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P. Lax (1957): if U is the unique entropy solution to

Ur+ f(U)e =0, U(0,£) = Up(€)

with f € C? near the origin, f(0) = f/(0) = 0 and f” > 0, and
if Uy > 0 is of compact support in the bounded interval (s_, sy),
then the following estimate holds:

||U(T>')_WOO(T,°—S_)||120(7_1/2) s T — oo

where Woo(7,€) = gy 71 If 0 < € < —s_+s441/2 [Juoll1 f7(0) 7~ 1/2
and O elsewhere.

Let ¢ > 1 and consider a nonnegative entropy solution of

Ur+ U?e=0, (€R, 7>0
(1)
U(T:())'):UO



1
T.-P. Liu & M. Pierre: I|m7_>oqu( )HU(T) — Uso(T)|lp =

: . . ] 1/(g—1)
where U is the self-similar solution Uso(T,§) = (—)

qT Xe<e(T)
Y.-J. Kim (2001)

Theorem 1 Let U be a global, piecewise C! entropy solution
of (1) corresponding to a nonnegative initial data Uy in L' N
L*°(IR) which is compactly supported in (£, +o0) for some &y € R
and such that

Uo (&)
lHim inf
- 1/(q=1) =
g>§g € — &o|1/ (e

Then, for any o € (O —2) and € > 0,

imsup 7 [ U(r,€) ~ Use(r & — €0)] o0 =0

T——+00 €& — &l




s<a(l-1/q) <= q¢/(2(g—1)) < a
Corollary 1 For any B < 1, there exists a constant Cﬁ such that
\U(T,) = Uso(1, € — &)1 < Cgr P

qu UO d§> (q—l)/q

M::/Ud and =
R Vo dt cM < 1

Theorem 2 Under the same assumptions as in Theorem 1,

lim sup THO\U(T,€) = Uso(r,- — &) = 0
T—~+00 ¢esupp(U(r,-))

and p(7) := max[supp(U(r,-))] satisfies as T — +o0
im (14q7) Y(r) =crr,  p(r) = (A4qm)Y9ey (140 1))

T——+00



Notions of solution, time-dependent rescaling

Proposition 2 Let U be a nonnegative piecewise C! entropy
solution of (1), whose points of discontinuity are given by the
curves £1(1) < & (1) < --- < &n(7). Then the rescaled function

uw(t,z) = et U ((eqt —1)/q, etx>

IS a piecewise c1 function, whose points of discontinuity are

given by the curves s;(t) = e t¢;((et — 1) /q), which satisfy
fo ()= si () i — (u) T+ si(8)
Si(t) - + _
forany i =1, 2,... n. Out of the curves x = s;(t) the function

w IS a classical solution of

ur = (xu —uf)y (2)




and across these curves it satisfies

= lim t lim t — T
uz $—>Si(t) u( ’ x) > x—>si(t) U( ’ I) u'[,
x<s;(t) x>s,;(t)
Moreover w and U have the same initial data Uy := U(0,-) =

uw(0,-) =: ug. Finally, if Uy € L1(R), then, for all t > 0, we have:
lu(®)[]1 = [|Uol|1-

Rankine-Hugoniot condition

(U1 = (U;)1

Ei(r) =
1 UZ-_|_—UZ-_
U™ := lim U(r¢) > lim U(r¢):=UT
¢ £—€;(7) (m.8) £—€;(T) (7:) ¢
£<&;(T) §>€,(T)



For every ¢ > 0, let u$, be the stationary solution of (2) :

21/ o<z <e
Ugo () =

0 ifx <Oorx>c
If e =cpy = (g M/(q— 1)) D/ 4= uSY . |usoll1 = M.

Comparison results

Lemma 3 Consider two solutions U and V of (1)

with nonnegative initial data Uy and Vg such that Uy < Ag Vj a.e.
for some positive constant Ag. Then

U(r,-) < Ao V(AL ') ae. VreRT



Corollary 4 Letu be a solution of (2) with a nonnegative initial
data ug satisfying

ug < Apgus, a.e.
for some positive constants Ag and c. Then
u(t,x) < A(t) uggt) (z) ace. VteRT

, t/(q—1) An \(@—1)/q
with A(t) = Ag el —_and ¢(t) = ¢ (Ao .
[1+A%_1(eqt—1)}l/(q 1) (A(t))

u(t,-) is supported in [0, c(t)] C [0, c(max(Ag,1))a-1)/q]

| (u— a9 floo < (A(t) = 1)1 — 0 ast — +oo.



L1 INTERMEDIATE ASYMPTOTICS

Relative entropy >~ of the solution u with respect to the station-
ary solution ul,: For any positive constants ¢ and . let

/

C c !
=) = | w@)lu(t,e) —uio(@)| do = [ plu—uoldet [ puda
C
Define f(v) = v —v4 for v > 0.

Proposition 5 Consider a nonnegative solution w with initial
data ug, with compact support in [0,4+00), such that

up(z) < Agzl/=1) vz e RT

for some Ag > 0. Assume that lim,_,o ;>0 pu(z) ude(z) = 0. Let
¢ > 0 and suppose that the functions p'uds, and pus are inte-
grable on (0,c). Then for every fixed c € (0,c), fort > 0,



ds ¢
<) 1 (uSe)?

(i) e [ s

dt = c_
q ut(c u (c
ot g (T0) 4 ()
+ 1) (7T (“())
()1
where ut(c) = Iimi(:c_—>§>o w(z). If c= ¢, then
d>_

c
< "(u€ )4
dt_olu(oo)

f<%>| dr < 0.
uOO

Uu

/
C
u’OO

) as

10



Proof. ¥(t) = [§p [u — uS] [1'u>ugo [ } dz + [ put) do.
We assume for simplicity that w(¢,.) has exactly one shock at
r=s(t). Let ut = u*(¥) and vt = ui(t)/uglo, where ug/O stands
for ug,o(s(t)): v~ >vT and

s'(t) = —
Case 0 <s=s(t) <c.

4> c ¢
E :/ 2055 [1lu>uc — 1|u<uc} dw—l’/ pug de
()l = uSo ()] - ' (8) U0

11



< Cu’<ugo>q|f<i> o+ p(s) (uSe(s) W (w0

=<
dt —

—,u(c)cq ! ”f <c =14~ (¢, c))‘—l—f(c_q—ilu"'(t,c))]
[ g () de ) (@l 1>f(u <c>)

()T

W, vt = [Foh) - f)] RS o)) - o))
(D 1<ovt <o : f(v) < fvh) § 0 and W(v—,vT) =0.
(i vt <1<ov: flv) <0< f(vh)

%W(v_>v+)= v =1 f(’0+)+ 1- U+f(’0 )
gf(;;;wh+1”iv)—fu>=o

(i) vt <o~ <1: f(v7)>0and f(v1t)>0, W(v ,vt)=0
12




Rates of decay To emphasize the dependence in «, we denote
by >, the quantity X in case u(x) = |x|~“.

Proposition 6 Assume that c<cy;, c<c and c=cy; ifc > c.
Then limy_, 4 >a(t) =0 and

dia—l—(q—l) aXq(t)—a /C ™ de—r(d) = o(Za(t)) ast— +oo

with T(C/) — IUJ(c’) (C’)Q/(q_l) f ((C/)—l/(q—l) u—(d))

Proof.
d2_ C _ 149 c
dt 0 uc C oo

¢ a0 1f( )d:c — ¢ 2=y da— (¢ 2701yl dz < [¢ 2O u da
OO -2

F)=-0) (1) a0y (1) f2a-0) (o +1-0)" " a0

13



C _q—1+4+-9_ U C _a+-1_ [ u 2
/ xr q—1 dx > (q 1) Za Cq / -1 — — 1 dx
0 uc 0 u&,

with Cq =3¢ (g — 1) if s(t) > c(t), and

[ f<i>‘ dr > <q—1)< "l d:v)
0 ul, s(t)

2
—Cyq /OS(t) x_OH_q_—l <u% o 1) dx
if s(t) <c. Thus, with ¢(t) := min(s(t),c), x(t) = 0 if s(t) > c(t)
and x(t) ;= [ (t),uuc dx if s(t) < c(t)

d2_q,
dt

0
+qoff %y dz + x(t)

c 2
+ (-1 aXa(t) —r(d) < C'q/ @ :c_a_l_q—il (i — 1) dx

14



As we shall see

% —1 —0 as t— 4o (3)
oo Lo (0,c(t))
so that
2
c 1 C
/xa+q—1 L 1) de= o1 /,u|u—ugo|da:
0 Uso uso  lizee(o,e()) 7O

is neglectible compared to >,(t).

Corollary 7 Under the assumptions of Proposition 6, if c = cyy
and if suppu(t,-) C (0,d) VYVt > 0, then for any ¢ > 0, there
exists a positive constant Cy(e) such that

S o(t) < Cale) emll@™Da=dt vy > g

15



UNIFORM ESTIMATES: REFINED graph convergence

Proposition 8 Lete >0, M = [ug dx and consider a piecewise
1 nonnegative initial data ug with compact support contained

in [0,400), such that liminf,_oxl/(1~Dyy(z) > 0. Then there
x>0
exists a positive T' such that, for any t > T,

(i) the support of u(-,t) is an interval [0, s(t)]
(ii) mfxe[o s(t)) T 1/(1 q>u(:c t) >0
(iii) there exists a constant Ag > 0 such that

Ag ed(t=1)/(g=1)
[1 -+ A%_l(eq(t—l) — 1)] 1/(a=1)

uw< AW uSlY  with A(t) =

(iv) for any € > 0, there exists a constant x such that

uw>(1l—ke M)yuM €

16



Theorem 3 Let uw be an entropy solution of

ur + (u? — zu)y =0 (2)

corresponding to a piecewise c1 nonnegative initial data ug with
compact support contained in [0,+oc0) and assume that
liminf,—o z1/(=Dyg(z) > 0. Then

x>0

im  sup |u(t,x) — ufx()t)| =0
=00 2€(0,5(t))

where [0, s(t)] is the support of u(-,t) for t > O large enough.
Moreover,

im s(t) =cy and st)>cy —0(e®) as t— +oo
t——+o0

17



Lemma 9 Consider a solution uw of (2) as in Theorem 3. Let
s(t) be the upper extremity of the support of u fort karge enough

and consider h(t) :=lim,_ 4 u(x,t). Then
x<s(t)

(d
@5 _ pa—1 _
dt

< (4)
dh
(1 — (9!

= @)

where by (ui~1); we denote the quantity lim,_ (w1 z(z,t).
x<s(t)

Lemma 10 Consider a solution w of (2) as in Theorem 3. Then
(™ H)z < (1—e )~

in the distribution sense.
18



Lemma 11 (i) For any € > 0, there exists t1 > 0 such that
s(t)y >cpy—e€ Vi>tq
For any e >0, 6 € (0,1), tg > 0, there exists t1 > tg such that
h(t1) > (1 = 06) uco(s(t1))
(ii) Assume that h(t1) = hq1 > 0 for some t1 > 0. Then
h(t) > hy (1 —e )9 vi> g

(iii) As t — 4+o0, s(t) converges to cp; and for any n € (0,1),
there exists a t1 > 0 such that

u(t) > (1 —n)uld vty

19



Proof of (iv). Let us prove that s(t) converges to cp;. Integrating
(w1, < (1 — e 1)1 with respect to z, we get

s(t) — x 1/(¢g—1)
1— eqt>+

Integrating u on (0,s(t)), we obtain a lower estimate for the
Mass:

=:v(x,t) Vz€ley—es(t))

w(ast) > ((h(t))q—l -

CNf—E€E s(t
MZ(l—n)/OM uoodx—l—/()vdaf;
Cpr—E€

as soon as t is large enough so that ke 9! < n. Take hg = h(t1)

(h(t))97L > (1 — §)7 L s(t) (1 — e—qtl)(q—l)/q _

Conclusion by contradiction on (cp; — €, s(t))

hy Vt>ty
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