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Symmetry and symmetry breaking

The symmetry principle of Pierre Curie:
“Effects are at least as symmetric as their causes"

The target was electromagnetism more than a century ago, but soon it
was realized that physics is not as simple: with ferromagnetism for
instance, it can only be required that even if symmetry is broken after
magnetization, all final states are equally likely to occur. These states are
usually not radially symmetric. Symmetry breaking is a key concept in QFT.

Mathematically: symmetry in PDEs has been widely used to understand
the uniqueness or multiplicity properties of the solutions. Standard
scheme goes as follows:

prove some symmetry properties by symmetrization or comparison
techniques of the solutions (ground states) of an (Euler-Lagrange)
equation

prove uniqueness by ODE techniques

but also: bifurcation analysis, branches of solutions within certain classes
of symmetry, direct analysis of the solution set,...

Optimal functions and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities – p. 4/50



A symmetry breaking mechanism

Much less is known concerning symmetry breaking. Known results are
based on

energy considerations + linear analysis

characterization of some asymptotic regimes

What is the reason for symmetry breaking ? In this talk: the competition of
a nonlinearity which tends to aggregate or concentrate the solution and of
an (external) potential term which “prefers”
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The solution with broken symmetry

Can we understand the transition from a regime of ground states with
symmetry to a regime where symmetry is broken ? Can we quantify this
phenomenon ?
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The energy point of view (ground state)
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Symmetry results
(moving planes)

Some simple remarks
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The theorem of Gidas, Ni and Nirenberg - extensions

Theorem 1. [Gidas, Ni and Nirenberg, 1979 and 1980] Let u ∈ C2(B),

B = B(0, 1) ⊂ R
N , be a solution of

∆u + f(u) = 0 in B , u = 0 on ∂B

and assume that f is Lipschitz. If u is positive, then it is radially symmetric and decreasing

along any radius: u′(r) < 0 for any r ∈ (0, 1]

Extension: ∆u + f(r, u) = 0, r = |x| if ∂f
∂r

≤ 0... a “cooperative" case

Theorem 2. [JD, Felmer, 1999] Consider solutions of

∆u + λ f(r, u) = 0 in B , u = 0 on ∂B

and assume that f ∈ C1(R+ × R
+) (no assumption on the sign of ∂f

∂r ). There exists

λ1, λ2 with 0 < λ1 ≤ λ2 such that

(i) if λ ∈ (0, λ1), then d
dr (u − λu0) < 0 where u0 is the solution of

∆u0 + λf(r, 0) = 0.

(ii) if λ ∈ (0, λ2), then u is radially symmetric
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Proof: spectral issues

The counter-example of Gidas, Ni and Nirenberg if ∂f
∂r ≥ 0 is based on

eigenfunctions and eigenvalues

A sketch of the proof of (ii): x̄ = (−x1, x
′), |x′| = |x|, ū(x) = u(x̄)

∆ū + λ f(r, ū) = 0

v = ū − u, c = (f(r, ū) − f(r, u))/(u − ū)

∆v + λ c v = 0

λ1 = sup{λ > 0 : ∆v + λ c v = 0 =⇒ v = 0}
λ2 = sup{λ > 0 : ∆v + λ c v = 0 and v changes sign =⇒ v = 0}
If λ < λ2,

either λ = λ1 and v is nonnegative... but v(x̄) = u(x) − u(x̄) = −v(x)
and so v ≡ 0: u = ū

or λ 6= λ1: v ≡ 0, same conclusion
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Caffarelli-Kohn-Nirenberg
inequalities

Joint work(s) with M. Esteban, M. Loss and G. Tarantello
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Caffarelli-Kohn-Nirenberg (CKN) inequalities

(∫

RN

|u|p
|x|b p

dx

)2/p

≤ CN
a,b

∫

RN

|∇u|2
|x|2 a

dx ∀ u ∈ Da,b

with a ≤ b ≤ a + 1 if N ≥ 3 , a < b ≤ a + 1 if N = 2 , and a 6= N−2
2

p = 2 N
N−2+2 (b−a)

Da,b :=
{

|x|−b u ∈ Lp(RN , dx) : |x|−a |∇u| ∈ L2(RN , dx)
}
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The symmetry issue

(∫

RN

|u|p
|x|b p

dx

)2/p

≤ CN
a,b

∫

RN

|∇u|2
|x|2 a

dx ∀ u ∈ Da,b

Ca,b = best constant for general functions u

C∗
a,b = best constant for radially symmetric functions u

C∗
a,b ≤ Ca,b

Up to scalar multiplication and dilation, the optimal radial function is

u∗
a,b(x) =

(

1 + |x|−
2a (1+a−b)

b−a

)− b−a
1+a−b

Questions: is optimality (equality) achieved ? do we have ua,b = u∗
a,b ?
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Positive answers

[Aubin, Talenti, Lieb, Chou-Chu, Lions, Catrina-Wang, ...]

Extremals exist for a < b < a + 1 and for 0 ≤ a ≤ N−2
2 , a ≤ b < a + 1,

N ≥ 2

Optimal constants are never achieved for b = a < 0, N ≥ 3 and for
b = a + 1, N ≥ 2

If N ≥ 3, 0 ≤ a < N−2
2 and a ≤ b < a + 1, the extremal functions are

radially symmetric ... u(x) = |x|a v(x) + Schwarz symmetrization
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More results on symmetry

Radial symmetry has also been established for N ≥ 3, a < 0, |a|
small and 0 < b < a + 1: [Lin-Wang, Smets-Willem]

Schwarz foliated symmetry [Smets-Willem]

N = 3: optimality is achieved among solutions which depend only on
the “latitude" θ and on r. Similar results hold in higher dimensions

Optimal functions and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities – p. 15/50



Symmetry breaking

[Catrina-Wang, Felli-Schneider] if a < 0, a ≤ b < bFS(a), the extremal
functions ARE NOT radially symmetric !

Zones of symmetry breaking in dark grey. Left: N ≥ 3. Right: N = 2

bFS(a) = N(N−2−2a)

2
√

(N−2−2a)2+4(N−1)
− 1

2 (N − 2 − 2a)

[Catrina-Wang] As a → −∞, optimal functions look like some
decentered optimal functions for some Gagliardo-Nirenberg
interpolation inequalities (after some appropriate transformation)
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Main result 1 [J.D.-Esteban-Tarantello]

For N = 2, radial symmetry can be proved when

−η < a < 0 and − ε(η) a ≤ b < a + 1

Theorem 3. For all ε > 0 there exists η > 0 s.t. for a < 0, |a| < η and

(i) if |a| > 2
p−ε (1 + |a|2), then Ca,b > C∗

a,b ( symmetry breaking)

(ii) if |a| < 2
p+ε (1 + |a|2), then Ca,b = C∗

a,b and ua,b = u∗
a,b

a

b
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Main result 2 [J.D.-Esteban-Loss-Tarantello]

For N ≥ 2, radial symmetry can be proved when b is close to a + 1

Theorem 4. Let N ≥ 2. For every A < 0, there exists ε > 0 such that the extremals
are radially symmetric if a + 1 − ε < b < a + 1 and a ∈ (A, 0). So they are given by
u∗

a,b, up to a scalar multiplication and a dilation
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a

b

Zones of symmetry breaking in dark grey. Left: N = 2. Right: N ≥ 3
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Main result 3 [J.D.-Esteban-Loss-Tarantello]

The symmetry and the symmetry breaking zones are simply connected
and separated by a continuous curve

Theorem 5. For all N ≥ 2, there exists a continuous function a∗: (2, 2∗)−→ (−∞, 0)
such that limp→2∗

−

a∗(p) = 0, limp→2+ a∗(p) = −∞ and

(i) If (a, p) ∈
(
a∗(p), N−2

2

)
× (2, 2∗), all extremals radially symmetric

(ii) If (a, p) ∈ (−∞, a∗(p)) × (2, 2∗), none of the extremals is radially symmetric
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Emden-Fowler transformation and the cylinder C = R × S
N−1

t = log |x| , θ =
x

|x| ∈ SN−1 , w(t, θ) = |x|−a v(x) , Λ =
1

4
(N − 2 − 2a)2

‖w‖2
Lp(C) ≤ CΛ,p

[

‖∇w‖2
L2(C) + Λ ‖w‖2

L2(C)

]

EΛ[w] := ‖∇w‖2
L2(C) + Λ ‖w‖2

L2(C)

C−1
Λ,p := C−1

a,b = inf
{

EΛ(w) : ‖w‖2
Lp(C) = 1

}

a < 0 =⇒ Λ >
(N − 2)2

4

b − a → 0 ⇐⇒ p → 2N

N − 2

b − (a + 1) → 0 ⇔ p → 2+
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Symmetry breaking

Strategy of [Catrina-Wang, Felli-Schneider]

Expand EΛ[w] around w∗
Λ,p with w an appropriate orthogonal space to

wΛ,p. This amounts to study the spectrum of

−∆ + Λ − (p − 1) |w∗
Λ,p|p−2

in H1(C), make en expansion in spherical harmonics and compute the
lowest eigenvalue associated to the first non-constant spherical harmonic
function

Alternative proof in dimension N = 2 close to (a, b) = (0, 0):
[J.D.-Esteban-Loss-Tarantello]
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Auxiliary results for symmetry proofs

Multiplication by constants does not affect optimality (no more scaling
invariance in C): we normalize so that the optimal functions solve
−∆w + Λw = wp−1, that is

∫

C
|∇w|2 dx + Λ

∫

C
|w|2 dx =

∫

C
|w|p dx

With 1/CΛ,p = E [w]/‖w‖2
Lp(C), this determines ‖w‖Lp(C)

Lemma 6. Let N ≥ 2, p ∈ (2, 2∗). For any Λ 6= 0, we have

(
C

N
Λ,p

)− p
p−2 = ‖wΛ,p‖p

Lp(C) ≤ ‖w∗
Λ,p‖p

Lp(C) = 4 |SN−1| (2 Λ p)
p

p−2
cp

2 p
√

Λ

where p 7→ cp is increasing and limp→2+ 2
2 p

p−2
√

p − 2 cp =
√

2π

The extremals can be chosen to satisfy: wΛ,p depends only on r and the
azimuthal angle θ, maxC wΛ,p = wΛ,p(0, θ0) for some θ0 ∈ SN−1 and
∂twΛ,p < 0 for any t > 0
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“Hardy” regime ( b close to a + 1, N ≥ 2)

Proof of Result # 2: Let (Λn)n∈N and (pn)n∈N be such that

lim
n→+∞

Λn = Λ ≥ (N − 2)2/4 and lim
n→+∞

pn = 2+

such that the corresponding global minimizer wn := wΛn, pn satisfies

FΛ,p[wΛn, pn
] < FΛ,p[w

∗
Λn, pn

] and − ∆ywn + Λn wn = wp−1
n in C

Define c2
n := (Λn pn)−

pn
pn−2 2

pn
pn−2

√
pn − 2 and Wn := cn wn. We have

limn→+∞ c2−pn
n = Λ and

lim sup
n→+∞

∫

C
|∇Wn|2 dy+Λn

∫

C
W 2

n dy = lim sup
n→+∞

c2
n

∫

C
wpn

n dy ≤ |SN−1|
√

2 π/Λ

so that (Wn)n∈N is bounded in H1(C). By elliptic estimates, Wn → W and
−∆W + ΛW = ΛW =⇒ W ≡ 0
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“Hardy” regime (continued)

Let χn := ∇θwn := sin θ2−d ∂
∂θ

(
sin θd−2 wn

)
. By differentiating

−∆Wn + Λn Wn = c2−pn
n W pn−1

n with respect to θ, we get

−∆χn + Λn χn = (pn − 1) c2−pn
n W pn−2

n χn

0 =
∫

C |∇χn|2 dy + Λn

∫

C |χn|2 dy − (pn − 1) c2−pn
n

∫

C W pn−2
n |χn|2 dy

Since
∫

SN−1 χn dθ = 0

∫

C |∇χn|2 dy ≥ (N − 1)
∫

C |χn|2 dy

by the Poincaré inequality. But Wn is bounded by Wn(0, θ0), we get

0 ≥
(

N − 1 + Λn − (pn − 1) c2−pn
n Wn(0, θ0)

pn−2

︸ ︷︷ ︸

→0 as n→∞

) ∫

C
|χn|2 dy

This proves that χn ≡ 0 for n large enough
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Symmetry and symmetry breaking regions are separated by a cu r

Proof of Main result # 3 (N ≥ 2): let wσ(t, θ) := w(σ t, θ) for any σ > 0

Fσ2Λ,p(wσ) = σ1+2/p FΛ,p(w) − σ−1+2/p (σ2 − 1)

∫

C |∇θw|2 dy
(∫

C |w|p dy
)2/p

Lemma 7. If N ≥ 2, Λ > 0 and p ∈ (2, 2∗)

(i) If CN
Λ,p = C

N,∗
Λ,p , then CN

λ,p = C
N,∗
λ,p and wλ,p = w∗

λ,p, for any λ ∈ (0, Λ)

(ii) If there is a non radially symmetric extremal wΛ,p, then CN
λ,p > C

N,∗
λ,p for all λ > Λ
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Symmetry and symmetry breaking regions are separated by a cu r

Corollary 8. Let N ≥ 2. For all p ∈ (2, 2∗), Λ∗(p) ∈ (0, ΛFS(p)] and

(i) If λ ∈ (0, Λ∗(p)), then wλ,p = w∗
λ,p and clearly, CN

λ,p = CN,∗
λ,p

(ii) If λ = Λ∗(p), then CN
λ,p = CN,∗

λ,p

(iii) If λ > Λ∗(p), then CN
λ,p > CN,∗

λ,p

Upper semicontinuity
is easy to prove
For continuity,
a delicate spectral
analysis is needed
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Extensions and limit cases
The case of dimension 2

Other Caffarelli-Kohn-Nirenberg inequalities

Logarithmic Hardy inequalities
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Proof of Result # 1 in the case of dimension 2

Joint work with M. Esteban and G. Tarantello
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The case of dimension 2 (1/3)

Assume that there exists ε0 ∈ (0, 1) and, for all n ∈ N, an > 0, pn > 2,
such that limn→+∞ an = 0, an pn < 2 − ε0 and E(wn) < E(w∗

n) with
wn = wan, pn and w∗

n = w∗
an, pn

. We can assume

wn(t, θ) = wn(−t, θ) ,
∂wn

∂t
(t, θ) < 0 ∀ t > 0 and wn(0, 0) = max

C
wn







−(∂2
t wn + ∂2

θwn) + a2 wn = wp−1
n in R × [−π, π]

wn > 0 , wn(t, ·) is 2π-periodic ∀ t ∈ R

As pn → +∞, for a subsequence, we have

lim
n→+∞

wn(0, 0) = 1 , lim
n→+∞

[
wn(0, 0)

]pn
= 0 ,

lim
n→+∞

pn

[
wn(0, 0)

]pn−2
= µ ∈ [1, +∞)
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The case of dimension 2 (2/3)

Define Vn(t, θ) = pn

(
wn(t,θ)
wn(0,0) − 1

)

, α = −1 + limn→∞(1 − εn) an/εn

−∆Vn = pn

(
wn(0, 0)

)pn−2
(

1 +
Vn

pn

)pn−1

− a2
n pn

(

1 +
Vn

pn

)

in C

Vn ≤ 0 = Vn(0, 0) , Vn(t, ·) is 2π-periodic

pn

(
wn(0, 0)

)pn

∫

C

(

1 +
Vn

pn

)pn

dx = pn

∫

C
|wn|pn dx

≤ pn

∫

C
|w∗

n|pn dx = 8π (1 + α) < 8π

Elliptic estimates and Harnack’s inequality imply that Vn → V locally and

−∆V = µ eV in C , µ
∫

C eV dx ≤ 8π (1 + α)

maxC V ≤ 0 = V (0, 0) , V (t, ·) is 2π-periodic ∀ t ∈ R

Optimal functions and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities – p. 31/50



The case of dimension 2 (3/3)

Known results on Liouville’s equation −∆V = µ eV and
µ

∫

C eV dx ≤ 8π (1 + α) show that

µ = 2 (α + 1)2 and V (t) = −2 log
[
cosh((α + 1) t)

]

With χn := ∂θwn such that −∆χn + a2
n χn = (pn − 1)

(
wn(t, θ)

)pn−2
χn

‖∇χn‖2
L2+a2

n ‖χn‖2
L2 = (pn−1)

∫

C

( wn(t,θ)
wn(0,0)

)pn−2
χ2

n dx ∼ (pn−1)

∫

C
∼ eV χ2

n dx

0 = ‖∇χn‖2
2 + a2

n ‖χn‖2
L2 − (pn − 1)

∫

C
(
wn(t, θ)

)pn−2
χ2

n dx

≥
[
1 + a2

n
︸︷︷︸

→0

− (α + 1)2
︸ ︷︷ ︸

<1

− (pn − 1)
(
wn(0, 0)

)pn−2

︸ ︷︷ ︸

→µ=2 (α+1)2

rn
︸︷︷︸

→0

]
‖χn‖2

L2(C)

+
[
2 (α + 1)2 − (pn − 1) (wn(0, 0))pn−2

︸ ︷︷ ︸

→µ=2 (α+1)2

]
∫

C

χ2
n

(cosh((α + 1) t))
2 dx
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Generalized Caffarelli-Kohn-Nirenberg inequalities

Joint work with M. del Pino, S. Filippas and A. Tertikas
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Other Caffarelli-Kohn-Nirenberg inequalities

Let 2∗ = ∞ if N = 1 or N = 2, 2∗ = 2N/(N − 2) if N ≥ 3 and define

ϑ(p, N) :=
N (p − 2)

2 p

Theorem 9. [Caffarelli-Kohn-Nirenberg-84] Let N ≥ 1. For any θ ∈ [ϑ(p, N), 1], there

exists a positive constant C(θ, p, a) such that

(∫

Rd

|u|p
|x|b p

dx

) 2
p

≤ C(θ, p, a)

(∫

Rd

|∇u|2
|x|2 a

dx

)θ (∫

Rd

|u|2
|x|2 (a+1)

dx

)1−θ

Define

Θ(a, p, d) :=
p − 2

32 (d − 1) p

[
(p + 2)2 (d2 + 4 a2 − 4 a (d − 2)) − 4 p (p + 4) (d − 1)

]

a−(p) :=
d − 2

2
− 2 (d − 1)

p + 2
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Symmetry breaking for generalized CKN inequalities

Theorem 10. Let d ≥ 2, 2 < p < 2∗ and a < a−(p). Then C(θ, p, a) > C∗(θ, p, a)
if either

ϑ(p, d) ≤ θ < Θ(a, p, d) when a ≥ d − 2

2
− 2

√
d − 1

√

(p − 2)(p + 2)

or

ϑ(p, d) ≤ θ ≤ 1 when a <
d − 2

2
− 2

√
d − 1

√

(p − 2)(p + 2)

In other words, symmetry breaking occurs if a, θ and p are in any of the two above

regions. Moreover, if a < −1/2, there exists ε > 0, γ1 > d/4 and γ2 > γ1 such that

symmetry breaking occurs if θ = γ (p− 2) for any γ ∈ (γ1, γ2) and any p ∈ (2, 2 + ε)
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Plot of the admissible regions (gray areas) with symmetry breaking region established in

Theorem 10 (dark grey) in (η, θ) coordinates, with η := b − a, for various values of a, in

dimension d = 3: from left to right, a = 0, a = −0.25, a = −0.5 and a = −1. The two curves

are η 7→ ϑ(p, d) = 1 − η and η 7→ Θ(a, p, d), for p = 2 d/(d − 2 + 2 η). In the range

a ∈ (−1/2, 0), they intersect for a = a
−

(p), i.e. η = 2 a (1 − d)/(d + 2 a). They are tangent

at (η, θ) = (1, 0) for a = −1/2. The symmetry breaking region contains a cone attached to

(η, θ) = (1, 0) for a < −1/2, which determines values of γ for which symmetry breaking

occurs in the logarithmic Hardy inequality
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Left.– For a given value of θ ∈ (0, 1], admissible values of the parameters for which the
generalized CKN inequality holds are given by η = b − a ≥ 1 − θ (grey areas) in terms of
(a, η). According to Theorem 10, symmetry breaking occurs if θ < Θ(a, p, d), which
determines a region η < g(a, θ) (dark grey). Notice that η < g(a, 1) corresponds to the
condition found by Felli and Schneider. The plot corresponds to d = 3 and θ = 0.5

Right.– Regions of symmetry breaking, i.e. 1 − θ ≤ η < g(a, θ), are shown for θ = 1, 0.75,

0.5, 0.3, 0.2, 0.1, 0.05, 0.02. For each value of θ, the supremum value for which symmetry

breaking has been established is a = a
−

(p) for p = 2 d/(d − 2 θ), which determines a curve

η = h(a) by requiring that θ = 1 − η. The limit case η = 0 = h(0) corresponds to the case

studied by Felli and Schneider
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Logarithmic Hardy inequalities

Joint work with M. del Pino, S. Filippas and A. Tertikas
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Logarithmic Hardy inequalities

Theorem 11. Let N ≥ 3. There exists a constant CLH ∈ (0, S] such that, for all

u ∈ D1,2(RN ) with
∫

Rd

|u|2
|x|2 dx = 1, we have

∫

Rd

|u|2
|x|2 log

(
|x|N−2|u|2

)
dx ≤ N

2
log

[

CLH

∫

Rd

|∇u|2 dx

]

Theorem 12. Let N ≥ 1. Suppose that a < (N − 2)/2, γ ≥ N/4 and γ > 1/2 if

N = 2. Then there exists a positive constant CGLH such that, for any u ∈ D1,2
a (RN )

normalized by
∫

Rd

|u|2
|x|2 (a+1) dx = 1, we have

∫

Rd

|u|2
|x|2 (a+1)

log
(
|x|N−2−2 a |u|2

)
dx ≤ 2 γ log

[

CGLH

∫

Rd

|∇u|2
|x|2 a

dx

]
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Logarithmic Hardy inequalities: radial case

Theorem 13. Let N ≥ 1, a < (N − 2)/2 and γ ≥ 1/4. If u = u(|x|) ∈ D1,2
a (RN )

is radially symmetric, and
∫

Rd

|u|2
|x|2 (a+1) dx = 1, then

∫

Rd

|u|2
|x|2 (a+1)

log
(
|x|N−2−2 a |u|2

)
dx ≤ 2 γ log

[

C
∗
GLH

∫

Rd

|∇u|2
|x|2 a

dx

]

C∗
GLH = 1

γ

[Γ(N
2 )]

1
2 γ

(8 πN+1 e)
1

4 γ

(
4 γ−1

(N−2−2 a)2

) 4 γ−1
4 γ

if γ > 1
4

C∗
GLH = 4

[Γ(N
2 )]

2

8 πN+1 e if γ = 1
4

If γ > 1
4 , equality is achieved by the function

u =
ũ

∫

Rd

|ũ|2
|x|2 dx

where ũ(x) = |x|−N−2−2 a
2 exp

(

− (N−2−2a)2

4 (4 γ−1)

[
log |x|

]2
)
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Logarithmic Hardy inequalities: symmetry breaking

Theorem 14. Let N ≥ 2 and a < −1/2. Assume that γ > 1/2 if N = 2. If, in
addition,

N

4
≤ γ <

1

4
+

(N − 2 a − 2)2

4 (N − 1)

then the optimal constant CGLH is not achieved by a radial function and CGLH > C∗
GLH
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Symmetry breaking in
gravitational models

An example of defocusing external potential
Joint work with J. Campos and M. del Pino
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Relative equilibria in continuous stellar dynamics

Gravitational (non-relativistic) Vlasov-Poisson system in R
3







∂tF + w · ∇zF −∇zΦ · ∇wF = 0

∆Φ =

∫

R3

F dw

Theorem 15. For any N ≥ 2, any p ∈ (1, 5),
any positive numbers λ1, λ2, . . .λN and any ω > 0
small enough, there is a solution Fω which is a relative equilibrium with angular velocity ω
whose support has N disjoint connected components, each of them with mass mω

i such
that

lim
ω→0+

mω
i = λ

(3−p)/2
i m∗ =: mi

for some positive constant m∗. The center of mass zω
i (t) of each component is such that

limω→0+ ω2/3 zω
i (t) =: zi(t) is a relative equilibrium of the N -body Newton’s

equations with gravitational interaction
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Newton’s equations and basic relative equilibria

mi
d2zi

dt2
=

N∑

i 6=j=1

mi mj

4π

zj − zi

|zj − zi|3

Ansatz: the system is stationary in a reference frame rotating at constant
angular velocity Ω = ω e3: x′ = (x1, x2, 0) = x − (x · e3) e3

x3 = z3 , x1 + i x2 = eiωt(z1 + i z2)

Newton’s equations in a rotating frame

d2xi

dt2 =
∑N

i 6=j=1
mj

4π
xj−xi

|xj−xi|3 + ω2 x′
i + 2 Ω ∧ dxi

dt

Relative equilibria are critical points of the function

Vω(x′
1, x

′
2, . . . x′

N ) := − 1

8π

N∑

i 6=j=1

mi mj

|x′
j − x′

i|
− ω2

2

N∑

i=1

mi |x′
i|2
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Relative equilibria: classification

Lagrange solution: all masses mi are equal to m > 0 and x′
i are

located at the summits of a regular polygon, whose radius is adjusted
so that

d

dr

[aN

4π

m

r
+

1

2
ω2 r2

]

= 0 with aN :=
1√
2

N−1∑

j=1

1
√

1 − cos (2πj/N)

[Perko-Walter]: all masses have to be equal
Scale invariance: r(N, ε3/2 ω) = 1

ε r(N, ω) ∀ ε > 0

If ∇Vω(x′
1, x

′
2, . . . x′

N ) = 0,
then ∇Vε3/2 ω(ε−1 x′

1, ε
−1 x′

2, . . . ε−1 x′
N ) = 0

the study of the critical points
of Vω can be reduced to the case ω = 1

[Palmore] For N ≥ 3, there are (generically) at least
µi(N) :=

(
N
i

)
(N − 1 − i) (N − 2) ! distinct relative equilibria
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Stationary solutions of the Vlasov-Poisson system ( ω = 0)

If ω = 0, one can minimize the free energy

F [f ] :=

∫∫

R3×R3

β(f) dx dv +
1

2

∫∫

R3×R3

|v|2 f dx dv − 1

2

∫

R3

|∇φ|2 dx

under the constraint
∫∫

R3×R3 f dx dv = M to get a stationary solution
which is then dynamically stable

With β(f) = κ fq, this amounts to look for an optimal function of the
interpolation inequality

∫

R3×R3

ρ(x) ρ(y)

|x − y| dx dy ≤ C Ma ‖f‖b
Lq(R3×R3)

(∫∫

R3×R3

|v|2 f dx dv

)2−a−b

with ρ =
∫

R3 f dv

[Guo, Rein, Schaeffer, Soler, Sánchez,...]
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Relative equilibria of the Vlasov-Poisson system

If ω 6= 0, one find the relative equilibria by minimizing the free energy in
the rotating reference frame

F [f ] :=

∫∫

R3×R3

β(f) dx dv+
1

2

∫∫

R3×R3

(
|v|2 − ω2 |x′|2

)
f dx dv− 1

2

∫

R3

|∇φ|2 dx

under various constraints:

symmetry constraint (under rotation of an angle 2π/N )

mass constraint
∫∫

R3×R3 f dx dv = M

angular momentum constraint
∫∫

R3×R3 |x|2 f dx dv = J

a localization constraint

Three-dimensional case: [McCann]
Flat case: [Rein, J.D.-Fernández]
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Method

Let x = (x′, x3) ∈ R
2 × R, fix λ1, . . . λN and ω > 0, small: the problem is

∆φ =
N∑

i=1

ρi in R
3 , ρi :=

(
1
2 ω2 |x′|2 − λi − φ

)p

+
χi

where χi denotes the characteristic function of Ki + Boundary condition
lim|x|→∞ u(x) = 0 + Mass and center of mass associated to each
component by

mi :=

∫

R3

ρi dx and xi :=
1

mi

∫

R3

x ρi dx

Lyapunov-Schmidt method [Campos-del Pino, J.D.] applied to

J [φ] =
1

2

∫

R3

|∇φ|2 dx +
N∑

i=1

[
∫

Ki

(

λi + φ(x) − 1

2
ω2 |x′|2

)p

+

dx − mi λi

]
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Numerical results

[J.D.-Salomon, work in progress]
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