— _eva
Qeu:=Heu = Bt = 30 u d u

(1=0) [ (@ dvg+ 75 [ [1Quul? +9(Vu. Vo)

inf
ueH2(IM)\{0} / |Vu|2 dvg

Theorem (Dolbeault-Esteban-Loss)

Assume that A\, > 0. For any p € (1,2) U (2,2*), the equation has a
unique positive solution in C2(IM) if X € (0,A,): u=1
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Riemannian manifolds

Optimal interpolation inequality

For any p € (1,2) U(2,2*) or p=2*if d > 3

A
19¥om = 55 (V1) ~ vl v € HCO)

Theorem (Dolbeault-Esteban-Loss)

Assume N, > 0. The above inequality holds for some X\ = A € [A, M]
If Ay < A1, then the optimal constant A is such that

AN <A< )\

Ifp=1, then N = )\

Using u =1+ ey as a test function where ¢ we get A < A\
A minimum of

V — ||VV||i2(9ﬁ) - p_i2 ||V||ip(§m) - ||v||i2(9ﬁ)

under the constraint ||v||psony = 1 is negative if A > Ay
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Riemannian manifolds

The flow

The key tools the flow

[Vul?
u

ut—u22B<Agu—|—/~; ), k=1+08(p-2)

If v = u?, then £||v|[1eom) = 0 and the functional

Flu] = /SJTIV(U/B)degjL ﬁ [/m u?P dy, — (/m U@pdvg>2/p]

is monotone decaying
Q@ J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on

manifolds with positive curvature, J. Funct. Anal., 254 (2008),
pp- 593-611. Also see C. Villani, Optimal Transport, Old and New
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Riemannian manifolds

Elementary observations (1/2)

Let d > 2, u€ C2(9M), and consider the trace free Hessian

Lgu:=Hyu— %Agu

d d
/ (Agu)2dvg:—/ ||Lgu||2dvg—|——/ R(Vu,Vu)dv,
o d—1 o d—1 Jo

Based on the Bochner-Lichnerovicz-Weitzenbock formula

1
3 AVul? = |[Hgu|? + V(Agu) - Vu + R(Vu, Vu)
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Riemannian manifolds

Elementary observations (2/2)

2
/ JNAL
m u

d |Vul*

d+2 )y & FT d+2/[Lg] 9V

-

Lemma

/ (Agu)’dvg > /\1/ |VulPdv, YuecH* (M)
m mn

and A1 is the optimal constant in the above inequality

Il
=]
Q.
<
c
A\

\
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Riemannian manifolds

The key estimates

Glu] == Jom {‘9 (Bgu)® + (k+B8—1) Agu@ +r(-1) \VUI } dv,

1

Glu] = 9d {/ Q2 ul|? d vy + /SRVU Vu) dvg] / |Vu|4

with i := %(Z—I_;)Q(Ii—kﬂ—l)z—/i(ﬁ—l) (k+p5-1)——

d—|—2
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Riemannian manifolds

The end of the proof

Assume that d > 2. If # = 1, then p is nonpositive if

B-(p) <B < B+(p) Vpe(L,27)

2
where 3 = 2EVP"=a witha =2 — p+ {w} and b = 43P

2a d+2 d+2
Notice that S_(p) < B+(p) if p € (1,2%) and B_(2") = 5+(27)

 (d-12(p-1) g _d+2

Td@dr+rp_1 M PTG T3

Proposition

Letd >2, pe(1,2)U(2,2*) (p#5o0rd+#2)

1
o dt]-"[u]_(/\ A) /|Vu| i
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Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

The line

J. Dolbeault




The line

One-dimensional Gagliardo-Nirenberg-Sobolev inequalities

1oy < Can(p) 112 1FllTay i P (2,00)
11l < Can(p) 1 1oy Iy i P e (1,2)

_ p—2 __2—p
with 6 —andn o

The threshold case corresponding to the limit as p — 2 is the
logarithmic Sobolev inequality

’
5 2 2 [lu HLZ(R)
Jg u? log o dx < 1 3 ull2. I og | = HH
L2(®) L2(®)

If p> 2, u(x) = (cosh x)fﬁ solves

—(p—2%u"+4u—2p|uP2u=0

If p € (1,2) consider u.(x) = (cosx)ﬁ7 x € (—7m/2,7/2)
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The line

Mass transportation

Theorem (Dolbeault-Esteban-Laptev-Loss)

If p € (2,00), we have

2022 242
o G52 dy B IIf’IILi"(RZ) IIfIIEz”(ié
SUP =Cp in f
S (J Gyl dy) = : (Ju G dy) ™ ||f||E$(ﬂ§)
and if p € (1,2), we obtain
Jo 6% & Il
SUP =cpin f pi2
S (Jo GIyP dy) =7 (f, G dy) T 1112y

for some explicit numerical constant c,
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The line

Flow

Let us define on H}(R) the functional
4
P = IV By + 1mgys 1Vl ~ CIVBy 5t Flun] =0

With z(x) := tanh x, consider the flow

1—-2 /|2
vz o, 2p o, p |V 2
vt—m{v —‘—p_2zv—§—2 > —|—p_2V

Theorem (Dolbeault-Esteban-Laptev-Loss)

Let p € (2,00). Then
—Flv(t)] <0 d lim Flv(t)] =0
: [v(?)] and  li [v(t)] =

FFVOI=0 = w(x) = u(x — x)

Qimilar rocnilt far nc (1 92)
J. Dolbeault Nonlinear flows, functional inequalities and applications



The line

The inequality (p > 2) and the ultraspherical operator

@ The problem on the line is equivalent to the critical problem for the
ultraspherical operator

/|v|2dx—|— /|V|2dX>C(/||de)
With

z(x) =tanhx, v, =(1- zz)ﬁ and  v(x) = v (x) f(z(x))

1 1 1
2p 2p
f'12u d +7/ f? dug > </ fIP d )
/—ll |V Vd (p_2)2 _1|| Vdf(p_2)2 _1|| Vd

where dv, denotes the probability measure dv,(z) := C_lp Vi dz

_ 2p _2d
d*p—z — P=35

Change of variables = stereographic projection + Emden-Fowler
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The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

The Moser-Trudinger-Onofri
inequality

Joint work with Maria J. Esteban and G. Jankowiak
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The Moser-Trudinger-Onofri inequality

Three equivalent forms

> The Euclidean (Moser-Trudinger-)Onofri inequality:

1
—— | |Vul?dx > log / e'du —/ udu
167 R2 R2 R2

dp = p(x) dx, p(x) = % (1+ |X|2)_27 x € R?
> The Onofri inequality on the two-dimensional sphere S?:

1
Z/ |Vv|]®do > log (/ e"da> —/ vdo
2 2 §?

do is the uniform probability measure
> The Onofri inequality on the two-dimensional cylinder
C=S'xR:

1
—/|VW|2dy2|og /ewudy —/Wl/dy
167 I C I

y=(0,s) €C=S"xR, v(y) = 7= (coshs)2
[Moser (1971)], [Onofri (1982)]
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The Moser-Trudinger-Onofri inequality

The inequality seen as a limit case of the
Gagliardo-Nirenberg inequalities

[JD] Assume that u € D(R?) is such that [, udp =0 and let

foi= Fp (Hi)» Folx) = (L+IxP) 77T VxeR?

Then we have

[N AN A e = A

| fo || L20 ()  Jreetdp

1< lim CP72
p—o0
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The Moser-Trudinger-Onofri inequality

Rigidity method in the symmetric case

Under an appropriate normalization, a critical point of

1 [t At 1t
GA[f] = §/1|f/|2yd2+§/1fd22|Og<§/1efd2>

solves the Euler-Lagrange equation

—%Eer)\:ef

For any A € (0,1), the EL equation has a unique smooth solution
f=log\. If\=1, f has to satisfy the differential equation f" = % |f'|?
and is either a constant or

f(z) =G —2log(& — 2)

1t 1—- [
§/' V2 |f-/l_%|f/|2|2 eff/2 VdZ+T/ l/|f/|2e7f/2 l/dZ:O
—1 -1
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The Moser-Trudinger-Onofri inequality

Rigidity method in the symmetric case: proof

Multiply by E(e’f/ 2) and integrate by parts
1

- / (=3 LF+A =€) L(e™?) vdz
—1
1 1 1
:Z/ I/2|f/l|2e7f/2l/dz_§/ I/2|f/|2 f—//eff/zydz
1 B
1/t 1
+_/ V|f’|2e*f/2 ydz__/ V|f/|2ef/2ydz
2 )4 2/,
Multiply by 3 |f"|? e~ /2 and integrate by parts

1
0:/ (-3cf+r—e) (51FPe ) vaz
-1

1t 1t
*—/ 1/2|f'|2f”e7f/2udz——/ V2|f'|4e7f/21/dz
8/ 16 /_,

A 1 [
—|——/ 1/|f’|2e_f/21/dz——/ v|f'12ef? vdz
2 -1 2 -1
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The Moser-Trudinger-Onofri inequality

A nonlinear flow method in the general case

On S? let us consider the nonlinear evolution equation

—f/2 2 —f/2
o =D (e )~ L|vfRPe "/
where Ag denotes the Laplace-Beltrami operator. Let us define
1 1 1
RA[f] := —/ |Lgof — = Mgof|2e 2 do+=(1=N) | |VF?Pe T/?do
2 Jg 2 2 2

where

1 1
Lgof = Hessge f — 5 Agefld and Mef :=VFf® VFf — 3 |VF?1d

Assume that f is a solution to with initial datum v — log ( [, € do),
where v € L}(S?) is such that Vv € L2(S?). Then for any A € (0,1] we
have

Ga[v] > /Do RA[F(£, )] dt

J. Dolbeault Nonlinear flows, functional inequalities and applications



The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Spectral consequences

Joint work with M.J. Esteban, A. Laptev, and M. Loss

@ The same kind of results as for the sphere. However, estimates are
not, in general, sharp.
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The Moser-Trudinger-Onofri inequality

Manifolds: the first interpolation inequality

Let us define
K = volg (IM)1=2/9

Proposition

Assume that q € (2,2*) ifd >3, or g € (2,00) ifd =1 or2. There
exists a concave increasing function i : R+ — R* such that u(a) = ka
foranyagﬁ,u( ) < ka for a > 2and

IV ullZ2gomy + @ llullfaony = (@) ullfony ¥ u € HY(M)

The asymptotic behaviour of 11 is given by u(a) ~ Kg.qal=? as
a — +oo, with § = d 42 and Kg g defined by

||VV|| 2(R9) + ||V||L2 (R9)

= n
veH! (R)\ {0} | v||Lq(Rd)

Kq

3
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The Moser-Trudinger-Onofri inequality

Manifolds: the first Keller-Lieb-Thirring estimate

We consider || V|| ey = = a(p)

/|Vu|2dvg—/ V|u|2dvg—|—o¢(,u)/ P dv,
m m m

> IV ullEaony = 1 Ul eqamy + (i) [[ullE2omy
p and 2 are Hélder conjugate exponents
Theorem

Letd>1, pe(l,400) ifd=1and p € (4,+00) if d > 2 and assume
that A, > 0. With the above notations and definitions, for any
nonnegative V € LP(9M), we have

M(=Lg = V)| < a([IVILoem)

Moreover, we have a(u)P~% = L 4uP (14 0(1)) as p — +oo with
L2 = (Kea)i% y=p— 2
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The Moser-Trudinger-Onofri inequality

Manifolds: the second Keller-Lieb-Thirring estimate

Theorem

Letd > 1, p € (0,+00). There exists an increasing concave function
v: R — R, satisfying v(8) = 3/k, for any B € (0, 2L k A) if p > 1,
such that for any positive potential W we have

M(—A+ W) >v(8) with B=fy, WPdy)"”

Moreover, for large values of 3, we have
v(B) P = L1 ) B7P (14 0(1)) as B — +oo
2 )
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The sphere
Riemannian manifolds

The line

The Moser-Trudinger-Onofri inequality

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

The Moser-Trudinger-Onofri

inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban

Q@ Extension to compact Riemannian manifolds of dimension 2...
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The Moser-Trudinger-Onofri inequality

We shall also denote by R the Ricci tensor, by Hyu the Hessian of u
and by

Lgu:=Hgzu— % Agu
the trace free Hessian. Let us denote by M, u the trace free tensor
Mgu:=Vu®Vu-— % |V ul?
We define
/ (1 Lgu— 3 Myu ]2+ (Y, V)| e/ d vy
Ay = inf M

ueH2(9)\ {0} / Vul2 e/ dv,
N
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The Moser-Trudinger-Onofri inequality

Assume that d =2 and A\, > 0. If u is a smooth solution to

1
—EAgU‘F)\:eu

then u is a constant function if A € (0, \,)

The Moser-Trudinger-Onofri inequality on 99t

1
2 ||VUH%2(§m) +A / udvg > X log (/ e“dvg) Vu e HY(IM)
n n

for some constant A > 0. Let us denote by \; the first positive
eigenvalue of — A,

If d = 2, then the MTO inequality holds with A = A\ := min{4 7, A\, }.
Moreover, if A is strictly smaller than \1/2, then the optimal constant
in the MTO inequality is strictly larger than N\
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The Moser-Trudinger-Onofri inequality

The flow

of

a _ Ag(eff/2) o % |vf|2 eff/2

Galf] = /m | Lgf — 1 Mf|2e "2dv, + /m R(VF, Ve 2dv,

—)\/ |VF2e T/2dy,
m
Then for any A < A\, we have

d . _
EJ—',\[f(t,-)]:/ (~38gF ) (Bgle ) = 3VFPe ) dy
m

= —Gulf(t,-)]
Since F) is nonnegative and lim;_,oc Fa[f(t,-)] = 0, we obtain that
Aldz [ e
0
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The Moser-Trudinger-Onofri inequality

Weighted Moser-Trudinger-Onofri inequalities on the
two-dimensional Euclidean space

On the Euclidean space R?, given a general probability measure s
does the inequality

1
—— | |Vul?dx > X |log /e”du —/ udp
167'(' R2 R2 R2

hold for some A > 0 7 Let

A, = inf —Alogp
x€R2 8w

Assume that p is a radially symmetric function. Then any radially
symmetric solution to the EL equation is a constant if A < A, and the
inequality holds with A\ = A, if equality is achieved among radial functions
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The Moser-Trudinger-On
Sobolev and Hardy-Littlewood-Sobolev inequalities:

Sobolev and
Hardy-Littlewood-Sobolev

inequalities: duality, flows

Joint work with G. Jankowiak
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Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Preliminary observations

J. Dolbeault
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Legendre duality: Onofri and log HLS

Legendre’s duality: F*[v] := sup ( [ps uv dx — F[u])

1 oo oo
Fi[u] := log / e'du ), Flu] == — |Vul? rdt dr+/ up r?tdr
R2 167w 0 0

Onofri’s inequality amounts to Fi[u] < Fo[u] with du(x) := p(x) dx,
1(x) = sy

Proposition

For any v € LY (R?) with [~ v rf~Ydr =1, such that v log v and
(1 + log |x|?) v € L}(R?), we have
Fiivl = F3[v] =

Jo© v log (ﬁ) rd=tdr —4m [ (v —p) (—A) (v —p) rftdr >0

[E. Carlen, M. Loss] [W. Beckner] [V. Calvez, L. Corrias]
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

A puzzling result of E. Carlen, J.A. Carrillo and M. Loss

[E. Carlen, J.A. Carrillo and M. Loss| The fast diffusion equation

@:Avm t>0, xeR?
ot
with exponent m = d/(d + 2), when d > 3, is such that
H = —A dx —S
A= [ VB =Sy

obeys to

1d 1d
_ —Hd[V(t, )] = 5 E |:/ V(—A) vdx — Sd ||V|| 2+d2 (s9)

d(d—2 4/(d—1 2
(,5 1)2) Sd ” ||L{7(+1(§d) ”quL2 (s9) — ||u||LZq(Sd)
with u = V(d=1/(d+2) and q = $HL It d(d 2) S¢ = (Cq,4)%9, the r.hus.
is nonnegative. Optimality is achleved sunultaneously in both
functionals (Barenblatt regime): the Hardy-Littlewood-Sobolev
inequalities can be improved by an integral remainder term
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

. and the two-dimensional case

Recall that (—A)~!v = Gy * v with
@ Gy(x) = ﬁ ISt |x|>~9if d >3
0 Gy(x) = 5L log|x|if d =2
Same computation in dimension d = 2 with m = 1/2 gives

4 o0 oo
Vi@ d [ il / v(=A)"tv rdtdr — / vilogv r~tdr
8 dt ||V||L1(R2) 0 0

= [|ullFegrey I VullZoeey = 7 VI 2s(we)

The r.h.s. is one of the Gagliardo-Nirenberg inequalities (d = 2,
q= 3): 7T(C3,2)6 =

The L.h.s. is bounded from below by the logarithmic
Hardy-Littlewood-Sobolev inequality and achieves its minimum if
v = p with )

= — R?
M) = e T
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev’s inequality in R?, d > 3,
lullf2s oy < Sa [ Vulfagsy ¥ ue DH(RY) (1)

and the Hardy-Littlewood-Sobolev inequality

>/ v(=A)lvdx VveL#z(RY) (2)
Rd

S 2
AV 30 2

are dual of each other. Here S, is the Aubin-Talenti constant and
2% = d2—_‘12. Can we recover this using a nonlinear flow approach ? Can

we improve it 7

Keller-Segel model: another motivation [J.A. Carrillo, E. Carlen and
M. Loss| and [A. Blanchet, E. Carlen and J.A. Carrillo]
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Riemannian manifolds

The line
The Moser-Trudinger-Onofri inequality
Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Using the Yamabe / Ricci flow

J. Dolbeault
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation
@:Avm t>0, xeR?
ot
If we define H(t) := Ha[v(t, )], with
._ _A)-L _ 2
Hol = [ v(=8) M de=SalvlP g

then we observe that

2
1 d -
_H/:—/ yml dx + Sy </ vd2_+d2 dX> Vv’".Vvimz dx
2 R R R

d—2

where v = v(t,-) is a solution of (3). With the choice m = 75,

find that m+1 = 2%

we
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

A first statement

[JD] Assume that d >3 and m = 9=5. If v is a solution of (3) with
nonnegative initial datum in 1.24/(4+2)(R9), then

v(=A)"tv dx — Sy ||v 24
Loyt e savizg, |

2
d
= (/Rd ymtl dX) [Sd HVUHLZ(Sd) — HUHLZ*(Sd)} >0

The HLS inequality amounts to H < 0 and appears as a consequence
of Sobolev, that is H" > 0 if we show that limsup, o H(t) =0
Notice that v = v™ is an optimal function for (1) if v is optimal for (2)
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Improved Sobolev inequality

By integrating along the flow defined by (3), we can actually obtain
optimal integral remainder terms which improve on the usual Sobolev
inequality (1), but only when d > 5 for integrability reasons

Theorem

[JD] Assume that d > 5 and let q = 9%2. There exists a positive
constant C < (1+ 2) (1 — e~9/2) Sy such that

q _ q(_AY"1,9
Sy ||W HLdZdZ(Sd) /I%dw ( A) w dx

< C IWlZ2 0y [19W12250) = Sa Wl o)

for any w € D?(RY)
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Solutions with separation of variables

Consider the solution of % = Av"™ vanishing at t = T:
vr(t,x) = c(T — £)" (F(x))#>
where F is the Aubin-Talenti solution of
—AF =d(d —2) Fld+2/(d=2)
Let [[v]l+ 1= sup,cra(1 + |x|2)7*2 |v(x)]

[M. del Pino, M. Saez], [J. L. Vazquez, J. R. Esteban, A. Rodriguez]
For any solution v with initial datum vy € 124/(d+2)(R9), vy > 0, there
exists T >0, A > 0 and xp € RY such that

lim (T = ¢)777 ||v(t,)/¥(t,") = 1| = 0

t—T_

with V(t, x) = Nd+t2291(t, (x — x0)/)\)
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Improved inequality: proof (1/2)

The function J(t) := [p4 v(t,x)™" dx satisfies

J=

+1 , >
(M 1) [TV < — T

If d > 5, then we also have

J'=2m(m+ 1)/ v (AvT)? dx >0

]Rd
Notice that

J m+1 > 2d T
< — —d < — ith T = ——— — m+1
7= s, J7di < —x with & 125, (/}Rdv0 dx)
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Improved inequality: proof (2/2)

By the Cauchy-Schwarz inequality, we have

2 \ 2
S — (m=1)/2 y(m+1)/2
CESCA Vv ™[i2a) = </Rd vim Av™ . im dx>

< / Vil (Av"’)2 dx/ vt dx = Cst )" )
Rd Rd

—(d—2)/d .
so that Q(t) := [|[Vv™(t, .)||iz(Sd) (fRd vmHL(t, x) dx) (d—2)/ is
monotone decreasing, and

i /
H =2J(54Q—1), H”:JTH’+2JSdQ’§JTH’§0

/ vé"“ dx)
]Rd

By writing that —H(0) = H(T) — H(0) < H'(0) (1 — e™*T)/k and
using the estimate k T < d/2, the proof is completed 0

—2/d
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d = 2: Onofri’s and log HLS inequalities

ol o= [ () (-8) v ) - [T v (;) 41 dr

With p(x) := £ (14 |x[?)72. Assume that v is a positive solution of

%:Alog(v/u) t>0, xcR?

Proposition
If v = pe'/? is a solution with nonnegative initial datum vy in L(R?)

such that [~ vo rf=tdr =1, vo logvo € L' (R?) and v log 1 € L!(R?),
then

d 1 e a .
EH2[V(t,')]:m A |VU|2 rd 1dr—-/Rz (ez —]_)udu
> 567 Jo [VuP r®tdr + [po udu — log ( [z, € du) >0
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Improved Sobolev inequality by duality

[JD, G. Jankowiak] Assume that d > 3 and let ¢ = 9£%. There exists a
positive constant C < 1 such that

q _ q(_AY"1,9
Sy ||w HLdZdZ(Sd) /Rdw (=A)" w9 dx

< €54 W% g0y [19W13250) = St Wl oy

for any w € D?(RY)
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Proof: the completion of a square

Integrations by parts show that

/Rd IV(=A) "t v|? dx = /Rd v(=A)"tvdx

and, if v = u? with g = %,

VU-V(—A)*lvdX:/ uvdx:/ u? dx
RY RY RY

Hence the expansion of the square

og/
RY

0 < S 0172 g0y [0 1901y — 1022 s

(ol g [0 8) e o]

Ld+2 (S9)

2

Sd ||u||§3(8,,) Vu—-V(=A)"tv| dx

shows that
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The equality case

Equality is achieved if and only if
4
Sa llull 2 gay u = (=A) v =(=A)"tud
that is, if and only if u solves
1 q
—Au= ||u||L2*(Sd) u

which means that v is an Aubin-Talenti extremal function

u(x) =1+ xP)" 7 VxeR?
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

An identity

0= S U172 g0y [0 190y — 1022 50

(ol g, [0 0) e e

_/Rd

2

Sq ||u||§(sd) Vu—V(-A)"tu?| dx
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Another improvement

Ja[v] ::/ vz dx  and Halv] ::/ v(=A) v dx—Sy||v|? e
RY RY L2 (89)

Theorem

Assume that d > 3. Then we have

0 < Halv] + Su JalvI**3 ¢ (JalvI3 ™ [Sa IV ullZaes) = lull2er o))

Yue DM?(RY), v = M=

where ¢(x) :=+/C?>+2Cx —C forany x > 0

Proof: H(t) = —Y(J(t)) Yt €[0, T), ko := 'j—OQ and consider the
differential inequality

2 d-+2 4
Y (CSysti+v) < X2 k0S2sE . Y(0)= 00 Y(Jo) = — Hy
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but C =1 is not optimal

Theorem

[JD, G. Jankowiak] In the inequality
Sa [lwi|? - I(-p)'wid
W g = [ () o
< CSalWlT2 g0y [IVWIRa(ee) = Sallwil o oo
we have

<C 1
dra="4<

based on a (painful) linearization like the one used by Bianchi and
Egnell

@ Extensions: magnetic Laplacian [JD, Esteban, Laptev| or fractional
Laplacian operator [Jankowiak, Nguyen]
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Improved Onofri inequality

Assume that d = 2. The inequality
4 _1
glog(—) dx— — [ g(=A) " gdx+ M(1+ logm)
R2

1 2
<M {16—7r IVl T2y + /}R2 fdu—log I\/I}

holds for any function f € D(R?) such that M = [, e" du and
g=mnep

Recall that 1

=— R?
M) = e T
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Sobolev and Hardy-Littlewood-Sobolev inequalities: duality, flows

Q@ the sphere: the flow tells us what to do, and provides a simple
proof (choice of the exponents / of the nonlinearity) once the problem
is reduced to the ultraspherical setting

Q@ the spectral point of view on the inequality: how to measure the
deviation with respect to the semi-classical estimates, a nice example
of bifurcation (and symmetry breaking)

Q  Riemannian manifolds: no sign is required on the Ricci tensor and
an improved integral criterion is established. We extend the theory
from pointwise criteria to a non-local Schrédinger type estimate
(Rayleigh quotient). The flow explores the energy landscape... and
generically shows the non-optimality of the improved criterion

Q@ the flow is a nice way of exploring an energy space. Rigidity result
tell you that a local result is actually global because otherwise the
flow would relate (far away) extremal points while keeping the energy
minimal
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Further considerations (1/2)

Q@ other cases of application: bounded domains, weighted problems,
interpolation inequalities on cylinders and weighted interpolation
inequalities: solves conjecture by V. Felli and M. Schneider... a tool
for the investigation of sharp qualitative properties that goes beyond
standard tools for proving uniqueness and symmetry

Q@ a gradient flow structure can be observed in some cases (with
appropriate changes of variables) and under partial symmetry
assumptions (¢f. D. Bakry, I. Gentil and M. Ledoux, or G. Savaré et
al.)). Formally, we can also use the flow to define a convenient notion
of distance

Q@ In some cases, the method formally enter in the carré du champ
methods of D. Bakry and M. Emery, but it obeys to a very practical
purpose: the explicit computation of the so-called CD(p, N) condition.
Moreover, this condition is always in a nonlocal form, which allows to
relax the assumptions considerably
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Further considerations (2/2)

Q@ The carré du champ or [, methods are algebraic and very linear.
For instance, in evolution problems, the heat flow or Fokker-Planck
equations are the classical examples. The nonlinear flow approach is
limited only by the compactness issues (critical exponents) and
captures the nonlinear features of the functional inequalities

@ Nonlinear improvements / correction terms are easy to obtain in
the far from equilibrium range but the (entropy) method is still
adapted to asymptotic regimes (and prescribes the adapted functional
space for linearization): tis also opens a whole area of investigations
like improved rates for well prepared initial data, correction terms
(delays) for asymptotic profiles, etc.
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These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/
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Thank you for your attention !

J. Dolbeault
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